Migrating from partial least squares discriminant analysis to artificial neural networks: a comparison of functionally equivalent visualisation and feature contribution tools using jupyter notebooks
Introduction Metabolomics data is commonly modelled multivariately using partial least squares discriminant analysis (PLS-DA). Its success is primarily due to ease of interpretation, through projection to latent structures, and transparent assessment of feature importance using regression coefficien...
        Saved in:
      
    
          | Published in | Metabolomics Vol. 16; no. 2; p. 17 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.02.2020
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1573-3882 1573-3890 1573-3890  | 
| DOI | 10.1007/s11306-020-1640-0 | 
Cover
| Abstract | Introduction
Metabolomics data is commonly modelled multivariately using partial least squares discriminant analysis (PLS-DA). Its success is primarily due to ease of interpretation, through projection to latent structures, and transparent assessment of feature importance using regression coefficients and Variable Importance in Projection scores. In recent years several non-linear machine learning (ML) methods have grown in popularity but with limited uptake essentially due to convoluted optimisation and interpretation. Artificial neural networks (ANNs) are a non-linear projection-based ML method that share a structural equivalence with PLS, and as such should be amenable to equivalent optimisation and interpretation methods.
Objectives
We hypothesise that standardised optimisation, visualisation, evaluation and statistical inference techniques commonly used by metabolomics researchers for PLS-DA can be migrated to a non-linear, single hidden layer, ANN.
Methods
We compared a standardised optimisation, visualisation, evaluation and statistical inference techniques workflow for PLS with the proposed ANN workflow. Both workflows were implemented in the Python programming language. All code and results have been made publicly available as Jupyter notebooks on GitHub.
Results
The migration of the PLS workflow to a non-linear, single hidden layer, ANN was successful. There was a similarity in significant metabolites determined using PLS model coefficients and ANN Connection Weight Approach.
Conclusion
We have shown that it is possible to migrate the standardised PLS-DA workflow to simple non-linear ANNs. This result opens the door for more widespread use and to the investigation of transparent interpretation of more complex ANN architectures. | 
    
|---|---|
| AbstractList | Metabolomics data is commonly modelled multivariately using partial least squares discriminant analysis (PLS-DA). Its success is primarily due to ease of interpretation, through projection to latent structures, and transparent assessment of feature importance using regression coefficients and Variable Importance in Projection scores. In recent years several non-linear machine learning (ML) methods have grown in popularity but with limited uptake essentially due to convoluted optimisation and interpretation. Artificial neural networks (ANNs) are a non-linear projection-based ML method that share a structural equivalence with PLS, and as such should be amenable to equivalent optimisation and interpretation methods.
We hypothesise that standardised optimisation, visualisation, evaluation and statistical inference techniques commonly used by metabolomics researchers for PLS-DA can be migrated to a non-linear, single hidden layer, ANN.
We compared a standardised optimisation, visualisation, evaluation and statistical inference techniques workflow for PLS with the proposed ANN workflow. Both workflows were implemented in the Python programming language. All code and results have been made publicly available as Jupyter notebooks on GitHub.
The migration of the PLS workflow to a non-linear, single hidden layer, ANN was successful. There was a similarity in significant metabolites determined using PLS model coefficients and ANN Connection Weight Approach.
We have shown that it is possible to migrate the standardised PLS-DA workflow to simple non-linear ANNs. This result opens the door for more widespread use and to the investigation of transparent interpretation of more complex ANN architectures. Introduction Metabolomics data is commonly modelled multivariately using partial least squares discriminant analysis (PLS-DA). Its success is primarily due to ease of interpretation, through projection to latent structures, and transparent assessment of feature importance using regression coefficients and Variable Importance in Projection scores. In recent years several non-linear machine learning (ML) methods have grown in popularity but with limited uptake essentially due to convoluted optimisation and interpretation. Artificial neural networks (ANNs) are a non-linear projection-based ML method that share a structural equivalence with PLS, and as such should be amenable to equivalent optimisation and interpretation methods. Objectives We hypothesise that standardised optimisation, visualisation, evaluation and statistical inference techniques commonly used by metabolomics researchers for PLS-DA can be migrated to a non-linear, single hidden layer, ANN. Methods We compared a standardised optimisation, visualisation, evaluation and statistical inference techniques workflow for PLS with the proposed ANN workflow. Both workflows were implemented in the Python programming language. All code and results have been made publicly available as Jupyter notebooks on GitHub. Results The migration of the PLS workflow to a non-linear, single hidden layer, ANN was successful. There was a similarity in significant metabolites determined using PLS model coefficients and ANN Connection Weight Approach. Conclusion We have shown that it is possible to migrate the standardised PLS-DA workflow to simple non-linear ANNs. This result opens the door for more widespread use and to the investigation of transparent interpretation of more complex ANN architectures. Metabolomics data is commonly modelled multivariately using partial least squares discriminant analysis (PLS-DA). Its success is primarily due to ease of interpretation, through projection to latent structures, and transparent assessment of feature importance using regression coefficients and Variable Importance in Projection scores. In recent years several non-linear machine learning (ML) methods have grown in popularity but with limited uptake essentially due to convoluted optimisation and interpretation. Artificial neural networks (ANNs) are a non-linear projection-based ML method that share a structural equivalence with PLS, and as such should be amenable to equivalent optimisation and interpretation methods.INTRODUCTIONMetabolomics data is commonly modelled multivariately using partial least squares discriminant analysis (PLS-DA). Its success is primarily due to ease of interpretation, through projection to latent structures, and transparent assessment of feature importance using regression coefficients and Variable Importance in Projection scores. In recent years several non-linear machine learning (ML) methods have grown in popularity but with limited uptake essentially due to convoluted optimisation and interpretation. Artificial neural networks (ANNs) are a non-linear projection-based ML method that share a structural equivalence with PLS, and as such should be amenable to equivalent optimisation and interpretation methods.We hypothesise that standardised optimisation, visualisation, evaluation and statistical inference techniques commonly used by metabolomics researchers for PLS-DA can be migrated to a non-linear, single hidden layer, ANN.OBJECTIVESWe hypothesise that standardised optimisation, visualisation, evaluation and statistical inference techniques commonly used by metabolomics researchers for PLS-DA can be migrated to a non-linear, single hidden layer, ANN.We compared a standardised optimisation, visualisation, evaluation and statistical inference techniques workflow for PLS with the proposed ANN workflow. Both workflows were implemented in the Python programming language. All code and results have been made publicly available as Jupyter notebooks on GitHub.METHODSWe compared a standardised optimisation, visualisation, evaluation and statistical inference techniques workflow for PLS with the proposed ANN workflow. Both workflows were implemented in the Python programming language. All code and results have been made publicly available as Jupyter notebooks on GitHub.The migration of the PLS workflow to a non-linear, single hidden layer, ANN was successful. There was a similarity in significant metabolites determined using PLS model coefficients and ANN Connection Weight Approach.RESULTSThe migration of the PLS workflow to a non-linear, single hidden layer, ANN was successful. There was a similarity in significant metabolites determined using PLS model coefficients and ANN Connection Weight Approach.We have shown that it is possible to migrate the standardised PLS-DA workflow to simple non-linear ANNs. This result opens the door for more widespread use and to the investigation of transparent interpretation of more complex ANN architectures.CONCLUSIONWe have shown that it is possible to migrate the standardised PLS-DA workflow to simple non-linear ANNs. This result opens the door for more widespread use and to the investigation of transparent interpretation of more complex ANN architectures. IntroductionMetabolomics data is commonly modelled multivariately using partial least squares discriminant analysis (PLS-DA). Its success is primarily due to ease of interpretation, through projection to latent structures, and transparent assessment of feature importance using regression coefficients and Variable Importance in Projection scores. In recent years several non-linear machine learning (ML) methods have grown in popularity but with limited uptake essentially due to convoluted optimisation and interpretation. Artificial neural networks (ANNs) are a non-linear projection-based ML method that share a structural equivalence with PLS, and as such should be amenable to equivalent optimisation and interpretation methods.ObjectivesWe hypothesise that standardised optimisation, visualisation, evaluation and statistical inference techniques commonly used by metabolomics researchers for PLS-DA can be migrated to a non-linear, single hidden layer, ANN.MethodsWe compared a standardised optimisation, visualisation, evaluation and statistical inference techniques workflow for PLS with the proposed ANN workflow. Both workflows were implemented in the Python programming language. All code and results have been made publicly available as Jupyter notebooks on GitHub.ResultsThe migration of the PLS workflow to a non-linear, single hidden layer, ANN was successful. There was a similarity in significant metabolites determined using PLS model coefficients and ANN Connection Weight Approach.ConclusionWe have shown that it is possible to migrate the standardised PLS-DA workflow to simple non-linear ANNs. This result opens the door for more widespread use and to the investigation of transparent interpretation of more complex ANN architectures.  | 
    
| ArticleNumber | 17 | 
    
| Author | Reinke, Stacey N. Broadhurst, David I. Mendez, Kevin M.  | 
    
| Author_xml | – sequence: 1 givenname: Kevin M. orcidid: 0000-0002-8832-2607 surname: Mendez fullname: Mendez, Kevin M. organization: Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University – sequence: 2 givenname: David I. orcidid: 0000-0003-0775-9581 surname: Broadhurst fullname: Broadhurst, David I. email: d.broadhurst@ecu.edu.au organization: Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University – sequence: 3 givenname: Stacey N. orcidid: 0000-0002-0758-0330 surname: Reinke fullname: Reinke, Stacey N. email: stacey.n.reinke@ecu.edu.au organization: Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31965332$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNksuO0zAUhiM0iLnAA7BBltiwCfiWOGGBNBpxkwaxgbV1ktjFHdfu-NJRX5DnwmlLgZFArGzp_N_vc87v8-rEeaeq6inBLwnG4lUkhOG2xhTXpOW4xg-qM9IIVrOuxyfHe0dPq_MYlxhz3gv8qDplpG8bxuhZ9f2TWQRIxi2QDn6F1hCSAYusgphQvM0QVESTiWMwK-PAJQQO7DaaiJJHs1qbcSacymF3pDsfbuJrBGj0q-JnonfIa6SzG5PxhbZbpG6z2YBVxW9jYgZrIszF4j4hrSDloArvUjBD3hWS9zaiHOdWl3m9TSog55MavL-Jj6uHGmxUTw7nRfX13dsvVx_q68_vP15dXtcjFzjVneqnQbQtn6aOYUwbrQidJt1RKohmuOFiGFlD2h7rEXdM6UFA0wFlAD1vW3ZR0b1vdmvY3pVR5LosBsJWEiznUOQ-FFlCkXMoEhfozR5a52GlprEMXTZ1BD0Y-WfFmW9y4Tey7QVvMC8GLw4Gwd9mFZNclUCUteCUz1FSxhnvO9zObz2_J136HMrOd6qO0Vawvqie_d7RsZWf_6IIyF4wBh9jUPq_xhT3mNGkXahlKGP_SR62GssrbqHCr6b_Dv0A6Gnykw | 
    
| CitedBy_id | crossref_primary_10_1007_s00126_021_01091_y crossref_primary_10_3389_fcvm_2020_626699 crossref_primary_10_3390_agronomy14102390 crossref_primary_10_3390_metabo11030184 crossref_primary_10_1016_j_fbio_2024_105435 crossref_primary_10_3390_biom12101512 crossref_primary_10_3389_fcimb_2025_1451293 crossref_primary_10_1007_s11306_023_02065_z crossref_primary_10_1007_s11306_021_01787_2 crossref_primary_10_3390_foods14040693 crossref_primary_10_1080_14772000_2021_2017059 crossref_primary_10_1089_omi_2021_0201 crossref_primary_10_1007_s40899_024_01169_1 crossref_primary_10_1016_j_microc_2023_108867 crossref_primary_10_1371_journal_pone_0255240 crossref_primary_10_1016_j_xcrm_2021_100369 crossref_primary_10_1016_j_ibmed_2023_100101 crossref_primary_10_1016_j_trac_2022_116540 crossref_primary_10_1016_j_saa_2022_121936 crossref_primary_10_1016_j_microc_2020_105513 crossref_primary_10_1139_apnm_2021_0448 crossref_primary_10_1186_s43094_023_00537_6 crossref_primary_10_3390_rs14102334 crossref_primary_10_1016_j_jqsrt_2022_108438 crossref_primary_10_3389_fmats_2022_1094055 crossref_primary_10_1007_s40005_023_00625_y crossref_primary_10_1016_j_tvjl_2024_106263 crossref_primary_10_3390_biom11030473 crossref_primary_10_1021_acs_jproteome_2c00488 crossref_primary_10_1002_lemi_202258011 crossref_primary_10_1093_bib_bbaa204 crossref_primary_10_3390_antiox13080953 crossref_primary_10_3233_JAD_215084 crossref_primary_10_5382_econgeo_5020 crossref_primary_10_1371_journal_pcbi_1011814 crossref_primary_10_1016_j_fshw_2021_12_010 crossref_primary_10_1021_acsfoodscitech_1c00128  | 
    
| Cites_doi | 10.1002/cem.1388 10.1007/s11306-006-0037-z 10.1002/(SICI)1099-128X(199609)10:5/6<521::AID-CEM448>3.0.CO;2-J 10.1007/s11306-011-0330-3 10.1080/01621459.1987.10478410 10.1007/s11306-015-0893-5 10.1016/j.aca.2015.02.012 10.1021/acs.analchem.8b03205 10.1016/j.chemolab.2014.08.005 10.1016/j.ecolmodel.2004.03.013 10.1080/01621459.2000.10474333 10.1016/0003-2670(86)80028-9 10.1039/B906712B 10.1007/s11306-007-0099-6 10.1016/j.chemolab.2013.05.013 10.1093/biomet/68.3.589 10.1093/oso/9780198538493.001.0001 10.1186/1471-2164-7-142 10.1016/S0924-2031(03)00045-6 10.18637/jss.v059.i10 10.1023/A:1010933404324 10.1007/s11306-012-0482-9 10.1007/s11306-019-1608-0 10.1038/bjc.2015.414 10.1007/s11306-016-1030-9 10.1016/S0304-3800(02)00064-9 10.1214/ss/1032280214 10.1007/s11306-018-1420-2 10.1007/s11306-019-1612-4 10.1371/journal.pcbi.1005752 10.25080/Majora-92bf1922-00a 10.1016/0169-7439(93)85002-X 10.1037/0033-2909.104.2.293 10.1007/978-0-387-84858-7 10.1016/S0169-7439(01)00155-1 10.1007/s11306-019-1588-0 10.1007/s11306-018-1367-3 10.1038/359594a0  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2020 Metabolomics is a copyright of Springer, (2020). All Rights Reserved. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2020 – notice: Metabolomics is a copyright of Springer, (2020). All Rights Reserved. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1007/s11306-020-1640-0 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Anatomy & Physiology | 
    
| EISSN | 1573-3890 | 
    
| ExternalDocumentID | 10.1007/s11306-020-1640-0 PMC6974504 31965332 10_1007_s11306_020_1640_0  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study  | 
    
| GrantInformation_xml | – fundername: Australian Research Council grantid: LE170100021 – fundername: ; grantid: LE170100021  | 
    
| GroupedDBID | --- -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 203 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5VS 67N 67Z 6NX 7X7 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHFT ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EN4 ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAK LK8 LLZTM LMP M4Y M7P MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM P2P PF0 PQQKQ PROAC PT4 Q2X QOR QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7U Z7V Z7W Z7Y Z82 Z83 Z87 ZMTXR ZOVNA ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c470t-8e9db7664dd830025fe12ddf82271f30547bc351690fc083efb7a58a23aa94663 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1573-3882 1573-3890  | 
    
| IngestDate | Sun Oct 26 04:14:07 EDT 2025 Tue Sep 30 16:45:51 EDT 2025 Fri Sep 05 07:12:03 EDT 2025 Tue Oct 07 05:57:57 EDT 2025 Thu Apr 03 06:54:14 EDT 2025 Thu Apr 24 23:10:17 EDT 2025 Wed Oct 01 02:40:50 EDT 2025 Fri Feb 21 02:37:49 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Variable importance in projection Metabolomics Jupyter Partial least squares Artificial neural networks Machine learning  | 
    
| Language | English | 
    
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c470t-8e9db7664dd830025fe12ddf82271f30547bc351690fc083efb7a58a23aa94663 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23  | 
    
| ORCID | 0000-0002-8832-2607 0000-0002-0758-0330 0000-0003-0775-9581  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s11306-020-1640-0.pdf | 
    
| PMID | 31965332 | 
    
| PQID | 2348326739 | 
    
| PQPubID | 326279 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s11306_020_1640_0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6974504 proquest_miscellaneous_2343498060 proquest_journals_2348326739 pubmed_primary_31965332 crossref_primary_10_1007_s11306_020_1640_0 crossref_citationtrail_10_1007_s11306_020_1640_0 springer_journals_10_1007_s11306_020_1640_0  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20200200 | 
    
| PublicationDateYYYYMMDD | 2020-02-01 | 
    
| PublicationDate_xml | – month: 2 year: 2020 text: 20200200  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: United States – name: Heidelberg  | 
    
| PublicationTitle | Metabolomics | 
    
| PublicationTitleAbbrev | Metabolomics | 
    
| PublicationTitleAlternate | Metabolomics | 
    
| PublicationYear | 2020 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | GarsonGDInterpreting neural network connection weightsAI Expert199164751 EfronBNonparametric estimates of standard error—the jackknife, the bootstrap and other methodsBiometrika198168589599 OldenJDJoyMKDeathRGAn accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated dataEcological Modelling2004178389397 MendezKMBroadhurstDIReinkeSNThe application of artificial neural networks in metabolomics: A historical perspectiveMetabolomics20191514231628551 EfronBBetter bootstrap confidence intervalsJournal of the American Statistical Association198782171185 PedregosaFVaroquauxIGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: machine learning in PythonThe Journal of Machine Learning Research20111228252830 van den BergRAHoefslootHCJWesterhuisJASmildeAKvan der WerfMJCentering, scaling, and transformations: improving the biological information content of metabolomics dataBMC Genomics20067142167620681534033 Theano Development Team (2016) Theano: A Python framework for fast computation of mathematical expressions. arXiv:1605.02688. GannaAFallTSalihovicSLeeWBroecklingCDKumarJIngelssonELarge-scale non-targeted metabolomic profiling in three human population-based studiesMetabolomics2016124 BishopCMNeural networks for pattern recognition1995New York, United States of AmericaOxford University Press FavillaSDuranteCVigniMLCocchiMAssessing feature relevance in NPLS models by VIPChemometrics and Intelligent Laboratory Systems201312976861:CAS:528:DC%2BC3sXhtVSls7fK GoodacreRKellDBBianchiGNeural networks and olive oilNature1992359594594 DoKTWahlSRafflerJMolnosSLaimighoferMAdamskiJKrumsiekJCharacterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategiesMetabolomics201814128308303986153696 EfronBBootstrap confidence—intervals—good or badPsychological Bulletin1988104293296 OldenJDJacksonDAIlluminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networksEcological Modelling2002154135150 GeladiPKowalskiBRPartial least-squares regression: a tutorialAnalytica Chimica Acta19861851171:CAS:528:DyaL28XmtVahs7c%3D WickhamHTidy dataJournal of Statistical Software201459123 BroadhurstDGoodacreRReinkeSNKuligowskiJWilsonIDLewisMRDunnWBGuidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studiesMetabolomics201814722980533629805336 GromskiPSMuhamadaliHEllisDIXuYCorreaETurnerMLGoodacreRA tutorial review: Metabolomics and partial least squares-discriminant analysis–a marriage of convenience or a shotgun weddingAnalytica Chimica Acta201587910231:CAS:528:DC%2BC2MXis1yktbc%3D26002472 BreimanLRandom forestsMachine Learning200145532 WoldSJohanssonECocchiMPLS: Partial least squares projections to latent structures, 3D QSAR in drug design: Theory1993Kluwer/Escom, Dordrecht, The NetherlandsMethods and Applications WesterhuisJAHoefslootHCJSmitSVisDJSmildeAKvan VelzenEJJvan DorstenFAAssessment of PLSDA cross validationMetabolomics2008481891:CAS:528:DC%2BD1cXisFSmtL8%3D Bokeh Development Team (2018). Bokeh: Python library for interactive visualization. https://bokeh.pydata.org/en/latest Virtanen, P., Gommers, R., Oliphant, T., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., Walt, S., Brett, M., Wilson, J., Millman, K., Mayorov, N., Nelson, A., Jones, E., Kern, R., Larson, E. and SciPy 1.0 Contributors (2019) SciPy 1.0—Fundamental algorithms for scientific computing in Python. arXiv:1907.10121. SteinwartIChristmannASupport Vector Machines2008New York, United States of AmericaSpringer WoldSSjöströmMErikssonLPLS-regression: A basic tool of chemometricsChemometrics and Intelligent Laboratory Systems2001581091301:CAS:528:DC%2BD3MXotF2mtLw%3D TranTNAfanadorNLBuydensLMCBlanchetLInterpretation of variable importance in partial least squares with significance multivariate correlation (sMC)Chemometrics and Intelligent Laboratory Systems20141381531601:CAS:528:DC%2BC2cXhsVCjs7vP ChanAWMercierPSchillerDBaileyRRobbinsSEurichDTBroadhurstD(1)H-NMR urinary metabolomic profiling for diagnosis of gastric cancerBritish Journal of Cancer201611459621:CAS:528:DC%2BC2MXitVSiurnK26645240 Di GuidaREngelJAllwoodJWWeberRJMJonesMRSommerUDunnWBNon-targeted UHPLC-MS metabolomic data processing methods: A comparative investigation of normalisation, missing value imputation, transformation and scalingMetabolomics20161293271230004831991 McKinney, W. (2010) Data Structures for Statistical Computing in Python. Proceedings of the 9th Python in Science Conference, 445, 51–56. MendezKMPritchardLReinkeSNBroadhurstDIToward collaborative open data science in metabolomics using Jupyter Notebooks and cloud computingMetabolomics201915125315222946745024 WilkinsMFMorrisCWBoddyLA comparison of Radial Basis Function and backpropagation neural networks for identification of marine phytoplankton from multivariate flow cytometry dataComputer Applications in the Biosciences1994102852941:STN:280:DyaK2M%2FgslSgtQ%3D%3D7922685 MendezKMReinkeSNBroadhurstDIA comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classificationMetabolomics201915150317286486856029 DiCiccioTJEfronBBootstrap confidence intervalsStatistical Science199611189212 Kristensen, M.R.B. and Vinter, B. (2010) Numerical Python for scalable architectures, Proceedings of the Fourth Conference on Partitioned Global Address Space Programming Model, Association for Computing Machinery, pp. 1–9. ErikssonLByrneTJohanssonETryggJVikströmCMulti- and megavariate data analysis: basic principles and applications20133Malmö, SwedenUmetrics Academy WoldHPath models with latent variables: The NIPALS approach1975Quantitative sociologyElsevier307357 RohartFGautierBSinghALê CaoK-AmixOmics: An R package for ‘omics feature selection and multiple data integrationPLOS Computational Biology201713e1005752290998535687754 HastieTTibshiraniRFriedmanJThe Elements of Statistical Learning20092New York, United States of AmericaSpringer DunnWBBroadhurstDIAthertonHJGoodacreRGriffinJLSystems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopyChemical Society Reviews2011403874261:CAS:528:DC%2BC3cXhsFKju7bI20717559 de JongSSIMPLS: An alternative approach to partial least squares regressionChemometrics and Intelligent Laboratory Systems199318251263 XiaJBroadhurstDIWilsonMWishartDSTranslational biomarker discovery in clinical metabolomics: An introductory tutorialMetabolomics201392802991:CAS:528:DC%2BC3sXksF2msb8%3D23543913 ReinkeSNGalindo-PrietoBSkotareTBroadhurstDISinghaniaAHorowitzDWheelockCEOnPLS-based multi-block data integration: A multivariate approach to interrogating biological interactions in asthmaAnalytical Chemistry20189013400134081:CAS:528:DC%2BC1cXhvFeru73N303359736256348 SzymańskaESaccentiESmildeAKWesterhuisJADouble-check: Validation of diagnostic statistics for PLS-DA models in metabolomics studiesMetabolomics2012831622593721 LöfstedtTTryggJOnPLS—a novel multiblock method for the modelling of predictive and orthogonal variationJournal of Chemometrics201125441455 EfronBThe bootstrap and modern statisticsJournal of the American Statistical Association20009512931296 GoodacreRExplanatory analysis of spectroscopic data using machine learning of simple, interpretable rulesVibrational Spectroscopy20033233451:CAS:528:DC%2BD3sXls1alsb4%3D Chollet, F. (2015). Keras. https://keras.io BroadhurstDIKellDBStatistical strategies for avoiding false discoveries in metabolomics and related experimentsMetabolomics200621711961:CAS:528:DC%2BD2sXhsVWktL4%3D LindgrenFHansenBKarcherWSjöströmMErikssonLModel validation by permutation tests: Applications to variable selectionJournal of Chemometrics1996105215321:CAS:528:DyaK2sXjtVyku7s%3D F Pedregosa (1640_CR35) 2011; 12 I Steinwart (1640_CR38) 2008 JA Westerhuis (1640_CR44) 2008; 4 E Szymańska (1640_CR39) 2012; 8 1640_CR29 1640_CR26 KM Mendez (1640_CR31) 2019; 15 TN Tran (1640_CR41) 2014; 138 P Geladi (1640_CR21) 1986; 185 A Ganna (1640_CR19) 2016; 12 S Wold (1640_CR48) 1993 S Favilla (1640_CR18) 2013; 129 AW Chan (1640_CR6) 2016; 114 T Löfstedt (1640_CR28) 2011; 25 F Lindgren (1640_CR27) 1996; 10 J Xia (1640_CR50) 2013; 9 RA van den Berg (1640_CR42) 2006; 7 R Goodacre (1640_CR22) 2003; 32 KM Mendez (1640_CR32) 2019; 15 SN Reinke (1640_CR36) 2018; 90 CM Bishop (1640_CR1) 1995 WB Dunn (1640_CR12) 2011; 40 B Efron (1640_CR14) 1987; 82 GD Garson (1640_CR20) 1991; 6 F Rohart (1640_CR37) 2017; 13 S Wold (1640_CR49) 2001; 58 L Breiman (1640_CR3) 2001; 45 DI Broadhurst (1640_CR4) 2006; 2 KT Do (1640_CR11) 2018; 14 R Di Guida (1640_CR9) 2016; 12 1640_CR43 1640_CR40 MF Wilkins (1640_CR46) 1994; 10 S de Jong (1640_CR8) 1993; 18 T Hastie (1640_CR25) 2009 B Efron (1640_CR15) 1988; 104 D Broadhurst (1640_CR5) 2018; 14 PS Gromski (1640_CR24) 2015; 879 B Efron (1640_CR13) 1981; 68 L Eriksson (1640_CR17) 2013 R Goodacre (1640_CR23) 1992; 359 H Wold (1640_CR47) 1975 JD Olden (1640_CR34) 2004; 178 KM Mendez (1640_CR30) 2019; 15 1640_CR2 JD Olden (1640_CR33) 2002; 154 TJ DiCiccio (1640_CR10) 1996; 11 B Efron (1640_CR16) 2000; 95 H Wickham (1640_CR45) 2014; 59 1640_CR7  | 
    
| References_xml | – reference: PedregosaFVaroquauxIGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: machine learning in PythonThe Journal of Machine Learning Research20111228252830 – reference: GoodacreRKellDBBianchiGNeural networks and olive oilNature1992359594594 – reference: DiCiccioTJEfronBBootstrap confidence intervalsStatistical Science199611189212 – reference: ReinkeSNGalindo-PrietoBSkotareTBroadhurstDISinghaniaAHorowitzDWheelockCEOnPLS-based multi-block data integration: A multivariate approach to interrogating biological interactions in asthmaAnalytical Chemistry20189013400134081:CAS:528:DC%2BC1cXhvFeru73N303359736256348 – reference: EfronBNonparametric estimates of standard error—the jackknife, the bootstrap and other methodsBiometrika198168589599 – reference: ErikssonLByrneTJohanssonETryggJVikströmCMulti- and megavariate data analysis: basic principles and applications20133Malmö, SwedenUmetrics Academy – reference: McKinney, W. (2010) Data Structures for Statistical Computing in Python. Proceedings of the 9th Python in Science Conference, 445, 51–56. – reference: SteinwartIChristmannASupport Vector Machines2008New York, United States of AmericaSpringer – reference: EfronBThe bootstrap and modern statisticsJournal of the American Statistical Association20009512931296 – reference: ChanAWMercierPSchillerDBaileyRRobbinsSEurichDTBroadhurstD(1)H-NMR urinary metabolomic profiling for diagnosis of gastric cancerBritish Journal of Cancer201611459621:CAS:528:DC%2BC2MXitVSiurnK26645240 – reference: MendezKMBroadhurstDIReinkeSNThe application of artificial neural networks in metabolomics: A historical perspectiveMetabolomics20191514231628551 – reference: WoldHPath models with latent variables: The NIPALS approach1975Quantitative sociologyElsevier307357 – reference: GoodacreRExplanatory analysis of spectroscopic data using machine learning of simple, interpretable rulesVibrational Spectroscopy20033233451:CAS:528:DC%2BD3sXls1alsb4%3D – reference: EfronBBetter bootstrap confidence intervalsJournal of the American Statistical Association198782171185 – reference: GromskiPSMuhamadaliHEllisDIXuYCorreaETurnerMLGoodacreRA tutorial review: Metabolomics and partial least squares-discriminant analysis–a marriage of convenience or a shotgun weddingAnalytica Chimica Acta201587910231:CAS:528:DC%2BC2MXis1yktbc%3D26002472 – reference: SzymańskaESaccentiESmildeAKWesterhuisJADouble-check: Validation of diagnostic statistics for PLS-DA models in metabolomics studiesMetabolomics2012831622593721 – reference: EfronBBootstrap confidence—intervals—good or badPsychological Bulletin1988104293296 – reference: LindgrenFHansenBKarcherWSjöströmMErikssonLModel validation by permutation tests: Applications to variable selectionJournal of Chemometrics1996105215321:CAS:528:DyaK2sXjtVyku7s%3D – reference: BroadhurstDGoodacreRReinkeSNKuligowskiJWilsonIDLewisMRDunnWBGuidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studiesMetabolomics201814722980533629805336 – reference: GeladiPKowalskiBRPartial least-squares regression: a tutorialAnalytica Chimica Acta19861851171:CAS:528:DyaL28XmtVahs7c%3D – reference: XiaJBroadhurstDIWilsonMWishartDSTranslational biomarker discovery in clinical metabolomics: An introductory tutorialMetabolomics201392802991:CAS:528:DC%2BC3sXksF2msb8%3D23543913 – reference: LöfstedtTTryggJOnPLS—a novel multiblock method for the modelling of predictive and orthogonal variationJournal of Chemometrics201125441455 – reference: Di GuidaREngelJAllwoodJWWeberRJMJonesMRSommerUDunnWBNon-targeted UHPLC-MS metabolomic data processing methods: A comparative investigation of normalisation, missing value imputation, transformation and scalingMetabolomics20161293271230004831991 – reference: DunnWBBroadhurstDIAthertonHJGoodacreRGriffinJLSystems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopyChemical Society Reviews2011403874261:CAS:528:DC%2BC3cXhsFKju7bI20717559 – reference: MendezKMPritchardLReinkeSNBroadhurstDIToward collaborative open data science in metabolomics using Jupyter Notebooks and cloud computingMetabolomics201915125315222946745024 – reference: Chollet, F. (2015). Keras. https://keras.io/ – reference: van den BergRAHoefslootHCJWesterhuisJASmildeAKvan der WerfMJCentering, scaling, and transformations: improving the biological information content of metabolomics dataBMC Genomics20067142167620681534033 – reference: Bokeh Development Team (2018). Bokeh: Python library for interactive visualization. https://bokeh.pydata.org/en/latest/ – reference: BreimanLRandom forestsMachine Learning200145532 – reference: WesterhuisJAHoefslootHCJSmitSVisDJSmildeAKvan VelzenEJJvan DorstenFAAssessment of PLSDA cross validationMetabolomics2008481891:CAS:528:DC%2BD1cXisFSmtL8%3D – reference: BishopCMNeural networks for pattern recognition1995New York, United States of AmericaOxford University Press – reference: GarsonGDInterpreting neural network connection weightsAI Expert199164751 – reference: WoldSSjöströmMErikssonLPLS-regression: A basic tool of chemometricsChemometrics and Intelligent Laboratory Systems2001581091301:CAS:528:DC%2BD3MXotF2mtLw%3D – reference: WoldSJohanssonECocchiMPLS: Partial least squares projections to latent structures, 3D QSAR in drug design: Theory1993Kluwer/Escom, Dordrecht, The NetherlandsMethods and Applications – reference: Theano Development Team (2016) Theano: A Python framework for fast computation of mathematical expressions. arXiv:1605.02688. – reference: OldenJDJoyMKDeathRGAn accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated dataEcological Modelling2004178389397 – reference: RohartFGautierBSinghALê CaoK-AmixOmics: An R package for ‘omics feature selection and multiple data integrationPLOS Computational Biology201713e1005752290998535687754 – reference: WilkinsMFMorrisCWBoddyLA comparison of Radial Basis Function and backpropagation neural networks for identification of marine phytoplankton from multivariate flow cytometry dataComputer Applications in the Biosciences1994102852941:STN:280:DyaK2M%2FgslSgtQ%3D%3D7922685 – reference: Virtanen, P., Gommers, R., Oliphant, T., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., Walt, S., Brett, M., Wilson, J., Millman, K., Mayorov, N., Nelson, A., Jones, E., Kern, R., Larson, E. and SciPy 1.0 Contributors (2019) SciPy 1.0—Fundamental algorithms for scientific computing in Python. arXiv:1907.10121. – reference: BroadhurstDIKellDBStatistical strategies for avoiding false discoveries in metabolomics and related experimentsMetabolomics200621711961:CAS:528:DC%2BD2sXhsVWktL4%3D – reference: Kristensen, M.R.B. and Vinter, B. (2010) Numerical Python for scalable architectures, Proceedings of the Fourth Conference on Partitioned Global Address Space Programming Model, Association for Computing Machinery, pp. 1–9. – reference: DoKTWahlSRafflerJMolnosSLaimighoferMAdamskiJKrumsiekJCharacterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategiesMetabolomics201814128308303986153696 – reference: MendezKMReinkeSNBroadhurstDIA comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classificationMetabolomics201915150317286486856029 – reference: OldenJDJacksonDAIlluminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networksEcological Modelling2002154135150 – reference: de JongSSIMPLS: An alternative approach to partial least squares regressionChemometrics and Intelligent Laboratory Systems199318251263 – reference: TranTNAfanadorNLBuydensLMCBlanchetLInterpretation of variable importance in partial least squares with significance multivariate correlation (sMC)Chemometrics and Intelligent Laboratory Systems20141381531601:CAS:528:DC%2BC2cXhsVCjs7vP – reference: FavillaSDuranteCVigniMLCocchiMAssessing feature relevance in NPLS models by VIPChemometrics and Intelligent Laboratory Systems201312976861:CAS:528:DC%2BC3sXhtVSls7fK – reference: GannaAFallTSalihovicSLeeWBroecklingCDKumarJIngelssonELarge-scale non-targeted metabolomic profiling in three human population-based studiesMetabolomics2016124 – reference: WickhamHTidy dataJournal of Statistical Software201459123 – reference: HastieTTibshiraniRFriedmanJThe Elements of Statistical Learning20092New York, United States of AmericaSpringer – volume: 25 start-page: 441 year: 2011 ident: 1640_CR28 publication-title: Journal of Chemometrics doi: 10.1002/cem.1388 – volume: 2 start-page: 171 year: 2006 ident: 1640_CR4 publication-title: Metabolomics doi: 10.1007/s11306-006-0037-z – volume: 10 start-page: 521 year: 1996 ident: 1640_CR27 publication-title: Journal of Chemometrics doi: 10.1002/(SICI)1099-128X(199609)10:5/6<521::AID-CEM448>3.0.CO;2-J – volume: 6 start-page: 47 year: 1991 ident: 1640_CR20 publication-title: AI Expert – volume: 8 start-page: 3 year: 2012 ident: 1640_CR39 publication-title: Metabolomics doi: 10.1007/s11306-011-0330-3 – volume: 82 start-page: 171 year: 1987 ident: 1640_CR14 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1987.10478410 – volume-title: Multi- and megavariate data analysis: basic principles and applications year: 2013 ident: 1640_CR17 – volume: 12 start-page: 4 year: 2016 ident: 1640_CR19 publication-title: Metabolomics doi: 10.1007/s11306-015-0893-5 – volume: 879 start-page: 10 year: 2015 ident: 1640_CR24 publication-title: Analytica Chimica Acta doi: 10.1016/j.aca.2015.02.012 – volume: 90 start-page: 13400 year: 2018 ident: 1640_CR36 publication-title: Analytical Chemistry doi: 10.1021/acs.analchem.8b03205 – volume: 138 start-page: 153 year: 2014 ident: 1640_CR41 publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2014.08.005 – volume: 178 start-page: 389 year: 2004 ident: 1640_CR34 publication-title: Ecological Modelling doi: 10.1016/j.ecolmodel.2004.03.013 – ident: 1640_CR43 – volume: 95 start-page: 1293 year: 2000 ident: 1640_CR16 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2000.10474333 – volume: 185 start-page: 1 year: 1986 ident: 1640_CR21 publication-title: Analytica Chimica Acta doi: 10.1016/0003-2670(86)80028-9 – ident: 1640_CR7 – volume: 40 start-page: 387 year: 2011 ident: 1640_CR12 publication-title: Chemical Society Reviews doi: 10.1039/B906712B – volume: 4 start-page: 81 year: 2008 ident: 1640_CR44 publication-title: Metabolomics doi: 10.1007/s11306-007-0099-6 – volume: 129 start-page: 76 year: 2013 ident: 1640_CR18 publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2013.05.013 – volume: 68 start-page: 589 year: 1981 ident: 1640_CR13 publication-title: Biometrika doi: 10.1093/biomet/68.3.589 – volume-title: Neural networks for pattern recognition year: 1995 ident: 1640_CR1 doi: 10.1093/oso/9780198538493.001.0001 – ident: 1640_CR40 – volume: 7 start-page: 142 year: 2006 ident: 1640_CR42 publication-title: BMC Genomics doi: 10.1186/1471-2164-7-142 – volume: 32 start-page: 33 year: 2003 ident: 1640_CR22 publication-title: Vibrational Spectroscopy doi: 10.1016/S0924-2031(03)00045-6 – volume: 59 start-page: 1 year: 2014 ident: 1640_CR45 publication-title: Journal of Statistical Software doi: 10.18637/jss.v059.i10 – volume: 45 start-page: 5 year: 2001 ident: 1640_CR3 publication-title: Machine Learning doi: 10.1023/A:1010933404324 – ident: 1640_CR2 – volume: 9 start-page: 280 year: 2013 ident: 1640_CR50 publication-title: Metabolomics doi: 10.1007/s11306-012-0482-9 – volume-title: PLS: Partial least squares projections to latent structures, 3D QSAR in drug design: Theory year: 1993 ident: 1640_CR48 – volume: 15 start-page: 142 year: 2019 ident: 1640_CR30 publication-title: Metabolomics doi: 10.1007/s11306-019-1608-0 – volume: 114 start-page: 59 year: 2016 ident: 1640_CR6 publication-title: British Journal of Cancer doi: 10.1038/bjc.2015.414 – volume: 12 start-page: 93 year: 2016 ident: 1640_CR9 publication-title: Metabolomics doi: 10.1007/s11306-016-1030-9 – volume: 154 start-page: 135 year: 2002 ident: 1640_CR33 publication-title: Ecological Modelling doi: 10.1016/S0304-3800(02)00064-9 – volume: 11 start-page: 189 year: 1996 ident: 1640_CR10 publication-title: Statistical Science doi: 10.1214/ss/1032280214 – volume: 10 start-page: 285 year: 1994 ident: 1640_CR46 publication-title: Computer Applications in the Biosciences – volume: 14 start-page: 128 year: 2018 ident: 1640_CR11 publication-title: Metabolomics doi: 10.1007/s11306-018-1420-2 – volume-title: Support Vector Machines year: 2008 ident: 1640_CR38 – volume: 15 start-page: 150 year: 2019 ident: 1640_CR32 publication-title: Metabolomics doi: 10.1007/s11306-019-1612-4 – ident: 1640_CR26 – volume: 12 start-page: 2825 year: 2011 ident: 1640_CR35 publication-title: The Journal of Machine Learning Research – volume: 13 start-page: e1005752 year: 2017 ident: 1640_CR37 publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1005752 – ident: 1640_CR29 doi: 10.25080/Majora-92bf1922-00a – volume: 18 start-page: 251 year: 1993 ident: 1640_CR8 publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/0169-7439(93)85002-X – volume: 104 start-page: 293 year: 1988 ident: 1640_CR15 publication-title: Psychological Bulletin doi: 10.1037/0033-2909.104.2.293 – volume-title: The Elements of Statistical Learning year: 2009 ident: 1640_CR25 doi: 10.1007/978-0-387-84858-7 – start-page: 307 volume-title: Path models with latent variables: The NIPALS approach year: 1975 ident: 1640_CR47 – volume: 58 start-page: 109 year: 2001 ident: 1640_CR49 publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/S0169-7439(01)00155-1 – volume: 15 start-page: 125 year: 2019 ident: 1640_CR31 publication-title: Metabolomics doi: 10.1007/s11306-019-1588-0 – volume: 14 start-page: 72 year: 2018 ident: 1640_CR5 publication-title: Metabolomics doi: 10.1007/s11306-018-1367-3 – volume: 359 start-page: 594 year: 1992 ident: 1640_CR23 publication-title: Nature doi: 10.1038/359594a0  | 
    
| SSID | ssj0044970 | 
    
| Score | 2.4343371 | 
    
| Snippet | Introduction
Metabolomics data is commonly modelled multivariately using partial least squares discriminant analysis (PLS-DA). Its success is primarily due to... Metabolomics data is commonly modelled multivariately using partial least squares discriminant analysis (PLS-DA). Its success is primarily due to ease of... IntroductionMetabolomics data is commonly modelled multivariately using partial least squares discriminant analysis (PLS-DA). Its success is primarily due to...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 17 | 
    
| SubjectTerms | Biochemistry Biomedical and Life Sciences Biomedicine Cell Biology Developmental Biology Discriminant Analysis Learning algorithms Least-Squares Analysis Life Sciences Machine learning Metabolites Metabolomics Molecular Medicine Neural networks Neural Networks, Computer Original Original Article Software Statistical analysis  | 
    
| SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQOQAHBJRHoKBBQhyoLJLYsRNuVUVVIZUTlXqLktiGRWmyJQlo_yC_ixnnUZaiIk57iD1Za2bsz5mZbxh75QyCarwmc2sTw2WZGZ6lleBlGDt0p1IqScXJJx_V8an8cJacTWTRVAvzR_z-bRfhJktpsiFHYB9yvJ3fxDNK-bisOpw3XSkz3xcuSrTgAlHjHMD8m4jtI-gKrryaHrnESO-wW0OzLjY_irr-7Rg6usfuTvgRDkaF32c3bPOA7R40eHc-38Br8Bmd_lP5Lvt5siImCJQJVEUCazITnFxTvx7oLgaqPQKqyx17ezU9FBNHCfQt0OiRXwKI9dL_-Jzx7h0UUC0NDKF1QMfj-FWx3oC9GFZowLgu-L7qqGpzTBlC6Qac9VSi4HPkp2Zb-La27oBy8D_D12G9QWVD0_Y-kts9ZKdH7z8dHvOpbwOvpA57ntrMlFopaUwqCFQ5G8XGOMQiOnK4wUhdVsIH6FyFENC6UhdJWsSiKIjuXjxiO03b2CcMZKGEjqxBFChpVpbGlZRGJrpMnXZRwMJZlXk1kZpTb406v6RjJu3nqP2ctJ-HAXuzTFmPjB7XDd6b7SOfnLvLYyFxH1RaZAF7uTxGt6RYS9HYdvBjhMzSUKGIx6M5LW-jXQ9RdhwwvWVoywCi_N5-0qy-eOpvhde_JJQB259N8vJvXbOI_cVq_73kp_8l-xm7HZNn-Tz2PbbTfxvsc4RpffnCO-gv1ZY5Bw priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbK9gA98CqUhYIGCXGgyjYbO3HCbVVRVUitOLBSOUVJbMNCSLYkAS0_kN_FjPNYlqIixCmR_Irl8fhzZuYbxp4ZhaAar8mO1r5yRBopJwoz7qSuZ3A7pSIQFJx8ehaczMXrc_98ix31sTDW2703SbYxDcTSVNSHS2UO14FvqHrJedZ1EO67jjvB0mtsO_ARkI_Y9vzszeydZUqV3OGhTRnVvUeDbfNP_WyeTpcg52XPycF8usOuN8UyWX1L8vyXE-r4FlP93FrHlE-Tpk4n2fffaB__c_K32c0OwcKsFbk7bEsXd9nurMDb--cVPAfrU2p_1u-yH6cL4qLAkYDiWGBJgoqNc8oYBNVFQ9FPQJHBbXaxooakY0mBugSq3TJcAPFu2of1Wq9eQgLZkEIRSgN0QLf_NfMV6ItmgVsI5wRfFxXFjbZOS9i7AqMtmSlYL_0u3ReOVuYVUBTAe_jYLFcoblCUtbUlV_fY_PjV26MTp8sc4WRCurUT6kilMgiEUiEnWGf01FPKIBqSU4MqTsg049ZEaDIEodqkMvHDxONJQoT7_D4bFWWhHzAQScDlVCvEoYJaRaGXCaGEL9PQSDMdM7eXmDjraNUpu0cerwmhab1iXK-Y1it2x-zF0GTZcopcVXm_F8O4Uy9V7HGBmjiQPBqzp0MxKgay9iSFLhtbh4sodAPsYq-V2mE00ruI870xkxvyPFQg0vHNkmLxwZKPB3gB9V0xZge9oK4_64pJHAyb4-9TfvhPtR-xGx7tBetJv89G9ZdGP0agWKdPOkXwE89mZVM priority: 102 providerName: Unpaywall  | 
    
| Title | Migrating from partial least squares discriminant analysis to artificial neural networks: a comparison of functionally equivalent visualisation and feature contribution tools using jupyter notebooks | 
    
| URI | https://link.springer.com/article/10.1007/s11306-020-1640-0 https://www.ncbi.nlm.nih.gov/pubmed/31965332 https://www.proquest.com/docview/2348326739 https://www.proquest.com/docview/2343498060 https://pubmed.ncbi.nlm.nih.gov/PMC6974504 https://link.springer.com/content/pdf/10.1007/s11306-020-1640-0.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 16 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1573-3890 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0044970 issn: 1573-3882 databaseCode: ABDBF dateStart: 20100301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-3890 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0044970 issn: 1573-3882 databaseCode: AFBBN dateStart: 20050301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-3890 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0044970 issn: 1573-3882 databaseCode: AGYKE dateStart: 20050101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-3890 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0044970 issn: 1573-3882 databaseCode: U2A dateStart: 20050302 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3di9NAEF_u2gf1QdTTs3qWEcQHj2CabLKJINLW1kO5coiF3lNIshutxKQ1jdJ_0L_Lmc1HLQf1pYHuR7Lsb2dnd2Z-w9iLRKJSjcdkQylHGjzypeF7sW1EppXgcoq4yyk4-XLmXsz5x4WzOGKzJhaG3CobmagFtcxjuiN_bdkcwecK23-3WhuUNYqsq00KjbBOrSDfaoqxY9a1iBmrw7qjyezqcyObOfd1-riBI2zDRuWysXPqYDoU5-SQaxp4hDANc3-nuqF-3vSibE2pd9itMluF299hmv6zW03vsbu1mgnDChf32ZHKHrCTYYZH7B9beAna8VPfqJ-wP5dLIozAPoGCTWBFaMLGKaX1gWJdUogSUPhulQIs20BYU5nAJgeqXdFQAJFj6od2LS_eQAhxm-cQ8gRoF60uH9MtqHW5RJzjuODXsqDgzsqzCHuXkCjNOAralb7OyYVvy9MCyFX_K3wvV1vEBGT5Rht8i4dsPp18GV8YdXoHI-bC3Bie8mUkXJdL6dmkeyVqYEmZoMoiBgnKIS6i2NZ2vCRGTVElkQgdL7TsMCRWfPsR62R5ph4z4KFri4GSqCxyauV7Vsy55I6IvEQkgx4zm6kM4pr7nFJwpMGOtZlmP8DZD2j2A7PHXrVNVhXxx6HKZw0-gloGFMEOsT32vC3G1UsmmTBTeanr2Nz3TBe7OK3g1L6NhCMq41aPiT2gtRWIGXy_JFt-0wzhLp4SHZP32HkDyd1nHRjEeYva_w_5yeEhP2W3LVpK2r_9jHU2P0v1DNW3TdRnx2Ih-qw7HL0fTen54frTpF-vVCwdu2P8nVtD_G8-uxpe_wVKQ07A | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeygcEFAeCwUGCThQRWQTJ06QKlSgVUu7K4RaqbeQxDYsCskuSaj2z3HkdzHjPJZVpeXU00ob24k1b3vmG8aea4lONYbJllKetHgSSisMUtdKbEejOCXc51ScPBr7h2f847l3vsZ-d7UwlFbZ6USjqGWR0hn5a8flyHy-cMO305lFXaPodrVroRG3rRXkroEYaws7jtX8AkO4cvfoA9L7heMc7J--P7TaLgNWyoVdWYEKZSJ8n0sZuOQCaDV0pNRoOcVQozhwkaSuuU7SKTosSici9oLYceOYwNldXPca2-AuDzH423i3P_70ubMFHP8zJZmecC0XndnuXtUU76H5oARg28KQxbbsZct4yd29nLXZX93eYJt1Po3nF3GW_WMdD26xm61bC3sNH95mayq_w7b2cgzpf8zhJZhEU3OCv8X-jCYEUIFrAhW3wJS4Fydn1EYIyllNJVFA5cJNy7G8griFToGqABrdwF4AgXGaH5PKXr6BGNK-ryIUGshqN4ed2RzUrJ6gXOG-4NekpGLSJpMJV5eglUE4BZO63_YAw7cVWQlUGvAVvtfTOfIg5EVlLpjLu-zsSgh9j63nRa4eMOCx74qhkuiccpoVBk7KueSeSAIt9HDA7I6UUdpirVPLjyxaoEQT9SOkfkTUj-wBe9VPmTZAI6sGb3f8EbU6p4wWEjJgz_rHqC3oCijOVVGbMcinge3jEvcbdurfRsoYnX9nwMQSo_UDCIl8-Uk--WYQyX2MSj2bD9hOx5KLz1qxiZ2ea_-_5Yert_yUbR6ejk6ik6Px8SN23SGxMrn122y9-lmrx-g6VsmTVj6BfblqlfAXiMiDYw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIvE4IKA8AgUGCThQWXW8G6-NhFBFiVpKKw5Uys21vbsQZOwE21T5a_wAfhcz60eIKoVTTzl4vc5q3jsz3zD2wih0qjFMdrQeKUckoXLCIOVO4noGxSkRvqDm5OMT_-BUfJyMJhvsd9cLQ2WVnU60iloVKd2R73pcIPP5koe7pi2L-Lw_fjebOzRBijKt3TiNhkWO9OIcw7fy7eE-0vql540_fHl_4LQTBpxUSLdyAh2qRPq-UCrgZP6NHnpKGbSacmhQFIRMUm5TSSZFZ0WbRMajIPZ4HBMwO8d9r7CrkvOQygnlpA_2hAjtoLrhSHKHoxvbZVRt2x4aDir9dR0MVlzHXbWJFxzdi_WafdL2Jrte57N4cR5n2T92cXyb3WodWthrOPAO29D5Xba1l2Mw_2MBr8CWmNq7-y3253hK0BS4J1BbC8yIb_HljAYIQTmvqRkKqFG4GTaWVxC3oClQFUCrG8ALIBhO-2OL2Ms3EEPaT1SEwgDZ6-aaM1uAntdTlCg8F_yaltRG2tQw4e4KjLbYpmCL9tvpX_i1IiuBmgK-wvd6tkDug7yobGq5vMdOL4XM99lmXuT6IQMR-1wOtUK3VNBbYeClQigxkklgpBkOmNuRMkpblHUa9pFFS3xoon6E1I-I-pE7YK_7V2YNxMi6xdsdf0SttimjpWwM2PP-MeoJSv7EuS5qu4aLMHB93OJBw07910gNo9vvDZhcYbR-AWGQrz7Jp98sFrmP8ejIFQO207Hk8m-tOcROz7X_P_Kj9Ud-xq6hIog-HZ4cPWY3PJIqW1S_zTarn7V-gj5jlTy1wgns7LK1wV_ysYD9 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbK9gA98CqUhYIGCXGgyjYbO3HCbVVRVUitOLBSOUVJbMNCSLYkAS0_kN_FjPNYlqIixCmR_Irl8fhzZuYbxp4ZhaAar8mO1r5yRBopJwoz7qSuZ3A7pSIQFJx8ehaczMXrc_98ix31sTDW2703SbYxDcTSVNSHS2UO14FvqHrJedZ1EO67jjvB0mtsO_ARkI_Y9vzszeydZUqV3OGhTRnVvUeDbfNP_WyeTpcg52XPycF8usOuN8UyWX1L8vyXE-r4FlP93FrHlE-Tpk4n2fffaB__c_K32c0OwcKsFbk7bEsXd9nurMDb--cVPAfrU2p_1u-yH6cL4qLAkYDiWGBJgoqNc8oYBNVFQ9FPQJHBbXaxooakY0mBugSq3TJcAPFu2of1Wq9eQgLZkEIRSgN0QLf_NfMV6ItmgVsI5wRfFxXFjbZOS9i7AqMtmSlYL_0u3ReOVuYVUBTAe_jYLFcoblCUtbUlV_fY_PjV26MTp8sc4WRCurUT6kilMgiEUiEnWGf01FPKIBqSU4MqTsg049ZEaDIEodqkMvHDxONJQoT7_D4bFWWhHzAQScDlVCvEoYJaRaGXCaGEL9PQSDMdM7eXmDjraNUpu0cerwmhab1iXK-Y1it2x-zF0GTZcopcVXm_F8O4Uy9V7HGBmjiQPBqzp0MxKgay9iSFLhtbh4sodAPsYq-V2mE00ruI870xkxvyPFQg0vHNkmLxwZKPB3gB9V0xZge9oK4_64pJHAyb4-9TfvhPtR-xGx7tBetJv89G9ZdGP0agWKdPOkXwE89mZVM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Migrating+from+partial+least+squares+discriminant+analysis+to+artificial+neural+networks%3A+a+comparison+of+functionally+equivalent+visualisation+and+feature+contribution+tools+using+jupyter+notebooks&rft.jtitle=Metabolomics&rft.au=Mendez%2C+Kevin+M&rft.au=Broadhurst%2C+David+I&rft.au=Reinke%2C+Stacey+N&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1573-3882&rft.eissn=1573-3890&rft.volume=16&rft.issue=2&rft_id=info:doi/10.1007%2Fs11306-020-1640-0&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-3882&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-3882&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-3882&client=summon |