Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity (EEG)
The early detection of subjects with probable Alzheimer's disease (AD) is crucial for effective appliance of treatment strategies. Here we explored the ability of a multitude of linear and non-linear classification algorithms to discriminate between the electroencephalograms (EEGs) of patients...
Saved in:
| Published in | Journal of neuroscience methods Vol. 161; no. 2; pp. 342 - 350 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
15.04.2007
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0165-0270 1872-678X |
| DOI | 10.1016/j.jneumeth.2006.10.023 |
Cover
| Abstract | The early detection of subjects with probable Alzheimer's disease (AD) is crucial for effective appliance of treatment strategies. Here we explored the ability of a multitude of linear and non-linear classification algorithms to discriminate between the electroencephalograms (EEGs) of patients with varying degree of AD and their age-matched control subjects. Absolute and relative spectral power, distribution of spectral power, and measures of spatial synchronization were calculated from recordings of resting eyes-closed continuous EEGs of 45 healthy controls, 116 patients with mild AD and 81 patients with moderate AD, recruited in two different centers (Stockholm, New York). The applied classification algorithms were: principal component linear discriminant analysis (PC LDA), partial least squares LDA (PLS LDA), principal component logistic regression (PC LR), partial least squares logistic regression (PLS LR), bagging, random forest, support vector machines (SVM) and feed-forward neural network. Based on 10-fold cross-validation runs it could be demonstrated that even tough modern computer-intensive classification algorithms such as random forests, SVM and neural networks show a slight superiority, more classical classification algorithms performed nearly equally well. Using random forests classification a considerable sensitivity of up to 85% and a specificity of 78%, respectively for the test of even only mild AD patients has been reached, whereas for the comparison of moderate AD vs. controls, using SVM and neural networks, values of 89% and 88% for sensitivity and specificity were achieved. Such a remarkable performance proves the value of these classification algorithms for clinical diagnostics. |
|---|---|
| AbstractList | The early detection of subjects with probable Alzheimer's disease (AD) is crucial for effective appliance of treatment strategies. Here we explored the ability of a multitude of linear and non-linear classification algorithms to discriminate between the electroencephalograms (EEGs) of patients with varying degree of AD and their age-matched control subjects. Absolute and relative spectral power, distribution of spectral power, and measures of spatial synchronization were calculated from recordings of resting eyes-closed continuous EEGs of 45 healthy controls, 116 patients with mild AD and 81 patients with moderate AD, recruited in two different centers (Stockholm, New York). The applied classification algorithms were: principal component linear discriminant analysis (PC LDA), partial least squares LDA (PLS LDA), principal component logistic regression (PC LR), partial least squares logistic regression (PLS LR), bagging, random forest, support vector machines (SVM) and feed-forward neural network. Based on 10-fold cross-validation runs it could be demonstrated that even tough modern computer-intensive classification algorithms such as random forests, SVM and neural networks show a slight superiority, more classical classification algorithms performed nearly equally well. Using random forests classification a considerable sensitivity of up to 85% and a specificity of 78%, respectively for the test of even only mild AD patients has been reached, whereas for the comparison of moderate AD vs. controls, using SVM and neural networks, values of 89% and 88% for sensitivity and specificity were achieved. Such a remarkable performance proves the value of these classification algorithms for clinical diagnostics. The early detection of subjects with probable Alzheimer's disease (AD) is crucial for effective appliance of treatment strategies. Here we explored the ability of a multitude of linear and non-linear classification algorithms to discriminate between the electroencephalograms (EEGs) of patients with varying degree of AD and their age-matched control subjects. Absolute and relative spectral power, distribution of spectral power, and measures of spatial synchronization were calculated from recordings of resting eyes-closed continuous EEGs of 45 healthy controls, 116 patients with mild AD and 81 patients with moderate AD, recruited in two different centers (Stockholm, New York). The applied classification algorithms were: principal component linear discriminant analysis (PC LDA), partial least squares LDA (PLS LDA), principal component logistic regression (PC LR), partial least squares logistic regression (PLS LR), bagging, random forest, support vector machines (SVM) and feed-forward neural network. Based on 10-fold cross-validation runs it could be demonstrated that even tough modern computer-intensive classification algorithms such as random forests, SVM and neural networks show a slight superiority, more classical classification algorithms performed nearly equally well. Using random forests classification a considerable sensitivity of up to 85% and a specificity of 78%, respectively for the test of even only mild AD patients has been reached, whereas for the comparison of moderate AD vs. controls, using SVM and neural networks, values of 89% and 88% for sensitivity and specificity were achieved. Such a remarkable performance proves the value of these classification algorithms for clinical diagnostics.The early detection of subjects with probable Alzheimer's disease (AD) is crucial for effective appliance of treatment strategies. Here we explored the ability of a multitude of linear and non-linear classification algorithms to discriminate between the electroencephalograms (EEGs) of patients with varying degree of AD and their age-matched control subjects. Absolute and relative spectral power, distribution of spectral power, and measures of spatial synchronization were calculated from recordings of resting eyes-closed continuous EEGs of 45 healthy controls, 116 patients with mild AD and 81 patients with moderate AD, recruited in two different centers (Stockholm, New York). The applied classification algorithms were: principal component linear discriminant analysis (PC LDA), partial least squares LDA (PLS LDA), principal component logistic regression (PC LR), partial least squares logistic regression (PLS LR), bagging, random forest, support vector machines (SVM) and feed-forward neural network. Based on 10-fold cross-validation runs it could be demonstrated that even tough modern computer-intensive classification algorithms such as random forests, SVM and neural networks show a slight superiority, more classical classification algorithms performed nearly equally well. Using random forests classification a considerable sensitivity of up to 85% and a specificity of 78%, respectively for the test of even only mild AD patients has been reached, whereas for the comparison of moderate AD vs. controls, using SVM and neural networks, values of 89% and 88% for sensitivity and specificity were achieved. Such a remarkable performance proves the value of these classification algorithms for clinical diagnostics. |
| Author | Prichep, Leslie John, Roy E. Jelic, Vesna Dierks, Thomas Lehmann, Christoph Koenig, Thomas Wahlund, Lars-Olof Dodge, Yadolah |
| Author_xml | – sequence: 1 givenname: Christoph surname: Lehmann fullname: Lehmann, Christoph email: lehmann@puk.unibe.ch organization: University Hospital of Clinical Psychiatry, Department of Psychiatric Neurophysiology, University of Berne, Bolligenstrasse 111, CH-3000 Bern 60, Switzerland – sequence: 2 givenname: Thomas surname: Koenig fullname: Koenig, Thomas organization: University Hospital of Clinical Psychiatry, Department of Psychiatric Neurophysiology, University of Berne, Bolligenstrasse 111, CH-3000 Bern 60, Switzerland – sequence: 3 givenname: Vesna surname: Jelic fullname: Jelic, Vesna organization: Karolinska Institute, Department of Neurotec., Division of Geriatric Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden – sequence: 4 givenname: Leslie surname: Prichep fullname: Prichep, Leslie organization: Brain Research Laboratories, New York University School of Medicine, USA – sequence: 5 givenname: Roy E. surname: John fullname: John, Roy E. organization: Brain Research Laboratories, New York University School of Medicine, USA – sequence: 6 givenname: Lars-Olof surname: Wahlund fullname: Wahlund, Lars-Olof organization: Karolinska Institute, Department of Neurotec., Division of Geriatric Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden – sequence: 7 givenname: Yadolah surname: Dodge fullname: Dodge, Yadolah organization: Group of Statistics, University of Neuchatel, Switzerland – sequence: 8 givenname: Thomas surname: Dierks fullname: Dierks, Thomas organization: University Hospital of Clinical Psychiatry, Department of Psychiatric Neurophysiology, University of Berne, Bolligenstrasse 111, CH-3000 Bern 60, Switzerland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17156848$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:1937656$$DView record from Swedish Publication Index |
| BookMark | eNqFkUFvFCEcxYmpsdvqV2g4qT3MCsMMzCYeumnWatLEiybeCDB_uqzMMAJbU29-87LdbU289AQ8fu8d3jtBR2MYAaEzSuaUUP5hM9-MsB0gr-c1IbyIc1KzF2hGO1FXXHQ_jtCsgG1FakGO0UlKG0JIsyD8FTqmgra8a7oZ-rucJu-Myi6MWI09NmGYVHSpPIPFxquUnH0C_E2ILq-HhG2IOIIJN6N7-Crw0v9Zgxsgvku4dwlUAuxGDB5MjiXCYx1VEZTJ7tblO_x-tbo6f41eWuUTvDmcp-j7p9W3y8_V9derL5fL68o0guRKd0zTurPMdsBV2wqmtBGmFh0ljYV2oYnWNeO8aXXTF8hS1hi16Dk1jDPLTlG1z02_YdpqOUU3qHgng3LyIP0sN5CtqNtFV_i3e36K4dcWUpaDSwa8VyOEbZKCMEYE4QU8O4BbPUD_FPxYcgH4HjAxpBTB_kOI3K0pN_JxTblbc6eXNYvx439G4_LDErkU6Z-3X-ztUGq9dRBlMg5GA70ry2XZB_dcxD30NsLb |
| CitedBy_id | crossref_primary_10_1038_s41598_023_36713_0 crossref_primary_10_1177_1550059416662119 crossref_primary_10_1523_JNEUROSCI_2639_17_2018 crossref_primary_10_1142_S0219030312001097 crossref_primary_10_1007_s00221_014_4141_4 crossref_primary_10_1007_s11517_009_0554_9 crossref_primary_10_1177_1550059413486272 crossref_primary_10_1016_j_jflm_2011_10_002 crossref_primary_10_1007_s11571_025_10232_2 crossref_primary_10_1038_s41598_022_06497_w crossref_primary_10_1016_j_mri_2012_07_010 crossref_primary_10_1007_s11517_017_1734_7 crossref_primary_10_3233_JAD_201455 crossref_primary_10_1016_j_heares_2013_07_008 crossref_primary_10_1016_j_neucli_2022_10_003 crossref_primary_10_3390_electronics11213424 crossref_primary_10_3233_JAD_180300 crossref_primary_10_1017_S1355617720001046 crossref_primary_10_3389_fncom_2016_00095 crossref_primary_10_1016_j_clinph_2019_06_007 crossref_primary_10_7717_peerj_5478 crossref_primary_10_1016_j_neurobiolaging_2016_08_021 crossref_primary_10_3390_biomedicines9040386 crossref_primary_10_1016_j_compbiomed_2024_108681 crossref_primary_10_1016_j_clinph_2024_11_013 crossref_primary_10_1155_2014_906038 crossref_primary_10_1186_s12938_023_01079_x crossref_primary_10_1007_s10916_015_0345_9 crossref_primary_10_1016_j_heares_2020_108101 crossref_primary_10_52547_shefa_9_1_152 crossref_primary_10_1007_s11517_021_02452_5 crossref_primary_10_1016_j_dadm_2016_07_003 crossref_primary_10_1109_JTEHM_2018_2874887 crossref_primary_10_1177_13872877241283692 crossref_primary_10_1016_j_cogsys_2018_07_010 crossref_primary_10_1177_155005940904000211 crossref_primary_10_1002_hbm_25683 crossref_primary_10_1016_j_neuroimage_2017_03_057 crossref_primary_10_1142_S0219030312000651 crossref_primary_10_3233_BME_181008 crossref_primary_10_1093_brain_awq174 crossref_primary_10_3389_fncom_2021_755499 crossref_primary_10_1016_j_pscychresns_2020_111182 crossref_primary_10_4061_2011_927573 crossref_primary_10_3389_fneur_2018_00975 crossref_primary_10_3389_fnhum_2017_00450 crossref_primary_10_1016_j_artmed_2015_03_003 crossref_primary_10_1016_j_cmpb_2016_08_010 crossref_primary_10_1016_j_neuroimage_2010_07_034 crossref_primary_10_3389_fnhum_2021_636504 crossref_primary_10_1002_env_999 crossref_primary_10_3390_computers9030067 crossref_primary_10_1016_j_neurobiolaging_2022_04_001 crossref_primary_10_1016_j_apacoust_2021_108078 crossref_primary_10_1371_journal_pcbi_1005938 crossref_primary_10_3233_JAD_143042 crossref_primary_10_1186_s12911_018_0613_y crossref_primary_10_1016_j_neurobiolaging_2017_03_030 crossref_primary_10_1186_s12967_022_03349_z crossref_primary_10_1016_j_eswa_2021_115175 crossref_primary_10_1016_j_artmed_2017_11_002 crossref_primary_10_1088_1741_2552_ac15e3 crossref_primary_10_1007_s11633_019_1197_4 crossref_primary_10_1155_2012_915053 crossref_primary_10_4258_hir_2013_19_3_177 crossref_primary_10_1155_2016_3891253 crossref_primary_10_1016_j_neurobiolaging_2021_04_024 crossref_primary_10_1109_MSMC_2021_3103498 crossref_primary_10_1007_s00521_018_3889_z crossref_primary_10_1109_ACCESS_2019_2918251 crossref_primary_10_3389_fnins_2015_00350 crossref_primary_10_1523_JNEUROSCI_0964_14_2014 crossref_primary_10_1155_2018_5238028 crossref_primary_10_3390_s140712784 crossref_primary_10_3390_s20143863 crossref_primary_10_1016_j_geomorph_2014_04_006 crossref_primary_10_3390_s24030877 crossref_primary_10_1016_j_artmed_2007_02_006 crossref_primary_10_1016_j_pscychresns_2012_11_005 crossref_primary_10_1016_j_neuroimage_2020_116795 crossref_primary_10_1016_j_jneumeth_2012_03_005 crossref_primary_10_1016_j_clinph_2017_06_251 crossref_primary_10_1016_j_neunet_2024_106792 crossref_primary_10_3233_JAD_190351 crossref_primary_10_1016_j_neuroimage_2011_10_003 crossref_primary_10_1016_j_neucom_2014_06_008 crossref_primary_10_1007_s11517_021_02427_6 crossref_primary_10_1016_j_clinph_2016_10_002 crossref_primary_10_1016_j_jneumeth_2016_05_003 crossref_primary_10_1016_j_jalz_2014_06_004 crossref_primary_10_1038_s41598_022_22979_3 crossref_primary_10_1089_bioe_2019_0001 crossref_primary_10_1002_wcms_1479 crossref_primary_10_1002_gps_1923 crossref_primary_10_1002_alz_12645 crossref_primary_10_1038_s41598_017_06165_4 crossref_primary_10_1002_cav_2127 crossref_primary_10_1109_ACCESS_2021_3102096 crossref_primary_10_3389_fpsyg_2023_1126994 crossref_primary_10_1016_j_jneumeth_2012_10_014 crossref_primary_10_1007_s00521_020_05467_5 crossref_primary_10_3390_s22103696 crossref_primary_10_1016_j_jmgm_2007_06_005 crossref_primary_10_1016_j_neurobiolaging_2016_09_004 crossref_primary_10_1016_j_neurobiolaging_2017_12_023 crossref_primary_10_1016_j_arr_2024_102417 crossref_primary_10_1016_j_pneurobio_2012_07_001 crossref_primary_10_1155_2021_5516819 crossref_primary_10_3233_JAD_160883 crossref_primary_10_1016_j_nicl_2023_103482 crossref_primary_10_1093_sleep_zsac286 crossref_primary_10_1016_j_ijpsycho_2018_07_476 crossref_primary_10_1186_1687_6180_2012_192 crossref_primary_10_1016_j_jneumeth_2013_04_017 crossref_primary_10_1088_1741_2552_ab909c crossref_primary_10_3389_fneur_2015_00025 crossref_primary_10_1007_s11517_010_0620_3 crossref_primary_10_1016_j_eswa_2012_04_001 crossref_primary_10_3389_fnagi_2018_00417 crossref_primary_10_1186_s13195_021_00881_w crossref_primary_10_1371_journal_pone_0092199 crossref_primary_10_3390_s19061423 crossref_primary_10_1111_sjos_12522 crossref_primary_10_1016_j_clinph_2013_12_118 crossref_primary_10_1016_j_neuropharm_2014_08_015 crossref_primary_10_1186_1756_0500_4_299 crossref_primary_10_1016_j_bspc_2020_102223 crossref_primary_10_3390_su11164355 crossref_primary_10_1002_alz_12311 crossref_primary_10_1016_j_neunet_2019_12_006 crossref_primary_10_1007_s11517_010_0726_7 crossref_primary_10_1016_j_patrec_2020_03_009 crossref_primary_10_1109_TBME_2009_2039997 crossref_primary_10_1016_j_mri_2014_05_008 crossref_primary_10_1155_2013_658501 crossref_primary_10_1007_s12539_018_0292_5 crossref_primary_10_1016_j_pneurobio_2007_07_010 crossref_primary_10_1159_000339996 crossref_primary_10_1016_j_bspc_2024_107379 crossref_primary_10_1159_000381016 crossref_primary_10_1007_s13369_019_04197_8 crossref_primary_10_1177_1550059413502779 crossref_primary_10_3233_JAD_180245 crossref_primary_10_1371_journal_pone_0153776 crossref_primary_10_1017_neu_2022_18 crossref_primary_10_3389_fnhum_2020_00245 crossref_primary_10_1109_ACCESS_2021_3133326 crossref_primary_10_1007_s12021_022_09572_9 crossref_primary_10_1016_j_neurobiolaging_2014_09_011 crossref_primary_10_1016_j_irbm_2021_12_001 crossref_primary_10_1002_gps_5090 crossref_primary_10_1016_j_ergon_2022_103404 crossref_primary_10_1109_TNSRE_2019_2909100 crossref_primary_10_1590_S0004_282X2011000300006 crossref_primary_10_3233_JAD_220442 crossref_primary_10_1007_s10916_016_0476_7 crossref_primary_10_1016_j_neuroimage_2020_117021 crossref_primary_10_1016_j_clinph_2011_02_011 crossref_primary_10_1002_cpe_5199 crossref_primary_10_1007_s11517_022_02615_y crossref_primary_10_3233_JAD_170703 crossref_primary_10_1016_j_cogr_2022_07_002 crossref_primary_10_3390_brainsci11101262 crossref_primary_10_1016_j_bspc_2016_12_009 crossref_primary_10_1093_braincomms_fcad270 crossref_primary_10_3233_JAD_200171 crossref_primary_10_3389_fnins_2016_00604 crossref_primary_10_1109_TBME_2018_2834546 crossref_primary_10_3390_app132112012 crossref_primary_10_1016_j_neurobiolaging_2008_03_025 crossref_primary_10_1038_s41598_022_21951_5 crossref_primary_10_1177_155005941104200308 crossref_primary_10_3389_fnins_2016_00047 crossref_primary_10_1007_s11517_017_1685_z crossref_primary_10_1177_155005941104200304 crossref_primary_10_3389_frai_2023_1289669 crossref_primary_10_3390_diagnostics13243630 crossref_primary_10_1016_j_clinph_2019_07_016 crossref_primary_10_56038_ejrnd_v3i3_273 crossref_primary_10_1002_alz_13441 crossref_primary_10_1016_j_compbiomed_2023_107701 crossref_primary_10_3233_JAD_160102 crossref_primary_10_3389_fnagi_2016_00273 crossref_primary_10_3389_fnagi_2022_756687 crossref_primary_10_1016_j_clinph_2021_06_036 crossref_primary_10_3390_a15040114 crossref_primary_10_1016_j_neurobiolaging_2023_11_010 crossref_primary_10_1038_npjgenmed_2016_26 crossref_primary_10_1007_s40120_019_00169_0 crossref_primary_10_1016_j_autcon_2018_09_010 crossref_primary_10_3233_IDA_237431 crossref_primary_10_3389_fneur_2022_1009574 crossref_primary_10_4306_pi_2015_12_1_92 crossref_primary_10_1016_j_compbiomed_2016_03_004 crossref_primary_10_3389_fnagi_2022_773692 crossref_primary_10_1016_j_cmpb_2010_08_005 crossref_primary_10_1007_s00704_015_1392_3 crossref_primary_10_1080_13803395_2011_630651 crossref_primary_10_1109_JBHI_2023_3303494 crossref_primary_10_1044_2018_JSLHR_S_ASTM_18_0244 crossref_primary_10_1038_s41598_020_66034_5 |
| Cites_doi | 10.1146/annurev.cb.10.110194.002105 10.1016/0925-4927(93)90027-F 10.1016/0022-3956(75)90026-6 10.1016/0013-4694(85)91048-X 10.1007/978-0-387-21606-5_1 10.1007/BF01199780 10.1016/0013-4694(94)90032-9 10.1016/S0749-0690(05)70068-9 10.1016/S0167-8760(97)00098-6 10.1093/clinchem/39.4.561 10.1016/0006-3223(94)90023-X 10.1002/ddr.430150203 10.1016/S0920-9964(00)00154-7 10.1023/A:1018054314350 10.1016/S0987-7053(97)83777-X 10.1159/000119060 10.1016/S0304-3940(98)00669-7 10.1055/s-0028-1094615 10.1016/0013-4694(83)90124-4 10.1093/bioinformatics/18.1.39 10.1023/A:1022627411411 10.1097/00002826-198609003-00013 10.1001/archneur.1994.00540240057016 10.1007/BF01814645 10.1007/s004060050101 10.1016/0013-4694(85)90005-7 10.1016/j.neurobiolaging.2004.03.008 10.1016/0197-4580(94)90147-3 10.1016/S1388-2457(00)00454-5 10.1016/0167-8760(93)90041-M 10.1007/BF01835097 10.1007/s00422-001-0304-z 10.1016/0013-4694(94)90033-7 10.1016/j.clinph.2004.01.001 10.55782/ane-1996-1121 10.1023/A:1010933404324 10.1080/01621459.1994.10476452 10.1212/WNL.34.7.939 |
| ContentType | Journal Article |
| Copyright | 2006 Elsevier B.V. |
| Copyright_xml | – notice: 2006 Elsevier B.V. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTPV AOWAS |
| DOI | 10.1016/j.jneumeth.2006.10.023 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic SwePub SwePub Articles |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1872-678X |
| EndPage | 350 |
| ExternalDocumentID | oai_swepub_ki_se_572598 17156848 10_1016_j_jneumeth_2006_10_023 S0165027006005425 |
| Genre | Comparative Study Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M -~X .55 .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHPSJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMQ HVGLF HZ~ IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SNS SPCBC SSN SSZ T5K WUQ X7M ZGI ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7X8 ADTPV AOWAS |
| ID | FETCH-LOGICAL-c470t-b83b128f3f8e6a5573abc7c278104fe59b0bb236645b4df8ef134ca9d61c363f3 |
| IEDL.DBID | AIKHN |
| ISSN | 0165-0270 |
| IngestDate | Mon Oct 20 03:25:44 EDT 2025 Sat Sep 27 22:09:57 EDT 2025 Wed Feb 19 01:44:57 EST 2025 Thu Apr 24 23:07:28 EDT 2025 Thu Oct 02 04:27:18 EDT 2025 Fri Feb 23 02:23:34 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Multivariate statistics Alzheimer's disease EEG Classification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-b83b128f3f8e6a5573abc7c278104fe59b0bb236645b4df8ef134ca9d61c363f3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
| PMID | 17156848 |
| PQID | 70330706 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | swepub_primary_oai_swepub_ki_se_572598 proquest_miscellaneous_70330706 pubmed_primary_17156848 crossref_primary_10_1016_j_jneumeth_2006_10_023 crossref_citationtrail_10_1016_j_jneumeth_2006_10_023 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2006_10_023 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-04-15 |
| PublicationDateYYYYMMDD | 2007-04-15 |
| PublicationDate_xml | – month: 04 year: 2007 text: 2007-04-15 day: 15 |
| PublicationDecade | 2000 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Journal of neuroscience methods |
| PublicationTitleAlternate | J Neurosci Methods |
| PublicationYear | 2007 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Bianchetti, Trabucch (bib5) 2001; 13 Jonkman (bib30) 1997; 27 Holschneider, Leuchter (bib24) 1995; 8 Berger (bib3) 1931; 94 Hanley (bib22) 1998 Coben, Danziger, Storandt (bib10) 1985; 61 Cortes, Vapnik (bib11) 1995; 20 Jeong (bib27) 2004; 115 DeCarli (bib12) 2001; 17 Anderer, Saletu, Kloppel, Semlitsch, Werner (bib1) 1994; 91 Mevik (bib38) 2006; 6 Witten, Frank (bib52) 2000 Jelic, Dierks, Amberla, Almkvist, Winblad, Nordberg (bib26) 1998; 254 Klöppel (bib31) 1994; 29 Koenig, Lehmann, Saito, Kuginuki, Kinoshita, Koukkou (bib32) 2001; 50 Kubicki, Herrmann, Fichte, Freund (bib34) 1979; 12 Dunkin, Leuchter, Newton, Cook (bib14) 1994; 35 Prichep, John, Ferris, Reisberg, Almas, Alper (bib42) 1994; 15 Association (bib2) 1987 Garthwaite (bib17) 1994; 89 Gasser, Bacher, Steinberg (bib18) 1985; 60 Selkoe (bib47) 1994; 10 Pritchard, Duke, Coburn, Moore, Tucker, Jann (bib43) 1994; 91 Breiman (bib8) 2001; 45 Venables, Ripley (bib49) 2002 Breiman (bib7) 1996; 24 Bracco, Gallato, Grigoletto, Lippi, Lepore, Bino (bib6) 1994; 51 Meyer (bib39) 2001; 1 Jin, Jeong, Jeong, Kim, Kim (bib28) 2002; 86 Koenig, Prichep, Dierks, Hubl, Wahlund, John (bib33) 2005; 26 McKhann, Drachman, Folstein, Katzman, Price, Stadlan (bib37) 1984; 34 Zweig, Campbell (bib54) 1993; 39 Coben, Danziger, Berg (bib9) 1983; 55 Forstl, Kurz (bib16) 1999; 249 Dierks, Ihl, Frolich, Maurer (bib13) 1993; 50 Nguyen, Rocke (bib40) 2002; 18 Ripley (bib46) 1996 John, Prichep, Easton (bib29) 1987 Giaquinto, Nolfe, Vitali (bib19) 1986; 9 Folstein, Folstein, McHugh (bib15) 1975; 12 Lehmann, Strik, Henggeler, Koenig, Koukkou (bib35) 1998; 29 Reisberg, Ferris, de Leon, Sinaiko, Franssen, Kluger (bib45) 1988 Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. 1st ed. New York, 2001. Tenenhaus (bib48) 1998 Green, Swets (bib20) 1966 Reisberg, Ferris, de Leon, Crook (bib44) 1988; 24 Wold (bib53) 1973; vol. 3 Price (bib41) 2000 Wackermann (bib51) 1996; 56 Berger (bib4) 1932; 98 Han, Chamber (bib21) 2000 Liaw, Wiener (bib36) 2002; 2 Wackermann, Lehmann, Michel, Strik (bib50) 1993; 14 Huang, Wahlund, Dierks, Julin, Winblad, Jelic (bib25) 2000; 111 Coben (10.1016/j.jneumeth.2006.10.023_bib9) 1983; 55 Lehmann (10.1016/j.jneumeth.2006.10.023_bib35) 1998; 29 Bianchetti (10.1016/j.jneumeth.2006.10.023_bib5) 2001; 13 Reisberg (10.1016/j.jneumeth.2006.10.023_bib45) 1988 Koenig (10.1016/j.jneumeth.2006.10.023_bib32) 2001; 50 Meyer (10.1016/j.jneumeth.2006.10.023_bib39) 2001; 1 Forstl (10.1016/j.jneumeth.2006.10.023_bib16) 1999; 249 Selkoe (10.1016/j.jneumeth.2006.10.023_bib47) 1994; 10 Green (10.1016/j.jneumeth.2006.10.023_bib20) 1966 Witten (10.1016/j.jneumeth.2006.10.023_bib52) 2000 Gasser (10.1016/j.jneumeth.2006.10.023_bib18) 1985; 60 Wackermann (10.1016/j.jneumeth.2006.10.023_bib50) 1993; 14 Dierks (10.1016/j.jneumeth.2006.10.023_bib13) 1993; 50 Berger (10.1016/j.jneumeth.2006.10.023_bib4) 1932; 98 McKhann (10.1016/j.jneumeth.2006.10.023_bib37) 1984; 34 10.1016/j.jneumeth.2006.10.023_bib23 Jonkman (10.1016/j.jneumeth.2006.10.023_bib30) 1997; 27 Price (10.1016/j.jneumeth.2006.10.023_bib41) 2000 Giaquinto (10.1016/j.jneumeth.2006.10.023_bib19) 1986; 9 Holschneider (10.1016/j.jneumeth.2006.10.023_bib24) 1995; 8 Huang (10.1016/j.jneumeth.2006.10.023_bib25) 2000; 111 Venables (10.1016/j.jneumeth.2006.10.023_bib49) 2002 Garthwaite (10.1016/j.jneumeth.2006.10.023_bib17) 1994; 89 Jin (10.1016/j.jneumeth.2006.10.023_bib28) 2002; 86 Reisberg (10.1016/j.jneumeth.2006.10.023_bib44) 1988; 24 Folstein (10.1016/j.jneumeth.2006.10.023_bib15) 1975; 12 Koenig (10.1016/j.jneumeth.2006.10.023_bib33) 2005; 26 Bracco (10.1016/j.jneumeth.2006.10.023_bib6) 1994; 51 Wackermann (10.1016/j.jneumeth.2006.10.023_bib51) 1996; 56 Dunkin (10.1016/j.jneumeth.2006.10.023_bib14) 1994; 35 Han (10.1016/j.jneumeth.2006.10.023_bib21) 2000 Ripley (10.1016/j.jneumeth.2006.10.023_bib46) 1996 Liaw (10.1016/j.jneumeth.2006.10.023_bib36) 2002; 2 DeCarli (10.1016/j.jneumeth.2006.10.023_bib12) 2001; 17 Prichep (10.1016/j.jneumeth.2006.10.023_bib42) 1994; 15 Pritchard (10.1016/j.jneumeth.2006.10.023_bib43) 1994; 91 Cortes (10.1016/j.jneumeth.2006.10.023_bib11) 1995; 20 Coben (10.1016/j.jneumeth.2006.10.023_bib10) 1985; 61 Kubicki (10.1016/j.jneumeth.2006.10.023_bib34) 1979; 12 John (10.1016/j.jneumeth.2006.10.023_bib29) 1987 Nguyen (10.1016/j.jneumeth.2006.10.023_bib40) 2002; 18 Mevik (10.1016/j.jneumeth.2006.10.023_bib38) 2006; 6 Wold (10.1016/j.jneumeth.2006.10.023_bib53) 1973; vol. 3 Hanley (10.1016/j.jneumeth.2006.10.023_bib22) 1998 Zweig (10.1016/j.jneumeth.2006.10.023_bib54) 1993; 39 Klöppel (10.1016/j.jneumeth.2006.10.023_bib31) 1994; 29 Berger (10.1016/j.jneumeth.2006.10.023_bib3) 1931; 94 Jeong (10.1016/j.jneumeth.2006.10.023_bib27) 2004; 115 Jelic (10.1016/j.jneumeth.2006.10.023_bib26) 1998; 254 Association (10.1016/j.jneumeth.2006.10.023_bib2) 1987 Tenenhaus (10.1016/j.jneumeth.2006.10.023_bib48) 1998 Breiman (10.1016/j.jneumeth.2006.10.023_bib8) 2001; 45 Anderer (10.1016/j.jneumeth.2006.10.023_bib1) 1994; 91 Breiman (10.1016/j.jneumeth.2006.10.023_bib7) 1996; 24 |
| References_xml | – start-page: 3738 year: 1998 end-page: 3745 ident: bib22 article-title: Receiver operating characteristic (ROC) curves publication-title: Encyclopedia of biostatistics – volume: 111 start-page: 1961 year: 2000 end-page: 1967 ident: bib25 article-title: Discrimination of Alzheimer's disease and mild cognitive impairment by equivalent EEG sources: a cross-sectional and longitudinal study publication-title: Clin Neurophysiol – volume: 249 start-page: 288 year: 1999 end-page: 290 ident: bib16 article-title: Clinical features of Alzheimer's disease publication-title: Eur Arch Psychiat Clin Neurosci – volume: 13 start-page: 221 year: 2001 end-page: 230 ident: bib5 article-title: Clinical aspects of Alzheimer's disease publication-title: Aging (Milano) – volume: 61 start-page: 101 year: 1985 end-page: 112 ident: bib10 article-title: A longitudinal EEG study of mild senile dementia of Alzheimer type: changes at 1 year and at 2.5 years publication-title: Electroencephalogr Clin Neurophysiol – volume: 115 start-page: 1490 year: 2004 end-page: 1505 ident: bib27 article-title: EEG dynamics in patients with Alzheimer's disease publication-title: Clin Neurophysiol – volume: 89 start-page: 122 year: 1994 end-page: 127 ident: bib17 article-title: An interpretation of partial least squares publication-title: J Am Stat Assoc – volume: 254 start-page: 85 year: 1998 end-page: 88 ident: bib26 article-title: Longitudinal changes in quantitative EEG during long-term tacrine treatment of patients with Alzheimer's disease publication-title: Neurosci Lett – volume: 1 start-page: 23 year: 2001 end-page: 26 ident: bib39 article-title: Support vector machines publication-title: R News – volume: 17 start-page: 255 year: 2001 end-page: 279 ident: bib12 article-title: The role of neuroimaging in dementia publication-title: Clin Geriatr Med – volume: 39 start-page: 561 year: 1993 end-page: 577 ident: bib54 article-title: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine publication-title: Clin Chem – volume: 94 start-page: 16 year: 1931 end-page: 60 ident: bib3 article-title: Ueber das Elektrenkephalogramm des Menschen. Dritte Mitteilung publication-title: Arch Psychiatr Nervenkr – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bib36 article-title: Classification and regression by random forest publication-title: R News – volume: 27 start-page: 211 year: 1997 end-page: 219 ident: bib30 article-title: The role of the electroencephalogram in the diagnosis of dementia of the Alzheimer type: an attempt at technology assessment publication-title: Neurophysiol Clin – year: 1998 ident: bib48 article-title: La Regression PLS – year: 1987 ident: bib29 article-title: Normative data banks and neurometrics: basic concepts, methods and results of norm construction – volume: 50 start-page: 55 year: 2001 end-page: 60 ident: bib32 article-title: Decreased functional connectivity of EEG theta-frequency activity in first-episode, neuroleptic-naive patients with schizophrenia: preliminary results publication-title: Schizophr Res – start-page: 101 year: 1988 end-page: 114 ident: bib45 article-title: Stage-specific behavioral cognitive and in vivo changes in community residing subjects with Age-Associated Memory Impairment and Primary Degenerative Dementia of the Alzheimer type publication-title: Drug Develop Res – year: 2000 ident: bib41 article-title: Aging of the brain and dementia of the Alzheimer type – volume: 55 start-page: 372 year: 1983 end-page: 380 ident: bib9 article-title: Frequency analysis of the resting awake EEG in mild senile dementia of Alzheimer type publication-title: Electroencephalogr Clin Neurophysiol – volume: 18 start-page: 39 year: 2002 end-page: 50 ident: bib40 article-title: Tumor classification by partial least squares using microarray gene expression data publication-title: Bioinformatics – year: 1966 ident: bib20 article-title: Signal detection theory and psychophysics – volume: 86 start-page: 395 year: 2002 end-page: 401 ident: bib28 article-title: Nonlinear dynamics of the EEG separated by independent component analysis after sound and light stimulation publication-title: Biol Cybern – volume: 35 start-page: 870 year: 1994 end-page: 879 ident: bib14 article-title: Reduced EEG coherence in dementia: state or trait marker? publication-title: Biol Psychiat – volume: 15 start-page: 85 year: 1994 end-page: 90 ident: bib42 article-title: Quantitative EEG correlates of cognitive deterioration in the elderly publication-title: Neurobiol Ag – volume: 8 start-page: 169 year: 1995 end-page: 180 ident: bib24 article-title: Beta activity in aging and dementia publication-title: Brain Topogr – volume: 91 start-page: 108 year: 1994 end-page: 117 ident: bib1 article-title: Discrimination between demented patients and normals based on topographic EEG slow wave activity: comparison between z statistics, discriminant analysis and artificial neural network classifiers publication-title: Electroencephalogr Clin Neurophysiol – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib8 article-title: Random forests publication-title: Mach Learn – volume: 12 start-page: 237 year: 1979 end-page: 245 ident: bib34 article-title: Reflections on the topics: EEG frequency bands and regulation of vigilance publication-title: Pharmakopsychiatr Neuropsychopharmakol – year: 1996 ident: bib46 article-title: Pattern recognition and neural networks – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: bib7 article-title: Bagging predictors publication-title: Mach Learn – volume: 91 start-page: 118 year: 1994 end-page: 130 ident: bib43 article-title: EEG-based, neural-net predictive classification of Alzheimer's disease versus control subjects is augmented by non-linear EEG measures publication-title: Electroencephalogr Clin Neurophysiol – volume: 26 start-page: 165 year: 2005 end-page: 171 ident: bib33 article-title: Decreased EEG synchronization in Alzheimer's disease and mild cognitive impairment publication-title: Neurobiol Ag – volume: 51 start-page: 1213 year: 1994 end-page: 1219 ident: bib6 article-title: Factors affecting course and survival in Alzheimer's disease. A 9-year longitudinal study publication-title: Arch Neurol – volume: 12 start-page: 189 year: 1975 end-page: 198 ident: bib15 article-title: Mini-mental state” A practical method for grading the cognitive state of patients for the clinician publication-title: J Psychiatr Res – volume: 60 start-page: 312 year: 1985 end-page: 319 ident: bib18 article-title: Test-retest reliability of spectral parameters of the EEG publication-title: Electroencephalogr Clin Neurophysiol – volume: 56 start-page: 197 year: 1996 end-page: 208 ident: bib51 article-title: Beyond mapping: estimating complexity of multichannel EEG recordings publication-title: Acta Neurobiol Exp (Wars) – volume: 29 start-page: 1 year: 1998 end-page: 11 ident: bib35 article-title: Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking. I. Visual imagery and abstract thoughts publication-title: Int J Psychophysiol – volume: 6 start-page: 12 year: 2006 end-page: 17 ident: bib38 article-title: The pls package publication-title: R News – year: 2000 ident: bib52 article-title: Data mininng – volume: 34 start-page: 939 year: 1984 end-page: 944 ident: bib37 article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease publication-title: Neurology – volume: vol. 3 year: 1973 ident: bib53 publication-title: Iterative partial least squares (NIPALS) modelling – year: 2002 ident: bib49 article-title: Modern applied statistics with S – volume: 20 start-page: 1 year: 1995 end-page: 25 ident: bib11 article-title: Support-vector network publication-title: Mach Learn – volume: 98 start-page: 231 year: 1932 end-page: 254 ident: bib4 article-title: Dritte Mitteilung ber das Elektrenkephalogramm des Menschen. Fuenfte Mitteilung publication-title: Arch Psychiatr Nervenkr – volume: 29 start-page: 33 year: 1994 end-page: 38 ident: bib31 article-title: Neural networks as a new method for EEG analysis publication-title: Neuropsychobiology – volume: 10 start-page: 373 year: 1994 end-page: 403 ident: bib47 article-title: Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer's disease publication-title: Annu Rev Cell Biol – volume: 50 start-page: 151 year: 1993 end-page: 162 ident: bib13 article-title: Dementia of the Alzheimer type: effects on the spontaneous EEG described by dipole sources publication-title: Psychiat Res – reference: Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. 1st ed. New York, 2001. – volume: 24 start-page: 661 year: 1988 end-page: 663 ident: bib44 article-title: Global Deterioration Scale (GDS) publication-title: Psychopharmacol Bull – volume: 9 start-page: S79 year: 1986 end-page: S84 ident: bib19 article-title: EEG changes induced by oxiracetam on diazepam-medicated volunteers publication-title: Clin Neuropharmacol – volume: 14 start-page: 269 year: 1993 end-page: 283 ident: bib50 article-title: Adaptive segmentation of spontaneous EEG map series into spatially defined microstates publication-title: Int J Psychophysiol – year: 1987 ident: bib2 article-title: Diagnostic and statistical manual of mental disorders (DSM-III-R) – year: 2000 ident: bib21 article-title: Data mining, concepts and techniques – volume: 10 start-page: 373 year: 1994 ident: 10.1016/j.jneumeth.2006.10.023_bib47 article-title: Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer's disease publication-title: Annu Rev Cell Biol doi: 10.1146/annurev.cb.10.110194.002105 – volume: 50 start-page: 151 year: 1993 ident: 10.1016/j.jneumeth.2006.10.023_bib13 article-title: Dementia of the Alzheimer type: effects on the spontaneous EEG described by dipole sources publication-title: Psychiat Res doi: 10.1016/0925-4927(93)90027-F – volume: 12 start-page: 189 year: 1975 ident: 10.1016/j.jneumeth.2006.10.023_bib15 article-title: Mini-mental state” A practical method for grading the cognitive state of patients for the clinician publication-title: J Psychiatr Res doi: 10.1016/0022-3956(75)90026-6 – volume: 61 start-page: 101 year: 1985 ident: 10.1016/j.jneumeth.2006.10.023_bib10 article-title: A longitudinal EEG study of mild senile dementia of Alzheimer type: changes at 1 year and at 2.5 years publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(85)91048-X – ident: 10.1016/j.jneumeth.2006.10.023_bib23 doi: 10.1007/978-0-387-21606-5_1 – volume: 8 start-page: 169 year: 1995 ident: 10.1016/j.jneumeth.2006.10.023_bib24 article-title: Beta activity in aging and dementia publication-title: Brain Topogr doi: 10.1007/BF01199780 – volume: 91 start-page: 108 year: 1994 ident: 10.1016/j.jneumeth.2006.10.023_bib1 article-title: Discrimination between demented patients and normals based on topographic EEG slow wave activity: comparison between z statistics, discriminant analysis and artificial neural network classifiers publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(94)90032-9 – volume: 17 start-page: 255 year: 2001 ident: 10.1016/j.jneumeth.2006.10.023_bib12 article-title: The role of neuroimaging in dementia publication-title: Clin Geriatr Med doi: 10.1016/S0749-0690(05)70068-9 – volume: 13 start-page: 221 year: 2001 ident: 10.1016/j.jneumeth.2006.10.023_bib5 article-title: Clinical aspects of Alzheimer's disease publication-title: Aging (Milano) – volume: 29 start-page: 1 year: 1998 ident: 10.1016/j.jneumeth.2006.10.023_bib35 article-title: Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking. I. Visual imagery and abstract thoughts publication-title: Int J Psychophysiol doi: 10.1016/S0167-8760(97)00098-6 – volume: vol. 3 year: 1973 ident: 10.1016/j.jneumeth.2006.10.023_bib53 – year: 1987 ident: 10.1016/j.jneumeth.2006.10.023_bib2 – start-page: 3738 year: 1998 ident: 10.1016/j.jneumeth.2006.10.023_bib22 article-title: Receiver operating characteristic (ROC) curves – volume: 24 start-page: 661 year: 1988 ident: 10.1016/j.jneumeth.2006.10.023_bib44 article-title: Global Deterioration Scale (GDS) publication-title: Psychopharmacol Bull – volume: 2 start-page: 18 year: 2002 ident: 10.1016/j.jneumeth.2006.10.023_bib36 article-title: Classification and regression by random forest publication-title: R News – year: 2000 ident: 10.1016/j.jneumeth.2006.10.023_bib21 – volume: 39 start-page: 561 year: 1993 ident: 10.1016/j.jneumeth.2006.10.023_bib54 article-title: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine publication-title: Clin Chem doi: 10.1093/clinchem/39.4.561 – volume: 35 start-page: 870 year: 1994 ident: 10.1016/j.jneumeth.2006.10.023_bib14 article-title: Reduced EEG coherence in dementia: state or trait marker? publication-title: Biol Psychiat doi: 10.1016/0006-3223(94)90023-X – year: 2000 ident: 10.1016/j.jneumeth.2006.10.023_bib52 – year: 1966 ident: 10.1016/j.jneumeth.2006.10.023_bib20 – start-page: 101 year: 1988 ident: 10.1016/j.jneumeth.2006.10.023_bib45 article-title: Stage-specific behavioral cognitive and in vivo changes in community residing subjects with Age-Associated Memory Impairment and Primary Degenerative Dementia of the Alzheimer type publication-title: Drug Develop Res doi: 10.1002/ddr.430150203 – volume: 50 start-page: 55 year: 2001 ident: 10.1016/j.jneumeth.2006.10.023_bib32 article-title: Decreased functional connectivity of EEG theta-frequency activity in first-episode, neuroleptic-naive patients with schizophrenia: preliminary results publication-title: Schizophr Res doi: 10.1016/S0920-9964(00)00154-7 – volume: 24 start-page: 123 year: 1996 ident: 10.1016/j.jneumeth.2006.10.023_bib7 article-title: Bagging predictors publication-title: Mach Learn doi: 10.1023/A:1018054314350 – volume: 27 start-page: 211 year: 1997 ident: 10.1016/j.jneumeth.2006.10.023_bib30 article-title: The role of the electroencephalogram in the diagnosis of dementia of the Alzheimer type: an attempt at technology assessment publication-title: Neurophysiol Clin doi: 10.1016/S0987-7053(97)83777-X – volume: 29 start-page: 33 year: 1994 ident: 10.1016/j.jneumeth.2006.10.023_bib31 article-title: Neural networks as a new method for EEG analysis publication-title: Neuropsychobiology doi: 10.1159/000119060 – volume: 254 start-page: 85 year: 1998 ident: 10.1016/j.jneumeth.2006.10.023_bib26 article-title: Longitudinal changes in quantitative EEG during long-term tacrine treatment of patients with Alzheimer's disease publication-title: Neurosci Lett doi: 10.1016/S0304-3940(98)00669-7 – volume: 12 start-page: 237 year: 1979 ident: 10.1016/j.jneumeth.2006.10.023_bib34 article-title: Reflections on the topics: EEG frequency bands and regulation of vigilance publication-title: Pharmakopsychiatr Neuropsychopharmakol doi: 10.1055/s-0028-1094615 – volume: 55 start-page: 372 year: 1983 ident: 10.1016/j.jneumeth.2006.10.023_bib9 article-title: Frequency analysis of the resting awake EEG in mild senile dementia of Alzheimer type publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(83)90124-4 – volume: 18 start-page: 39 year: 2002 ident: 10.1016/j.jneumeth.2006.10.023_bib40 article-title: Tumor classification by partial least squares using microarray gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.1.39 – volume: 20 start-page: 1 year: 1995 ident: 10.1016/j.jneumeth.2006.10.023_bib11 article-title: Support-vector network publication-title: Mach Learn doi: 10.1023/A:1022627411411 – year: 1996 ident: 10.1016/j.jneumeth.2006.10.023_bib46 – volume: 9 start-page: S79 issue: Suppl. 3 year: 1986 ident: 10.1016/j.jneumeth.2006.10.023_bib19 article-title: EEG changes induced by oxiracetam on diazepam-medicated volunteers publication-title: Clin Neuropharmacol doi: 10.1097/00002826-198609003-00013 – volume: 51 start-page: 1213 year: 1994 ident: 10.1016/j.jneumeth.2006.10.023_bib6 article-title: Factors affecting course and survival in Alzheimer's disease. A 9-year longitudinal study publication-title: Arch Neurol doi: 10.1001/archneur.1994.00540240057016 – volume: 6 start-page: 12 year: 2006 ident: 10.1016/j.jneumeth.2006.10.023_bib38 article-title: The pls package publication-title: R News – volume: 98 start-page: 231 year: 1932 ident: 10.1016/j.jneumeth.2006.10.023_bib4 article-title: Dritte Mitteilung ber das Elektrenkephalogramm des Menschen. Fuenfte Mitteilung publication-title: Arch Psychiatr Nervenkr doi: 10.1007/BF01814645 – year: 1998 ident: 10.1016/j.jneumeth.2006.10.023_bib48 – year: 1987 ident: 10.1016/j.jneumeth.2006.10.023_bib29 – volume: 1 start-page: 23 year: 2001 ident: 10.1016/j.jneumeth.2006.10.023_bib39 article-title: Support vector machines publication-title: R News – year: 2000 ident: 10.1016/j.jneumeth.2006.10.023_bib41 – volume: 249 start-page: 288 year: 1999 ident: 10.1016/j.jneumeth.2006.10.023_bib16 article-title: Clinical features of Alzheimer's disease publication-title: Eur Arch Psychiat Clin Neurosci doi: 10.1007/s004060050101 – volume: 60 start-page: 312 year: 1985 ident: 10.1016/j.jneumeth.2006.10.023_bib18 article-title: Test-retest reliability of spectral parameters of the EEG publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(85)90005-7 – volume: 26 start-page: 165 year: 2005 ident: 10.1016/j.jneumeth.2006.10.023_bib33 article-title: Decreased EEG synchronization in Alzheimer's disease and mild cognitive impairment publication-title: Neurobiol Ag doi: 10.1016/j.neurobiolaging.2004.03.008 – volume: 15 start-page: 85 year: 1994 ident: 10.1016/j.jneumeth.2006.10.023_bib42 article-title: Quantitative EEG correlates of cognitive deterioration in the elderly publication-title: Neurobiol Ag doi: 10.1016/0197-4580(94)90147-3 – volume: 111 start-page: 1961 year: 2000 ident: 10.1016/j.jneumeth.2006.10.023_bib25 article-title: Discrimination of Alzheimer's disease and mild cognitive impairment by equivalent EEG sources: a cross-sectional and longitudinal study publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(00)00454-5 – year: 2002 ident: 10.1016/j.jneumeth.2006.10.023_bib49 – volume: 14 start-page: 269 year: 1993 ident: 10.1016/j.jneumeth.2006.10.023_bib50 article-title: Adaptive segmentation of spontaneous EEG map series into spatially defined microstates publication-title: Int J Psychophysiol doi: 10.1016/0167-8760(93)90041-M – volume: 94 start-page: 16 year: 1931 ident: 10.1016/j.jneumeth.2006.10.023_bib3 article-title: Ueber das Elektrenkephalogramm des Menschen. Dritte Mitteilung publication-title: Arch Psychiatr Nervenkr doi: 10.1007/BF01835097 – volume: 86 start-page: 395 year: 2002 ident: 10.1016/j.jneumeth.2006.10.023_bib28 article-title: Nonlinear dynamics of the EEG separated by independent component analysis after sound and light stimulation publication-title: Biol Cybern doi: 10.1007/s00422-001-0304-z – volume: 91 start-page: 118 year: 1994 ident: 10.1016/j.jneumeth.2006.10.023_bib43 article-title: EEG-based, neural-net predictive classification of Alzheimer's disease versus control subjects is augmented by non-linear EEG measures publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(94)90033-7 – volume: 115 start-page: 1490 year: 2004 ident: 10.1016/j.jneumeth.2006.10.023_bib27 article-title: EEG dynamics in patients with Alzheimer's disease publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2004.01.001 – volume: 56 start-page: 197 year: 1996 ident: 10.1016/j.jneumeth.2006.10.023_bib51 article-title: Beyond mapping: estimating complexity of multichannel EEG recordings publication-title: Acta Neurobiol Exp (Wars) doi: 10.55782/ane-1996-1121 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.jneumeth.2006.10.023_bib8 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 89 start-page: 122 year: 1994 ident: 10.1016/j.jneumeth.2006.10.023_bib17 article-title: An interpretation of partial least squares publication-title: J Am Stat Assoc doi: 10.1080/01621459.1994.10476452 – volume: 34 start-page: 939 year: 1984 ident: 10.1016/j.jneumeth.2006.10.023_bib37 article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease publication-title: Neurology doi: 10.1212/WNL.34.7.939 |
| SSID | ssj0004906 |
| Score | 2.355538 |
| Snippet | The early detection of subjects with probable Alzheimer's disease (AD) is crucial for effective appliance of treatment strategies. Here we explored the ability... |
| SourceID | swepub proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 342 |
| SubjectTerms | Aged Aged, 80 and over Algorithms Alzheimer Disease - diagnosis Alzheimer Disease - physiopathology Alzheimer's disease Artificial Intelligence Brain - physiopathology Classification Cluster Analysis Diagnosis, Computer-Assisted - methods EEG Electroencephalography - methods Humans Middle Aged Multivariate statistics Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity and Specificity |
| Title | Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity (EEG) |
| URI | https://dx.doi.org/10.1016/j.jneumeth.2006.10.023 https://www.ncbi.nlm.nih.gov/pubmed/17156848 https://www.proquest.com/docview/70330706 http://kipublications.ki.se/Default.aspx?queryparsed=id:1937656 |
| Volume | 161 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH5qpxLigqBlGZbiAypwSCcTrzlG1ZQB1F6gUm9R7NhthplMNcsBDkj8c_wSZ4ZFqAdukfMsWfbzW_yWD-CVcIkotKSR1wUuYqXkkdamiKwy2nh-SUSCBc5n52J8wT5c8ssdOOlqYTCtMsj-VqY30jqMDMJuDm6qavAJC3FijJsKtDsSvgt7Xv8o1YO97P3H8fm2PDJtIDaRHkOW8S-FwpPjSW3XCNbcxiUw0Suh_9JRf9ugfzQYbZTS6X24F6xJkrULfgA7tt6Hg6z2nvTsKzkiTX5n83C-D3fOQhj9AH5k27A1KeqSmA0aIZk7YtCixhSiQDC9mi-q1fVsSbyFSzYpRy1xNv12bauZXbxekhDtIVVNWngd5ACiEYWCYAEF4lSQN6PRu7cP4eJ09PlkHAUshsgwGa8iraj2qsxRp6woOJe00EaaRCrvzznLUx1rnVAhGNes9ERuSJkp0lIMDRXU0UfQq-e1fQJEyFho6UqFwNfe4SpsGhuRWq29c8Xisg-82_3chEbliJcxzbuMtEnenRqiaAoc96fWh8Fm3k3bquPWGWl3uPlvTJd7fXLr3JcdN-T-RmKYpajtfL3MvQxFQSr68Lhlku1qpPeWFVN9OGq5ZvMHm3yHoS_-y-Zcer9UPf2PBT6Du-07NIuG_Dn0Vou1feENqJU-hN3j78PDcE1-Aj2rHYw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH4qRQIuFbQsU5b6gAoc0snEW3IcVVMG6PRCK_UWxY7dZpjJVLMc4IDEP8cvdmZYhHrgFjm2ZPk9v8Vv-QBeC5uIQkkaOV1gI1ZKHimli8ikWmnHL4lIsMB5dCaGF-zjJb_cguO2FgbTKoPs9zK9kdZhpBtOs3tTVd3PWIgTY9xUoN2R8Dtwl_FEogd29H2T58GyBmATZ2PAMv6lTHh8NK7NCqGafVQC07wS-i8N9bcF-kd70UYlnTyEnWBLkr7f7iPYMvUu7PVr50dPv5JD0mR3Ns_mu3BvFILoe_Cjvwlak6IuiV5jEZKZJRrtaUwgChMmV7N5tbyeLoizb8k64chP7k--XZtqauZvFiTEekhVEw-ug_QnCjEoCJZPIEoFeTsYvH_3GC5OBufHwyggMUSayXgZqZQqp8gstakRBeeSFkpLncjUeXPW8EzFSiVUCMYVK90k26NMF1kpepoKaukT2K5ntXkGRMhYKGnLFGGvnbtVmCzWIjNKOdeKxWUHeHv6uQ5tyhEtY5K3-WjjvKUaYmgKHHdU60B3ve7GN-q4dUXWEjf_jeVyp01uXXvQckPu7iMGWYrazFaL3ElQFKOiA089k2x2I52vnLK0A4eea9Z_sMV3GPrivkzOpfNK0_3_2OAB3B-ej07z0w9nn57DA_8izaIefwHby_nKvHSm1FK9aq7KT6hRHlQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+and+comparison+of+classification+algorithms+for+recognition+of+Alzheimer%27s+disease+in+electrical+brain+activity+%28EEG%29&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Lehmann%2C+Christoph&rft.au=Koenig%2C+Thomas&rft.au=Jelic%2C+Vesna&rft.au=Prichep%2C+Leslie&rft.date=2007-04-15&rft.issn=0165-0270&rft.volume=161&rft.issue=2&rft.spage=342&rft.epage=350&rft_id=info:doi/10.1016%2Fj.jneumeth.2006.10.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jneumeth_2006_10_023 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |