Touching Soma Segmentation Based on the Rayburst Sampling Algorithm
Neuronal soma segmentation is essential for morphology quantification analysis. Rapid advances in light microscope imaging techniques have generated such massive amounts of data that time-consuming manual methods cannot meet requirements for high throughput. However, touching soma segmentation is st...
Saved in:
| Published in | Neuroinformatics (Totowa, N.J.) Vol. 15; no. 4; pp. 383 - 393 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.10.2017
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1539-2791 1559-0089 1559-0089 |
| DOI | 10.1007/s12021-017-9336-y |
Cover
| Abstract | Neuronal soma segmentation is essential for morphology quantification analysis. Rapid advances in light microscope imaging techniques have generated such massive amounts of data that time-consuming manual methods cannot meet requirements for high throughput. However, touching soma segmentation is still a challenge for automatic segmentation methods. In this paper, we propose a soma segmentation method that combines the Rayburst sampling algorithm and ellipsoid fitting. The improved Rayburst sampling algorithm is used to detect the soma surface; the ellipsoid fitting method then refines jagged sampled soma surface to generate smooth ellipsoidal shapes for efficient analysis. In experiments, we validated the proposed method by applying it to datasets from the fluorescence micro-optical sectioning tomography (fMOST) system. The results indicate that the proposed method is comparable to the manual segmented gold standard with accurate soma segmentation at a relatively high speed. The proposed method can be extended to large-scale image stacks in the future. |
|---|---|
| AbstractList | Neuronal soma segmentation is essential for morphology quantification analysis. Rapid advances in light microscope imaging techniques have generated such massive amounts of data that time-consuming manual methods cannot meet requirements for high throughput. However, touching soma segmentation is still a challenge for automatic segmentation methods. In this paper, we propose a soma segmentation method that combines the Rayburst sampling algorithm and ellipsoid fitting. The improved Rayburst sampling algorithm is used to detect the soma surface; the ellipsoid fitting method then refines jagged sampled soma surface to generate smooth ellipsoidal shapes for efficient analysis. In experiments, we validated the proposed method by applying it to datasets from the fluorescence micro-optical sectioning tomography (fMOST) system. The results indicate that the proposed method is comparable to the manual segmented gold standard with accurate soma segmentation at a relatively high speed. The proposed method can be extended to large-scale image stacks in the future.Neuronal soma segmentation is essential for morphology quantification analysis. Rapid advances in light microscope imaging techniques have generated such massive amounts of data that time-consuming manual methods cannot meet requirements for high throughput. However, touching soma segmentation is still a challenge for automatic segmentation methods. In this paper, we propose a soma segmentation method that combines the Rayburst sampling algorithm and ellipsoid fitting. The improved Rayburst sampling algorithm is used to detect the soma surface; the ellipsoid fitting method then refines jagged sampled soma surface to generate smooth ellipsoidal shapes for efficient analysis. In experiments, we validated the proposed method by applying it to datasets from the fluorescence micro-optical sectioning tomography (fMOST) system. The results indicate that the proposed method is comparable to the manual segmented gold standard with accurate soma segmentation at a relatively high speed. The proposed method can be extended to large-scale image stacks in the future. Neuronal soma segmentation is essential for morphology quantification analysis. Rapid advances in light microscope imaging techniques have generated such massive amounts of data that time-consuming manual methods cannot meet requirements for high throughput. However, touching soma segmentation is still a challenge for automatic segmentation methods. In this paper, we propose a soma segmentation method that combines the Rayburst sampling algorithm and ellipsoid fitting. The improved Rayburst sampling algorithm is used to detect the soma surface; the ellipsoid fitting method then refines jagged sampled soma surface to generate smooth ellipsoidal shapes for efficient analysis. In experiments, we validated the proposed method by applying it to datasets from the fluorescence micro-optical sectioning tomography (fMOST) system. The results indicate that the proposed method is comparable to the manual segmented gold standard with accurate soma segmentation at a relatively high speed. The proposed method can be extended to large-scale image stacks in the future. |
| Author | Hu, Tianyu Xu, Qiufeng Lv, Wei Liu, Qian |
| Author_xml | – sequence: 1 givenname: Tianyu surname: Hu fullname: Hu, Tianyu organization: Britton Chance Center for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology – sequence: 2 givenname: Qiufeng surname: Xu fullname: Xu, Qiufeng organization: Britton Chance Center for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology – sequence: 3 givenname: Wei surname: Lv fullname: Lv, Wei organization: Britton Chance Center for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology – sequence: 4 givenname: Qian surname: Liu fullname: Liu, Qian email: qianliu@mail.hust.edu.cn organization: Britton Chance Center for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28940176$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUuLFDEUhYOMOA_9AW6kwI2b0pukknQ2wtj4ggHB7n1IUunqDFVJm1SN1L83TbU6DiiuciHfuZxz7iU6CzE4hJ5jeI0BxJuMCRBcAxa1pJTX8yN0gRmTNcBKnh1nKmsiJD5HlznfAhAuAJ6gc7KSTVHxC7TexsnufeiqTRx0tXHd4MKoRx9D9U5n11ZlGPeu-qpnM6U8Vhs9HPqj4LrvYvLjfniKHu90n92z03uFth_eb9ef6psvHz-vr29q2wgYa-00lrKFxjBnCMfQasOkIUJYTilxDRhidAmmCThjxY6uqKXGOsKkZi29QmRZO4WDnr_rvleH5AedZoVBHQtRSyGqRFPHQtRcRG8X0WEyg2ttCZf0b2HUXv35E_xedfFOMS4w47wseHVakOK3yeVRDT5b1_c6uDhlhWVDBDSMsYK-fIDeximFUkmhONCG0EYW6sV9R7-s_LxJAcQC2BRzTm6nrF8uUgz6_p9h8QPl_xR0ajUXNnQu3TP9V9EPvinAhg |
| CitedBy_id | crossref_primary_10_1109_TMI_2022_3206605 crossref_primary_10_3389_fnana_2020_592806 crossref_primary_10_1109_JBHI_2021_3124514 crossref_primary_10_1007_s00429_019_01940_7 |
| Cites_doi | 10.1093/bioinformatics/btp046 10.1371/journal.pone.0104437 10.1088/0954-898X_13_3_309 10.1109/83.217222 10.1007/s12021-011-9097-y 10.1109/TSMC.1979.4310076 10.1002/cyto.a.20895 10.1007/978-3-642-20036-6_30 10.1109/TBME.2009.2035102 10.1093/bioinformatics/btt170 10.1016/j.neuron.2015.06.036 10.1007/s12021-007-9005-7 10.1002/jemt.22373 10.1142/S021800140600506X 10.1002/cyto.a.10079 10.1109/JBHI.2013.2297030 10.1109/TBME.2010.2060336 10.1371/journal.pone.0084557 10.1016/j.neuroscience.2005.05.053 10.1038/nprot.2006.313 10.1016/j.micron.2014.04.001 10.1016/j.neuroimage.2013.02.005 10.1038/nbt.1612 10.1098/rstb.2001.0905 10.1109/MSP.2012.2204190 10.1038/srep04970 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2017 Neuroinformatics is a copyright of Springer, 2017. |
| Copyright_xml | – notice: The Author(s) 2017 – notice: Neuroinformatics is a copyright of Springer, 2017. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88A 88E 88G 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1007/s12021-017-9336-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Biological Science Database (Proquest) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology MEDLINE |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1559-0089 |
| EndPage | 393 |
| ExternalDocumentID | 10.1007/s12021-017-9336-y PMC5671566 28940176 10_1007_s12021_017_9336_y |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: Grant No. 91432116 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: ; grantid: Grant No. 91432116 |
| GroupedDBID | --- -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 203 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 53G 5VS 67N 6NX 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACCUX ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AZQEC B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMCUK HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV LK8 LLZTM M0L M1P M2M M4Y M7P MA- NPVJJ NQJWS NU0 O9- O9J OVD P2P PF- PQQKQ PROAC PSQYO PSYQQ PT4 Q2X QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TEORI TSG TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z83 Z88 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7TK 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC AFFHD UNPAY |
| ID | FETCH-LOGICAL-c470t-aea199d04b5eb2610dab59b277c6332e40b2ba100a20ebc7f383c3bce259a5d3 |
| IEDL.DBID | BENPR |
| ISSN | 1539-2791 1559-0089 |
| IngestDate | Wed Oct 29 12:03:26 EDT 2025 Tue Sep 30 16:46:22 EDT 2025 Wed Oct 01 14:20:20 EDT 2025 Tue Oct 07 05:44:51 EDT 2025 Wed Feb 19 02:41:46 EST 2025 Wed Oct 01 05:03:15 EDT 2025 Thu Apr 24 23:09:46 EDT 2025 Fri Feb 21 02:26:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Soma segmentation Image analysis Rayburst sampling algorithm Distance transform |
| Language | English |
| License | Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-aea199d04b5eb2610dab59b277c6332e40b2ba100a20ebc7f383c3bce259a5d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007%2Fs12021-017-9336-y.pdf |
| PMID | 28940176 |
| PQID | 1960342349 |
| PQPubID | 54206 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1007_s12021_017_9336_y pubmedcentral_primary_oai_pubmedcentral_nih_gov_5671566 proquest_miscellaneous_1942704555 proquest_journals_1960342349 pubmed_primary_28940176 crossref_citationtrail_10_1007_s12021_017_9336_y crossref_primary_10_1007_s12021_017_9336_y springer_journals_10_1007_s12021_017_9336_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-10-01 |
| PublicationDateYYYYMMDD | 2017-10-01 |
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States – name: Totowa |
| PublicationTitle | Neuroinformatics (Totowa, N.J.) |
| PublicationTitleAbbrev | Neuroinform |
| PublicationTitleAlternate | Neuroinformatics |
| PublicationYear | 2017 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Peng, Long (CR18) 2010; 6577 Ming, Li, Wu, Yan, Ding, Gong (CR15) 2013; 8 Svoboda (CR23) 2011; 9 Liu, Li, Nie, Tarokh, Zhou, Guo (CR10) 2008; 6 Peng, Long, Myers (CR20) 2009; 25 Lin, Adiga, Olson, Guzowski, Barnes, Roysam (CR9) 2003; 56A Yan, Li, Zhang, Ding, Luo, Gong (CR31) 2013; 8 Wearne, Rodriguez, Ehlenberger, Rocher, Henderson, Hof (CR28) 2005; 136 Li, Griffiths (CR11) 2004; 2004 Meijering (CR13) 2010; 77A Guo, Xu, Wang, Wang, Xia, Yang (CR5) 2014; 77 Peng, Hawrylycz, Roskams, Hill, Spruston, Meijering, Ascoli (CR17) 2015; 87 Gong, Zeng, Yan, Lv, Yang, Xu (CR4) 2013; 74 Ascoli, Krichmar, Nasuto, Senft (CR2) 2001; 356 Maini (CR12) 2006; 20 Peng, Ruan, Long, Simpson, Myers (CR19) 2010; 28 Meijering (CR14) 2012; 29 CR6 Saraswat, Arya (CR24) 2014; 65 Jung, Kim (CR8) 2010; 57 Xiao, Peng (CR29) 2013; 29 Uylings, Van (CR26) 2009; 13 CR21 Otsu (CR16) 1979; 9 Vincent (CR27) 1993; 2 Chen, Zhao, Wu, Yao, Zhang (CR3) 2012; 2012 Alkofahi, Lassoued, Lee, Roysam (CR1) 2010; 57 He, Meng, Gong, Chen, Zhang, Ding (CR7) 2014; 9 Sholl (CR25) 1953; 87 Rodriguez, Ehlenberger, Hof, Wearne (CR22) 2006; 1 Xu, Cheng, Mandal (CR30) 2014; 18 C Jung (9336_CR8) 2010; 57 9336_CR21 K Svoboda (9336_CR23) 2011; 9 G Lin (9336_CR9) 2003; 56A 9336_CR6 H Gong (9336_CR4) 2013; 74 YN Guo (9336_CR5) 2014; 77 SY Chen (9336_CR3) 2012; 2012 E Meijering (9336_CR13) 2010; 77A TM Liu (9336_CR10) 2008; 6 ES Maini (9336_CR12) 2006; 20 Y He (9336_CR7) 2014; 9 E Meijering (9336_CR14) 2012; 29 H Peng (9336_CR17) 2015; 87 HM Xu (9336_CR30) 2014; 18 X Ming (9336_CR15) 2013; 8 C Yan (9336_CR31) 2013; 8 HBM Uylings (9336_CR26) 2009; 13 GA Ascoli (9336_CR2) 2001; 356 HC Peng (9336_CR19) 2010; 28 SL Wearne (9336_CR28) 2005; 136 H Xiao (9336_CR29) 2013; 29 QD Li (9336_CR11) 2004; 2004 A Rodriguez (9336_CR22) 2006; 1 N Otsu (9336_CR16) 1979; 9 DA Sholl (9336_CR25) 1953; 87 Y Alkofahi (9336_CR1) 2010; 57 M Saraswat (9336_CR24) 2014; 65 HC Peng (9336_CR18) 2010; 6577 L Vincent (9336_CR27) 1993; 2 HC Peng (9336_CR20) 2009; 25 23416252 - Neuroimage. 2013 Jul 1;74:87-98 20231818 - Nat Biotechnol. 2010 Apr;28(4):348-53 11545695 - Philos Trans R Soc Lond B Biol Sci. 2001 Aug 29;356(1412):1131-45 14566936 - Cytometry A. 2003 Nov;56(1):23-36 23603332 - Bioinformatics. 2013 Jun 1;29(11):1448-54 16344143 - Neuroscience. 2005;136(3):661-80 17487207 - Nat Protoc. 2006;1(4):2152-61 19884070 - IEEE Trans Biomed Eng. 2010 Apr;57(4):841-52 18288618 - Neuroinformatics. 2008 Spring;6(1):5-21 20583273 - Cytometry A. 2010 Jul;77(7):693-704 25192578 - IEEE J Biomed Health Inform. 2014 Sep;18(5):1729-41 18296207 - IEEE Trans Image Process. 1993;2(2):176-201 25111442 - PLoS One. 2014 Aug 11;9(8):e104437 24391966 - PLoS One. 2013 Dec 31;8(12):e84557 13117757 - J Anat. 1953 Oct;87(4):387-406 24777764 - Microsc Res Tech. 2014 Aug;77(8):547-59 25041828 - Micron. 2014 Oct;65:20-33 26182412 - Neuron. 2015 Jul 15;87(2):252-6 24829141 - Sci Rep. 2014 May 15;4:4970 20656653 - IEEE Trans Biomed Eng. 2010 Oct;57(10):2600-4 12222821 - Network. 2002 Aug;13(3):397-414 19189978 - Bioinformatics. 2009 Mar 1;25(5):695-7 23638117 - PLoS One. 2013 Apr 24;8(4):e62579 21279476 - Neuroinformatics. 2011 Sep;9(2-3):97-8 |
| References_xml | – volume: 25 start-page: 695 issue: 5 year: 2009 end-page: 697 ident: CR20 article-title: VANO: a volume-object image annotation system publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp046 – volume: 9 start-page: e104437 issue: 8 year: 2014 ident: CR7 article-title: An Automated Three-Dimensional Detection and Segmentation Method for Touching Cells by Integrating Concave Points Clustering and Random Walker Algorithm publication-title: PLoS One doi: 10.1371/journal.pone.0104437 – volume: 13 start-page: 397 issue: 3 year: 2009 end-page: 414 ident: CR26 article-title: Measures for quantifying dendritic arborizations publication-title: Network Computation in Neural Systems doi: 10.1088/0954-898X_13_3_309 – volume: 2 start-page: 176 issue: 2 year: 1993 end-page: 201 ident: CR27 article-title: Morphological grayscale reconstruction in image analysis: applications and efficient algorithms publication-title: IEEE Transactions on Image Processing:A Publication of the IEEE Signal Processing Society doi: 10.1109/83.217222 – volume: 9 start-page: 97 issue: 2 year: 2011 end-page: 98 ident: CR23 article-title: The Past, Present, and Future of Single Neuron Reconstruction publication-title: Neuroinformatics doi: 10.1007/s12021-011-9097-y – ident: CR6 – volume: 9 start-page: 62 issue: 1 year: 1979 end-page: 66 ident: CR16 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Transactions on Systems, Man and Cybernetics doi: 10.1109/TSMC.1979.4310076 – volume: 77A start-page: 693 issue: 7 year: 2010 end-page: 704 ident: CR13 article-title: Neuron Tracing in Perspective publication-title: Cytometry Part A doi: 10.1002/cyto.a.20895 – volume: 6577 start-page: 336 year: 2010 end-page: 336 ident: CR18 article-title: Seeing More is Knowing More: V3D Enables Real-Time 3D Visualization and Quantitative Analysis of Large-Scale Biological Image Data Sets publication-title: Research in Computational Molecular Biology doi: 10.1007/978-3-642-20036-6_30 – volume: 57 start-page: 841 issue: 4 year: 2010 end-page: 852 ident: CR1 article-title: Improved Automatic Detection and Segmentation of Cell Nuclei in Histopathology Images publication-title: IEEE Transactions on Biomedicine Engineering doi: 10.1109/TBME.2009.2035102 – volume: 29 start-page: 1448 issue: 11 year: 2013 end-page: 1454 ident: CR29 article-title: App2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt170 – ident: CR21 – volume: 87 start-page: 252 issue: 2 year: 2015 end-page: 256 ident: CR17 article-title: BigNeuron: Large-Scale 3D Neuron Reconstruction from Optical Microscopy Images publication-title: Neuron doi: 10.1016/j.neuron.2015.06.036 – volume: 87 start-page: 387 issue: 4 year: 1953 end-page: 406 ident: CR25 article-title: Dendritic organization in the neurons of the visual and motor cortices of the cat publication-title: Journal of Anatomy – volume: 6 start-page: 5 issue: 1 year: 2008 end-page: 21 ident: CR10 article-title: An automated method for cell detection in zebrafish publication-title: Neuroinformatics doi: 10.1007/s12021-007-9005-7 – volume: 77 start-page: 547 issue: 8 year: 2014 end-page: 559 ident: CR5 article-title: An Image Processing Pipeline to Detect and Segment Nuclei in Muscle Fiber Microscopic Images publication-title: Microscopy Research and Technique doi: 10.1002/jemt.22373 – volume: 20 start-page: 939 issue: 6 year: 2006 end-page: 954 ident: CR12 article-title: Enhanced direct least square fitting of ellipses publication-title: International Journal of Pattern Recognition & Artificial Intelligence doi: 10.1142/S021800140600506X – volume: 56A start-page: 23 issue: 1 year: 2003 end-page: 36 ident: CR9 article-title: A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks publication-title: Cytometry Part A doi: 10.1002/cyto.a.10079 – volume: 18 start-page: 1729 issue: 5 year: 2014 end-page: 1741 ident: CR30 article-title: An Efficient Technique for Nuclei Segmentation based on Ellipse Descriptor Analysis and Improved Seed Detection Algorithm publication-title: IEEE Journal of Biomedical & Health Informatics doi: 10.1109/JBHI.2013.2297030 – volume: 57 start-page: 2600 issue: 10 year: 2010 end-page: 2604 ident: CR8 article-title: Segmenting Clustered Nuclei Using H-minima Transform-Based Marker Extraction and Contour Parameterization publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2010.2060336 – volume: 8 start-page: e84557 issue: 12 year: 2013 end-page: e84557 ident: CR15 article-title: Rapid Reconstruction of 3D Neuronal Morphology from Light Microscopy Images with Augmented Rayburst Sampling publication-title: PLoS One doi: 10.1371/journal.pone.0084557 – volume: 2012 start-page: 143 issue: 24 year: 2012 end-page: 156 ident: CR3 article-title: Recent Advances in Morphological Cell Image Analysis publication-title: Computational and Mathematical Methods in Medicine – volume: 136 start-page: 661 issue: 3 year: 2005 end-page: 680 ident: CR28 article-title: New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales publication-title: Neuroscience doi: 10.1016/j.neuroscience.2005.05.053 – volume: 1 start-page: 2152 issue: 4 year: 2006 end-page: 2161 ident: CR22 article-title: Rayburst sampling, an algorithm for automated three-dimensional shape analysis from laser scanning microscopy images publication-title: Nature Protocols doi: 10.1038/nprot.2006.313 – volume: 2004 start-page: 335 year: 2004 end-page: 340 ident: CR11 article-title: Least squares ellipsoid specific fitting publication-title: Geometric Modeling and Processing – volume: 8 start-page: 393 issue: 4 year: 2013 end-page: 406 ident: CR31 article-title: Automated and Accurate Detection of Soma Location and Surface Morphology in Large-Scale 3D Neuron Images publication-title: PLoS One – volume: 65 start-page: 20 year: 2014 end-page: 33 ident: CR24 article-title: Automated microscopic image analysis for leukocytes identification: A survey publication-title: Micron doi: 10.1016/j.micron.2014.04.001 – volume: 74 start-page: 87 issue: 7 year: 2013 end-page: 98 ident: CR4 article-title: Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.02.005 – volume: 28 start-page: 348 issue: 4 year: 2010 end-page: U75 ident: CR19 article-title: V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets publication-title: Nature Biotechnology doi: 10.1038/nbt.1612 – volume: 356 start-page: 1131 issue: 1412 year: 2001 end-page: 1145 ident: CR2 article-title: Generation, description and storage of dendritic morphology data publication-title: Philosophical Transactions of the Royal Society London Series B-Biological Sciences doi: 10.1098/rstb.2001.0905 – volume: 29 start-page: 140 issue: 5 year: 2012 end-page: 145 ident: CR14 article-title: Cell segmentation: 50 years down the road publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2012.2204190 – volume: 20 start-page: 939 issue: 6 year: 2006 ident: 9336_CR12 publication-title: International Journal of Pattern Recognition & Artificial Intelligence doi: 10.1142/S021800140600506X – volume: 8 start-page: e84557 issue: 12 year: 2013 ident: 9336_CR15 publication-title: PLoS One doi: 10.1371/journal.pone.0084557 – volume: 28 start-page: 348 issue: 4 year: 2010 ident: 9336_CR19 publication-title: Nature Biotechnology doi: 10.1038/nbt.1612 – volume: 25 start-page: 695 issue: 5 year: 2009 ident: 9336_CR20 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp046 – volume: 18 start-page: 1729 issue: 5 year: 2014 ident: 9336_CR30 publication-title: IEEE Journal of Biomedical & Health Informatics doi: 10.1109/JBHI.2013.2297030 – volume: 8 start-page: 393 issue: 4 year: 2013 ident: 9336_CR31 publication-title: PLoS One – volume: 87 start-page: 252 issue: 2 year: 2015 ident: 9336_CR17 publication-title: Neuron doi: 10.1016/j.neuron.2015.06.036 – volume: 57 start-page: 841 issue: 4 year: 2010 ident: 9336_CR1 publication-title: IEEE Transactions on Biomedicine Engineering doi: 10.1109/TBME.2009.2035102 – volume: 2 start-page: 176 issue: 2 year: 1993 ident: 9336_CR27 publication-title: IEEE Transactions on Image Processing:A Publication of the IEEE Signal Processing Society doi: 10.1109/83.217222 – volume: 1 start-page: 2152 issue: 4 year: 2006 ident: 9336_CR22 publication-title: Nature Protocols doi: 10.1038/nprot.2006.313 – volume: 2004 start-page: 335 year: 2004 ident: 9336_CR11 publication-title: Geometric Modeling and Processing – volume: 6577 start-page: 336 year: 2010 ident: 9336_CR18 publication-title: Research in Computational Molecular Biology doi: 10.1007/978-3-642-20036-6_30 – volume: 87 start-page: 387 issue: 4 year: 1953 ident: 9336_CR25 publication-title: Journal of Anatomy – volume: 9 start-page: 62 issue: 1 year: 1979 ident: 9336_CR16 publication-title: IEEE Transactions on Systems, Man and Cybernetics doi: 10.1109/TSMC.1979.4310076 – volume: 136 start-page: 661 issue: 3 year: 2005 ident: 9336_CR28 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2005.05.053 – volume: 6 start-page: 5 issue: 1 year: 2008 ident: 9336_CR10 publication-title: Neuroinformatics doi: 10.1007/s12021-007-9005-7 – volume: 13 start-page: 397 issue: 3 year: 2009 ident: 9336_CR26 publication-title: Network Computation in Neural Systems doi: 10.1088/0954-898X_13_3_309 – volume: 9 start-page: e104437 issue: 8 year: 2014 ident: 9336_CR7 publication-title: PLoS One doi: 10.1371/journal.pone.0104437 – ident: 9336_CR21 doi: 10.1038/srep04970 – volume: 29 start-page: 1448 issue: 11 year: 2013 ident: 9336_CR29 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt170 – volume: 9 start-page: 97 issue: 2 year: 2011 ident: 9336_CR23 publication-title: Neuroinformatics doi: 10.1007/s12021-011-9097-y – volume: 29 start-page: 140 issue: 5 year: 2012 ident: 9336_CR14 publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2012.2204190 – volume: 77 start-page: 547 issue: 8 year: 2014 ident: 9336_CR5 publication-title: Microscopy Research and Technique doi: 10.1002/jemt.22373 – volume: 56A start-page: 23 issue: 1 year: 2003 ident: 9336_CR9 publication-title: Cytometry Part A doi: 10.1002/cyto.a.10079 – volume: 74 start-page: 87 issue: 7 year: 2013 ident: 9336_CR4 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.02.005 – ident: 9336_CR6 – volume: 65 start-page: 20 year: 2014 ident: 9336_CR24 publication-title: Micron doi: 10.1016/j.micron.2014.04.001 – volume: 2012 start-page: 143 issue: 24 year: 2012 ident: 9336_CR3 publication-title: Computational and Mathematical Methods in Medicine – volume: 356 start-page: 1131 issue: 1412 year: 2001 ident: 9336_CR2 publication-title: Philosophical Transactions of the Royal Society London Series B-Biological Sciences doi: 10.1098/rstb.2001.0905 – volume: 57 start-page: 2600 issue: 10 year: 2010 ident: 9336_CR8 publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2010.2060336 – volume: 77A start-page: 693 issue: 7 year: 2010 ident: 9336_CR13 publication-title: Cytometry Part A doi: 10.1002/cyto.a.20895 – reference: 18296207 - IEEE Trans Image Process. 1993;2(2):176-201 – reference: 21279476 - Neuroinformatics. 2011 Sep;9(2-3):97-8 – reference: 25111442 - PLoS One. 2014 Aug 11;9(8):e104437 – reference: 20656653 - IEEE Trans Biomed Eng. 2010 Oct;57(10):2600-4 – reference: 24391966 - PLoS One. 2013 Dec 31;8(12):e84557 – reference: 17487207 - Nat Protoc. 2006;1(4):2152-61 – reference: 24829141 - Sci Rep. 2014 May 15;4:4970 – reference: 23638117 - PLoS One. 2013 Apr 24;8(4):e62579 – reference: 16344143 - Neuroscience. 2005;136(3):661-80 – reference: 26182412 - Neuron. 2015 Jul 15;87(2):252-6 – reference: 25041828 - Micron. 2014 Oct;65:20-33 – reference: 19884070 - IEEE Trans Biomed Eng. 2010 Apr;57(4):841-52 – reference: 12222821 - Network. 2002 Aug;13(3):397-414 – reference: 23416252 - Neuroimage. 2013 Jul 1;74:87-98 – reference: 11545695 - Philos Trans R Soc Lond B Biol Sci. 2001 Aug 29;356(1412):1131-45 – reference: 19189978 - Bioinformatics. 2009 Mar 1;25(5):695-7 – reference: 20231818 - Nat Biotechnol. 2010 Apr;28(4):348-53 – reference: 14566936 - Cytometry A. 2003 Nov;56(1):23-36 – reference: 23603332 - Bioinformatics. 2013 Jun 1;29(11):1448-54 – reference: 24777764 - Microsc Res Tech. 2014 Aug;77(8):547-59 – reference: 20583273 - Cytometry A. 2010 Jul;77(7):693-704 – reference: 18288618 - Neuroinformatics. 2008 Spring;6(1):5-21 – reference: 25192578 - IEEE J Biomed Health Inform. 2014 Sep;18(5):1729-41 – reference: 13117757 - J Anat. 1953 Oct;87(4):387-406 |
| SSID | ssj0026700 |
| Score | 2.151883 |
| Snippet | Neuronal soma segmentation is essential for morphology quantification analysis. Rapid advances in light microscope imaging techniques have generated such... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 383 |
| SubjectTerms | Algorithms Bioinformatics Biomedical and Life Sciences Biomedicine Computational Biology/Bioinformatics Computer Appl. in Life Sciences Image processing Image Processing, Computer-Assisted - methods Microscopy, Fluorescence, Multiphoton - methods Monte Carlo simulation Neurology Neurons - cytology Neurosciences Original Original Article Sampling Sectioning Segmentation Tomography, Optical - methods |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH6C9gAc2GAMwjZkJMSBKZPrxDE5dlPHBIIDLdI4Rf6VbaJNpjURyv76PadJ2m780G6R7CR-9nv2--LPXwDeUaF46jRbrYlSBCgxxZCywk8DnJE5ZdpY90H_67fo5Ef4-ZSfNue45y3bvd2SrGfq5WE35ugEblZFEB751UPo13JbPegPP_38MupwVnPyBGM59pmIB-1m5p8esr4c3ckx71Ilu_3SJ_CozC5l9VtOpytL0vEGTFpjFkyUXwdloQ709S2dx3tauwlPmxSVDBc-9Qwe2Ow5bA0zhOezirwnNWm0_hq_BUeTvKzZmGSczyQZ27NZc5gpI4e4QBqCF5hjku-ywuGbF2QsHYcdbxhOz_Kri-J89gImx6PJ0Ynf_JfB16GghS-tHMSxoaHiiMsx_zJS8VgxIXQUBMyGVDEl0QzJqFVaoC8EOlDaItSS3ATb0MvyzL5yvCqmqeROsceGMg3VxxQToDQwhsqBMdwD2o5OohvNcvfrjGmyVFt2_ZRgPyWun5LKgw_dLZcLwY5_Vd5thzxpYnee4JxU6yKGsQdvu2KMOreVIjObl65OyARmwxyb-HLhId3bEMIiaBWRB2LNd7oKTtF7vSS7OK-VvXkkHJ72YL91ipVm_d2I_c4R_2_y63s9ewceM-eDNXtxF3rFVWn3MAsr1Jsm6m4Aim8o-Q priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE48CqP0BYZCXGgytbrxHFz3FatKiQqxG6lcors2GkrdpNVNxEKv56x82C3FSDELZLtJGOP7RnPN58B3lGheGY5W42OMnRQYopTygg_C3BF5pSl2tgD_U9n0el5-PGCX2zAcZcL49DuXUiyyWmwLE15ub_Q2UpUfzliFlxg11h0ySO_HmL5PdiMOJrkA9g8P_s8_tpwpcY-E3HDm8pjH_e8uItuuhS6W-9Z35_uGJ13sZN9APUh3K_yhay_y9lsZY86edxgSZaO2tBCU74Nq1IN0x-3iB__W_wn8Ki1Ysm4UbunsGHyZ7A1ztGDn9fkPXG4UndgvwVH06JygE0yKeaSTMzlvM13yskh7qGa4AOaoeSLrHGElyWZSAtzxwbj2WVxc11ezZ_D9OR4enTqt1c3-GkoaOlLI0dxrGmoOLruaKJpqXismBBpFATMhFQxJVEYyahRqUB1CdJApQa9Mcl18AIGeZGbVxZ6xVIquSX1MaHMQnWQoY2UBVpTOdKae0C78UrSltbc3q4xS34RMtu-SrCvEttXSe3Bh77JouH0-FPlnU4JknZ6LxNcthx1Yhh78LYvxolpoy0yN0Vl64RMoMHM8RdfNjrTfw29XPRrReSBWNOmvoIl_V4vya-vHPk3j4R1uT3Y69Rk5bd-L8Rer5p_F_n1P9XehgfM6qEDOO7AoLypzC4aaqV6007DnyfuNU8 priority: 102 providerName: Unpaywall |
| Title | Touching Soma Segmentation Based on the Rayburst Sampling Algorithm |
| URI | https://link.springer.com/article/10.1007/s12021-017-9336-y https://www.ncbi.nlm.nih.gov/pubmed/28940176 https://www.proquest.com/docview/1960342349 https://www.proquest.com/docview/1942704555 https://pubmed.ncbi.nlm.nih.gov/PMC5671566 https://link.springer.com/content/pdf/10.1007%2Fs12021-017-9336-y.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1559-0089 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026700 issn: 1559-0089 databaseCode: AFBBN dateStart: 20030301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1559-0089 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0026700 issn: 1559-0089 databaseCode: 7X7 dateStart: 20030301 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1559-0089 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0026700 issn: 1559-0089 databaseCode: BENPR dateStart: 20030301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1559-0089 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026700 issn: 1559-0089 databaseCode: AGYKE dateStart: 20030101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1559-0089 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0026700 issn: 1559-0089 databaseCode: U2A dateStart: 20030301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwED5t7QPsAQGDERhVkBAPTBGuE8fkAaGs6phAVNPaSt1TZMfOhtQmHWuF8t9zlybZqonxUkWJo8b3w77PPn8H8J5JLTLibLUmzBCgRAxdykov83FEFoynxtKC_s9ReDoNvs_EbAdGzVkYSqtsxsRqoDZFSmvkn9BSKra6IPq6vPaoahTtrjYlNFRdWsF8qSjGdqHLiRmrA93j4ejsvIVg9aEUdPPI4zLqN_uc1WE6TukKNGojyA-9cnumuhd-3s-ibLdS9-DROl-q8o-az-_MVidP4UkdZrrxxi6ewY7Nn8N-nCPEXpTuB7dK_KxW1PdhMCnWVUalOy4Wyh3by0V9ICl3j3GSMy5eYJzonqsSVXCzcseK8tDxhXh-iTJaXS1ewORkOBmcenVtBS8NJFt5yqp-FBkWaIHYGmMoo7SINJcyDX2f24BprhUKRnFmdSpRn37q69QiXFLC-C-hkxe5fUW5UTxlShDrjg1UFujPGQYxmW8MU31jhAOsEWOS1rzjVP5intwyJpPkE5R8QpJPSgc-tq8sN6QbDzU-bHST1P53k9xaiwPv2sfoObQdonJbrKlNwCVGtAI_8WCjyvbfEIYi8JShA3JLyW0DYuXefpL_uqrYuUUoCRM7cNSYw53P-ncnjlqL-X-XXz_c5TfwmJMZVymHh9BZ_V7btxg6rXQPduVM9qAbf7v4MezV3oF3B-EAf6c8xnvT0Vl88RfNTRtY |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a22FwQMD4CAwwEnBgiuY6cUwOE-rGpo5tFVqLtFtkx86G1CaFtpryx_G_8V6aZKsmxmm3SLET-33Y72e_D4D3XBmZUc5WZ6MMAUrMUaWc8rMAV2TJRWodHeif9KPej_DbmTxbgT9NLAy5VTZrYrVQ2yKlM_JtlJQqW10Yf5n88qlqFN2uNiU0dF1awe5UKcbqwI4jV14ihJvuHH5Ffn8Q4mB_uNfz6yoDfhoqPvO10504tjw0ElEmWhNWGxkboVQaBYFwITfC6A7nWnBnUoUzC9LApA6Bg5Y2wM_eg7UQB4bYb213v__9tEV8dQwMriqxL1Tcaa5Vq9g9Qd4RtEnEQRD55fLGeMPavem02d7cPoD1eT7R5aUeja5tjgeP4GFt1bLuQgwfw4rLn8BGN0dEPy7ZR1b5mVYH-BuwNyzmlQMnGxRjzQbufFzHP-VsF_dUy_ABzVJ2qkvk-HTGBprc3rFDd3SOLJldjJ_C8C6I_AxW8yJ3L8gVS6RcS0ry40KdheZzhjZTFljLdcda6QFvyJikdZpzqrYxSq4SNBPlE6R8QpRPSg8-tV0mixwftzXebHiT1Oo-Ta6E04N37WtUVLp90bkr5tQmFAoNaIlDfL5gZfs3RL2Ic1XkgVpictuAkoAvv8l_XlTJwGWkCIJ7sNWIw7Vh_XsSW63E_H_KL2-f8ltY7w1PjpPjw_7RK7gvSKQrb8dNWJ39nrvXaLXNzJtaNxgkd6yNfwFzcVJ_ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQ-LygIBxCQwwEvDAFM21k5g8IFQ2qo3BhGiR-hbZsbMhtUmhqab8NP4d56RJumpiPO0tku0kPhf7fPbnY4BXXJkwo5ytzkYZApSYo0s55WcSR-SQi9Q6WtD_ehwd_Ag-j8PxBvxpz8IQrbIdE-uB2hYprZHvoqXU2eqCeDdraBHf9gcfZr98ukGKdlrb6zSWJnLkqjOEb_P3h_uo69dCDD6N9g785oYBPw0UL33tdC-OLQ9MiAgTIwmrTRgboVQaSSlcwI0wuse5FtyZVGGvZCpN6hA06NBKfO01uK6kjIlNqMYrrNecfsHxJPaFinvthmp9ak8QL4Kmh1jKyK_Wp8QLce5Fuma3Z3sbbi7yma7O9GRybloc3IU7TTzL-ksDvAcbLr8PW_0csfy0Ym9YzTCtl-63YG9ULGrqJhsWU82G7mTanHzK2UecTS3DBwxI2Xddoa7nJRtqIrxjg_7kBBVQnk4fwOgqRPwQNvMid4-JhCVSrkNK7-MCnQXmXYbRUiat5bpnbegBb8WYpE2Cc7pnY5KsUjOT5BOUfEKSTyoP3nZNZsvsHpdV3m51kzSOPk9WZunBy64YXZT2XXTuigXVCYTC0DnEX3y0VGX3NcS7iHBV5IFaU3JXgdJ_r5fkP0_rNOBhpAh8e7DTmsO53_p3J3Y6i_l_l59c3uUXcAN9MPlyeHz0FG4Jsuia5rgNm-XvhXuG4VppnteOwSC5Ykf8CybQUBk |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE48CqP0BYZCXGgytbrxHFz3FatKiQqxG6lcors2GkrdpNVNxEKv56x82C3FSDELZLtJGOP7RnPN58B3lGheGY5W42OMnRQYopTygg_C3BF5pSl2tgD_U9n0el5-PGCX2zAcZcL49DuXUiyyWmwLE15ub_Q2UpUfzliFlxg11h0ySO_HmL5PdiMOJrkA9g8P_s8_tpwpcY-E3HDm8pjH_e8uItuuhS6W-9Z35_uGJ13sZN9APUh3K_yhay_y9lsZY86edxgSZaO2tBCU74Nq1IN0x-3iB__W_wn8Ki1Ysm4UbunsGHyZ7A1ztGDn9fkPXG4UndgvwVH06JygE0yKeaSTMzlvM13yskh7qGa4AOaoeSLrHGElyWZSAtzxwbj2WVxc11ezZ_D9OR4enTqt1c3-GkoaOlLI0dxrGmoOLruaKJpqXismBBpFATMhFQxJVEYyahRqUB1CdJApQa9Mcl18AIGeZGbVxZ6xVIquSX1MaHMQnWQoY2UBVpTOdKae0C78UrSltbc3q4xS34RMtu-SrCvEttXSe3Bh77JouH0-FPlnU4JknZ6LxNcthx1Yhh78LYvxolpoy0yN0Vl64RMoMHM8RdfNjrTfw29XPRrReSBWNOmvoIl_V4vya-vHPk3j4R1uT3Y69Rk5bd-L8Rer5p_F_n1P9XehgfM6qEDOO7AoLypzC4aaqV6007DnyfuNU8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Touching+Soma+Segmentation+Based+on+the+Rayburst+Sampling+Algorithm&rft.jtitle=Neuroinformatics+%28Totowa%2C+N.J.%29&rft.au=Hu%2C+Tianyu&rft.au=Xu%2C+Qiufeng&rft.au=Lv%2C+Wei&rft.au=Liu%2C+Qian&rft.date=2017-10-01&rft.pub=Springer+US&rft.issn=1539-2791&rft.eissn=1559-0089&rft.volume=15&rft.issue=4&rft.spage=383&rft.epage=393&rft_id=info:doi/10.1007%2Fs12021-017-9336-y&rft_id=info%3Apmid%2F28940176&rft.externalDocID=PMC5671566 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-2791&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-2791&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-2791&client=summon |