An artificial bee colony optimization algorithms for solving fuzzy capacitated logistic distribution center problem

This paper presents a methodological approach to solving the fuzzy capacitated logistic distribution center problem, with a focus on the optimal selection of distribution centers to meet the demands of multiple plants. The distribution centers are characterized by fixed costs and capacities, while p...

Full description

Saved in:
Bibliographic Details
Published inMethodsX Vol. 13; p. 102964
Main Authors Ayid, Yasser M., Zakaraia, Mohammad, Eltoukhy, Mohamed Meselhy
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2024
Elsevier
Subjects
Online AccessGet full text
ISSN2215-0161
2215-0161
DOI10.1016/j.mex.2024.102964

Cover

Abstract This paper presents a methodological approach to solving the fuzzy capacitated logistic distribution center problem, with a focus on the optimal selection of distribution centers to meet the demands of multiple plants. The distribution centers are characterized by fixed costs and capacities, while plant demands are modeled using fuzzy triangular membership functions. The problem is mathematically formulated by converting fuzzy demands into crisp values, providing a structured framework for addressing uncertainty in logistic planning. To support future research and facilitate comparative analysis, 20 benchmark problems were generated, filling a gap in the existing literature. Three distinct artificial bee colony algorithm variants were hybridized with a heuristic: one using the best solution per iteration, another incorporating chaotic mapping and adaptive procedures, and the third employing convergence and diversity archives. An experimental design based on Taguchi's orthogonal arrays was employed for optimizing the algorithm parameters, ensuring systematic exploration of the solution space. The developed methods offer a comprehensive toolkit for addressing complex, uncertain demands in logistic distribution, with code provided for reproducibility. Key contributions include:•Development of a fuzzy model for the selection of distribution centers with fixed costs and capacities under uncertain plant demands.•Generation of 20 benchmark problems to advance research in the fuzzy capacitated logistic distribution center problem domain.•Integration of a heuristic approach with three distinct ABC algorithm variants, each contributing unique methodological insights. [Display omitted]
AbstractList This paper presents a methodological approach to solving the fuzzy capacitated logistic distribution center problem, with a focus on the optimal selection of distribution centers to meet the demands of multiple plants. The distribution centers are characterized by fixed costs and capacities, while plant demands are modeled using fuzzy triangular membership functions. The problem is mathematically formulated by converting fuzzy demands into crisp values, providing a structured framework for addressing uncertainty in logistic planning. To support future research and facilitate comparative analysis, 20 benchmark problems were generated, filling a gap in the existing literature. Three distinct artificial bee colony algorithm variants were hybridized with a heuristic: one using the best solution per iteration, another incorporating chaotic mapping and adaptive procedures, and the third employing convergence and diversity archives. An experimental design based on Taguchi's orthogonal arrays was employed for optimizing the algorithm parameters, ensuring systematic exploration of the solution space. The developed methods offer a comprehensive toolkit for addressing complex, uncertain demands in logistic distribution, with code provided for reproducibility. Key contributions include:•Development of a fuzzy model for the selection of distribution centers with fixed costs and capacities under uncertain plant demands.•Generation of 20 benchmark problems to advance research in the fuzzy capacitated logistic distribution center problem domain.•Integration of a heuristic approach with three distinct ABC algorithm variants, each contributing unique methodological insights. [Display omitted]
This paper presents a methodological approach to solving the fuzzy capacitated logistic distribution center problem, with a focus on the optimal selection of distribution centers to meet the demands of multiple plants. The distribution centers are characterized by fixed costs and capacities, while plant demands are modeled using fuzzy triangular membership functions. The problem is mathematically formulated by converting fuzzy demands into crisp values, providing a structured framework for addressing uncertainty in logistic planning. To support future research and facilitate comparative analysis, 20 benchmark problems were generated, filling a gap in the existing literature. Three distinct artificial bee colony algorithm variants were hybridized with a heuristic: one using the best solution per iteration, another incorporating chaotic mapping and adaptive procedures, and the third employing convergence and diversity archives. An experimental design based on Taguchi's orthogonal arrays was employed for optimizing the algorithm parameters, ensuring systematic exploration of the solution space. The developed methods offer a comprehensive toolkit for addressing complex, uncertain demands in logistic distribution, with code provided for reproducibility. Key contributions include:•Development of a fuzzy model for the selection of distribution centers with fixed costs and capacities under uncertain plant demands.•Generation of 20 benchmark problems to advance research in the fuzzy capacitated logistic distribution center problem domain.•Integration of a heuristic approach with three distinct ABC algorithm variants, each contributing unique methodological insights.
This paper presents a methodological approach to solving the fuzzy capacitated logistic distribution center problem, with a focus on the optimal selection of distribution centers to meet the demands of multiple plants. The distribution centers are characterized by fixed costs and capacities, while plant demands are modeled using fuzzy triangular membership functions. The problem is mathematically formulated by converting fuzzy demands into crisp values, providing a structured framework for addressing uncertainty in logistic planning. To support future research and facilitate comparative analysis, 20 benchmark problems were generated, filling a gap in the existing literature. Three distinct artificial bee colony algorithm variants were hybridized with a heuristic: one using the best solution per iteration, another incorporating chaotic mapping and adaptive procedures, and the third employing convergence and diversity archives. An experimental design based on Taguchi's orthogonal arrays was employed for optimizing the algorithm parameters, ensuring systematic exploration of the solution space. The developed methods offer a comprehensive toolkit for addressing complex, uncertain demands in logistic distribution, with code provided for reproducibility. Key contributions include:•Development of a fuzzy model for the selection of distribution centers with fixed costs and capacities under uncertain plant demands.•Generation of 20 benchmark problems to advance research in the fuzzy capacitated logistic distribution center problem domain.•Integration of a heuristic approach with three distinct ABC algorithm variants, each contributing unique methodological insights.This paper presents a methodological approach to solving the fuzzy capacitated logistic distribution center problem, with a focus on the optimal selection of distribution centers to meet the demands of multiple plants. The distribution centers are characterized by fixed costs and capacities, while plant demands are modeled using fuzzy triangular membership functions. The problem is mathematically formulated by converting fuzzy demands into crisp values, providing a structured framework for addressing uncertainty in logistic planning. To support future research and facilitate comparative analysis, 20 benchmark problems were generated, filling a gap in the existing literature. Three distinct artificial bee colony algorithm variants were hybridized with a heuristic: one using the best solution per iteration, another incorporating chaotic mapping and adaptive procedures, and the third employing convergence and diversity archives. An experimental design based on Taguchi's orthogonal arrays was employed for optimizing the algorithm parameters, ensuring systematic exploration of the solution space. The developed methods offer a comprehensive toolkit for addressing complex, uncertain demands in logistic distribution, with code provided for reproducibility. Key contributions include:•Development of a fuzzy model for the selection of distribution centers with fixed costs and capacities under uncertain plant demands.•Generation of 20 benchmark problems to advance research in the fuzzy capacitated logistic distribution center problem domain.•Integration of a heuristic approach with three distinct ABC algorithm variants, each contributing unique methodological insights.
This paper presents a methodological approach to solving the fuzzy capacitated logistic distribution center problem, with a focus on the optimal selection of distribution centers to meet the demands of multiple plants. The distribution centers are characterized by fixed costs and capacities, while plant demands are modeled using fuzzy triangular membership functions. The problem is mathematically formulated by converting fuzzy demands into crisp values, providing a structured framework for addressing uncertainty in logistic planning. To support future research and facilitate comparative analysis, 20 benchmark problems were generated, filling a gap in the existing literature. Three distinct artificial bee colony algorithm variants were hybridized with a heuristic: one using the best solution per iteration, another incorporating chaotic mapping and adaptive procedures, and the third employing convergence and diversity archives. An experimental design based on Taguchi's orthogonal arrays was employed for optimizing the algorithm parameters, ensuring systematic exploration of the solution space. The developed methods offer a comprehensive toolkit for addressing complex, uncertain demands in logistic distribution, with code provided for reproducibility. Key contributions include:•Development of a fuzzy model for the selection of distribution centers with fixed costs and capacities under uncertain plant demands.•Generation of 20 benchmark problems to advance research in the fuzzy capacitated logistic distribution center problem domain.•Integration of a heuristic approach with three distinct ABC algorithm variants, each contributing unique methodological insights. Image, graphical abstract
ArticleNumber 102964
Author Ayid, Yasser M.
Eltoukhy, Mohamed Meselhy
Zakaraia, Mohammad
Author_xml – sequence: 1
  givenname: Yasser M.
  surname: Ayid
  fullname: Ayid, Yasser M.
  organization: Mathematics Department, Faculty of Sciences and Arts, Al-Kamil University of Jeddah, Saudi Arabia
– sequence: 2
  givenname: Mohammad
  surname: Zakaraia
  fullname: Zakaraia, Mohammad
  organization: Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Egypt
– sequence: 3
  givenname: Mohamed Meselhy
  orcidid: 0000-0003-0205-2210
  surname: Eltoukhy
  fullname: Eltoukhy, Mohamed Meselhy
  email: mmeltoukhy@uj.edu.sa
  organization: Department of Information Technology, College of Computing and Information Technology at Khulais, University of Jeddah, Jeddah, Saudi Arabia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39381347$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1v1DAQjVARLaU_gAvykcsu_siHIw6oqvioVIkLnK2JM9565cTBdrbs_nq8TanaC-I0npn33njmvS5ORj9iUbxldM0oqz9s1wP-XnPKy5zzti5fFGecs2qVm-zkyfu0uIhxSyllohSs5K-KU9EKmbPmrIiXI4GQrLHagiMdItHe-XFP_JTsYA-QrM8Qt_HBptshEuMDid7t7LghZj4c9kTDBNomSNgT5zc2JqtJn0Ow3XxP1zgmDGQKvnM4vCleGnARLx7iefHzy-cfV99WN9-_Xl9d3qx02dC06ipZVSiZNLKGqhYNoKFV14pWgqFc1yBFzRjrOC0lr0B21NC-0y2iaEwD4ry4XnR7D1s1BTtA2CsPVt0XfNio4-raoeJYgWHQMGFk2RopW94J3vSlFEwbrLMWX7TmcYL9HTj3KMioOhqitioboo6GqMWQTPq0kKa5G7A_XiGAe_aT553R3qqN3ynGypqWlcwK7x8Ugv81Y0xqsFGjczCin6MSGVlRzniToe-eDnuc8tfrDGALQAcfY0DzXxt8XDiYfdpZDCpqi6PG3gbUKR_S_oP9B8Pn1HA
Cites_doi 10.1016/j.asoc.2014.06.035
10.1016/j.cie.2024.109976
10.1016/j.eswa.2024.123556
10.1016/j.oceaneng.2023.115124
10.1016/j.cie.2023.109817
10.1016/j.eswa.2023.121281
10.4995/ijpme.2021.16084
10.1016/j.asoc.2024.111415
10.1016/j.engappai.2023.107579
10.1016/j.knosys.2024.111771
10.1016/j.csi.2023.103808
10.1016/j.eswa.2024.123173
10.1016/j.eswa.2023.121303
10.1016/j.engappai.2023.107816
10.1007/s10898-007-9149-x
10.1016/j.swevo.2024.101567
10.31449/inf.v48i7.5711
10.1016/j.asoc.2024.111593
ContentType Journal Article
Copyright 2024 The Authors
2024 The Authors.
2024 The Authors 2024
Copyright_xml – notice: 2024 The Authors
– notice: 2024 The Authors.
– notice: 2024 The Authors 2024
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1016/j.mex.2024.102964
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 2215-0161
ExternalDocumentID oai_doaj_org_article_2e5af1a713f849f8892b327d4831cfe6
10.1016/j.mex.2024.102964
PMC11460458
39381347
10_1016_j_mex_2024_102964
S2215016124004151
Genre Journal Article
GroupedDBID 0R~
4.4
457
53G
5VS
6I.
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPKN
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
IXB
KQ8
M48
M~E
OK1
RIG
ROL
RPM
SSZ
AAYXX
CITATION
0SF
AACTN
NCXOZ
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c470t-b5855e818f86a5637aef05b9398af02c6a836111b204825a8b0f0dbc9ee37f7a3
IEDL.DBID M48
ISSN 2215-0161
IngestDate Fri Oct 03 12:49:15 EDT 2025
Sun Oct 26 03:49:32 EDT 2025
Tue Sep 30 17:07:10 EDT 2025
Thu Jul 10 18:51:25 EDT 2025
Thu Jan 02 22:42:32 EST 2025
Wed Oct 01 05:41:22 EDT 2025
Sat Sep 06 17:18:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Fuzzy sets
An Artificial Bee Colony Optimization Algorithm for Solving Fuzzy Capacitated Logistic Distribution Center Problem
Design of experiments
Capacitated logistic distribution center
Artificial bee colony optimization
Language English
License This is an open access article under the CC BY license.
2024 The Authors.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-b5855e818f86a5637aef05b9398af02c6a836111b204825a8b0f0dbc9ee37f7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0205-2210
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.mex.2024.102964
PMID 39381347
PQID 3114502127
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_2e5af1a713f849f8892b327d4831cfe6
unpaywall_primary_10_1016_j_mex_2024_102964
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11460458
proquest_miscellaneous_3114502127
pubmed_primary_39381347
crossref_primary_10_1016_j_mex_2024_102964
elsevier_sciencedirect_doi_10_1016_j_mex_2024_102964
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle MethodsX
PublicationTitleAlternate MethodsX
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Yang, Wu, Zhao (bib0018) 2023
Li, Ter Chang, Liu (bib0007) 2024; 159
Zhu (bib0008) 2024; 87
Li, Liu, Zhang, Qin, Zheng, Wang (bib0004) 2024; 295
Eltoukhy, Zakaraia (bib0021) 2024; 48
Ghanaei, Kalani, Akbarzadeh (bib0024) 2022
Jin, Zhang, Xu, Jiang, Cheng, Zhang (bib0009) 2024; 187
Kolukisa, Dedeturk, Hacilar, Gungor (bib0011) 2024; 89
Taha (bib0020) 2017
Ozcan, Simsir (bib0001) 2019; 22
Li, Zhang, Shao (bib0003) 2024; 131
Sahin, Akay, Karaboga (bib0002) 2021; 24
Anuradha, Krishna, Mallik (bib0005) 2024; 32
Jiang, Yang, Nie, Xiang (bib0017) 2023; 283
Karaboga, Basturk (bib0019) 2007; 39
Ni, Hu, Fan, Cui, Qi (bib0015) 2024; 236
Chai, Kong, Pan, Zheng (bib0006) 2024; 247
Mumtaz, Minhas, Rauf, Yue, Chen (bib0010) 2024; 189
Liao, Zhang, Chen, Song (bib0013) 2024; 249
Cui, Hu, Rahmani (bib0014) 2024; 129
Ye (bib0016) 2024; 236
Ren, Gao, Fu, Li, Suganthan (bib0012) 2024; 155
Karaboga, Gorkemli (bib0023) 2014; 23
Zakaraia, Zaher, Ragaa (bib0022) 2022; 10
Chai (10.1016/j.mex.2024.102964_bib0006) 2024; 247
Mumtaz (10.1016/j.mex.2024.102964_bib0010) 2024; 189
Karaboga (10.1016/j.mex.2024.102964_bib0023) 2014; 23
Ghanaei (10.1016/j.mex.2024.102964_bib0024) 2022
Li (10.1016/j.mex.2024.102964_bib0004) 2024; 295
Zhu (10.1016/j.mex.2024.102964_bib0008) 2024; 87
Ye (10.1016/j.mex.2024.102964_bib0016) 2024; 236
Kolukisa (10.1016/j.mex.2024.102964_bib0011) 2024; 89
Cui (10.1016/j.mex.2024.102964_bib0014) 2024; 129
Eltoukhy (10.1016/j.mex.2024.102964_bib0021) 2024; 48
Ren (10.1016/j.mex.2024.102964_bib0012) 2024; 155
Jiang (10.1016/j.mex.2024.102964_bib0017) 2023; 283
Yang (10.1016/j.mex.2024.102964_bib0018) 2023
Anuradha (10.1016/j.mex.2024.102964_bib0005) 2024; 32
Jin (10.1016/j.mex.2024.102964_bib0009) 2024; 187
Zakaraia (10.1016/j.mex.2024.102964_bib0022) 2022; 10
Sahin (10.1016/j.mex.2024.102964_bib0002) 2021; 24
Karaboga (10.1016/j.mex.2024.102964_bib0019) 2007; 39
Taha (10.1016/j.mex.2024.102964_bib0020) 2017
Ozcan (10.1016/j.mex.2024.102964_bib0001) 2019; 22
Li (10.1016/j.mex.2024.102964_bib0007) 2024; 159
Liao (10.1016/j.mex.2024.102964_bib0013) 2024; 249
Ni (10.1016/j.mex.2024.102964_bib0015) 2024; 236
Li (10.1016/j.mex.2024.102964_bib0003) 2024; 131
References_xml – volume: 131
  year: 2024
  ident: bib0003
  article-title: Discrete artificial bee colony algorithm with fixed neighborhood search for traveling salesman problem
  publication-title: Eng. Appl. Artif. Intell.
– year: 2017
  ident: bib0020
  article-title: Operations Research: An Introduction
– volume: 249
  year: 2024
  ident: bib0013
  article-title: A new artificial bee colony algorithm for the flexible job shop scheduling problem with extra resource constraints in numeric control centers[Formula presented]
  publication-title: Expert Syst. Appl.
– volume: 129
  year: 2024
  ident: bib0014
  article-title: Multi-robot path planning using learning-based Artificial Bee Colony algorithm
  publication-title: Eng. Appl. Artif. Intell.
– volume: 24
  start-page: 806
  year: 2021
  end-page: 817
  ident: bib0002
  article-title: Archive-based multi-criteria Artificial Bee Colony algorithm for whole test suite generation
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 87
  year: 2024
  ident: bib0008
  article-title: oBABC: a one-dimensional binary artificial bee colony algorithm for binary optimization
  publication-title: Swarm Evol. Comput.
– volume: 189
  year: 2024
  ident: bib0010
  article-title: Solving line balancing and AGV scheduling problems for intelligent decisions using a Genetic-Artificial bee colony algorithm
  publication-title: Comput. Ind. Eng.
– volume: 283
  year: 2023
  ident: bib0017
  article-title: Multi-objective structural profile optimization of ships based on improved Artificial Bee Colony Algorithm and structural component library
  publication-title: Ocean Eng.
– volume: 10
  start-page: 13
  year: 2022
  end-page: 22
  ident: bib0022
  article-title: Solving stochastic multi-manned U-shaped assembly line balancing problem using differential evolution algorithm
  publication-title: Int. J. Prod. Manag. Eng.
– volume: 159
  year: 2024
  ident: bib0007
  article-title: A discrete artificial bee colony algorithm and its application in flexible flow shop scheduling with assembly and machine deterioration effect
  publication-title: Appl. Soft Comput.
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: bib0019
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Glob. Optim.
– volume: 22
  start-page: 1175
  year: 2019
  end-page: 1186
  ident: bib0001
  article-title: A new model based on Artificial Bee Colony algorithm for preventive maintenance with replacement scheduling in continuous production lines
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 247
  year: 2024
  ident: bib0006
  article-title: A novel Discrete Artificial Bee Colony algorithm combined with adaptive filtering to extract Fetal Electrocardiogram signals
  publication-title: Expert Syst. Appl.
– volume: 236
  year: 2024
  ident: bib0016
  article-title: An improved two-archive artificial bee colony algorithm for many-objective optimization
  publication-title: Expert Syst. Appl.
– start-page: 215
  year: 2023
  end-page: 219
  ident: bib0018
  article-title: Fault diagnosis of pile machine based on improved artificial bee colony and K-means clustering algorithm
  publication-title: Proceedings of the IEEE International Conference on Control, Electronics and Computer Technology ICCECT 2023
– volume: 187
  year: 2024
  ident: bib0009
  article-title: Remanufacturing system scheduling of batch products with the consideration of dynamic changes in machine efficiency using an improved artificial bee colony algorithm
  publication-title: Comput. Ind. Eng.
– volume: 236
  year: 2024
  ident: bib0015
  article-title: A Q-learning based multi-strategy integrated artificial bee colony algorithm with application in unmanned vehicle path planning
  publication-title: Expert Syst. Appl.
– volume: 155
  year: 2024
  ident: bib0012
  article-title: Ensemble artificial bee colony algorithm with Q-learning for scheduling Bi-objective disassembly line
  publication-title: Appl. Soft Comput.
– volume: 23
  start-page: 227
  year: 2014
  end-page: 238
  ident: bib0023
  article-title: A quick artificial bee colony (qABC) algorithm and its performance on optimization problems
  publication-title: Appl. Soft Comput. J.
– volume: 32
  year: 2024
  ident: bib0005
  article-title: Bio inspired Boolean artificial bee colony based feature selection algorithm for sentiment classification
  publication-title: Meas. Sens.
– volume: 295
  year: 2024
  ident: bib0004
  article-title: Learning high-order fuzzy cognitive maps via multimodal artificial bee colony algorithm and nearest-better clustering: applications on multivariate time series prediction
  publication-title: Knowl. Based Syst.
– volume: 89
  year: 2024
  ident: bib0011
  article-title: An efficient network intrusion detection approach based on logistic regression model and parallel artificial bee colony algorithm
  publication-title: Comput. Stand. Interfaces
– start-page: 382
  year: 2022
  end-page: 386
  ident: bib0024
  article-title: Taguchi design of experiments application in robust sEMG based force estimation
  publication-title: Proceedings of the 12th International Conference on Computer and Knowledge Engineering ICCKE 2022
– volume: 48
  start-page: 79
  year: 2024
  end-page: 94
  ident: bib0021
  article-title: A modified emperor penguin optimizer algorithm for solving fixed-charged transshipment problem
  publication-title: Informatica
– start-page: 382
  year: 2022
  ident: 10.1016/j.mex.2024.102964_bib0024
  article-title: Taguchi design of experiments application in robust sEMG based force estimation
– volume: 23
  start-page: 227
  year: 2014
  ident: 10.1016/j.mex.2024.102964_bib0023
  article-title: A quick artificial bee colony (qABC) algorithm and its performance on optimization problems
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2014.06.035
– volume: 189
  year: 2024
  ident: 10.1016/j.mex.2024.102964_bib0010
  article-title: Solving line balancing and AGV scheduling problems for intelligent decisions using a Genetic-Artificial bee colony algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2024.109976
– volume: 249
  year: 2024
  ident: 10.1016/j.mex.2024.102964_bib0013
  article-title: A new artificial bee colony algorithm for the flexible job shop scheduling problem with extra resource constraints in numeric control centers[Formula presented]
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.123556
– volume: 283
  year: 2023
  ident: 10.1016/j.mex.2024.102964_bib0017
  article-title: Multi-objective structural profile optimization of ships based on improved Artificial Bee Colony Algorithm and structural component library
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.115124
– volume: 187
  year: 2024
  ident: 10.1016/j.mex.2024.102964_bib0009
  article-title: Remanufacturing system scheduling of batch products with the consideration of dynamic changes in machine efficiency using an improved artificial bee colony algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2023.109817
– volume: 236
  year: 2024
  ident: 10.1016/j.mex.2024.102964_bib0016
  article-title: An improved two-archive artificial bee colony algorithm for many-objective optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121281
– volume: 10
  start-page: 13
  issue: 1
  year: 2022
  ident: 10.1016/j.mex.2024.102964_bib0022
  article-title: Solving stochastic multi-manned U-shaped assembly line balancing problem using differential evolution algorithm
  publication-title: Int. J. Prod. Manag. Eng.
  doi: 10.4995/ijpme.2021.16084
– volume: 155
  year: 2024
  ident: 10.1016/j.mex.2024.102964_bib0012
  article-title: Ensemble artificial bee colony algorithm with Q-learning for scheduling Bi-objective disassembly line
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.111415
– volume: 129
  year: 2024
  ident: 10.1016/j.mex.2024.102964_bib0014
  article-title: Multi-robot path planning using learning-based Artificial Bee Colony algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107579
– volume: 295
  year: 2024
  ident: 10.1016/j.mex.2024.102964_bib0004
  article-title: Learning high-order fuzzy cognitive maps via multimodal artificial bee colony algorithm and nearest-better clustering: applications on multivariate time series prediction
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2024.111771
– start-page: 215
  year: 2023
  ident: 10.1016/j.mex.2024.102964_bib0018
  article-title: Fault diagnosis of pile machine based on improved artificial bee colony and K-means clustering algorithm
– volume: 89
  year: 2024
  ident: 10.1016/j.mex.2024.102964_bib0011
  article-title: An efficient network intrusion detection approach based on logistic regression model and parallel artificial bee colony algorithm
  publication-title: Comput. Stand. Interfaces
  doi: 10.1016/j.csi.2023.103808
– volume: 247
  year: 2024
  ident: 10.1016/j.mex.2024.102964_bib0006
  article-title: A novel Discrete Artificial Bee Colony algorithm combined with adaptive filtering to extract Fetal Electrocardiogram signals
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.123173
– volume: 236
  year: 2024
  ident: 10.1016/j.mex.2024.102964_bib0015
  article-title: A Q-learning based multi-strategy integrated artificial bee colony algorithm with application in unmanned vehicle path planning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121303
– volume: 131
  year: 2024
  ident: 10.1016/j.mex.2024.102964_bib0003
  article-title: Discrete artificial bee colony algorithm with fixed neighborhood search for traveling salesman problem
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107816
– volume: 22
  start-page: 1175
  issue: 6
  year: 2019
  ident: 10.1016/j.mex.2024.102964_bib0001
  article-title: A new model based on Artificial Bee Colony algorithm for preventive maintenance with replacement scheduling in continuous production lines
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 24
  start-page: 806
  issue: 3
  year: 2021
  ident: 10.1016/j.mex.2024.102964_bib0002
  article-title: Archive-based multi-criteria Artificial Bee Colony algorithm for whole test suite generation
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 10.1016/j.mex.2024.102964_bib0019
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-007-9149-x
– year: 2017
  ident: 10.1016/j.mex.2024.102964_bib0020
– volume: 87
  year: 2024
  ident: 10.1016/j.mex.2024.102964_bib0008
  article-title: oBABC: a one-dimensional binary artificial bee colony algorithm for binary optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2024.101567
– volume: 48
  start-page: 79
  issue: 7
  year: 2024
  ident: 10.1016/j.mex.2024.102964_bib0021
  article-title: A modified emperor penguin optimizer algorithm for solving fixed-charged transshipment problem
  publication-title: Informatica
  doi: 10.31449/inf.v48i7.5711
– volume: 32
  year: 2024
  ident: 10.1016/j.mex.2024.102964_bib0005
  article-title: Bio inspired Boolean artificial bee colony based feature selection algorithm for sentiment classification
  publication-title: Meas. Sens.
– volume: 159
  year: 2024
  ident: 10.1016/j.mex.2024.102964_bib0007
  article-title: A discrete artificial bee colony algorithm and its application in flexible flow shop scheduling with assembly and machine deterioration effect
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.111593
SSID ssj0001343142
Score 2.3013232
Snippet This paper presents a methodological approach to solving the fuzzy capacitated logistic distribution center problem, with a focus on the optimal selection of...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 102964
SubjectTerms An Artificial Bee Colony Optimization Algorithm for Solving Fuzzy Capacitated Logistic Distribution Center Problem
Artificial bee colony optimization
Capacitated logistic distribution center
Computer Science
Design of experiments
Fuzzy sets
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9QwDI7QHoAL4k15KUicQBVtkqbJcUGsVkjLiZX2FuXhsINmOqt5CGZ_PXHTjqZaib1wbas0sZ3Yju3PhLwPVmjpVSg1F7IU0rLS1YGV1jVOc-VkrpA7-y5Pz8W3i-bioNUX5oRleOBMuE8MGhtrm3ypqISOSmnmOGuDULz2EXqw7UrpA2eqv13hSTEKNoYx-4SuBfxJ_iATiFagpZgooh6vf6KPbtqbN9Mm7227K7v7befzA5108pA8GIxJepwX8Yjcge4xuXs2hMufkPVxR3GFGSWCOgCKINXdji7TSbEYSjCpnf9crmaby8WaJhOWJmnEWwYat9fXO-qTNvVYiAaB5nKhmacB4XaHTlkUJworOrSmeUrOT77--HJaDl0WSi_aalO65DA0kPR2VNI2krcWYoWM0srGinlpFZfpRHQI8csaq1wVq-C8BuBtbC1_Ro66ZQcvCJW-ikFwgKqxohbONvipVXWUgXsBBfkwktxcZTANM2aZ_TKJPwb5YzJ_CvIZmbL_EHGw-wdJOswgHeY26SiIGFlqBpMimwppqNm__v1uZL9J2w1jKLaD5XZtePIfmx4WvyDPszjsZ8iTcGNlbkHURFAmS5i-6WaXPaQ31oZjyLogH_cydTuJXv4PEr0i93HInKLzmhxtVlt4kwytjXvb76m_9lMoaw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free and Delayed Access Titles
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHoAL4k0oICNxAkWbxI7jHNuqVUEqF6i0N8vPNmg3We1D7fbX1xM7S6NKIHGM4yS2ZzIPe-YbhD4bSWumuUlrQllKmSxSlZsilapUNeGKhQy58x_s7IJ-n5bTPXQ85MJAWGWU_UGm99I6tkziak4WTTP5WXhtBQYLREF6NQQuEKEcyjd8mx792WchXkX2NXSgfwoPDIebfZjX3N54L7GggGFQMzpSTz2K_0hLPbRCHwZTPt60C7m9lrPZPU11-gw9jSYmPgyzeI72bPsCPTqPh-gv0eqwxTDFgB2BlbUYoKvbLe68_JjHxEwsZ5fdsllfzVfYG7bY8yjsPWC3ub3dYu11rIb0NGtwSCJqNDYAwhvrZ2EYqF3iWLDmFbo4Pfl1fJbG2gupplW2TpV3I0rrtbnjTJaMVNK6DMhXc-myQjPJCfNyUgHwb1FKrjKXGaVra0nlKkleo_22a-1bhJnOnKHE2qyUNKdKltBV8twxQzS1CfoyLLlYBIgNMcSe_RaePgLoIwJ9EnQERNl1BHTsvqFbXorIHqKwpXS59P6347R2nNeFIkVlKCe5dpYliA4kFSNm869q_vbtTwP5hf8J4WRFtrbbrATxXmXZg-Un6E1gh90IiWd5yNdNEB8xymgK4zttc9UDfUPGOBxkJ-jrjqf-vUTv_m92B-gJXIVQnfdof73c2A_e4Fqrj_0fdQdB1Cog
  priority: 102
  providerName: Elsevier
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwELagKwEv3Ee4ZCSeQFkl8RHnsSBWK6Rd8UCl5cmyHZsttOmqTQTtr8cTOxVhEcdjEufweMYzk5n5BqGXtaIVN6JOK0J5SrkqUp3XRao00xURmocKuZNTfjyj78_YWQSLhlqYUfy-z8Na2u_ejSsogAxUnF5FB5x5s3uCDmanH6afoHmcV1spmC5D1PJ39430Tg_PP1I_l83Ly1mS17vmQm2_qcXiJxV0dCskb2165ELIPPl62LX60Ox-wXX8p9ndRjejIYqngXPuoCu2uYuuncRQ-z20mTYY2CogTGBtLQaA62aLV36XWcbyTawWn1freXu-3GBv_mLPyfCHArtut9ti4zWxgSI2W-NQajQ3uAao3thlC8Os7RrHtjb30ezo3ce3x2ns0JAaWmZtqr2zwazX-U5wxTgplXUZLHIllMsKw5Ug3O-mGuCBC6aEzlxWa1NZS0pXKvIATZpVYx8hzE3makqszZiiOdWKwVAlcsdrYqhN0Kth_eRFAOKQQ4baF-nJKIGMMpAxQW9ghfcDAUO7P-GJL6NIysIy5XLlvXQnaOWEqApNirKmguTGWZ4gOvCHjOZIMDP8o-Z_eveLgZekF1WIv6jGrrqNJN73ZD2kfoIeBt7afyHxggFVvQkSI64bTWF8pZmf93DgUFcO4e4Evd4z6N9J9Pi_Rj9BN-Ao5PE8RZN23dln3hpr9fMohz8An3cx9A
  priority: 102
  providerName: Unpaywall
Title An artificial bee colony optimization algorithms for solving fuzzy capacitated logistic distribution center problem
URI https://dx.doi.org/10.1016/j.mex.2024.102964
https://www.ncbi.nlm.nih.gov/pubmed/39381347
https://www.proquest.com/docview/3114502127
https://pubmed.ncbi.nlm.nih.gov/PMC11460458
https://doi.org/10.1016/j.mex.2024.102964
https://doaj.org/article/2e5af1a713f849f8892b327d4831cfe6
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2215-0161
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001343142
  issn: 2215-0161
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2215-0161
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001343142
  issn: 2215-0161
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 2215-0161
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001343142
  issn: 2215-0161
  databaseCode: IXB
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2215-0161
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001343142
  issn: 2215-0161
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2215-0161
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001343142
  issn: 2215-0161
  databaseCode: AKRWK
  dateStart: 20140101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2215-0161
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001343142
  issn: 2215-0161
  databaseCode: RPM
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2215-0161
  dateEnd: 20250630
  omitProxy: true
  ssIdentifier: ssj0001343142
  issn: 2215-0161
  databaseCode: M48
  dateStart: 20140801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgIuPMqj4bEyEidQUBI7jnNAaIuoCtJWHFhpOVl2YreLdpN2H6LbX884cRaiViBxySFxHMcz45nxeL4BeF0qlvNClGFOGQ8ZV0mo4zIJlU51ToXmbYbc6IQfj9mXSTrZga68lZ_A5Y2unasnNV7M3l1ebD6gwL__fVZrbi7R1UuYAyLIObsFe6ioclfJYeSt_WbLhaK2ZEkX27zpzZ52akD8e0rquhF6_SzlnXV1rjY_1Wz2h6I6egD3vIVJhi1LPIQdU-3D_a56A_HCvA-3Rz6s_giWw4o4FmrRJIg2hjgw62pDalxR5j5Vk6jZab2Yrs7mS4KmLkGudbsRxK6vrjakQK1buIQ1U5I2rWhakNLB8vqKWsSNHQfgS9g8hvHRp28fj0NfjSEsWBatQo2ORWpQv1vBVcpppoyNHEFzoWyUFFwJynHl1A4KOEmV0JGNSl3kxtDMZoo-gd2qrswBEF5EtmTUmChVLGZapa6pErHlJS2YCeBNRwV53oJuyO402g-JJJOOZLIlWQCHjk7bhg4vu7lRL06lFz-ZmFTZWKFHbgXLrRB5ommSlUzQuLCGB8A6KktverQmBXY1_du3X3UcIVEsXaxFVaZeLyVFPzNt4PMDeNpyyHaEFIXAZfAGIHq80_uF_pNqetZAf7scchfaDuDtls3-PUXP_v9Dz-Gu66g9wPMCdleLtXmJZthKD5rtC7x-nhwOGkEbwN745Ovw-y8Efjll
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaqIlEuiJ2wGokTKJokXuIc24pqgE4vtNLcLNux26CZZDSL2umvxy9xBqJKIHH1kth-z2-x3_uM0MdS0YIbUcYFoTymXGWxTsssVprpggjNuwy5yRkfX9BvUzbdQ8d9LgyEVQbZ38n0VlqHklFYzdGiqkY_Mq-twGCBKEivhrwLdI8yb51AFt_06PdBC_E6sn1EBzrE0KO_3WzjvOb2xruJGQUQg4LTgX5qYfwHauquGXo3mvJgUy_U9lrNZn-oqpNH6GGwMfFhN43HaM_WT9D9SbhFf4pWhzWGOXbgEVhbiwG7ut7ixguQecjMxGp22Syr9dV8hb1liz2TwuEDdpvb2y02XskayE-zJe6yiCqDS0DhDQ9oYRioXeLwYs0zdHHy5fx4HIfHF2JD82Qda-9HMOvVuRNcMU5yZV0C9CuEcklmuBKEe0GpAfk3Y0roxCWlNoW1JHe5Is_Rft3U9iXC3CSupMTahCmaUq0YNFUidbwkhtoIfeqXXC46jA3ZB5_9lJ4-EugjO_pE6AiIsmsI8NhtQbO8lIE_ZGaZcqnyDrgTtHBCFJkmWV5SQVLjLI8Q7UkqB9zmP1X97d8fevJLvwvhakXVttmsJPFuJWvR8iP0omOH3QiJ53lI2I2QGDDKYArDmrq6apG-IWUcbrIj9HnHU_9eolf_N7v36GB8PjmVp1_Pvr9GD6Cmi9t5g_bXy419662vtX7X7q5fS6UtRg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwELagKwEv3Ee4ZCSeQFkl8RHnsSBWK6Rd8UCl5cmyHZsttOmqTQTtr8cTOxVhEcdjEufweMYzk5n5BqGXtaIVN6JOK0J5SrkqUp3XRao00xURmocKuZNTfjyj78_YWQSLhlqYUfy-z8Na2u_ejSsogAxUnF5FB5x5s3uCDmanH6afoHmcV1spmC5D1PJ39430Tg_PP1I_l83Ly1mS17vmQm2_qcXiJxV0dCskb2165ELIPPl62LX60Ox-wXX8p9ndRjejIYqngXPuoCu2uYuuncRQ-z20mTYY2CogTGBtLQaA62aLV36XWcbyTawWn1freXu-3GBv_mLPyfCHArtut9ti4zWxgSI2W-NQajQ3uAao3thlC8Os7RrHtjb30ezo3ce3x2ns0JAaWmZtqr2zwazX-U5wxTgplXUZLHIllMsKw5Ug3O-mGuCBC6aEzlxWa1NZS0pXKvIATZpVYx8hzE3makqszZiiOdWKwVAlcsdrYqhN0Kth_eRFAOKQQ4baF-nJKIGMMpAxQW9ghfcDAUO7P-GJL6NIysIy5XLlvXQnaOWEqApNirKmguTGWZ4gOvCHjOZIMDP8o-Z_eveLgZekF1WIv6jGrrqNJN73ZD2kfoIeBt7afyHxggFVvQkSI64bTWF8pZmf93DgUFcO4e4Evd4z6N9J9Pi_Rj9BN-Ao5PE8RZN23dln3hpr9fMohz8An3cx9A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+artificial+bee+colony+optimization+algorithms+for+solving+fuzzy+capacitated+logistic+distribution+center+problem&rft.jtitle=MethodsX&rft.au=Ayid%2C+Yasser+M.&rft.au=Zakaraia%2C+Mohammad&rft.au=Eltoukhy%2C+Mohamed+Meselhy&rft.date=2024-12-01&rft.pub=Elsevier&rft.eissn=2215-0161&rft.volume=13&rft_id=info:doi/10.1016%2Fj.mex.2024.102964&rft.externalDocID=PMC11460458
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-0161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-0161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-0161&client=summon