Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity (EEG)

The early detection of subjects with probable Alzheimer's disease (AD) is crucial for effective appliance of treatment strategies. Here we explored the ability of a multitude of linear and non-linear classification algorithms to discriminate between the electroencephalograms (EEGs) of patients...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 161; no. 2; pp. 342 - 350
Main Authors Lehmann, Christoph, Koenig, Thomas, Jelic, Vesna, Prichep, Leslie, John, Roy E., Wahlund, Lars-Olof, Dodge, Yadolah, Dierks, Thomas
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.04.2007
Subjects
Online AccessGet full text
ISSN0165-0270
1872-678X
DOI10.1016/j.jneumeth.2006.10.023

Cover

Abstract The early detection of subjects with probable Alzheimer's disease (AD) is crucial for effective appliance of treatment strategies. Here we explored the ability of a multitude of linear and non-linear classification algorithms to discriminate between the electroencephalograms (EEGs) of patients with varying degree of AD and their age-matched control subjects. Absolute and relative spectral power, distribution of spectral power, and measures of spatial synchronization were calculated from recordings of resting eyes-closed continuous EEGs of 45 healthy controls, 116 patients with mild AD and 81 patients with moderate AD, recruited in two different centers (Stockholm, New York). The applied classification algorithms were: principal component linear discriminant analysis (PC LDA), partial least squares LDA (PLS LDA), principal component logistic regression (PC LR), partial least squares logistic regression (PLS LR), bagging, random forest, support vector machines (SVM) and feed-forward neural network. Based on 10-fold cross-validation runs it could be demonstrated that even tough modern computer-intensive classification algorithms such as random forests, SVM and neural networks show a slight superiority, more classical classification algorithms performed nearly equally well. Using random forests classification a considerable sensitivity of up to 85% and a specificity of 78%, respectively for the test of even only mild AD patients has been reached, whereas for the comparison of moderate AD vs. controls, using SVM and neural networks, values of 89% and 88% for sensitivity and specificity were achieved. Such a remarkable performance proves the value of these classification algorithms for clinical diagnostics.
AbstractList The early detection of subjects with probable Alzheimer's disease (AD) is crucial for effective appliance of treatment strategies. Here we explored the ability of a multitude of linear and non-linear classification algorithms to discriminate between the electroencephalograms (EEGs) of patients with varying degree of AD and their age-matched control subjects. Absolute and relative spectral power, distribution of spectral power, and measures of spatial synchronization were calculated from recordings of resting eyes-closed continuous EEGs of 45 healthy controls, 116 patients with mild AD and 81 patients with moderate AD, recruited in two different centers (Stockholm, New York). The applied classification algorithms were: principal component linear discriminant analysis (PC LDA), partial least squares LDA (PLS LDA), principal component logistic regression (PC LR), partial least squares logistic regression (PLS LR), bagging, random forest, support vector machines (SVM) and feed-forward neural network. Based on 10-fold cross-validation runs it could be demonstrated that even tough modern computer-intensive classification algorithms such as random forests, SVM and neural networks show a slight superiority, more classical classification algorithms performed nearly equally well. Using random forests classification a considerable sensitivity of up to 85% and a specificity of 78%, respectively for the test of even only mild AD patients has been reached, whereas for the comparison of moderate AD vs. controls, using SVM and neural networks, values of 89% and 88% for sensitivity and specificity were achieved. Such a remarkable performance proves the value of these classification algorithms for clinical diagnostics.
The early detection of subjects with probable Alzheimer's disease (AD) is crucial for effective appliance of treatment strategies. Here we explored the ability of a multitude of linear and non-linear classification algorithms to discriminate between the electroencephalograms (EEGs) of patients with varying degree of AD and their age-matched control subjects. Absolute and relative spectral power, distribution of spectral power, and measures of spatial synchronization were calculated from recordings of resting eyes-closed continuous EEGs of 45 healthy controls, 116 patients with mild AD and 81 patients with moderate AD, recruited in two different centers (Stockholm, New York). The applied classification algorithms were: principal component linear discriminant analysis (PC LDA), partial least squares LDA (PLS LDA), principal component logistic regression (PC LR), partial least squares logistic regression (PLS LR), bagging, random forest, support vector machines (SVM) and feed-forward neural network. Based on 10-fold cross-validation runs it could be demonstrated that even tough modern computer-intensive classification algorithms such as random forests, SVM and neural networks show a slight superiority, more classical classification algorithms performed nearly equally well. Using random forests classification a considerable sensitivity of up to 85% and a specificity of 78%, respectively for the test of even only mild AD patients has been reached, whereas for the comparison of moderate AD vs. controls, using SVM and neural networks, values of 89% and 88% for sensitivity and specificity were achieved. Such a remarkable performance proves the value of these classification algorithms for clinical diagnostics.The early detection of subjects with probable Alzheimer's disease (AD) is crucial for effective appliance of treatment strategies. Here we explored the ability of a multitude of linear and non-linear classification algorithms to discriminate between the electroencephalograms (EEGs) of patients with varying degree of AD and their age-matched control subjects. Absolute and relative spectral power, distribution of spectral power, and measures of spatial synchronization were calculated from recordings of resting eyes-closed continuous EEGs of 45 healthy controls, 116 patients with mild AD and 81 patients with moderate AD, recruited in two different centers (Stockholm, New York). The applied classification algorithms were: principal component linear discriminant analysis (PC LDA), partial least squares LDA (PLS LDA), principal component logistic regression (PC LR), partial least squares logistic regression (PLS LR), bagging, random forest, support vector machines (SVM) and feed-forward neural network. Based on 10-fold cross-validation runs it could be demonstrated that even tough modern computer-intensive classification algorithms such as random forests, SVM and neural networks show a slight superiority, more classical classification algorithms performed nearly equally well. Using random forests classification a considerable sensitivity of up to 85% and a specificity of 78%, respectively for the test of even only mild AD patients has been reached, whereas for the comparison of moderate AD vs. controls, using SVM and neural networks, values of 89% and 88% for sensitivity and specificity were achieved. Such a remarkable performance proves the value of these classification algorithms for clinical diagnostics.
Author Prichep, Leslie
John, Roy E.
Jelic, Vesna
Dierks, Thomas
Lehmann, Christoph
Koenig, Thomas
Wahlund, Lars-Olof
Dodge, Yadolah
Author_xml – sequence: 1
  givenname: Christoph
  surname: Lehmann
  fullname: Lehmann, Christoph
  email: lehmann@puk.unibe.ch
  organization: University Hospital of Clinical Psychiatry, Department of Psychiatric Neurophysiology, University of Berne, Bolligenstrasse 111, CH-3000 Bern 60, Switzerland
– sequence: 2
  givenname: Thomas
  surname: Koenig
  fullname: Koenig, Thomas
  organization: University Hospital of Clinical Psychiatry, Department of Psychiatric Neurophysiology, University of Berne, Bolligenstrasse 111, CH-3000 Bern 60, Switzerland
– sequence: 3
  givenname: Vesna
  surname: Jelic
  fullname: Jelic, Vesna
  organization: Karolinska Institute, Department of Neurotec., Division of Geriatric Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
– sequence: 4
  givenname: Leslie
  surname: Prichep
  fullname: Prichep, Leslie
  organization: Brain Research Laboratories, New York University School of Medicine, USA
– sequence: 5
  givenname: Roy E.
  surname: John
  fullname: John, Roy E.
  organization: Brain Research Laboratories, New York University School of Medicine, USA
– sequence: 6
  givenname: Lars-Olof
  surname: Wahlund
  fullname: Wahlund, Lars-Olof
  organization: Karolinska Institute, Department of Neurotec., Division of Geriatric Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
– sequence: 7
  givenname: Yadolah
  surname: Dodge
  fullname: Dodge, Yadolah
  organization: Group of Statistics, University of Neuchatel, Switzerland
– sequence: 8
  givenname: Thomas
  surname: Dierks
  fullname: Dierks, Thomas
  organization: University Hospital of Clinical Psychiatry, Department of Psychiatric Neurophysiology, University of Berne, Bolligenstrasse 111, CH-3000 Bern 60, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17156848$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:1937656$$DView record from Swedish Publication Index
BookMark eNqFkUFvFCEcxYmpsdvqV2g4qT3MCsMMzCYeumnWatLEiybeCDB_uqzMMAJbU29-87LdbU289AQ8fu8d3jtBR2MYAaEzSuaUUP5hM9-MsB0gr-c1IbyIc1KzF2hGO1FXXHQ_jtCsgG1FakGO0UlKG0JIsyD8FTqmgra8a7oZ-rucJu-Myi6MWI09NmGYVHSpPIPFxquUnH0C_E2ILq-HhG2IOIIJN6N7-Crw0v9Zgxsgvku4dwlUAuxGDB5MjiXCYx1VEZTJ7tblO_x-tbo6f41eWuUTvDmcp-j7p9W3y8_V9derL5fL68o0guRKd0zTurPMdsBV2wqmtBGmFh0ljYV2oYnWNeO8aXXTF8hS1hi16Dk1jDPLTlG1z02_YdpqOUU3qHgng3LyIP0sN5CtqNtFV_i3e36K4dcWUpaDSwa8VyOEbZKCMEYE4QU8O4BbPUD_FPxYcgH4HjAxpBTB_kOI3K0pN_JxTblbc6eXNYvx439G4_LDErkU6Z-3X-ztUGq9dRBlMg5GA70ry2XZB_dcxD30NsLb
CitedBy_id crossref_primary_10_1038_s41598_023_36713_0
crossref_primary_10_1177_1550059416662119
crossref_primary_10_1523_JNEUROSCI_2639_17_2018
crossref_primary_10_1142_S0219030312001097
crossref_primary_10_1007_s00221_014_4141_4
crossref_primary_10_1007_s11517_009_0554_9
crossref_primary_10_1177_1550059413486272
crossref_primary_10_1016_j_jflm_2011_10_002
crossref_primary_10_1007_s11571_025_10232_2
crossref_primary_10_1038_s41598_022_06497_w
crossref_primary_10_1016_j_mri_2012_07_010
crossref_primary_10_1007_s11517_017_1734_7
crossref_primary_10_3233_JAD_201455
crossref_primary_10_1016_j_heares_2013_07_008
crossref_primary_10_1016_j_neucli_2022_10_003
crossref_primary_10_3390_electronics11213424
crossref_primary_10_3233_JAD_180300
crossref_primary_10_1017_S1355617720001046
crossref_primary_10_3389_fncom_2016_00095
crossref_primary_10_1016_j_clinph_2019_06_007
crossref_primary_10_7717_peerj_5478
crossref_primary_10_1016_j_neurobiolaging_2016_08_021
crossref_primary_10_3390_biomedicines9040386
crossref_primary_10_1016_j_compbiomed_2024_108681
crossref_primary_10_1016_j_clinph_2024_11_013
crossref_primary_10_1155_2014_906038
crossref_primary_10_1186_s12938_023_01079_x
crossref_primary_10_1007_s10916_015_0345_9
crossref_primary_10_1016_j_heares_2020_108101
crossref_primary_10_52547_shefa_9_1_152
crossref_primary_10_1007_s11517_021_02452_5
crossref_primary_10_1016_j_dadm_2016_07_003
crossref_primary_10_1109_JTEHM_2018_2874887
crossref_primary_10_1177_13872877241283692
crossref_primary_10_1016_j_cogsys_2018_07_010
crossref_primary_10_1177_155005940904000211
crossref_primary_10_1002_hbm_25683
crossref_primary_10_1016_j_neuroimage_2017_03_057
crossref_primary_10_1142_S0219030312000651
crossref_primary_10_3233_BME_181008
crossref_primary_10_1093_brain_awq174
crossref_primary_10_3389_fncom_2021_755499
crossref_primary_10_1016_j_pscychresns_2020_111182
crossref_primary_10_4061_2011_927573
crossref_primary_10_3389_fneur_2018_00975
crossref_primary_10_3389_fnhum_2017_00450
crossref_primary_10_1016_j_artmed_2015_03_003
crossref_primary_10_1016_j_cmpb_2016_08_010
crossref_primary_10_1016_j_neuroimage_2010_07_034
crossref_primary_10_3389_fnhum_2021_636504
crossref_primary_10_1002_env_999
crossref_primary_10_3390_computers9030067
crossref_primary_10_1016_j_neurobiolaging_2022_04_001
crossref_primary_10_1016_j_apacoust_2021_108078
crossref_primary_10_1371_journal_pcbi_1005938
crossref_primary_10_3233_JAD_143042
crossref_primary_10_1186_s12911_018_0613_y
crossref_primary_10_1016_j_neurobiolaging_2017_03_030
crossref_primary_10_1186_s12967_022_03349_z
crossref_primary_10_1016_j_eswa_2021_115175
crossref_primary_10_1016_j_artmed_2017_11_002
crossref_primary_10_1088_1741_2552_ac15e3
crossref_primary_10_1007_s11633_019_1197_4
crossref_primary_10_1155_2012_915053
crossref_primary_10_4258_hir_2013_19_3_177
crossref_primary_10_1155_2016_3891253
crossref_primary_10_1016_j_neurobiolaging_2021_04_024
crossref_primary_10_1109_MSMC_2021_3103498
crossref_primary_10_1007_s00521_018_3889_z
crossref_primary_10_1109_ACCESS_2019_2918251
crossref_primary_10_3389_fnins_2015_00350
crossref_primary_10_1523_JNEUROSCI_0964_14_2014
crossref_primary_10_1155_2018_5238028
crossref_primary_10_3390_s140712784
crossref_primary_10_3390_s20143863
crossref_primary_10_1016_j_geomorph_2014_04_006
crossref_primary_10_3390_s24030877
crossref_primary_10_1016_j_artmed_2007_02_006
crossref_primary_10_1016_j_pscychresns_2012_11_005
crossref_primary_10_1016_j_neuroimage_2020_116795
crossref_primary_10_1016_j_jneumeth_2012_03_005
crossref_primary_10_1016_j_clinph_2017_06_251
crossref_primary_10_1016_j_neunet_2024_106792
crossref_primary_10_3233_JAD_190351
crossref_primary_10_1016_j_neuroimage_2011_10_003
crossref_primary_10_1016_j_neucom_2014_06_008
crossref_primary_10_1007_s11517_021_02427_6
crossref_primary_10_1016_j_clinph_2016_10_002
crossref_primary_10_1016_j_jneumeth_2016_05_003
crossref_primary_10_1016_j_jalz_2014_06_004
crossref_primary_10_1038_s41598_022_22979_3
crossref_primary_10_1089_bioe_2019_0001
crossref_primary_10_1002_wcms_1479
crossref_primary_10_1002_gps_1923
crossref_primary_10_1002_alz_12645
crossref_primary_10_1038_s41598_017_06165_4
crossref_primary_10_1002_cav_2127
crossref_primary_10_1109_ACCESS_2021_3102096
crossref_primary_10_3389_fpsyg_2023_1126994
crossref_primary_10_1016_j_jneumeth_2012_10_014
crossref_primary_10_1007_s00521_020_05467_5
crossref_primary_10_3390_s22103696
crossref_primary_10_1016_j_jmgm_2007_06_005
crossref_primary_10_1016_j_neurobiolaging_2016_09_004
crossref_primary_10_1016_j_neurobiolaging_2017_12_023
crossref_primary_10_1016_j_arr_2024_102417
crossref_primary_10_1016_j_pneurobio_2012_07_001
crossref_primary_10_1155_2021_5516819
crossref_primary_10_3233_JAD_160883
crossref_primary_10_1016_j_nicl_2023_103482
crossref_primary_10_1093_sleep_zsac286
crossref_primary_10_1016_j_ijpsycho_2018_07_476
crossref_primary_10_1186_1687_6180_2012_192
crossref_primary_10_1016_j_jneumeth_2013_04_017
crossref_primary_10_1088_1741_2552_ab909c
crossref_primary_10_3389_fneur_2015_00025
crossref_primary_10_1007_s11517_010_0620_3
crossref_primary_10_1016_j_eswa_2012_04_001
crossref_primary_10_3389_fnagi_2018_00417
crossref_primary_10_1186_s13195_021_00881_w
crossref_primary_10_1371_journal_pone_0092199
crossref_primary_10_3390_s19061423
crossref_primary_10_1111_sjos_12522
crossref_primary_10_1016_j_clinph_2013_12_118
crossref_primary_10_1016_j_neuropharm_2014_08_015
crossref_primary_10_1186_1756_0500_4_299
crossref_primary_10_1016_j_bspc_2020_102223
crossref_primary_10_3390_su11164355
crossref_primary_10_1002_alz_12311
crossref_primary_10_1016_j_neunet_2019_12_006
crossref_primary_10_1007_s11517_010_0726_7
crossref_primary_10_1016_j_patrec_2020_03_009
crossref_primary_10_1109_TBME_2009_2039997
crossref_primary_10_1016_j_mri_2014_05_008
crossref_primary_10_1155_2013_658501
crossref_primary_10_1007_s12539_018_0292_5
crossref_primary_10_1016_j_pneurobio_2007_07_010
crossref_primary_10_1159_000339996
crossref_primary_10_1016_j_bspc_2024_107379
crossref_primary_10_1159_000381016
crossref_primary_10_1007_s13369_019_04197_8
crossref_primary_10_1177_1550059413502779
crossref_primary_10_3233_JAD_180245
crossref_primary_10_1371_journal_pone_0153776
crossref_primary_10_1017_neu_2022_18
crossref_primary_10_3389_fnhum_2020_00245
crossref_primary_10_1109_ACCESS_2021_3133326
crossref_primary_10_1007_s12021_022_09572_9
crossref_primary_10_1016_j_neurobiolaging_2014_09_011
crossref_primary_10_1016_j_irbm_2021_12_001
crossref_primary_10_1002_gps_5090
crossref_primary_10_1016_j_ergon_2022_103404
crossref_primary_10_1109_TNSRE_2019_2909100
crossref_primary_10_1590_S0004_282X2011000300006
crossref_primary_10_3233_JAD_220442
crossref_primary_10_1007_s10916_016_0476_7
crossref_primary_10_1016_j_neuroimage_2020_117021
crossref_primary_10_1016_j_clinph_2011_02_011
crossref_primary_10_1002_cpe_5199
crossref_primary_10_1007_s11517_022_02615_y
crossref_primary_10_3233_JAD_170703
crossref_primary_10_1016_j_cogr_2022_07_002
crossref_primary_10_3390_brainsci11101262
crossref_primary_10_1016_j_bspc_2016_12_009
crossref_primary_10_1093_braincomms_fcad270
crossref_primary_10_3233_JAD_200171
crossref_primary_10_3389_fnins_2016_00604
crossref_primary_10_1109_TBME_2018_2834546
crossref_primary_10_3390_app132112012
crossref_primary_10_1016_j_neurobiolaging_2008_03_025
crossref_primary_10_1038_s41598_022_21951_5
crossref_primary_10_1177_155005941104200308
crossref_primary_10_3389_fnins_2016_00047
crossref_primary_10_1007_s11517_017_1685_z
crossref_primary_10_1177_155005941104200304
crossref_primary_10_3389_frai_2023_1289669
crossref_primary_10_3390_diagnostics13243630
crossref_primary_10_1016_j_clinph_2019_07_016
crossref_primary_10_56038_ejrnd_v3i3_273
crossref_primary_10_1002_alz_13441
crossref_primary_10_1016_j_compbiomed_2023_107701
crossref_primary_10_3233_JAD_160102
crossref_primary_10_3389_fnagi_2016_00273
crossref_primary_10_3389_fnagi_2022_756687
crossref_primary_10_1016_j_clinph_2021_06_036
crossref_primary_10_3390_a15040114
crossref_primary_10_1016_j_neurobiolaging_2023_11_010
crossref_primary_10_1038_npjgenmed_2016_26
crossref_primary_10_1007_s40120_019_00169_0
crossref_primary_10_1016_j_autcon_2018_09_010
crossref_primary_10_3233_IDA_237431
crossref_primary_10_3389_fneur_2022_1009574
crossref_primary_10_4306_pi_2015_12_1_92
crossref_primary_10_1016_j_compbiomed_2016_03_004
crossref_primary_10_3389_fnagi_2022_773692
crossref_primary_10_1016_j_cmpb_2010_08_005
crossref_primary_10_1007_s00704_015_1392_3
crossref_primary_10_1080_13803395_2011_630651
crossref_primary_10_1109_JBHI_2023_3303494
crossref_primary_10_1044_2018_JSLHR_S_ASTM_18_0244
crossref_primary_10_1038_s41598_020_66034_5
Cites_doi 10.1146/annurev.cb.10.110194.002105
10.1016/0925-4927(93)90027-F
10.1016/0022-3956(75)90026-6
10.1016/0013-4694(85)91048-X
10.1007/978-0-387-21606-5_1
10.1007/BF01199780
10.1016/0013-4694(94)90032-9
10.1016/S0749-0690(05)70068-9
10.1016/S0167-8760(97)00098-6
10.1093/clinchem/39.4.561
10.1016/0006-3223(94)90023-X
10.1002/ddr.430150203
10.1016/S0920-9964(00)00154-7
10.1023/A:1018054314350
10.1016/S0987-7053(97)83777-X
10.1159/000119060
10.1016/S0304-3940(98)00669-7
10.1055/s-0028-1094615
10.1016/0013-4694(83)90124-4
10.1093/bioinformatics/18.1.39
10.1023/A:1022627411411
10.1097/00002826-198609003-00013
10.1001/archneur.1994.00540240057016
10.1007/BF01814645
10.1007/s004060050101
10.1016/0013-4694(85)90005-7
10.1016/j.neurobiolaging.2004.03.008
10.1016/0197-4580(94)90147-3
10.1016/S1388-2457(00)00454-5
10.1016/0167-8760(93)90041-M
10.1007/BF01835097
10.1007/s00422-001-0304-z
10.1016/0013-4694(94)90033-7
10.1016/j.clinph.2004.01.001
10.55782/ane-1996-1121
10.1023/A:1010933404324
10.1080/01621459.1994.10476452
10.1212/WNL.34.7.939
ContentType Journal Article
Copyright 2006 Elsevier B.V.
Copyright_xml – notice: 2006 Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTPV
AOWAS
DOI 10.1016/j.jneumeth.2006.10.023
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
SwePub
SwePub Articles
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
EndPage 350
ExternalDocumentID oai_swepub_ki_se_572598
17156848
10_1016_j_jneumeth_2006_10_023
S0165027006005425
Genre Comparative Study
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.55
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMQ
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSN
SSZ
T5K
WUQ
X7M
ZGI
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTPV
AOWAS
ID FETCH-LOGICAL-c470t-b83b128f3f8e6a5573abc7c278104fe59b0bb236645b4df8ef134ca9d61c363f3
IEDL.DBID AIKHN
ISSN 0165-0270
IngestDate Mon Oct 20 03:25:44 EDT 2025
Sat Sep 27 22:09:57 EDT 2025
Wed Feb 19 01:44:57 EST 2025
Thu Apr 24 23:07:28 EDT 2025
Thu Oct 02 04:27:18 EDT 2025
Fri Feb 23 02:23:34 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Multivariate statistics
Alzheimer's disease
EEG
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-b83b128f3f8e6a5573abc7c278104fe59b0bb236645b4df8ef134ca9d61c363f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
PMID 17156848
PQID 70330706
PQPubID 23479
PageCount 9
ParticipantIDs swepub_primary_oai_swepub_ki_se_572598
proquest_miscellaneous_70330706
pubmed_primary_17156848
crossref_primary_10_1016_j_jneumeth_2006_10_023
crossref_citationtrail_10_1016_j_jneumeth_2006_10_023
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2006_10_023
PublicationCentury 2000
PublicationDate 2007-04-15
PublicationDateYYYYMMDD 2007-04-15
PublicationDate_xml – month: 04
  year: 2007
  text: 2007-04-15
  day: 15
PublicationDecade 2000
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2007
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bianchetti, Trabucch (bib5) 2001; 13
Jonkman (bib30) 1997; 27
Holschneider, Leuchter (bib24) 1995; 8
Berger (bib3) 1931; 94
Hanley (bib22) 1998
Coben, Danziger, Storandt (bib10) 1985; 61
Cortes, Vapnik (bib11) 1995; 20
Jeong (bib27) 2004; 115
DeCarli (bib12) 2001; 17
Anderer, Saletu, Kloppel, Semlitsch, Werner (bib1) 1994; 91
Mevik (bib38) 2006; 6
Witten, Frank (bib52) 2000
Jelic, Dierks, Amberla, Almkvist, Winblad, Nordberg (bib26) 1998; 254
Klöppel (bib31) 1994; 29
Koenig, Lehmann, Saito, Kuginuki, Kinoshita, Koukkou (bib32) 2001; 50
Kubicki, Herrmann, Fichte, Freund (bib34) 1979; 12
Dunkin, Leuchter, Newton, Cook (bib14) 1994; 35
Prichep, John, Ferris, Reisberg, Almas, Alper (bib42) 1994; 15
Association (bib2) 1987
Garthwaite (bib17) 1994; 89
Gasser, Bacher, Steinberg (bib18) 1985; 60
Selkoe (bib47) 1994; 10
Pritchard, Duke, Coburn, Moore, Tucker, Jann (bib43) 1994; 91
Breiman (bib8) 2001; 45
Venables, Ripley (bib49) 2002
Breiman (bib7) 1996; 24
Bracco, Gallato, Grigoletto, Lippi, Lepore, Bino (bib6) 1994; 51
Meyer (bib39) 2001; 1
Jin, Jeong, Jeong, Kim, Kim (bib28) 2002; 86
Koenig, Prichep, Dierks, Hubl, Wahlund, John (bib33) 2005; 26
McKhann, Drachman, Folstein, Katzman, Price, Stadlan (bib37) 1984; 34
Zweig, Campbell (bib54) 1993; 39
Coben, Danziger, Berg (bib9) 1983; 55
Forstl, Kurz (bib16) 1999; 249
Dierks, Ihl, Frolich, Maurer (bib13) 1993; 50
Nguyen, Rocke (bib40) 2002; 18
Ripley (bib46) 1996
John, Prichep, Easton (bib29) 1987
Giaquinto, Nolfe, Vitali (bib19) 1986; 9
Folstein, Folstein, McHugh (bib15) 1975; 12
Lehmann, Strik, Henggeler, Koenig, Koukkou (bib35) 1998; 29
Reisberg, Ferris, de Leon, Sinaiko, Franssen, Kluger (bib45) 1988
Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. 1st ed. New York, 2001.
Tenenhaus (bib48) 1998
Green, Swets (bib20) 1966
Reisberg, Ferris, de Leon, Crook (bib44) 1988; 24
Wold (bib53) 1973; vol. 3
Price (bib41) 2000
Wackermann (bib51) 1996; 56
Berger (bib4) 1932; 98
Han, Chamber (bib21) 2000
Liaw, Wiener (bib36) 2002; 2
Wackermann, Lehmann, Michel, Strik (bib50) 1993; 14
Huang, Wahlund, Dierks, Julin, Winblad, Jelic (bib25) 2000; 111
Coben (10.1016/j.jneumeth.2006.10.023_bib9) 1983; 55
Lehmann (10.1016/j.jneumeth.2006.10.023_bib35) 1998; 29
Bianchetti (10.1016/j.jneumeth.2006.10.023_bib5) 2001; 13
Reisberg (10.1016/j.jneumeth.2006.10.023_bib45) 1988
Koenig (10.1016/j.jneumeth.2006.10.023_bib32) 2001; 50
Meyer (10.1016/j.jneumeth.2006.10.023_bib39) 2001; 1
Forstl (10.1016/j.jneumeth.2006.10.023_bib16) 1999; 249
Selkoe (10.1016/j.jneumeth.2006.10.023_bib47) 1994; 10
Green (10.1016/j.jneumeth.2006.10.023_bib20) 1966
Witten (10.1016/j.jneumeth.2006.10.023_bib52) 2000
Gasser (10.1016/j.jneumeth.2006.10.023_bib18) 1985; 60
Wackermann (10.1016/j.jneumeth.2006.10.023_bib50) 1993; 14
Dierks (10.1016/j.jneumeth.2006.10.023_bib13) 1993; 50
Berger (10.1016/j.jneumeth.2006.10.023_bib4) 1932; 98
McKhann (10.1016/j.jneumeth.2006.10.023_bib37) 1984; 34
10.1016/j.jneumeth.2006.10.023_bib23
Jonkman (10.1016/j.jneumeth.2006.10.023_bib30) 1997; 27
Price (10.1016/j.jneumeth.2006.10.023_bib41) 2000
Giaquinto (10.1016/j.jneumeth.2006.10.023_bib19) 1986; 9
Holschneider (10.1016/j.jneumeth.2006.10.023_bib24) 1995; 8
Huang (10.1016/j.jneumeth.2006.10.023_bib25) 2000; 111
Venables (10.1016/j.jneumeth.2006.10.023_bib49) 2002
Garthwaite (10.1016/j.jneumeth.2006.10.023_bib17) 1994; 89
Jin (10.1016/j.jneumeth.2006.10.023_bib28) 2002; 86
Reisberg (10.1016/j.jneumeth.2006.10.023_bib44) 1988; 24
Folstein (10.1016/j.jneumeth.2006.10.023_bib15) 1975; 12
Koenig (10.1016/j.jneumeth.2006.10.023_bib33) 2005; 26
Bracco (10.1016/j.jneumeth.2006.10.023_bib6) 1994; 51
Wackermann (10.1016/j.jneumeth.2006.10.023_bib51) 1996; 56
Dunkin (10.1016/j.jneumeth.2006.10.023_bib14) 1994; 35
Han (10.1016/j.jneumeth.2006.10.023_bib21) 2000
Ripley (10.1016/j.jneumeth.2006.10.023_bib46) 1996
Liaw (10.1016/j.jneumeth.2006.10.023_bib36) 2002; 2
DeCarli (10.1016/j.jneumeth.2006.10.023_bib12) 2001; 17
Prichep (10.1016/j.jneumeth.2006.10.023_bib42) 1994; 15
Pritchard (10.1016/j.jneumeth.2006.10.023_bib43) 1994; 91
Cortes (10.1016/j.jneumeth.2006.10.023_bib11) 1995; 20
Coben (10.1016/j.jneumeth.2006.10.023_bib10) 1985; 61
Kubicki (10.1016/j.jneumeth.2006.10.023_bib34) 1979; 12
John (10.1016/j.jneumeth.2006.10.023_bib29) 1987
Nguyen (10.1016/j.jneumeth.2006.10.023_bib40) 2002; 18
Mevik (10.1016/j.jneumeth.2006.10.023_bib38) 2006; 6
Wold (10.1016/j.jneumeth.2006.10.023_bib53) 1973; vol. 3
Hanley (10.1016/j.jneumeth.2006.10.023_bib22) 1998
Zweig (10.1016/j.jneumeth.2006.10.023_bib54) 1993; 39
Klöppel (10.1016/j.jneumeth.2006.10.023_bib31) 1994; 29
Berger (10.1016/j.jneumeth.2006.10.023_bib3) 1931; 94
Jeong (10.1016/j.jneumeth.2006.10.023_bib27) 2004; 115
Jelic (10.1016/j.jneumeth.2006.10.023_bib26) 1998; 254
Association (10.1016/j.jneumeth.2006.10.023_bib2) 1987
Tenenhaus (10.1016/j.jneumeth.2006.10.023_bib48) 1998
Breiman (10.1016/j.jneumeth.2006.10.023_bib8) 2001; 45
Anderer (10.1016/j.jneumeth.2006.10.023_bib1) 1994; 91
Breiman (10.1016/j.jneumeth.2006.10.023_bib7) 1996; 24
References_xml – start-page: 3738
  year: 1998
  end-page: 3745
  ident: bib22
  article-title: Receiver operating characteristic (ROC) curves
  publication-title: Encyclopedia of biostatistics
– volume: 111
  start-page: 1961
  year: 2000
  end-page: 1967
  ident: bib25
  article-title: Discrimination of Alzheimer's disease and mild cognitive impairment by equivalent EEG sources: a cross-sectional and longitudinal study
  publication-title: Clin Neurophysiol
– volume: 249
  start-page: 288
  year: 1999
  end-page: 290
  ident: bib16
  article-title: Clinical features of Alzheimer's disease
  publication-title: Eur Arch Psychiat Clin Neurosci
– volume: 13
  start-page: 221
  year: 2001
  end-page: 230
  ident: bib5
  article-title: Clinical aspects of Alzheimer's disease
  publication-title: Aging (Milano)
– volume: 61
  start-page: 101
  year: 1985
  end-page: 112
  ident: bib10
  article-title: A longitudinal EEG study of mild senile dementia of Alzheimer type: changes at 1 year and at 2.5 years
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 115
  start-page: 1490
  year: 2004
  end-page: 1505
  ident: bib27
  article-title: EEG dynamics in patients with Alzheimer's disease
  publication-title: Clin Neurophysiol
– volume: 89
  start-page: 122
  year: 1994
  end-page: 127
  ident: bib17
  article-title: An interpretation of partial least squares
  publication-title: J Am Stat Assoc
– volume: 254
  start-page: 85
  year: 1998
  end-page: 88
  ident: bib26
  article-title: Longitudinal changes in quantitative EEG during long-term tacrine treatment of patients with Alzheimer's disease
  publication-title: Neurosci Lett
– volume: 1
  start-page: 23
  year: 2001
  end-page: 26
  ident: bib39
  article-title: Support vector machines
  publication-title: R News
– volume: 17
  start-page: 255
  year: 2001
  end-page: 279
  ident: bib12
  article-title: The role of neuroimaging in dementia
  publication-title: Clin Geriatr Med
– volume: 39
  start-page: 561
  year: 1993
  end-page: 577
  ident: bib54
  article-title: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine
  publication-title: Clin Chem
– volume: 94
  start-page: 16
  year: 1931
  end-page: 60
  ident: bib3
  article-title: Ueber das Elektrenkephalogramm des Menschen. Dritte Mitteilung
  publication-title: Arch Psychiatr Nervenkr
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bib36
  article-title: Classification and regression by random forest
  publication-title: R News
– volume: 27
  start-page: 211
  year: 1997
  end-page: 219
  ident: bib30
  article-title: The role of the electroencephalogram in the diagnosis of dementia of the Alzheimer type: an attempt at technology assessment
  publication-title: Neurophysiol Clin
– year: 1998
  ident: bib48
  article-title: La Regression PLS
– year: 1987
  ident: bib29
  article-title: Normative data banks and neurometrics: basic concepts, methods and results of norm construction
– volume: 50
  start-page: 55
  year: 2001
  end-page: 60
  ident: bib32
  article-title: Decreased functional connectivity of EEG theta-frequency activity in first-episode, neuroleptic-naive patients with schizophrenia: preliminary results
  publication-title: Schizophr Res
– start-page: 101
  year: 1988
  end-page: 114
  ident: bib45
  article-title: Stage-specific behavioral cognitive and in vivo changes in community residing subjects with Age-Associated Memory Impairment and Primary Degenerative Dementia of the Alzheimer type
  publication-title: Drug Develop Res
– year: 2000
  ident: bib41
  article-title: Aging of the brain and dementia of the Alzheimer type
– volume: 55
  start-page: 372
  year: 1983
  end-page: 380
  ident: bib9
  article-title: Frequency analysis of the resting awake EEG in mild senile dementia of Alzheimer type
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 18
  start-page: 39
  year: 2002
  end-page: 50
  ident: bib40
  article-title: Tumor classification by partial least squares using microarray gene expression data
  publication-title: Bioinformatics
– year: 1966
  ident: bib20
  article-title: Signal detection theory and psychophysics
– volume: 86
  start-page: 395
  year: 2002
  end-page: 401
  ident: bib28
  article-title: Nonlinear dynamics of the EEG separated by independent component analysis after sound and light stimulation
  publication-title: Biol Cybern
– volume: 35
  start-page: 870
  year: 1994
  end-page: 879
  ident: bib14
  article-title: Reduced EEG coherence in dementia: state or trait marker?
  publication-title: Biol Psychiat
– volume: 15
  start-page: 85
  year: 1994
  end-page: 90
  ident: bib42
  article-title: Quantitative EEG correlates of cognitive deterioration in the elderly
  publication-title: Neurobiol Ag
– volume: 8
  start-page: 169
  year: 1995
  end-page: 180
  ident: bib24
  article-title: Beta activity in aging and dementia
  publication-title: Brain Topogr
– volume: 91
  start-page: 108
  year: 1994
  end-page: 117
  ident: bib1
  article-title: Discrimination between demented patients and normals based on topographic EEG slow wave activity: comparison between z statistics, discriminant analysis and artificial neural network classifiers
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib8
  article-title: Random forests
  publication-title: Mach Learn
– volume: 12
  start-page: 237
  year: 1979
  end-page: 245
  ident: bib34
  article-title: Reflections on the topics: EEG frequency bands and regulation of vigilance
  publication-title: Pharmakopsychiatr Neuropsychopharmakol
– year: 1996
  ident: bib46
  article-title: Pattern recognition and neural networks
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bib7
  article-title: Bagging predictors
  publication-title: Mach Learn
– volume: 91
  start-page: 118
  year: 1994
  end-page: 130
  ident: bib43
  article-title: EEG-based, neural-net predictive classification of Alzheimer's disease versus control subjects is augmented by non-linear EEG measures
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 26
  start-page: 165
  year: 2005
  end-page: 171
  ident: bib33
  article-title: Decreased EEG synchronization in Alzheimer's disease and mild cognitive impairment
  publication-title: Neurobiol Ag
– volume: 51
  start-page: 1213
  year: 1994
  end-page: 1219
  ident: bib6
  article-title: Factors affecting course and survival in Alzheimer's disease. A 9-year longitudinal study
  publication-title: Arch Neurol
– volume: 12
  start-page: 189
  year: 1975
  end-page: 198
  ident: bib15
  article-title: Mini-mental state” A practical method for grading the cognitive state of patients for the clinician
  publication-title: J Psychiatr Res
– volume: 60
  start-page: 312
  year: 1985
  end-page: 319
  ident: bib18
  article-title: Test-retest reliability of spectral parameters of the EEG
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 56
  start-page: 197
  year: 1996
  end-page: 208
  ident: bib51
  article-title: Beyond mapping: estimating complexity of multichannel EEG recordings
  publication-title: Acta Neurobiol Exp (Wars)
– volume: 29
  start-page: 1
  year: 1998
  end-page: 11
  ident: bib35
  article-title: Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking. I. Visual imagery and abstract thoughts
  publication-title: Int J Psychophysiol
– volume: 6
  start-page: 12
  year: 2006
  end-page: 17
  ident: bib38
  article-title: The pls package
  publication-title: R News
– year: 2000
  ident: bib52
  article-title: Data mininng
– volume: 34
  start-page: 939
  year: 1984
  end-page: 944
  ident: bib37
  article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease
  publication-title: Neurology
– volume: vol. 3
  year: 1973
  ident: bib53
  publication-title: Iterative partial least squares (NIPALS) modelling
– year: 2002
  ident: bib49
  article-title: Modern applied statistics with S
– volume: 20
  start-page: 1
  year: 1995
  end-page: 25
  ident: bib11
  article-title: Support-vector network
  publication-title: Mach Learn
– volume: 98
  start-page: 231
  year: 1932
  end-page: 254
  ident: bib4
  article-title: Dritte Mitteilung ber das Elektrenkephalogramm des Menschen. Fuenfte Mitteilung
  publication-title: Arch Psychiatr Nervenkr
– volume: 29
  start-page: 33
  year: 1994
  end-page: 38
  ident: bib31
  article-title: Neural networks as a new method for EEG analysis
  publication-title: Neuropsychobiology
– volume: 10
  start-page: 373
  year: 1994
  end-page: 403
  ident: bib47
  article-title: Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer's disease
  publication-title: Annu Rev Cell Biol
– volume: 50
  start-page: 151
  year: 1993
  end-page: 162
  ident: bib13
  article-title: Dementia of the Alzheimer type: effects on the spontaneous EEG described by dipole sources
  publication-title: Psychiat Res
– reference: Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. 1st ed. New York, 2001.
– volume: 24
  start-page: 661
  year: 1988
  end-page: 663
  ident: bib44
  article-title: Global Deterioration Scale (GDS)
  publication-title: Psychopharmacol Bull
– volume: 9
  start-page: S79
  year: 1986
  end-page: S84
  ident: bib19
  article-title: EEG changes induced by oxiracetam on diazepam-medicated volunteers
  publication-title: Clin Neuropharmacol
– volume: 14
  start-page: 269
  year: 1993
  end-page: 283
  ident: bib50
  article-title: Adaptive segmentation of spontaneous EEG map series into spatially defined microstates
  publication-title: Int J Psychophysiol
– year: 1987
  ident: bib2
  article-title: Diagnostic and statistical manual of mental disorders (DSM-III-R)
– year: 2000
  ident: bib21
  article-title: Data mining, concepts and techniques
– volume: 10
  start-page: 373
  year: 1994
  ident: 10.1016/j.jneumeth.2006.10.023_bib47
  article-title: Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer's disease
  publication-title: Annu Rev Cell Biol
  doi: 10.1146/annurev.cb.10.110194.002105
– volume: 50
  start-page: 151
  year: 1993
  ident: 10.1016/j.jneumeth.2006.10.023_bib13
  article-title: Dementia of the Alzheimer type: effects on the spontaneous EEG described by dipole sources
  publication-title: Psychiat Res
  doi: 10.1016/0925-4927(93)90027-F
– volume: 12
  start-page: 189
  year: 1975
  ident: 10.1016/j.jneumeth.2006.10.023_bib15
  article-title: Mini-mental state” A practical method for grading the cognitive state of patients for the clinician
  publication-title: J Psychiatr Res
  doi: 10.1016/0022-3956(75)90026-6
– volume: 61
  start-page: 101
  year: 1985
  ident: 10.1016/j.jneumeth.2006.10.023_bib10
  article-title: A longitudinal EEG study of mild senile dementia of Alzheimer type: changes at 1 year and at 2.5 years
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(85)91048-X
– ident: 10.1016/j.jneumeth.2006.10.023_bib23
  doi: 10.1007/978-0-387-21606-5_1
– volume: 8
  start-page: 169
  year: 1995
  ident: 10.1016/j.jneumeth.2006.10.023_bib24
  article-title: Beta activity in aging and dementia
  publication-title: Brain Topogr
  doi: 10.1007/BF01199780
– volume: 91
  start-page: 108
  year: 1994
  ident: 10.1016/j.jneumeth.2006.10.023_bib1
  article-title: Discrimination between demented patients and normals based on topographic EEG slow wave activity: comparison between z statistics, discriminant analysis and artificial neural network classifiers
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(94)90032-9
– volume: 17
  start-page: 255
  year: 2001
  ident: 10.1016/j.jneumeth.2006.10.023_bib12
  article-title: The role of neuroimaging in dementia
  publication-title: Clin Geriatr Med
  doi: 10.1016/S0749-0690(05)70068-9
– volume: 13
  start-page: 221
  year: 2001
  ident: 10.1016/j.jneumeth.2006.10.023_bib5
  article-title: Clinical aspects of Alzheimer's disease
  publication-title: Aging (Milano)
– volume: 29
  start-page: 1
  year: 1998
  ident: 10.1016/j.jneumeth.2006.10.023_bib35
  article-title: Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking. I. Visual imagery and abstract thoughts
  publication-title: Int J Psychophysiol
  doi: 10.1016/S0167-8760(97)00098-6
– volume: vol. 3
  year: 1973
  ident: 10.1016/j.jneumeth.2006.10.023_bib53
– year: 1987
  ident: 10.1016/j.jneumeth.2006.10.023_bib2
– start-page: 3738
  year: 1998
  ident: 10.1016/j.jneumeth.2006.10.023_bib22
  article-title: Receiver operating characteristic (ROC) curves
– volume: 24
  start-page: 661
  year: 1988
  ident: 10.1016/j.jneumeth.2006.10.023_bib44
  article-title: Global Deterioration Scale (GDS)
  publication-title: Psychopharmacol Bull
– volume: 2
  start-page: 18
  year: 2002
  ident: 10.1016/j.jneumeth.2006.10.023_bib36
  article-title: Classification and regression by random forest
  publication-title: R News
– year: 2000
  ident: 10.1016/j.jneumeth.2006.10.023_bib21
– volume: 39
  start-page: 561
  year: 1993
  ident: 10.1016/j.jneumeth.2006.10.023_bib54
  article-title: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine
  publication-title: Clin Chem
  doi: 10.1093/clinchem/39.4.561
– volume: 35
  start-page: 870
  year: 1994
  ident: 10.1016/j.jneumeth.2006.10.023_bib14
  article-title: Reduced EEG coherence in dementia: state or trait marker?
  publication-title: Biol Psychiat
  doi: 10.1016/0006-3223(94)90023-X
– year: 2000
  ident: 10.1016/j.jneumeth.2006.10.023_bib52
– year: 1966
  ident: 10.1016/j.jneumeth.2006.10.023_bib20
– start-page: 101
  year: 1988
  ident: 10.1016/j.jneumeth.2006.10.023_bib45
  article-title: Stage-specific behavioral cognitive and in vivo changes in community residing subjects with Age-Associated Memory Impairment and Primary Degenerative Dementia of the Alzheimer type
  publication-title: Drug Develop Res
  doi: 10.1002/ddr.430150203
– volume: 50
  start-page: 55
  year: 2001
  ident: 10.1016/j.jneumeth.2006.10.023_bib32
  article-title: Decreased functional connectivity of EEG theta-frequency activity in first-episode, neuroleptic-naive patients with schizophrenia: preliminary results
  publication-title: Schizophr Res
  doi: 10.1016/S0920-9964(00)00154-7
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.jneumeth.2006.10.023_bib7
  article-title: Bagging predictors
  publication-title: Mach Learn
  doi: 10.1023/A:1018054314350
– volume: 27
  start-page: 211
  year: 1997
  ident: 10.1016/j.jneumeth.2006.10.023_bib30
  article-title: The role of the electroencephalogram in the diagnosis of dementia of the Alzheimer type: an attempt at technology assessment
  publication-title: Neurophysiol Clin
  doi: 10.1016/S0987-7053(97)83777-X
– volume: 29
  start-page: 33
  year: 1994
  ident: 10.1016/j.jneumeth.2006.10.023_bib31
  article-title: Neural networks as a new method for EEG analysis
  publication-title: Neuropsychobiology
  doi: 10.1159/000119060
– volume: 254
  start-page: 85
  year: 1998
  ident: 10.1016/j.jneumeth.2006.10.023_bib26
  article-title: Longitudinal changes in quantitative EEG during long-term tacrine treatment of patients with Alzheimer's disease
  publication-title: Neurosci Lett
  doi: 10.1016/S0304-3940(98)00669-7
– volume: 12
  start-page: 237
  year: 1979
  ident: 10.1016/j.jneumeth.2006.10.023_bib34
  article-title: Reflections on the topics: EEG frequency bands and regulation of vigilance
  publication-title: Pharmakopsychiatr Neuropsychopharmakol
  doi: 10.1055/s-0028-1094615
– volume: 55
  start-page: 372
  year: 1983
  ident: 10.1016/j.jneumeth.2006.10.023_bib9
  article-title: Frequency analysis of the resting awake EEG in mild senile dementia of Alzheimer type
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(83)90124-4
– volume: 18
  start-page: 39
  year: 2002
  ident: 10.1016/j.jneumeth.2006.10.023_bib40
  article-title: Tumor classification by partial least squares using microarray gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.1.39
– volume: 20
  start-page: 1
  year: 1995
  ident: 10.1016/j.jneumeth.2006.10.023_bib11
  article-title: Support-vector network
  publication-title: Mach Learn
  doi: 10.1023/A:1022627411411
– year: 1996
  ident: 10.1016/j.jneumeth.2006.10.023_bib46
– volume: 9
  start-page: S79
  issue: Suppl. 3
  year: 1986
  ident: 10.1016/j.jneumeth.2006.10.023_bib19
  article-title: EEG changes induced by oxiracetam on diazepam-medicated volunteers
  publication-title: Clin Neuropharmacol
  doi: 10.1097/00002826-198609003-00013
– volume: 51
  start-page: 1213
  year: 1994
  ident: 10.1016/j.jneumeth.2006.10.023_bib6
  article-title: Factors affecting course and survival in Alzheimer's disease. A 9-year longitudinal study
  publication-title: Arch Neurol
  doi: 10.1001/archneur.1994.00540240057016
– volume: 6
  start-page: 12
  year: 2006
  ident: 10.1016/j.jneumeth.2006.10.023_bib38
  article-title: The pls package
  publication-title: R News
– volume: 98
  start-page: 231
  year: 1932
  ident: 10.1016/j.jneumeth.2006.10.023_bib4
  article-title: Dritte Mitteilung ber das Elektrenkephalogramm des Menschen. Fuenfte Mitteilung
  publication-title: Arch Psychiatr Nervenkr
  doi: 10.1007/BF01814645
– year: 1998
  ident: 10.1016/j.jneumeth.2006.10.023_bib48
– year: 1987
  ident: 10.1016/j.jneumeth.2006.10.023_bib29
– volume: 1
  start-page: 23
  year: 2001
  ident: 10.1016/j.jneumeth.2006.10.023_bib39
  article-title: Support vector machines
  publication-title: R News
– year: 2000
  ident: 10.1016/j.jneumeth.2006.10.023_bib41
– volume: 249
  start-page: 288
  year: 1999
  ident: 10.1016/j.jneumeth.2006.10.023_bib16
  article-title: Clinical features of Alzheimer's disease
  publication-title: Eur Arch Psychiat Clin Neurosci
  doi: 10.1007/s004060050101
– volume: 60
  start-page: 312
  year: 1985
  ident: 10.1016/j.jneumeth.2006.10.023_bib18
  article-title: Test-retest reliability of spectral parameters of the EEG
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(85)90005-7
– volume: 26
  start-page: 165
  year: 2005
  ident: 10.1016/j.jneumeth.2006.10.023_bib33
  article-title: Decreased EEG synchronization in Alzheimer's disease and mild cognitive impairment
  publication-title: Neurobiol Ag
  doi: 10.1016/j.neurobiolaging.2004.03.008
– volume: 15
  start-page: 85
  year: 1994
  ident: 10.1016/j.jneumeth.2006.10.023_bib42
  article-title: Quantitative EEG correlates of cognitive deterioration in the elderly
  publication-title: Neurobiol Ag
  doi: 10.1016/0197-4580(94)90147-3
– volume: 111
  start-page: 1961
  year: 2000
  ident: 10.1016/j.jneumeth.2006.10.023_bib25
  article-title: Discrimination of Alzheimer's disease and mild cognitive impairment by equivalent EEG sources: a cross-sectional and longitudinal study
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(00)00454-5
– year: 2002
  ident: 10.1016/j.jneumeth.2006.10.023_bib49
– volume: 14
  start-page: 269
  year: 1993
  ident: 10.1016/j.jneumeth.2006.10.023_bib50
  article-title: Adaptive segmentation of spontaneous EEG map series into spatially defined microstates
  publication-title: Int J Psychophysiol
  doi: 10.1016/0167-8760(93)90041-M
– volume: 94
  start-page: 16
  year: 1931
  ident: 10.1016/j.jneumeth.2006.10.023_bib3
  article-title: Ueber das Elektrenkephalogramm des Menschen. Dritte Mitteilung
  publication-title: Arch Psychiatr Nervenkr
  doi: 10.1007/BF01835097
– volume: 86
  start-page: 395
  year: 2002
  ident: 10.1016/j.jneumeth.2006.10.023_bib28
  article-title: Nonlinear dynamics of the EEG separated by independent component analysis after sound and light stimulation
  publication-title: Biol Cybern
  doi: 10.1007/s00422-001-0304-z
– volume: 91
  start-page: 118
  year: 1994
  ident: 10.1016/j.jneumeth.2006.10.023_bib43
  article-title: EEG-based, neural-net predictive classification of Alzheimer's disease versus control subjects is augmented by non-linear EEG measures
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(94)90033-7
– volume: 115
  start-page: 1490
  year: 2004
  ident: 10.1016/j.jneumeth.2006.10.023_bib27
  article-title: EEG dynamics in patients with Alzheimer's disease
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2004.01.001
– volume: 56
  start-page: 197
  year: 1996
  ident: 10.1016/j.jneumeth.2006.10.023_bib51
  article-title: Beyond mapping: estimating complexity of multichannel EEG recordings
  publication-title: Acta Neurobiol Exp (Wars)
  doi: 10.55782/ane-1996-1121
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.jneumeth.2006.10.023_bib8
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 89
  start-page: 122
  year: 1994
  ident: 10.1016/j.jneumeth.2006.10.023_bib17
  article-title: An interpretation of partial least squares
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1994.10476452
– volume: 34
  start-page: 939
  year: 1984
  ident: 10.1016/j.jneumeth.2006.10.023_bib37
  article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease
  publication-title: Neurology
  doi: 10.1212/WNL.34.7.939
SSID ssj0004906
Score 2.355538
Snippet The early detection of subjects with probable Alzheimer's disease (AD) is crucial for effective appliance of treatment strategies. Here we explored the ability...
SourceID swepub
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 342
SubjectTerms Aged
Aged, 80 and over
Algorithms
Alzheimer Disease - diagnosis
Alzheimer Disease - physiopathology
Alzheimer's disease
Artificial Intelligence
Brain - physiopathology
Classification
Cluster Analysis
Diagnosis, Computer-Assisted - methods
EEG
Electroencephalography - methods
Humans
Middle Aged
Multivariate statistics
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
Title Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity (EEG)
URI https://dx.doi.org/10.1016/j.jneumeth.2006.10.023
https://www.ncbi.nlm.nih.gov/pubmed/17156848
https://www.proquest.com/docview/70330706
http://kipublications.ki.se/Default.aspx?queryparsed=id:1937656
Volume 161
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH5qpxLigqBlGZbiAypwSCcTrzlG1ZQB1F6gUm9R7NhthplMNcsBDkj8c_wSZ4ZFqAdukfMsWfbzW_yWD-CVcIkotKSR1wUuYqXkkdamiKwy2nh-SUSCBc5n52J8wT5c8ssdOOlqYTCtMsj-VqY30jqMDMJuDm6qavAJC3FijJsKtDsSvgt7Xv8o1YO97P3H8fm2PDJtIDaRHkOW8S-FwpPjSW3XCNbcxiUw0Suh_9JRf9ugfzQYbZTS6X24F6xJkrULfgA7tt6Hg6z2nvTsKzkiTX5n83C-D3fOQhj9AH5k27A1KeqSmA0aIZk7YtCixhSiQDC9mi-q1fVsSbyFSzYpRy1xNv12bauZXbxekhDtIVVNWngd5ACiEYWCYAEF4lSQN6PRu7cP4eJ09PlkHAUshsgwGa8iraj2qsxRp6woOJe00EaaRCrvzznLUx1rnVAhGNes9ERuSJkp0lIMDRXU0UfQq-e1fQJEyFho6UqFwNfe4SpsGhuRWq29c8Xisg-82_3chEbliJcxzbuMtEnenRqiaAoc96fWh8Fm3k3bquPWGWl3uPlvTJd7fXLr3JcdN-T-RmKYpajtfL3MvQxFQSr68Lhlku1qpPeWFVN9OGq5ZvMHm3yHoS_-y-Zcer9UPf2PBT6Du-07NIuG_Dn0Vou1feENqJU-hN3j78PDcE1-Aj2rHYw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH4qRQIuFbQsU5b6gAoc0snEW3IcVVMG6PRCK_UWxY7dZpjJVLMc4IDEP8cvdmZYhHrgFjm2ZPk9v8Vv-QBeC5uIQkkaOV1gI1ZKHimli8ikWmnHL4lIsMB5dCaGF-zjJb_cguO2FgbTKoPs9zK9kdZhpBtOs3tTVd3PWIgTY9xUoN2R8Dtwl_FEogd29H2T58GyBmATZ2PAMv6lTHh8NK7NCqGafVQC07wS-i8N9bcF-kd70UYlnTyEnWBLkr7f7iPYMvUu7PVr50dPv5JD0mR3Ns_mu3BvFILoe_Cjvwlak6IuiV5jEZKZJRrtaUwgChMmV7N5tbyeLoizb8k64chP7k--XZtqauZvFiTEekhVEw-ug_QnCjEoCJZPIEoFeTsYvH_3GC5OBufHwyggMUSayXgZqZQqp8gstakRBeeSFkpLncjUeXPW8EzFSiVUCMYVK90k26NMF1kpepoKaukT2K5ntXkGRMhYKGnLFGGvnbtVmCzWIjNKOdeKxWUHeHv6uQ5tyhEtY5K3-WjjvKUaYmgKHHdU60B3ve7GN-q4dUXWEjf_jeVyp01uXXvQckPu7iMGWYrazFaL3ElQFKOiA089k2x2I52vnLK0A4eea9Z_sMV3GPrivkzOpfNK0_3_2OAB3B-ej07z0w9nn57DA_8izaIefwHby_nKvHSm1FK9aq7KT6hRHlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+and+comparison+of+classification+algorithms+for+recognition+of+Alzheimer%27s+disease+in+electrical+brain+activity+%28EEG%29&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Lehmann%2C+Christoph&rft.au=Koenig%2C+Thomas&rft.au=Jelic%2C+Vesna&rft.au=Prichep%2C+Leslie&rft.date=2007-04-15&rft.issn=0165-0270&rft.volume=161&rft.issue=2&rft.spage=342&rft.epage=350&rft_id=info:doi/10.1016%2Fj.jneumeth.2006.10.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jneumeth_2006_10_023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon