Migrating from partial least squares discriminant analysis to artificial neural networks: a comparison of functionally equivalent visualisation and feature contribution tools using jupyter notebooks

Introduction Metabolomics data is commonly modelled multivariately using partial least squares discriminant analysis (PLS-DA). Its success is primarily due to ease of interpretation, through projection to latent structures, and transparent assessment of feature importance using regression coefficien...

Full description

Saved in:
Bibliographic Details
Published inMetabolomics Vol. 16; no. 2; p. 17
Main Authors Mendez, Kevin M., Broadhurst, David I., Reinke, Stacey N.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1573-3882
1573-3890
1573-3890
DOI10.1007/s11306-020-1640-0

Cover

Abstract Introduction Metabolomics data is commonly modelled multivariately using partial least squares discriminant analysis (PLS-DA). Its success is primarily due to ease of interpretation, through projection to latent structures, and transparent assessment of feature importance using regression coefficients and Variable Importance in Projection scores. In recent years several non-linear machine learning (ML) methods have grown in popularity but with limited uptake essentially due to convoluted optimisation and interpretation. Artificial neural networks (ANNs) are a non-linear projection-based ML method that share a structural equivalence with PLS, and as such should be amenable to equivalent optimisation and interpretation methods. Objectives We hypothesise that standardised optimisation, visualisation, evaluation and statistical inference techniques commonly used by metabolomics researchers for PLS-DA can be migrated to a non-linear, single hidden layer, ANN. Methods We compared a standardised optimisation, visualisation, evaluation and statistical inference techniques workflow for PLS with the proposed ANN workflow. Both workflows were implemented in the Python programming language. All code and results have been made publicly available as Jupyter notebooks on GitHub. Results The migration of the PLS workflow to a non-linear, single hidden layer, ANN was successful. There was a similarity in significant metabolites determined using PLS model coefficients and ANN Connection Weight Approach. Conclusion We have shown that it is possible to migrate the standardised PLS-DA workflow to simple non-linear ANNs. This result opens the door for more widespread use and to the investigation of transparent interpretation of more complex ANN architectures.
AbstractList Metabolomics data is commonly modelled multivariately using partial least squares discriminant analysis (PLS-DA). Its success is primarily due to ease of interpretation, through projection to latent structures, and transparent assessment of feature importance using regression coefficients and Variable Importance in Projection scores. In recent years several non-linear machine learning (ML) methods have grown in popularity but with limited uptake essentially due to convoluted optimisation and interpretation. Artificial neural networks (ANNs) are a non-linear projection-based ML method that share a structural equivalence with PLS, and as such should be amenable to equivalent optimisation and interpretation methods. We hypothesise that standardised optimisation, visualisation, evaluation and statistical inference techniques commonly used by metabolomics researchers for PLS-DA can be migrated to a non-linear, single hidden layer, ANN. We compared a standardised optimisation, visualisation, evaluation and statistical inference techniques workflow for PLS with the proposed ANN workflow. Both workflows were implemented in the Python programming language. All code and results have been made publicly available as Jupyter notebooks on GitHub. The migration of the PLS workflow to a non-linear, single hidden layer, ANN was successful. There was a similarity in significant metabolites determined using PLS model coefficients and ANN Connection Weight Approach. We have shown that it is possible to migrate the standardised PLS-DA workflow to simple non-linear ANNs. This result opens the door for more widespread use and to the investigation of transparent interpretation of more complex ANN architectures.
Introduction Metabolomics data is commonly modelled multivariately using partial least squares discriminant analysis (PLS-DA). Its success is primarily due to ease of interpretation, through projection to latent structures, and transparent assessment of feature importance using regression coefficients and Variable Importance in Projection scores. In recent years several non-linear machine learning (ML) methods have grown in popularity but with limited uptake essentially due to convoluted optimisation and interpretation. Artificial neural networks (ANNs) are a non-linear projection-based ML method that share a structural equivalence with PLS, and as such should be amenable to equivalent optimisation and interpretation methods. Objectives We hypothesise that standardised optimisation, visualisation, evaluation and statistical inference techniques commonly used by metabolomics researchers for PLS-DA can be migrated to a non-linear, single hidden layer, ANN. Methods We compared a standardised optimisation, visualisation, evaluation and statistical inference techniques workflow for PLS with the proposed ANN workflow. Both workflows were implemented in the Python programming language. All code and results have been made publicly available as Jupyter notebooks on GitHub. Results The migration of the PLS workflow to a non-linear, single hidden layer, ANN was successful. There was a similarity in significant metabolites determined using PLS model coefficients and ANN Connection Weight Approach. Conclusion We have shown that it is possible to migrate the standardised PLS-DA workflow to simple non-linear ANNs. This result opens the door for more widespread use and to the investigation of transparent interpretation of more complex ANN architectures.
Metabolomics data is commonly modelled multivariately using partial least squares discriminant analysis (PLS-DA). Its success is primarily due to ease of interpretation, through projection to latent structures, and transparent assessment of feature importance using regression coefficients and Variable Importance in Projection scores. In recent years several non-linear machine learning (ML) methods have grown in popularity but with limited uptake essentially due to convoluted optimisation and interpretation. Artificial neural networks (ANNs) are a non-linear projection-based ML method that share a structural equivalence with PLS, and as such should be amenable to equivalent optimisation and interpretation methods.INTRODUCTIONMetabolomics data is commonly modelled multivariately using partial least squares discriminant analysis (PLS-DA). Its success is primarily due to ease of interpretation, through projection to latent structures, and transparent assessment of feature importance using regression coefficients and Variable Importance in Projection scores. In recent years several non-linear machine learning (ML) methods have grown in popularity but with limited uptake essentially due to convoluted optimisation and interpretation. Artificial neural networks (ANNs) are a non-linear projection-based ML method that share a structural equivalence with PLS, and as such should be amenable to equivalent optimisation and interpretation methods.We hypothesise that standardised optimisation, visualisation, evaluation and statistical inference techniques commonly used by metabolomics researchers for PLS-DA can be migrated to a non-linear, single hidden layer, ANN.OBJECTIVESWe hypothesise that standardised optimisation, visualisation, evaluation and statistical inference techniques commonly used by metabolomics researchers for PLS-DA can be migrated to a non-linear, single hidden layer, ANN.We compared a standardised optimisation, visualisation, evaluation and statistical inference techniques workflow for PLS with the proposed ANN workflow. Both workflows were implemented in the Python programming language. All code and results have been made publicly available as Jupyter notebooks on GitHub.METHODSWe compared a standardised optimisation, visualisation, evaluation and statistical inference techniques workflow for PLS with the proposed ANN workflow. Both workflows were implemented in the Python programming language. All code and results have been made publicly available as Jupyter notebooks on GitHub.The migration of the PLS workflow to a non-linear, single hidden layer, ANN was successful. There was a similarity in significant metabolites determined using PLS model coefficients and ANN Connection Weight Approach.RESULTSThe migration of the PLS workflow to a non-linear, single hidden layer, ANN was successful. There was a similarity in significant metabolites determined using PLS model coefficients and ANN Connection Weight Approach.We have shown that it is possible to migrate the standardised PLS-DA workflow to simple non-linear ANNs. This result opens the door for more widespread use and to the investigation of transparent interpretation of more complex ANN architectures.CONCLUSIONWe have shown that it is possible to migrate the standardised PLS-DA workflow to simple non-linear ANNs. This result opens the door for more widespread use and to the investigation of transparent interpretation of more complex ANN architectures.
IntroductionMetabolomics data is commonly modelled multivariately using partial least squares discriminant analysis (PLS-DA). Its success is primarily due to ease of interpretation, through projection to latent structures, and transparent assessment of feature importance using regression coefficients and Variable Importance in Projection scores. In recent years several non-linear machine learning (ML) methods have grown in popularity but with limited uptake essentially due to convoluted optimisation and interpretation. Artificial neural networks (ANNs) are a non-linear projection-based ML method that share a structural equivalence with PLS, and as such should be amenable to equivalent optimisation and interpretation methods.ObjectivesWe hypothesise that standardised optimisation, visualisation, evaluation and statistical inference techniques commonly used by metabolomics researchers for PLS-DA can be migrated to a non-linear, single hidden layer, ANN.MethodsWe compared a standardised optimisation, visualisation, evaluation and statistical inference techniques workflow for PLS with the proposed ANN workflow. Both workflows were implemented in the Python programming language. All code and results have been made publicly available as Jupyter notebooks on GitHub.ResultsThe migration of the PLS workflow to a non-linear, single hidden layer, ANN was successful. There was a similarity in significant metabolites determined using PLS model coefficients and ANN Connection Weight Approach.ConclusionWe have shown that it is possible to migrate the standardised PLS-DA workflow to simple non-linear ANNs. This result opens the door for more widespread use and to the investigation of transparent interpretation of more complex ANN architectures.
ArticleNumber 17
Author Reinke, Stacey N.
Broadhurst, David I.
Mendez, Kevin M.
Author_xml – sequence: 1
  givenname: Kevin M.
  orcidid: 0000-0002-8832-2607
  surname: Mendez
  fullname: Mendez, Kevin M.
  organization: Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University
– sequence: 2
  givenname: David I.
  orcidid: 0000-0003-0775-9581
  surname: Broadhurst
  fullname: Broadhurst, David I.
  email: d.broadhurst@ecu.edu.au
  organization: Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University
– sequence: 3
  givenname: Stacey N.
  orcidid: 0000-0002-0758-0330
  surname: Reinke
  fullname: Reinke, Stacey N.
  email: stacey.n.reinke@ecu.edu.au
  organization: Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31965332$$D View this record in MEDLINE/PubMed
BookMark eNqNksuO0zAUhiM0iLnAA7BBltiwCfiWOGGBNBpxkwaxgbV1ktjFHdfu-NJRX5DnwmlLgZFArGzp_N_vc87v8-rEeaeq6inBLwnG4lUkhOG2xhTXpOW4xg-qM9IIVrOuxyfHe0dPq_MYlxhz3gv8qDplpG8bxuhZ9f2TWQRIxi2QDn6F1hCSAYusgphQvM0QVESTiWMwK-PAJQQO7DaaiJJHs1qbcSacymF3pDsfbuJrBGj0q-JnonfIa6SzG5PxhbZbpG6z2YBVxW9jYgZrIszF4j4hrSDloArvUjBD3hWS9zaiHOdWl3m9TSog55MavL-Jj6uHGmxUTw7nRfX13dsvVx_q68_vP15dXtcjFzjVneqnQbQtn6aOYUwbrQidJt1RKohmuOFiGFlD2h7rEXdM6UFA0wFlAD1vW3ZR0b1vdmvY3pVR5LosBsJWEiznUOQ-FFlCkXMoEhfozR5a52GlprEMXTZ1BD0Y-WfFmW9y4Tey7QVvMC8GLw4Gwd9mFZNclUCUteCUz1FSxhnvO9zObz2_J136HMrOd6qO0Vawvqie_d7RsZWf_6IIyF4wBh9jUPq_xhT3mNGkXahlKGP_SR62GssrbqHCr6b_Dv0A6Gnykw
CitedBy_id crossref_primary_10_1007_s00126_021_01091_y
crossref_primary_10_3389_fcvm_2020_626699
crossref_primary_10_3390_agronomy14102390
crossref_primary_10_3390_metabo11030184
crossref_primary_10_1016_j_fbio_2024_105435
crossref_primary_10_3390_biom12101512
crossref_primary_10_3389_fcimb_2025_1451293
crossref_primary_10_1007_s11306_023_02065_z
crossref_primary_10_1007_s11306_021_01787_2
crossref_primary_10_3390_foods14040693
crossref_primary_10_1080_14772000_2021_2017059
crossref_primary_10_1089_omi_2021_0201
crossref_primary_10_1007_s40899_024_01169_1
crossref_primary_10_1016_j_microc_2023_108867
crossref_primary_10_1371_journal_pone_0255240
crossref_primary_10_1016_j_xcrm_2021_100369
crossref_primary_10_1016_j_ibmed_2023_100101
crossref_primary_10_1016_j_trac_2022_116540
crossref_primary_10_1016_j_saa_2022_121936
crossref_primary_10_1016_j_microc_2020_105513
crossref_primary_10_1139_apnm_2021_0448
crossref_primary_10_1186_s43094_023_00537_6
crossref_primary_10_3390_rs14102334
crossref_primary_10_1016_j_jqsrt_2022_108438
crossref_primary_10_3389_fmats_2022_1094055
crossref_primary_10_1007_s40005_023_00625_y
crossref_primary_10_1016_j_tvjl_2024_106263
crossref_primary_10_3390_biom11030473
crossref_primary_10_1021_acs_jproteome_2c00488
crossref_primary_10_1002_lemi_202258011
crossref_primary_10_1093_bib_bbaa204
crossref_primary_10_3390_antiox13080953
crossref_primary_10_3233_JAD_215084
crossref_primary_10_5382_econgeo_5020
crossref_primary_10_1371_journal_pcbi_1011814
crossref_primary_10_1016_j_fshw_2021_12_010
crossref_primary_10_1021_acsfoodscitech_1c00128
Cites_doi 10.1002/cem.1388
10.1007/s11306-006-0037-z
10.1002/(SICI)1099-128X(199609)10:5/6<521::AID-CEM448>3.0.CO;2-J
10.1007/s11306-011-0330-3
10.1080/01621459.1987.10478410
10.1007/s11306-015-0893-5
10.1016/j.aca.2015.02.012
10.1021/acs.analchem.8b03205
10.1016/j.chemolab.2014.08.005
10.1016/j.ecolmodel.2004.03.013
10.1080/01621459.2000.10474333
10.1016/0003-2670(86)80028-9
10.1039/B906712B
10.1007/s11306-007-0099-6
10.1016/j.chemolab.2013.05.013
10.1093/biomet/68.3.589
10.1093/oso/9780198538493.001.0001
10.1186/1471-2164-7-142
10.1016/S0924-2031(03)00045-6
10.18637/jss.v059.i10
10.1023/A:1010933404324
10.1007/s11306-012-0482-9
10.1007/s11306-019-1608-0
10.1038/bjc.2015.414
10.1007/s11306-016-1030-9
10.1016/S0304-3800(02)00064-9
10.1214/ss/1032280214
10.1007/s11306-018-1420-2
10.1007/s11306-019-1612-4
10.1371/journal.pcbi.1005752
10.25080/Majora-92bf1922-00a
10.1016/0169-7439(93)85002-X
10.1037/0033-2909.104.2.293
10.1007/978-0-387-84858-7
10.1016/S0169-7439(01)00155-1
10.1007/s11306-019-1588-0
10.1007/s11306-018-1367-3
10.1038/359594a0
ContentType Journal Article
Copyright The Author(s) 2020
Metabolomics is a copyright of Springer, (2020). All Rights Reserved. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: Metabolomics is a copyright of Springer, (2020). All Rights Reserved. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s11306-020-1640-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
ProQuest Central Student
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1573-3890
ExternalDocumentID 10.1007/s11306-020-1640-0
PMC6974504
31965332
10_1007_s11306_020_1640_0
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: Australian Research Council
  grantid: LE170100021
– fundername: ;
  grantid: LE170100021
GroupedDBID ---
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
203
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5VS
67N
67Z
6NX
7X7
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHFT
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EN4
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAK
LK8
LLZTM
LMP
M4Y
M7P
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P2P
PF0
PQQKQ
PROAC
PT4
Q2X
QOR
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3A
S3B
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7U
Z7V
Z7W
Z7Y
Z82
Z83
Z87
ZMTXR
ZOVNA
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c470t-8e9db7664dd830025fe12ddf82271f30547bc351690fc083efb7a58a23aa94663
IEDL.DBID BENPR
ISSN 1573-3882
1573-3890
IngestDate Sun Oct 26 04:14:07 EDT 2025
Tue Sep 30 16:45:51 EDT 2025
Fri Sep 05 07:12:03 EDT 2025
Tue Oct 07 05:57:57 EDT 2025
Thu Apr 03 06:54:14 EDT 2025
Thu Apr 24 23:10:17 EDT 2025
Wed Oct 01 02:40:50 EDT 2025
Fri Feb 21 02:37:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Variable importance in projection
Metabolomics
Jupyter
Partial least squares
Artificial neural networks
Machine learning
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-8e9db7664dd830025fe12ddf82271f30547bc351690fc083efb7a58a23aa94663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-8832-2607
0000-0002-0758-0330
0000-0003-0775-9581
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s11306-020-1640-0.pdf
PMID 31965332
PQID 2348326739
PQPubID 326279
ParticipantIDs unpaywall_primary_10_1007_s11306_020_1640_0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6974504
proquest_miscellaneous_2343498060
proquest_journals_2348326739
pubmed_primary_31965332
crossref_primary_10_1007_s11306_020_1640_0
crossref_citationtrail_10_1007_s11306_020_1640_0
springer_journals_10_1007_s11306_020_1640_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200200
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 2
  year: 2020
  text: 20200200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Heidelberg
PublicationTitle Metabolomics
PublicationTitleAbbrev Metabolomics
PublicationTitleAlternate Metabolomics
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References GarsonGDInterpreting neural network connection weightsAI Expert199164751
EfronBNonparametric estimates of standard error—the jackknife, the bootstrap and other methodsBiometrika198168589599
OldenJDJoyMKDeathRGAn accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated dataEcological Modelling2004178389397
MendezKMBroadhurstDIReinkeSNThe application of artificial neural networks in metabolomics: A historical perspectiveMetabolomics20191514231628551
EfronBBetter bootstrap confidence intervalsJournal of the American Statistical Association198782171185
PedregosaFVaroquauxIGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: machine learning in PythonThe Journal of Machine Learning Research20111228252830
van den BergRAHoefslootHCJWesterhuisJASmildeAKvan der WerfMJCentering, scaling, and transformations: improving the biological information content of metabolomics dataBMC Genomics20067142167620681534033
Theano Development Team (2016) Theano: A Python framework for fast computation of mathematical expressions. arXiv:1605.02688.
GannaAFallTSalihovicSLeeWBroecklingCDKumarJIngelssonELarge-scale non-targeted metabolomic profiling in three human population-based studiesMetabolomics2016124
BishopCMNeural networks for pattern recognition1995New York, United States of AmericaOxford University Press
FavillaSDuranteCVigniMLCocchiMAssessing feature relevance in NPLS models by VIPChemometrics and Intelligent Laboratory Systems201312976861:CAS:528:DC%2BC3sXhtVSls7fK
GoodacreRKellDBBianchiGNeural networks and olive oilNature1992359594594
DoKTWahlSRafflerJMolnosSLaimighoferMAdamskiJKrumsiekJCharacterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategiesMetabolomics201814128308303986153696
EfronBBootstrap confidence—intervals—good or badPsychological Bulletin1988104293296
OldenJDJacksonDAIlluminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networksEcological Modelling2002154135150
GeladiPKowalskiBRPartial least-squares regression: a tutorialAnalytica Chimica Acta19861851171:CAS:528:DyaL28XmtVahs7c%3D
WickhamHTidy dataJournal of Statistical Software201459123
BroadhurstDGoodacreRReinkeSNKuligowskiJWilsonIDLewisMRDunnWBGuidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studiesMetabolomics201814722980533629805336
GromskiPSMuhamadaliHEllisDIXuYCorreaETurnerMLGoodacreRA tutorial review: Metabolomics and partial least squares-discriminant analysis–a marriage of convenience or a shotgun weddingAnalytica Chimica Acta201587910231:CAS:528:DC%2BC2MXis1yktbc%3D26002472
BreimanLRandom forestsMachine Learning200145532
WoldSJohanssonECocchiMPLS: Partial least squares projections to latent structures, 3D QSAR in drug design: Theory1993Kluwer/Escom, Dordrecht, The NetherlandsMethods and Applications
WesterhuisJAHoefslootHCJSmitSVisDJSmildeAKvan VelzenEJJvan DorstenFAAssessment of PLSDA cross validationMetabolomics2008481891:CAS:528:DC%2BD1cXisFSmtL8%3D
Bokeh Development Team (2018). Bokeh: Python library for interactive visualization. https://bokeh.pydata.org/en/latest
Virtanen, P., Gommers, R., Oliphant, T., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., Walt, S., Brett, M., Wilson, J., Millman, K., Mayorov, N., Nelson, A., Jones, E., Kern, R., Larson, E. and SciPy 1.0 Contributors (2019) SciPy 1.0—Fundamental algorithms for scientific computing in Python. arXiv:1907.10121.
SteinwartIChristmannASupport Vector Machines2008New York, United States of AmericaSpringer
WoldSSjöströmMErikssonLPLS-regression: A basic tool of chemometricsChemometrics and Intelligent Laboratory Systems2001581091301:CAS:528:DC%2BD3MXotF2mtLw%3D
TranTNAfanadorNLBuydensLMCBlanchetLInterpretation of variable importance in partial least squares with significance multivariate correlation (sMC)Chemometrics and Intelligent Laboratory Systems20141381531601:CAS:528:DC%2BC2cXhsVCjs7vP
ChanAWMercierPSchillerDBaileyRRobbinsSEurichDTBroadhurstD(1)H-NMR urinary metabolomic profiling for diagnosis of gastric cancerBritish Journal of Cancer201611459621:CAS:528:DC%2BC2MXitVSiurnK26645240
Di GuidaREngelJAllwoodJWWeberRJMJonesMRSommerUDunnWBNon-targeted UHPLC-MS metabolomic data processing methods: A comparative investigation of normalisation, missing value imputation, transformation and scalingMetabolomics20161293271230004831991
McKinney, W. (2010) Data Structures for Statistical Computing in Python. Proceedings of the 9th Python in Science Conference, 445, 51–56.
MendezKMPritchardLReinkeSNBroadhurstDIToward collaborative open data science in metabolomics using Jupyter Notebooks and cloud computingMetabolomics201915125315222946745024
WilkinsMFMorrisCWBoddyLA comparison of Radial Basis Function and backpropagation neural networks for identification of marine phytoplankton from multivariate flow cytometry dataComputer Applications in the Biosciences1994102852941:STN:280:DyaK2M%2FgslSgtQ%3D%3D7922685
MendezKMReinkeSNBroadhurstDIA comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classificationMetabolomics201915150317286486856029
DiCiccioTJEfronBBootstrap confidence intervalsStatistical Science199611189212
Kristensen, M.R.B. and Vinter, B. (2010) Numerical Python for scalable architectures, Proceedings of the Fourth Conference on Partitioned Global Address Space Programming Model, Association for Computing Machinery, pp. 1–9.
ErikssonLByrneTJohanssonETryggJVikströmCMulti- and megavariate data analysis: basic principles and applications20133Malmö, SwedenUmetrics Academy
WoldHPath models with latent variables: The NIPALS approach1975Quantitative sociologyElsevier307357
RohartFGautierBSinghALê CaoK-AmixOmics: An R package for ‘omics feature selection and multiple data integrationPLOS Computational Biology201713e1005752290998535687754
HastieTTibshiraniRFriedmanJThe Elements of Statistical Learning20092New York, United States of AmericaSpringer
DunnWBBroadhurstDIAthertonHJGoodacreRGriffinJLSystems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopyChemical Society Reviews2011403874261:CAS:528:DC%2BC3cXhsFKju7bI20717559
de JongSSIMPLS: An alternative approach to partial least squares regressionChemometrics and Intelligent Laboratory Systems199318251263
XiaJBroadhurstDIWilsonMWishartDSTranslational biomarker discovery in clinical metabolomics: An introductory tutorialMetabolomics201392802991:CAS:528:DC%2BC3sXksF2msb8%3D23543913
ReinkeSNGalindo-PrietoBSkotareTBroadhurstDISinghaniaAHorowitzDWheelockCEOnPLS-based multi-block data integration: A multivariate approach to interrogating biological interactions in asthmaAnalytical Chemistry20189013400134081:CAS:528:DC%2BC1cXhvFeru73N303359736256348
SzymańskaESaccentiESmildeAKWesterhuisJADouble-check: Validation of diagnostic statistics for PLS-DA models in metabolomics studiesMetabolomics2012831622593721
LöfstedtTTryggJOnPLS—a novel multiblock method for the modelling of predictive and orthogonal variationJournal of Chemometrics201125441455
EfronBThe bootstrap and modern statisticsJournal of the American Statistical Association20009512931296
GoodacreRExplanatory analysis of spectroscopic data using machine learning of simple, interpretable rulesVibrational Spectroscopy20033233451:CAS:528:DC%2BD3sXls1alsb4%3D
Chollet, F. (2015). Keras. https://keras.io
BroadhurstDIKellDBStatistical strategies for avoiding false discoveries in metabolomics and related experimentsMetabolomics200621711961:CAS:528:DC%2BD2sXhsVWktL4%3D
LindgrenFHansenBKarcherWSjöströmMErikssonLModel validation by permutation tests: Applications to variable selectionJournal of Chemometrics1996105215321:CAS:528:DyaK2sXjtVyku7s%3D
F Pedregosa (1640_CR35) 2011; 12
I Steinwart (1640_CR38) 2008
JA Westerhuis (1640_CR44) 2008; 4
E Szymańska (1640_CR39) 2012; 8
1640_CR29
1640_CR26
KM Mendez (1640_CR31) 2019; 15
TN Tran (1640_CR41) 2014; 138
P Geladi (1640_CR21) 1986; 185
A Ganna (1640_CR19) 2016; 12
S Wold (1640_CR48) 1993
S Favilla (1640_CR18) 2013; 129
AW Chan (1640_CR6) 2016; 114
T Löfstedt (1640_CR28) 2011; 25
F Lindgren (1640_CR27) 1996; 10
J Xia (1640_CR50) 2013; 9
RA van den Berg (1640_CR42) 2006; 7
R Goodacre (1640_CR22) 2003; 32
KM Mendez (1640_CR32) 2019; 15
SN Reinke (1640_CR36) 2018; 90
CM Bishop (1640_CR1) 1995
WB Dunn (1640_CR12) 2011; 40
B Efron (1640_CR14) 1987; 82
GD Garson (1640_CR20) 1991; 6
F Rohart (1640_CR37) 2017; 13
S Wold (1640_CR49) 2001; 58
L Breiman (1640_CR3) 2001; 45
DI Broadhurst (1640_CR4) 2006; 2
KT Do (1640_CR11) 2018; 14
R Di Guida (1640_CR9) 2016; 12
1640_CR43
1640_CR40
MF Wilkins (1640_CR46) 1994; 10
S de Jong (1640_CR8) 1993; 18
T Hastie (1640_CR25) 2009
B Efron (1640_CR15) 1988; 104
D Broadhurst (1640_CR5) 2018; 14
PS Gromski (1640_CR24) 2015; 879
B Efron (1640_CR13) 1981; 68
L Eriksson (1640_CR17) 2013
R Goodacre (1640_CR23) 1992; 359
H Wold (1640_CR47) 1975
JD Olden (1640_CR34) 2004; 178
KM Mendez (1640_CR30) 2019; 15
1640_CR2
JD Olden (1640_CR33) 2002; 154
TJ DiCiccio (1640_CR10) 1996; 11
B Efron (1640_CR16) 2000; 95
H Wickham (1640_CR45) 2014; 59
1640_CR7
References_xml – reference: PedregosaFVaroquauxIGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: machine learning in PythonThe Journal of Machine Learning Research20111228252830
– reference: GoodacreRKellDBBianchiGNeural networks and olive oilNature1992359594594
– reference: DiCiccioTJEfronBBootstrap confidence intervalsStatistical Science199611189212
– reference: ReinkeSNGalindo-PrietoBSkotareTBroadhurstDISinghaniaAHorowitzDWheelockCEOnPLS-based multi-block data integration: A multivariate approach to interrogating biological interactions in asthmaAnalytical Chemistry20189013400134081:CAS:528:DC%2BC1cXhvFeru73N303359736256348
– reference: EfronBNonparametric estimates of standard error—the jackknife, the bootstrap and other methodsBiometrika198168589599
– reference: ErikssonLByrneTJohanssonETryggJVikströmCMulti- and megavariate data analysis: basic principles and applications20133Malmö, SwedenUmetrics Academy
– reference: McKinney, W. (2010) Data Structures for Statistical Computing in Python. Proceedings of the 9th Python in Science Conference, 445, 51–56.
– reference: SteinwartIChristmannASupport Vector Machines2008New York, United States of AmericaSpringer
– reference: EfronBThe bootstrap and modern statisticsJournal of the American Statistical Association20009512931296
– reference: ChanAWMercierPSchillerDBaileyRRobbinsSEurichDTBroadhurstD(1)H-NMR urinary metabolomic profiling for diagnosis of gastric cancerBritish Journal of Cancer201611459621:CAS:528:DC%2BC2MXitVSiurnK26645240
– reference: MendezKMBroadhurstDIReinkeSNThe application of artificial neural networks in metabolomics: A historical perspectiveMetabolomics20191514231628551
– reference: WoldHPath models with latent variables: The NIPALS approach1975Quantitative sociologyElsevier307357
– reference: GoodacreRExplanatory analysis of spectroscopic data using machine learning of simple, interpretable rulesVibrational Spectroscopy20033233451:CAS:528:DC%2BD3sXls1alsb4%3D
– reference: EfronBBetter bootstrap confidence intervalsJournal of the American Statistical Association198782171185
– reference: GromskiPSMuhamadaliHEllisDIXuYCorreaETurnerMLGoodacreRA tutorial review: Metabolomics and partial least squares-discriminant analysis–a marriage of convenience or a shotgun weddingAnalytica Chimica Acta201587910231:CAS:528:DC%2BC2MXis1yktbc%3D26002472
– reference: SzymańskaESaccentiESmildeAKWesterhuisJADouble-check: Validation of diagnostic statistics for PLS-DA models in metabolomics studiesMetabolomics2012831622593721
– reference: EfronBBootstrap confidence—intervals—good or badPsychological Bulletin1988104293296
– reference: LindgrenFHansenBKarcherWSjöströmMErikssonLModel validation by permutation tests: Applications to variable selectionJournal of Chemometrics1996105215321:CAS:528:DyaK2sXjtVyku7s%3D
– reference: BroadhurstDGoodacreRReinkeSNKuligowskiJWilsonIDLewisMRDunnWBGuidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studiesMetabolomics201814722980533629805336
– reference: GeladiPKowalskiBRPartial least-squares regression: a tutorialAnalytica Chimica Acta19861851171:CAS:528:DyaL28XmtVahs7c%3D
– reference: XiaJBroadhurstDIWilsonMWishartDSTranslational biomarker discovery in clinical metabolomics: An introductory tutorialMetabolomics201392802991:CAS:528:DC%2BC3sXksF2msb8%3D23543913
– reference: LöfstedtTTryggJOnPLS—a novel multiblock method for the modelling of predictive and orthogonal variationJournal of Chemometrics201125441455
– reference: Di GuidaREngelJAllwoodJWWeberRJMJonesMRSommerUDunnWBNon-targeted UHPLC-MS metabolomic data processing methods: A comparative investigation of normalisation, missing value imputation, transformation and scalingMetabolomics20161293271230004831991
– reference: DunnWBBroadhurstDIAthertonHJGoodacreRGriffinJLSystems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopyChemical Society Reviews2011403874261:CAS:528:DC%2BC3cXhsFKju7bI20717559
– reference: MendezKMPritchardLReinkeSNBroadhurstDIToward collaborative open data science in metabolomics using Jupyter Notebooks and cloud computingMetabolomics201915125315222946745024
– reference: Chollet, F. (2015). Keras. https://keras.io/
– reference: van den BergRAHoefslootHCJWesterhuisJASmildeAKvan der WerfMJCentering, scaling, and transformations: improving the biological information content of metabolomics dataBMC Genomics20067142167620681534033
– reference: Bokeh Development Team (2018). Bokeh: Python library for interactive visualization. https://bokeh.pydata.org/en/latest/
– reference: BreimanLRandom forestsMachine Learning200145532
– reference: WesterhuisJAHoefslootHCJSmitSVisDJSmildeAKvan VelzenEJJvan DorstenFAAssessment of PLSDA cross validationMetabolomics2008481891:CAS:528:DC%2BD1cXisFSmtL8%3D
– reference: BishopCMNeural networks for pattern recognition1995New York, United States of AmericaOxford University Press
– reference: GarsonGDInterpreting neural network connection weightsAI Expert199164751
– reference: WoldSSjöströmMErikssonLPLS-regression: A basic tool of chemometricsChemometrics and Intelligent Laboratory Systems2001581091301:CAS:528:DC%2BD3MXotF2mtLw%3D
– reference: WoldSJohanssonECocchiMPLS: Partial least squares projections to latent structures, 3D QSAR in drug design: Theory1993Kluwer/Escom, Dordrecht, The NetherlandsMethods and Applications
– reference: Theano Development Team (2016) Theano: A Python framework for fast computation of mathematical expressions. arXiv:1605.02688.
– reference: OldenJDJoyMKDeathRGAn accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated dataEcological Modelling2004178389397
– reference: RohartFGautierBSinghALê CaoK-AmixOmics: An R package for ‘omics feature selection and multiple data integrationPLOS Computational Biology201713e1005752290998535687754
– reference: WilkinsMFMorrisCWBoddyLA comparison of Radial Basis Function and backpropagation neural networks for identification of marine phytoplankton from multivariate flow cytometry dataComputer Applications in the Biosciences1994102852941:STN:280:DyaK2M%2FgslSgtQ%3D%3D7922685
– reference: Virtanen, P., Gommers, R., Oliphant, T., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., Walt, S., Brett, M., Wilson, J., Millman, K., Mayorov, N., Nelson, A., Jones, E., Kern, R., Larson, E. and SciPy 1.0 Contributors (2019) SciPy 1.0—Fundamental algorithms for scientific computing in Python. arXiv:1907.10121.
– reference: BroadhurstDIKellDBStatistical strategies for avoiding false discoveries in metabolomics and related experimentsMetabolomics200621711961:CAS:528:DC%2BD2sXhsVWktL4%3D
– reference: Kristensen, M.R.B. and Vinter, B. (2010) Numerical Python for scalable architectures, Proceedings of the Fourth Conference on Partitioned Global Address Space Programming Model, Association for Computing Machinery, pp. 1–9.
– reference: DoKTWahlSRafflerJMolnosSLaimighoferMAdamskiJKrumsiekJCharacterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategiesMetabolomics201814128308303986153696
– reference: MendezKMReinkeSNBroadhurstDIA comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classificationMetabolomics201915150317286486856029
– reference: OldenJDJacksonDAIlluminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networksEcological Modelling2002154135150
– reference: de JongSSIMPLS: An alternative approach to partial least squares regressionChemometrics and Intelligent Laboratory Systems199318251263
– reference: TranTNAfanadorNLBuydensLMCBlanchetLInterpretation of variable importance in partial least squares with significance multivariate correlation (sMC)Chemometrics and Intelligent Laboratory Systems20141381531601:CAS:528:DC%2BC2cXhsVCjs7vP
– reference: FavillaSDuranteCVigniMLCocchiMAssessing feature relevance in NPLS models by VIPChemometrics and Intelligent Laboratory Systems201312976861:CAS:528:DC%2BC3sXhtVSls7fK
– reference: GannaAFallTSalihovicSLeeWBroecklingCDKumarJIngelssonELarge-scale non-targeted metabolomic profiling in three human population-based studiesMetabolomics2016124
– reference: WickhamHTidy dataJournal of Statistical Software201459123
– reference: HastieTTibshiraniRFriedmanJThe Elements of Statistical Learning20092New York, United States of AmericaSpringer
– volume: 25
  start-page: 441
  year: 2011
  ident: 1640_CR28
  publication-title: Journal of Chemometrics
  doi: 10.1002/cem.1388
– volume: 2
  start-page: 171
  year: 2006
  ident: 1640_CR4
  publication-title: Metabolomics
  doi: 10.1007/s11306-006-0037-z
– volume: 10
  start-page: 521
  year: 1996
  ident: 1640_CR27
  publication-title: Journal of Chemometrics
  doi: 10.1002/(SICI)1099-128X(199609)10:5/6<521::AID-CEM448>3.0.CO;2-J
– volume: 6
  start-page: 47
  year: 1991
  ident: 1640_CR20
  publication-title: AI Expert
– volume: 8
  start-page: 3
  year: 2012
  ident: 1640_CR39
  publication-title: Metabolomics
  doi: 10.1007/s11306-011-0330-3
– volume: 82
  start-page: 171
  year: 1987
  ident: 1640_CR14
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1987.10478410
– volume-title: Multi- and megavariate data analysis: basic principles and applications
  year: 2013
  ident: 1640_CR17
– volume: 12
  start-page: 4
  year: 2016
  ident: 1640_CR19
  publication-title: Metabolomics
  doi: 10.1007/s11306-015-0893-5
– volume: 879
  start-page: 10
  year: 2015
  ident: 1640_CR24
  publication-title: Analytica Chimica Acta
  doi: 10.1016/j.aca.2015.02.012
– volume: 90
  start-page: 13400
  year: 2018
  ident: 1640_CR36
  publication-title: Analytical Chemistry
  doi: 10.1021/acs.analchem.8b03205
– volume: 138
  start-page: 153
  year: 2014
  ident: 1640_CR41
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2014.08.005
– volume: 178
  start-page: 389
  year: 2004
  ident: 1640_CR34
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2004.03.013
– ident: 1640_CR43
– volume: 95
  start-page: 1293
  year: 2000
  ident: 1640_CR16
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2000.10474333
– volume: 185
  start-page: 1
  year: 1986
  ident: 1640_CR21
  publication-title: Analytica Chimica Acta
  doi: 10.1016/0003-2670(86)80028-9
– ident: 1640_CR7
– volume: 40
  start-page: 387
  year: 2011
  ident: 1640_CR12
  publication-title: Chemical Society Reviews
  doi: 10.1039/B906712B
– volume: 4
  start-page: 81
  year: 2008
  ident: 1640_CR44
  publication-title: Metabolomics
  doi: 10.1007/s11306-007-0099-6
– volume: 129
  start-page: 76
  year: 2013
  ident: 1640_CR18
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2013.05.013
– volume: 68
  start-page: 589
  year: 1981
  ident: 1640_CR13
  publication-title: Biometrika
  doi: 10.1093/biomet/68.3.589
– volume-title: Neural networks for pattern recognition
  year: 1995
  ident: 1640_CR1
  doi: 10.1093/oso/9780198538493.001.0001
– ident: 1640_CR40
– volume: 7
  start-page: 142
  year: 2006
  ident: 1640_CR42
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-7-142
– volume: 32
  start-page: 33
  year: 2003
  ident: 1640_CR22
  publication-title: Vibrational Spectroscopy
  doi: 10.1016/S0924-2031(03)00045-6
– volume: 59
  start-page: 1
  year: 2014
  ident: 1640_CR45
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v059.i10
– volume: 45
  start-page: 5
  year: 2001
  ident: 1640_CR3
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– ident: 1640_CR2
– volume: 9
  start-page: 280
  year: 2013
  ident: 1640_CR50
  publication-title: Metabolomics
  doi: 10.1007/s11306-012-0482-9
– volume-title: PLS: Partial least squares projections to latent structures, 3D QSAR in drug design: Theory
  year: 1993
  ident: 1640_CR48
– volume: 15
  start-page: 142
  year: 2019
  ident: 1640_CR30
  publication-title: Metabolomics
  doi: 10.1007/s11306-019-1608-0
– volume: 114
  start-page: 59
  year: 2016
  ident: 1640_CR6
  publication-title: British Journal of Cancer
  doi: 10.1038/bjc.2015.414
– volume: 12
  start-page: 93
  year: 2016
  ident: 1640_CR9
  publication-title: Metabolomics
  doi: 10.1007/s11306-016-1030-9
– volume: 154
  start-page: 135
  year: 2002
  ident: 1640_CR33
  publication-title: Ecological Modelling
  doi: 10.1016/S0304-3800(02)00064-9
– volume: 11
  start-page: 189
  year: 1996
  ident: 1640_CR10
  publication-title: Statistical Science
  doi: 10.1214/ss/1032280214
– volume: 10
  start-page: 285
  year: 1994
  ident: 1640_CR46
  publication-title: Computer Applications in the Biosciences
– volume: 14
  start-page: 128
  year: 2018
  ident: 1640_CR11
  publication-title: Metabolomics
  doi: 10.1007/s11306-018-1420-2
– volume-title: Support Vector Machines
  year: 2008
  ident: 1640_CR38
– volume: 15
  start-page: 150
  year: 2019
  ident: 1640_CR32
  publication-title: Metabolomics
  doi: 10.1007/s11306-019-1612-4
– ident: 1640_CR26
– volume: 12
  start-page: 2825
  year: 2011
  ident: 1640_CR35
  publication-title: The Journal of Machine Learning Research
– volume: 13
  start-page: e1005752
  year: 2017
  ident: 1640_CR37
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1005752
– ident: 1640_CR29
  doi: 10.25080/Majora-92bf1922-00a
– volume: 18
  start-page: 251
  year: 1993
  ident: 1640_CR8
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/0169-7439(93)85002-X
– volume: 104
  start-page: 293
  year: 1988
  ident: 1640_CR15
  publication-title: Psychological Bulletin
  doi: 10.1037/0033-2909.104.2.293
– volume-title: The Elements of Statistical Learning
  year: 2009
  ident: 1640_CR25
  doi: 10.1007/978-0-387-84858-7
– start-page: 307
  volume-title: Path models with latent variables: The NIPALS approach
  year: 1975
  ident: 1640_CR47
– volume: 58
  start-page: 109
  year: 2001
  ident: 1640_CR49
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/S0169-7439(01)00155-1
– volume: 15
  start-page: 125
  year: 2019
  ident: 1640_CR31
  publication-title: Metabolomics
  doi: 10.1007/s11306-019-1588-0
– volume: 14
  start-page: 72
  year: 2018
  ident: 1640_CR5
  publication-title: Metabolomics
  doi: 10.1007/s11306-018-1367-3
– volume: 359
  start-page: 594
  year: 1992
  ident: 1640_CR23
  publication-title: Nature
  doi: 10.1038/359594a0
SSID ssj0044970
Score 2.4343371
Snippet Introduction Metabolomics data is commonly modelled multivariately using partial least squares discriminant analysis (PLS-DA). Its success is primarily due to...
Metabolomics data is commonly modelled multivariately using partial least squares discriminant analysis (PLS-DA). Its success is primarily due to ease of...
IntroductionMetabolomics data is commonly modelled multivariately using partial least squares discriminant analysis (PLS-DA). Its success is primarily due to...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17
SubjectTerms Biochemistry
Biomedical and Life Sciences
Biomedicine
Cell Biology
Developmental Biology
Discriminant Analysis
Learning algorithms
Least-Squares Analysis
Life Sciences
Machine learning
Metabolites
Metabolomics
Molecular Medicine
Neural networks
Neural Networks, Computer
Original
Original Article
Software
Statistical analysis
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQOQAHBJRHoKBBQhyoLJLYsRNuVUVVIZUTlXqLktiGRWmyJQlo_yC_ixnnUZaiIk57iD1Za2bsz5mZbxh75QyCarwmc2sTw2WZGZ6lleBlGDt0p1IqScXJJx_V8an8cJacTWTRVAvzR_z-bRfhJktpsiFHYB9yvJ3fxDNK-bisOpw3XSkz3xcuSrTgAlHjHMD8m4jtI-gKrryaHrnESO-wW0OzLjY_irr-7Rg6usfuTvgRDkaF32c3bPOA7R40eHc-38Br8Bmd_lP5Lvt5siImCJQJVEUCazITnFxTvx7oLgaqPQKqyx17ezU9FBNHCfQt0OiRXwKI9dL_-Jzx7h0UUC0NDKF1QMfj-FWx3oC9GFZowLgu-L7qqGpzTBlC6Qac9VSi4HPkp2Zb-La27oBy8D_D12G9QWVD0_Y-kts9ZKdH7z8dHvOpbwOvpA57ntrMlFopaUwqCFQ5G8XGOMQiOnK4wUhdVsIH6FyFENC6UhdJWsSiKIjuXjxiO03b2CcMZKGEjqxBFChpVpbGlZRGJrpMnXZRwMJZlXk1kZpTb406v6RjJu3nqP2ctJ-HAXuzTFmPjB7XDd6b7SOfnLvLYyFxH1RaZAF7uTxGt6RYS9HYdvBjhMzSUKGIx6M5LW-jXQ9RdhwwvWVoywCi_N5-0qy-eOpvhde_JJQB259N8vJvXbOI_cVq_73kp_8l-xm7HZNn-Tz2PbbTfxvsc4RpffnCO-gv1ZY5Bw
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbK9gA98CqUhYIGCXGgyjYbO3HCbVVRVUitOLBSOUVJbMNCSLYkAS0_kN_FjPNYlqIixCmR_Irl8fhzZuYbxp4ZhaAar8mO1r5yRBopJwoz7qSuZ3A7pSIQFJx8ehaczMXrc_98ix31sTDW2703SbYxDcTSVNSHS2UO14FvqHrJedZ1EO67jjvB0mtsO_ARkI_Y9vzszeydZUqV3OGhTRnVvUeDbfNP_WyeTpcg52XPycF8usOuN8UyWX1L8vyXE-r4FlP93FrHlE-Tpk4n2fffaB__c_K32c0OwcKsFbk7bEsXd9nurMDb--cVPAfrU2p_1u-yH6cL4qLAkYDiWGBJgoqNc8oYBNVFQ9FPQJHBbXaxooakY0mBugSq3TJcAPFu2of1Wq9eQgLZkEIRSgN0QLf_NfMV6ItmgVsI5wRfFxXFjbZOS9i7AqMtmSlYL_0u3ReOVuYVUBTAe_jYLFcoblCUtbUlV_fY_PjV26MTp8sc4WRCurUT6kilMgiEUiEnWGf01FPKIBqSU4MqTsg049ZEaDIEodqkMvHDxONJQoT7_D4bFWWhHzAQScDlVCvEoYJaRaGXCaGEL9PQSDMdM7eXmDjraNUpu0cerwmhab1iXK-Y1it2x-zF0GTZcopcVXm_F8O4Uy9V7HGBmjiQPBqzp0MxKgay9iSFLhtbh4sodAPsYq-V2mE00ruI870xkxvyPFQg0vHNkmLxwZKPB3gB9V0xZge9oK4_64pJHAyb4-9TfvhPtR-xGx7tBetJv89G9ZdGP0agWKdPOkXwE89mZVM
  priority: 102
  providerName: Unpaywall
Title Migrating from partial least squares discriminant analysis to artificial neural networks: a comparison of functionally equivalent visualisation and feature contribution tools using jupyter notebooks
URI https://link.springer.com/article/10.1007/s11306-020-1640-0
https://www.ncbi.nlm.nih.gov/pubmed/31965332
https://www.proquest.com/docview/2348326739
https://www.proquest.com/docview/2343498060
https://pubmed.ncbi.nlm.nih.gov/PMC6974504
https://link.springer.com/content/pdf/10.1007/s11306-020-1640-0.pdf
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1573-3890
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0044970
  issn: 1573-3882
  databaseCode: ABDBF
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-3890
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044970
  issn: 1573-3882
  databaseCode: AFBBN
  dateStart: 20050301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-3890
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044970
  issn: 1573-3882
  databaseCode: AGYKE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-3890
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044970
  issn: 1573-3882
  databaseCode: U2A
  dateStart: 20050302
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3di9NAEF_u2gf1QdTTs3qWEcQHj2CabLKJINLW1kO5coiF3lNIshutxKQ1jdJ_0L_Lmc1HLQf1pYHuR7Lsb2dnd2Z-w9iLRKJSjcdkQylHGjzypeF7sW1EppXgcoq4yyk4-XLmXsz5x4WzOGKzJhaG3CobmagFtcxjuiN_bdkcwecK23-3WhuUNYqsq00KjbBOrSDfaoqxY9a1iBmrw7qjyezqcyObOfd1-riBI2zDRuWysXPqYDoU5-SQaxp4hDANc3-nuqF-3vSibE2pd9itMluF299hmv6zW03vsbu1mgnDChf32ZHKHrCTYYZH7B9beAna8VPfqJ-wP5dLIozAPoGCTWBFaMLGKaX1gWJdUogSUPhulQIs20BYU5nAJgeqXdFQAJFj6od2LS_eQAhxm-cQ8gRoF60uH9MtqHW5RJzjuODXsqDgzsqzCHuXkCjNOAralb7OyYVvy9MCyFX_K3wvV1vEBGT5Rht8i4dsPp18GV8YdXoHI-bC3Bie8mUkXJdL6dmkeyVqYEmZoMoiBgnKIS6i2NZ2vCRGTVElkQgdL7TsMCRWfPsR62R5ph4z4KFri4GSqCxyauV7Vsy55I6IvEQkgx4zm6kM4pr7nFJwpMGOtZlmP8DZD2j2A7PHXrVNVhXxx6HKZw0-gloGFMEOsT32vC3G1UsmmTBTeanr2Nz3TBe7OK3g1L6NhCMq41aPiT2gtRWIGXy_JFt-0wzhLp4SHZP32HkDyd1nHRjEeYva_w_5yeEhP2W3LVpK2r_9jHU2P0v1DNW3TdRnx2Ih-qw7HL0fTen54frTpF-vVCwdu2P8nVtD_G8-uxpe_wVKQ07A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeygcEFAeCwUGCThQRWQTJ06QKlSgVUu7K4RaqbeQxDYsCskuSaj2z3HkdzHjPJZVpeXU00ob24k1b3vmG8aea4lONYbJllKetHgSSisMUtdKbEejOCXc51ScPBr7h2f847l3vsZ-d7UwlFbZ6USjqGWR0hn5a8flyHy-cMO305lFXaPodrVroRG3rRXkroEYaws7jtX8AkO4cvfoA9L7heMc7J--P7TaLgNWyoVdWYEKZSJ8n0sZuOQCaDV0pNRoOcVQozhwkaSuuU7SKTosSici9oLYceOYwNldXPca2-AuDzH423i3P_70ubMFHP8zJZmecC0XndnuXtUU76H5oARg28KQxbbsZct4yd29nLXZX93eYJt1Po3nF3GW_WMdD26xm61bC3sNH95mayq_w7b2cgzpf8zhJZhEU3OCv8X-jCYEUIFrAhW3wJS4Fydn1EYIyllNJVFA5cJNy7G8griFToGqABrdwF4AgXGaH5PKXr6BGNK-ryIUGshqN4ed2RzUrJ6gXOG-4NekpGLSJpMJV5eglUE4BZO63_YAw7cVWQlUGvAVvtfTOfIg5EVlLpjLu-zsSgh9j63nRa4eMOCx74qhkuiccpoVBk7KueSeSAIt9HDA7I6UUdpirVPLjyxaoEQT9SOkfkTUj-wBe9VPmTZAI6sGb3f8EbU6p4wWEjJgz_rHqC3oCijOVVGbMcinge3jEvcbdurfRsoYnX9nwMQSo_UDCIl8-Uk--WYQyX2MSj2bD9hOx5KLz1qxiZ2ea_-_5Yert_yUbR6ejk6ik6Px8SN23SGxMrn122y9-lmrx-g6VsmTVj6BfblqlfAXiMiDYw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIvE4IKA8AgUGCThQWXW8G6-NhFBFiVpKKw5Uys21vbsQZOwE21T5a_wAfhcz60eIKoVTTzl4vc5q3jsz3zD2wih0qjFMdrQeKUckoXLCIOVO4noGxSkRvqDm5OMT_-BUfJyMJhvsd9cLQ2WVnU60iloVKd2R73pcIPP5koe7pi2L-Lw_fjebOzRBijKt3TiNhkWO9OIcw7fy7eE-0vql540_fHl_4LQTBpxUSLdyAh2qRPq-UCrgZP6NHnpKGbSacmhQFIRMUm5TSSZFZ0WbRMajIPZ4HBMwO8d9r7CrkvOQygnlpA_2hAjtoLrhSHKHoxvbZVRt2x4aDir9dR0MVlzHXbWJFxzdi_WafdL2Jrte57N4cR5n2T92cXyb3WodWthrOPAO29D5Xba1l2Mw_2MBr8CWmNq7-y3253hK0BS4J1BbC8yIb_HljAYIQTmvqRkKqFG4GTaWVxC3oClQFUCrG8ALIBhO-2OL2Ms3EEPaT1SEwgDZ6-aaM1uAntdTlCg8F_yaltRG2tQw4e4KjLbYpmCL9tvpX_i1IiuBmgK-wvd6tkDug7yobGq5vMdOL4XM99lmXuT6IQMR-1wOtUK3VNBbYeClQigxkklgpBkOmNuRMkpblHUa9pFFS3xoon6E1I-I-pE7YK_7V2YNxMi6xdsdf0SttimjpWwM2PP-MeoJSv7EuS5qu4aLMHB93OJBw07910gNo9vvDZhcYbR-AWGQrz7Jp98sFrmP8ejIFQO207Hk8m-tOcROz7X_P_Kj9Ud-xq6hIog-HZ4cPWY3PJIqW1S_zTarn7V-gj5jlTy1wgns7LK1wV_ysYD9
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbK9gA98CqUhYIGCXGgyjYbO3HCbVVRVUitOLBSOUVJbMNCSLYkAS0_kN_FjPNYlqIixCmR_Irl8fhzZuYbxp4ZhaAar8mO1r5yRBopJwoz7qSuZ3A7pSIQFJx8ehaczMXrc_98ix31sTDW2703SbYxDcTSVNSHS2UO14FvqHrJedZ1EO67jjvB0mtsO_ARkI_Y9vzszeydZUqV3OGhTRnVvUeDbfNP_WyeTpcg52XPycF8usOuN8UyWX1L8vyXE-r4FlP93FrHlE-Tpk4n2fffaB__c_K32c0OwcKsFbk7bEsXd9nurMDb--cVPAfrU2p_1u-yH6cL4qLAkYDiWGBJgoqNc8oYBNVFQ9FPQJHBbXaxooakY0mBugSq3TJcAPFu2of1Wq9eQgLZkEIRSgN0QLf_NfMV6ItmgVsI5wRfFxXFjbZOS9i7AqMtmSlYL_0u3ReOVuYVUBTAe_jYLFcoblCUtbUlV_fY_PjV26MTp8sc4WRCurUT6kilMgiEUiEnWGf01FPKIBqSU4MqTsg049ZEaDIEodqkMvHDxONJQoT7_D4bFWWhHzAQScDlVCvEoYJaRaGXCaGEL9PQSDMdM7eXmDjraNUpu0cerwmhab1iXK-Y1it2x-zF0GTZcopcVXm_F8O4Uy9V7HGBmjiQPBqzp0MxKgay9iSFLhtbh4sodAPsYq-V2mE00ruI870xkxvyPFQg0vHNkmLxwZKPB3gB9V0xZge9oK4_64pJHAyb4-9TfvhPtR-xGx7tBetJv89G9ZdGP0agWKdPOkXwE89mZVM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Migrating+from+partial+least+squares+discriminant+analysis+to+artificial+neural+networks%3A+a+comparison+of+functionally+equivalent+visualisation+and+feature+contribution+tools+using+jupyter+notebooks&rft.jtitle=Metabolomics&rft.au=Mendez%2C+Kevin+M&rft.au=Broadhurst%2C+David+I&rft.au=Reinke%2C+Stacey+N&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1573-3882&rft.eissn=1573-3890&rft.volume=16&rft.issue=2&rft_id=info:doi/10.1007%2Fs11306-020-1640-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-3882&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-3882&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-3882&client=summon