Brown gold of marginal soil: Plant growth promoting bacteria to overcome plant abiotic stress for agriculture, biofuels and carbon sequestration

[Display omitted] •Marginal soil is an untapped resource which can be exploited using plants and bacteria.•Some PGPB enhance abiotic stress (drought, salinity and heavy metals) tolerance.•Molecular approaches employed by plant-soil-PGPB interactions crucial for the success.•Efficient utilization of...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 711; p. 135062
Main Authors Ramakrishna, Wusirika, Rathore, Parikshita, Kumari, Ritu, Yadav, Radheshyam
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2020
Subjects
Online AccessGet full text
ISSN0048-9697
1879-1026
1879-1026
DOI10.1016/j.scitotenv.2019.135062

Cover

Abstract [Display omitted] •Marginal soil is an untapped resource which can be exploited using plants and bacteria.•Some PGPB enhance abiotic stress (drought, salinity and heavy metals) tolerance.•Molecular approaches employed by plant-soil-PGPB interactions crucial for the success.•Efficient utilization of marginal soil will enhance crop productivity and soil remediation. Marginal land is defined as land with poor soil characteristics and low crop productivity with no potential for profit. Poor soil quality due to the presence of xenobiotics or climate change is of great concern. Sustainable food production with increasing population is a challenge which becomes more difficult due to poor soil quality. Marginal soil can be made productive with the use of Plant Growth Promoting Bacteria (PGPB). This review outlines how PGPB can be used to improve marginal soil quality and its implications on agriculture, rhizoremediation, abiotic stress (drought, salinity and heavy metals) tolerance, carbon sequestration and production of biofuels. The feasibility of the idea is supported by several studies which showed maximal increase in the growth of plants inoculated with PGPB than to uninoculated plants grown in marginal soil when compared to the growth of plants inoculated with PGPB in healthy soil. The combination of PGPB and plants grown in marginal soil will serve as a green technology leading to the next green revolution, reduction in soil pollution and fossil fuel use, neutralizing abiotic stress and climate change effects.
AbstractList Marginal land is defined as land with poor soil characteristics and low crop productivity with no potential for profit. Poor soil quality due to the presence of xenobiotics or climate change is of great concern. Sustainable food production with increasing population is a challenge which becomes more difficult due to poor soil quality. Marginal soil can be made productive with the use of Plant Growth Promoting Bacteria (PGPB). This review outlines how PGPB can be used to improve marginal soil quality and its implications on agriculture, rhizoremediation, abiotic stress (drought, salinity and heavy metals) tolerance, carbon sequestration and production of biofuels. The feasibility of the idea is supported by several studies which showed maximal increase in the growth of plants inoculated with PGPB than to uninoculated plants grown in marginal soil when compared to the growth of plants inoculated with PGPB in healthy soil. The combination of PGPB and plants grown in marginal soil will serve as a green technology leading to the next green revolution, reduction in soil pollution and fossil fuel use, neutralizing abiotic stress and climate change effects.
Marginal land is defined as land with poor soil characteristics and low crop productivity with no potential for profit. Poor soil quality due to the presence of xenobiotics or climate change is of great concern. Sustainable food production with increasing population is a challenge which becomes more difficult due to poor soil quality. Marginal soil can be made productive with the use of Plant Growth Promoting Bacteria (PGPB). This review outlines how PGPB can be used to improve marginal soil quality and its implications on agriculture, rhizoremediation, abiotic stress (drought, salinity and heavy metals) tolerance, carbon sequestration and production of biofuels. The feasibility of the idea is supported by several studies which showed maximal increase in the growth of plants inoculated with PGPB than to uninoculated plants grown in marginal soil when compared to the growth of plants inoculated with PGPB in healthy soil. The combination of PGPB and plants grown in marginal soil will serve as a green technology leading to the next green revolution, reduction in soil pollution and fossil fuel use, neutralizing abiotic stress and climate change effects.Marginal land is defined as land with poor soil characteristics and low crop productivity with no potential for profit. Poor soil quality due to the presence of xenobiotics or climate change is of great concern. Sustainable food production with increasing population is a challenge which becomes more difficult due to poor soil quality. Marginal soil can be made productive with the use of Plant Growth Promoting Bacteria (PGPB). This review outlines how PGPB can be used to improve marginal soil quality and its implications on agriculture, rhizoremediation, abiotic stress (drought, salinity and heavy metals) tolerance, carbon sequestration and production of biofuels. The feasibility of the idea is supported by several studies which showed maximal increase in the growth of plants inoculated with PGPB than to uninoculated plants grown in marginal soil when compared to the growth of plants inoculated with PGPB in healthy soil. The combination of PGPB and plants grown in marginal soil will serve as a green technology leading to the next green revolution, reduction in soil pollution and fossil fuel use, neutralizing abiotic stress and climate change effects.
[Display omitted] •Marginal soil is an untapped resource which can be exploited using plants and bacteria.•Some PGPB enhance abiotic stress (drought, salinity and heavy metals) tolerance.•Molecular approaches employed by plant-soil-PGPB interactions crucial for the success.•Efficient utilization of marginal soil will enhance crop productivity and soil remediation. Marginal land is defined as land with poor soil characteristics and low crop productivity with no potential for profit. Poor soil quality due to the presence of xenobiotics or climate change is of great concern. Sustainable food production with increasing population is a challenge which becomes more difficult due to poor soil quality. Marginal soil can be made productive with the use of Plant Growth Promoting Bacteria (PGPB). This review outlines how PGPB can be used to improve marginal soil quality and its implications on agriculture, rhizoremediation, abiotic stress (drought, salinity and heavy metals) tolerance, carbon sequestration and production of biofuels. The feasibility of the idea is supported by several studies which showed maximal increase in the growth of plants inoculated with PGPB than to uninoculated plants grown in marginal soil when compared to the growth of plants inoculated with PGPB in healthy soil. The combination of PGPB and plants grown in marginal soil will serve as a green technology leading to the next green revolution, reduction in soil pollution and fossil fuel use, neutralizing abiotic stress and climate change effects.
ArticleNumber 135062
Author Ramakrishna, Wusirika
Rathore, Parikshita
Yadav, Radheshyam
Kumari, Ritu
Author_xml – sequence: 1
  givenname: Wusirika
  orcidid: 0000-0002-8571-5827
  surname: Ramakrishna
  fullname: Ramakrishna, Wusirika
  email: rk.wusirika@cup.edu.in
– sequence: 2
  givenname: Parikshita
  surname: Rathore
  fullname: Rathore, Parikshita
– sequence: 3
  givenname: Ritu
  surname: Kumari
  fullname: Kumari, Ritu
– sequence: 4
  givenname: Radheshyam
  surname: Yadav
  fullname: Yadav, Radheshyam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32000336$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9u1DAQxi1URLeFVwAfOZDFjpM4RuJQKv5JleAAZ8sZT4JXWXuxna14Cx4Z727pgQudi0fy75vRfN8FOfPBIyEvOFtzxrvXm3UCl0NGv1_XjKs1Fy3r6kdkxXupKs7q7oysGGv6SnVKnpOLlDaslOz5E3Iu6tIK0a3I73cx3Ho6hdnSMNKtiZPzZqYpuPkN_Tobn-lUkPyD7mLYhuz8RAcDGaMzNAca9hghbJHujqwZXGGAphwxJTqGSM0UHSxzXiK-ouV7XHBO1HhLwcQheJrw54JFYLIL_il5PJo54bO795J8__D-2_Wn6ubLx8_XVzcVNJLlSgIwAGzFKPqW26ZFHDmHobMN48yqvlOtUDUM0jaikWD6wTRta22nLBuAiUvy8jS3nHVcr7cuAc7lCgxL0rXoeymF7NQD0JYxJXvBC_r8Dl2GLVq9i65Y-kv_NbwA8gRADClFHO8RzvQhWr3R99HqQ7T6FG1Rvv1HWbCjZcU5Nz9Af3XSF_dx7zAeOPSA1kWErG1w_53xBwNqyIs
CitedBy_id crossref_primary_10_3390_agriculture13101865
crossref_primary_10_1093_jambio_lxaf041
crossref_primary_10_1111_jam_14951
crossref_primary_10_3390_agronomy13122983
crossref_primary_10_1007_s10725_023_01059_0
crossref_primary_10_1002_imt2_134
crossref_primary_10_3390_agronomy12102403
crossref_primary_10_1016_j_agwat_2024_108889
crossref_primary_10_3390_horticulturae10090969
crossref_primary_10_1016_j_envexpbot_2024_106010
crossref_primary_10_1016_j_chemosphere_2022_135701
crossref_primary_10_1016_j_fuel_2023_128913
crossref_primary_10_1093_lambio_ovac067
crossref_primary_10_1016_j_envres_2023_116418
crossref_primary_10_1080_15427528_2024_2378358
crossref_primary_10_1111_jam_15371
crossref_primary_10_1088_1755_1315_1255_1_012006
crossref_primary_10_3390_agriculture13020401
crossref_primary_10_1016_j_hpj_2024_04_006
crossref_primary_10_3389_fpls_2022_952212
crossref_primary_10_1007_s44372_024_00023_0
crossref_primary_10_1007_s12298_020_00900_4
crossref_primary_10_1038_s43247_024_01227_8
crossref_primary_10_1016_j_jhazmat_2024_134370
crossref_primary_10_1016_j_scitotenv_2023_168749
crossref_primary_10_3390_microorganisms9071491
crossref_primary_10_1007_s12033_024_01346_9
crossref_primary_10_1111_jam_15480
crossref_primary_10_3389_fpls_2022_999866
crossref_primary_10_3389_fsoil_2022_927148
crossref_primary_10_1016_j_foreco_2024_121786
crossref_primary_10_1007_s11356_021_13317_7
crossref_primary_10_1007_s13199_023_00945_5
crossref_primary_10_1111_gcb_16604
crossref_primary_10_1016_j_pecs_2024_101161
crossref_primary_10_1016_j_jarmap_2021_100351
crossref_primary_10_1016_j_jhazmat_2020_123146
crossref_primary_10_3390_ijms221910529
crossref_primary_10_1590_1807_1929_agriambi_v27n5p407_414
crossref_primary_10_3390_environments11060111
crossref_primary_10_3390_biology13050348
crossref_primary_10_1007_s13205_021_02904_7
crossref_primary_10_3390_plants12244074
crossref_primary_10_3389_fpls_2021_710139
crossref_primary_10_1016_j_jenvman_2021_112830
crossref_primary_10_3390_microorganisms9081619
crossref_primary_10_1515_opag_2022_0247
crossref_primary_10_3390_agronomy13123060
crossref_primary_10_1016_j_indcrop_2023_117553
crossref_primary_10_47836_pjtas_47_3_14
crossref_primary_10_31857_S0032180X22601372
crossref_primary_10_3390_su13084422
crossref_primary_10_3389_fmicb_2021_693535
crossref_primary_10_3390_biology9090305
crossref_primary_10_1016_j_rser_2020_110691
crossref_primary_10_3390_agronomy11020362
crossref_primary_10_1007_s42729_022_00984_9
crossref_primary_10_1016_j_indcrop_2024_120377
crossref_primary_10_1016_j_agee_2024_109200
crossref_primary_10_1016_j_jbiosc_2024_07_008
crossref_primary_10_1007_s00299_022_02866_x
crossref_primary_10_1016_j_plaphy_2020_02_039
crossref_primary_10_1016_j_ecolind_2025_113272
crossref_primary_10_1134_S1064229322602761
crossref_primary_10_17221_1_2023_JFS
crossref_primary_10_1007_s11104_021_05218_y
crossref_primary_10_1038_s41598_024_56381_y
Cites_doi 10.1016/j.biotechadv.2012.04.011
10.1007/s00253-018-9214-z
10.1016/j.agee.2016.06.031
10.1016/j.chemosphere.2016.04.112
10.1016/j.jgeb.2018.09.001
10.1016/j.envsci.2017.10.011
10.1007/978-981-10-5343-6_6
10.1007/978-3-319-52669-0_7
10.3389/fpls.2017.02223
10.1016/j.spc.2016.08.003
10.1111/1477-8947.12054
10.1021/es103338e
10.1016/j.gexplo.2010.01.006
10.1016/j.micres.2017.11.004
10.2134/jeq2009.0032
10.3389/fmicb.2018.00148
10.2136/sssaj2016.03.0080
10.1016/j.chemosphere.2017.11.087
10.1016/j.biortech.2014.10.075
10.1155/2016/7830182
10.3390/md14050100
10.1016/j.apsoil.2015.05.006
10.1111/ppl.12221
10.1016/j.envexpbot.2015.05.001
10.1016/j.jhazmat.2011.02.075
10.3389/fpls.2017.01768
10.1016/S1002-0160(15)60068-6
10.4014/jmb.1007.07011
10.1002/jobm.200700365
10.1371/journal.pone.0201738
10.1016/j.biotechadv.2013.12.005
10.1111/j.1751-7915.2009.00109.x
10.1007/s10533-018-0528-9
10.1016/B978-0-12-815879-1.00005-7
10.1016/j.cell.2016.08.029
10.1021/es4047395
10.3390/ijerph14121504
10.1016/j.tibtech.2009.12.002
10.1016/j.jhazmat.2012.02.023
10.1016/j.atmosenv.2010.08.026
10.1155/2013/158764
10.1080/07352689409701906
10.1016/j.agee.2017.06.037
10.1016/j.jenvman.2016.02.047
10.1016/j.ecoenv.2016.12.024
10.1016/j.sjbs.2014.12.001
10.1007/s12298-019-00661-9
10.1146/annurev.arplant.59.032607.092911
10.1016/j.ejsobi.2012.01.005
10.1099/mic.0.037143-0
10.1016/j.plantsci.2005.03.013
10.1111/j.1574-6941.2005.00045.x
10.1002/jobm.201800309
10.1007/978-981-10-3084-0_14
10.1016/j.rser.2017.08.032
10.1016/j.biotechadv.2015.05.003
10.1016/j.bmc.2015.11.010
10.1016/S2095-6339(15)30047-2
10.26814/cps2018002
10.1016/j.apgeog.2014.11.024
10.1016/j.rser.2015.10.050
10.1111/j.1758-2229.2009.00126.x
10.1126/science.1133306
10.1016/j.ecoleng.2014.05.008
10.1093/jxb/erl164
10.1006/eesa.1999.1860
10.1105/tpc.000596
10.1038/srep09212
10.1023/A:1019859319617
10.1007/s11157-016-9391-0
10.1007/s00374-008-0344-9
10.1038/sj.embor.7400445
10.1038/srep34768
10.1016/j.tplants.2006.06.001
10.1080/24761028.2016.11869089
10.1128/AEM.72.2.1129-1134.2006
10.1007/s10811-019-01862-1
10.1007/s13213-014-0939-3
10.1016/j.plaphy.2015.10.028
10.1016/j.jhazmat.2013.12.018
10.3389/fmicb.2017.01268
10.1034/j.1399-3054.2000.100409.x
10.1007/s11356-014-3083-5
10.3390/molecules21050573
10.1111/ppl.12117
10.3390/ijgi3020430
10.1007/s00299-016-2093-9
10.5696/2156-9614-8.18.180607
10.1007/s11274-008-9800-9
10.1016/j.soilbio.2009.11.021
10.1016/j.tplants.2014.02.001
10.1016/j.algal.2018.06.006
10.1016/j.jplph.2012.09.012
10.1080/23312041.2016.1213689
10.1007/978-3-030-18975-4_6
10.1093/aob/mcn125
10.2307/1885598
10.1128/AEM.02239-08
10.3389/fmicb.2018.00954
10.1016/j.plaphy.2015.11.001
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2019.135062
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
Agriculture
EISSN 1879-1026
ExternalDocumentID 32000336
10_1016_j_scitotenv_2019_135062
S0048969719350545
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c470t-7cc0cce53f3851d45eef11cb6d4010d98695392cb7d4347ca8ba455dd69d0bc03
IEDL.DBID AIKHN
ISSN 0048-9697
1879-1026
IngestDate Sat Sep 27 23:29:00 EDT 2025
Sun Sep 28 16:01:35 EDT 2025
Wed Feb 19 02:31:10 EST 2025
Thu Apr 24 22:55:26 EDT 2025
Tue Jul 01 03:35:20 EDT 2025
Fri Feb 23 02:46:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Plant growth promoting bacteria
Rhizoremediation
Marginal land
Heavy metals
Sustainable food production
Salinity
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-7cc0cce53f3851d45eef11cb6d4010d98695392cb7d4347ca8ba455dd69d0bc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8571-5827
PMID 32000336
PQID 2350097831
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2388773769
proquest_miscellaneous_2350097831
pubmed_primary_32000336
crossref_primary_10_1016_j_scitotenv_2019_135062
crossref_citationtrail_10_1016_j_scitotenv_2019_135062
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2019_135062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
2020-04-00
2020-Apr-01
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Caravaca, Alguacil, Hernández, Roldán (b0075) 2005; 169
Bruins, Kapil, Oehme (b0065) 2000; 45
Pandey, Yadav, Sahu, Muthamilarasan, Prasad (b0365) 2017; 36
Chirakkara, Cameselle, Reddy (b9015) 2016; 15
Bermudez, Jasan, Plá, Pignata (b0030) 2012; 213
Dao, Wu, Wang, Zhang, Zhan, Hu (b0110) 2018; 33
Enebe, Babalola (b0160) 2018; 102
Mandal (b0290) 2016; 2
Ahemad (b0010) 2015; 5
Naylor, Coleman-Derr (b0330) 2018; 8
Dhawi, Datta, Ramakrishna (b9405) 2015; 97
Banerjee A., Sarkar S., Cuadros-Orellana S., Bandopadhyay R., 2019. Exopolysaccharides and biofilms in mitigating salinity stress: The biotechnological potential of halophilic and soil-inhabiting PGPR microorganisms. In: Giri B., Varma A. (eds) Microorganisms in Saline Environments: Strategies and Functions. Soil Biology, 56, 133-153 Springer, Cham.
Pérez, García-Ribera, Quesada, Aguilera, Ramos-Cormenzana, Monteoliva-Sánchez (b0375) 2008; 24
Singh, Bundela, Sethi, Lal, Kamra (b0490) 2010; 39
Shrivastava, Kumar (b0480) 2015; 22
Tiwari, Lata, Chauhan, Nautiyal (b0535) 2016; 99
Ma, Rajkumar, Zhang, Freitas (b0285) 2016; 174
Mellado-Vázquez, Lange, Gleixner (b0300) 2019; 142
Dhawi, Datta, Ramakrishna (b0135) 2018; 8
Harrison, Rabiei, Turner, Badry, Sproule, Ceri (b0205) 2006; 55
Chaves, Flexas, Pinheiro (b0085) 2009; 103
Singh, Anderson, Brune, Cai, Cohen, Crawford, Cubison, Czech, Emmons, Fuelberg (b0495) 2010; 44
Braud, Geoffroy, Hoegy, Mislin, Schalk (b0060) 2010; 2
Li, Pidatala, Shaik, Datta, Ramakrishna (b0270) 2014; 48
Millennium Ecosystem Assessment., 2005. Ecosystems and human well-being: Current state and trends, Vol. 1, Ed. Hassan R, Scholes R, Ash N., Island Press.
Botella, Del Amor, Amorós, Serrano, Martínez, Cerdá (b0055) 2000; 109
Chibeba, Kyei-Boahen, Guimarães, Nogueira, Hungria (b0095) 2018; 261
Cohen, Bottini, Pontin, Berli, Moreno, Boccanlandro, Travaglia, Piccoli (b0100) 2015; 153
Mehmood, Ibrahim, Rashid, Nawaz, Ali, Hussain, Gull (b0295) 2017; 9
Taghavi, Garafola, Monchy, Newman, Hoffman, Weyens, Barac, Vangronsveld, van der Lelie (b0515) 2009; 75
Zhu (b0580) 2016; 167
Nadeem, Ahmad, Zahir, Javaid, Ashraf (b0315) 2014; 32
Xiong L, Schumaker KS, Zhu JK., 2002. Cell signaling during cold, drought, and salt stress. Plant Cell 14, S165-1283.
Ojuederie, Babalola (b0350) 2017; 14
Rajkumar, Sandhya, Prasad, Freitas (b0420) 2012; 30
Nosheen, Naz, Tahir, Yasmin, Keyani, Mitrevski, Bano, Chin, Marriott, Hussain (b0345) 2018; 13
Srivastava, Singh (b0510) 2014; 70
Agbodjato NA, Noumavo PA, Adjanohoun A, Agbessi L, Baba-Moussa L., 2016. Synergistic effects of plant growth promoting rhizobacteria and chitosan on in vitro seeds germination, greenhouse growth, and nutrient uptake of maize
Deinlein, Stephan, Horie, Luo, Xu, Schroeder (b0120) 2014; 19
Lewis, Kelly (b0260) 2014; 3
FAO/IIASA/ISRIC/ISS-CAS/JRC., 2008. Harmonized world soil database (version 1.0). Rome: FAO.
Ashraf, Wu (b0015) 1994; 13
Chen, Xu, Zeng, Yang, Huang, Zhang (b0090) 2015; 33
Ilangumaran, Smith (b9004) 2017; 8
Grover, Maheswari, Desai, Gopinath, Venkateswarlu (b0195) 2015; 95
Hollander (b0225) 1895; 9
Pidatala, Li, Sarkar, Wusirika, Datta (b0385) 2018; 193
Yadav, Ramakrishna (b0575) 2019; 8
Naseem, Ahsan, Shahid, Khan (b0325) 2018; 58
Wu, Wood, Mulchandani, Chen (b0555) 2006; 72
Chandra, Askari, Kumari (b0080) 2018; 16
Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD., 2014. Economics of salt‐induced land degradation and restoration. In: Natural Resources Forum, pp. 282-295. Wiley Online Library.
Munns, Tester (b0310) 2008; 59
Gadd (b0180) 2010; 156
Fuentes, Garbayo, Cuaresma, Montero, González-del-Valle, Vílchez (b0175) 2016; 14
Zörb, Geilfus, Mühling, Ludwig-Müller (b0585) 2013; 170
Li, Pang, He, Wang, Sheng (b0280) 2017; 138
Sen, Chandrasekhar (b0455) 2014; 4
Wu CH, Bernard SM, Andersen GL, Chen W., 2009. Developing microbe–plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microbial Biotechnol. 2, 428–440.
Li, Ramakrishna (b0275) 2011; 189
Bharti P, Singh B, Bauddh K, Dey R, Korstad J., 2017. Efficiency of bioenergy plant in phytoremediation of saline and sodic soil. In: Phytoremediation Potential of Bioenergy Plants pp. 353-69, Springer.
L.). Biotechnol. Res. Intl. 2016, 7830182.
Goswami, Thakker, Dhandhukia (b0190) 2016; 2
Quinn, Davis (b0410) 2015; 184
Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense‐related terpenes in in vitro cultured grapevine. Physiologia Plantarum 151, 359-374.
Nadeem, Zahir, Naveed, Asghar, Arshad (b0320) 2010; 74
Dogra, Yadav, Kaur, Adhikary, Kumar, Ramakrishna (b0145) 2019; 25
Shifaw (b0470) 2018; 8
Kumar, Verma (b0255) 2018; 207
Kaushal, Wani (b0235) 2016; 231
Ramos-Ibarra, Rubio-Ramírez, Mondragón-Cortez, Torres-Velázquez, Choix (b0395) 2019
Helander, Vaidya, Cutler (b0215) 2016; 24
Shi, Zhu (b0465) 2002; 50
Schlesinger, Bernhardt (b0400) 2013
Shinozaki, Yamaguchi-Shinozaki (b0475) 2007; 58
Bano, Fatima (b0025) 2009; 45
Salomon MV, Bottini R, de Souza Filho GA, Cohen AC, Moreno D, Gil M, Piccoli P., 2014.
Salomon MV, Pinter IF, Piccoli P, Bottini R., 2017. Use of plant growth-promoting rhizobacteria as biocontrol agents: Induced systemic resistance against biotic stress in plants. In: Microbial Applications 2, pp. 133-152. Springer.
Platten, Cotsaftis, Berthomieu, Bohnert, Davenport, Fairbairn, Horie, Leigh, Lin, Luan (b0390) 2006; 11
Xue G, Xishu Z, Lauren H, Mengting Y, Jiajie F, Daliang N, et al., 2018. Taxonomic and responses of soil microbial communities to annual removal of aboveground plant biomass. Front. Microbiol. 9, 954.
Takahashi (b0520) 2016; 5
Gibbs, Salmon (b0185) 2015; 57
Dragone, Fernandes, Vicente, Teixeira (b0140) 2010; 2
Bharti, Pandey, Barnawal, Patel, Kalra (b0035) 2016; 6
Dhawi, Datta, Ramakrishna (b0130) 2017; 1865
Kittredge (b0240) 2015
Bharti N, Barnawal D., 2019. Amelioration of salinity stress by PGPR: ACC deaminase and ROS scavenging enzymes activity. In: PGPR Amelioration in Sustainable Agriculture: Food Security and Environmental Management Ed: Singh AK, Kumar A, Singh PK, pp. 85-106, Woodhead Publishing.
Li, Singh, Singh (b0265) 2017; 8
Gupta (b0200) 2010
Hietala, Roane (b0220) 2009
Sofi, Lone, Ganie, Dar, Bhat (b0505) 2016; 26
Ullah, Heng, Munis, Fahad, Yang (b0540) 2015; 117
Cai, Zhang, Wang (b0070) 2010; 45
Rana, Joshi, Prasanna, Shivay, Nain (b0425) 2012; 50
de Souza, Meyer, Schoenfeld, da Costa, Passaglia (b0115) 2015; 65
Shahid, Al-Shankiti (b0460) 2013; 1
Hassan, Bano, Bashir, David (b0210) 2014; 21
Tilman, Hill, Lehman (b0530) 2006; 314
Etesami, Beattie (b0165) 2018; 9
Vejan, Abdullah, Khadiran, Ismail, Nasrulhaq (b0550) 2016; 21
Nie, Bell, Wallenstein, Pendall (b0340) 2015; 5
Ricardo D., 1817. On the principles of political economy and taxation. Piero Sraffa (Ed.) Works and Correspondence of David Ricardo, Volume I, Cambridge University Press, 1951.
Panagos, Van Liedekerke, Yigini, Montanarella (b0360) 2013; 2013
Peuke, Rennenberg (b0380) 2005; 6
Teng, Ni, Wang, Zuo, Yang (b0525) 2010; 104
Nia, Zarea, Rejali, Varma (b0335) 2012; 11
Padda KP, Puri A, Chanway CP.. 2017. Paenibacillus polymyxa: A prominent biofertilizer and biocontrol agent for sustainable agriculture. In: Agriculturally Important Microbes for Sustainable Agriculture pp. 165-191. Springer.
Dhawi, Datta, Ramakrishna (b0125) 2016; 157
Rajkumar, Ae, Prasad, Freitas (b0415) 2010; 28
Siddikee, Chauhan, Anandham, Han, Sa (b0485) 2010; 20
Bolan, Kunhikrishnan, Thangarajan, Kumpiene, Park, Makino, Kirkham, Scheckel (b0050) 2014; 266
Elrayies (b0155) 2018; 81
Paul, Nair (b0370) 2008; 48
Singh (b0500) 2018; 6
Umara, Abdullahi, Dibal, Ahmad (b0545) 2013; 3
Blanco-Canqui (b9005) 2016; 80
Cowie AL, Orr B, Sanchez VMC, Chasek P, Crossmane ND, Erlewein A, et al., 2018. Land in balance: The scientific conceptual framework for land degradation neutrality. Environ. Sci. Policy 79, 25-35.
Edrisi, Abhilash (b0150) 2016; 54
Kohler, Caravaca, Roldán (b0250) 2010; 42
Gibbs (10.1016/j.scitotenv.2019.135062_b0185) 2015; 57
Vejan (10.1016/j.scitotenv.2019.135062_b0550) 2016; 21
10.1016/j.scitotenv.2019.135062_b0170
10.1016/j.scitotenv.2019.135062_b0045
Nie (10.1016/j.scitotenv.2019.135062_b0340) 2015; 5
Edrisi (10.1016/j.scitotenv.2019.135062_b0150) 2016; 54
Dao (10.1016/j.scitotenv.2019.135062_b0110) 2018; 33
Li (10.1016/j.scitotenv.2019.135062_b0265) 2017; 8
10.1016/j.scitotenv.2019.135062_b0565
Peuke (10.1016/j.scitotenv.2019.135062_b0380) 2005; 6
10.1016/j.scitotenv.2019.135062_b0560
10.1016/j.scitotenv.2019.135062_b0440
Takahashi (10.1016/j.scitotenv.2019.135062_b0520) 2016; 5
Teng (10.1016/j.scitotenv.2019.135062_b0525) 2010; 104
Bruins (10.1016/j.scitotenv.2019.135062_b0065) 2000; 45
Cohen (10.1016/j.scitotenv.2019.135062_b0100) 2015; 153
10.1016/j.scitotenv.2019.135062_b0445
10.1016/j.scitotenv.2019.135062_b9010
Deinlein (10.1016/j.scitotenv.2019.135062_b0120) 2014; 19
Mandal (10.1016/j.scitotenv.2019.135062_b0290) 2016; 2
10.1016/j.scitotenv.2019.135062_b0040
Tilman (10.1016/j.scitotenv.2019.135062_b0530) 2006; 314
Shi (10.1016/j.scitotenv.2019.135062_b0465) 2002; 50
Nadeem (10.1016/j.scitotenv.2019.135062_b0315) 2014; 32
Naseem (10.1016/j.scitotenv.2019.135062_b0325) 2018; 58
10.1016/j.scitotenv.2019.135062_b0430
Shrivastava (10.1016/j.scitotenv.2019.135062_b0480) 2015; 22
Li (10.1016/j.scitotenv.2019.135062_b0275) 2011; 189
Nia (10.1016/j.scitotenv.2019.135062_b0335) 2012; 11
Ramos-Ibarra (10.1016/j.scitotenv.2019.135062_b0395) 2019
Nadeem (10.1016/j.scitotenv.2019.135062_b0320) 2010; 74
Enebe (10.1016/j.scitotenv.2019.135062_b0160) 2018; 102
Singh (10.1016/j.scitotenv.2019.135062_b0495) 2010; 44
Ojuederie (10.1016/j.scitotenv.2019.135062_b0350) 2017; 14
Dhawi (10.1016/j.scitotenv.2019.135062_b0125) 2016; 157
Hassan (10.1016/j.scitotenv.2019.135062_b0210) 2014; 21
Shahid (10.1016/j.scitotenv.2019.135062_b0460) 2013; 1
Chen (10.1016/j.scitotenv.2019.135062_b0090) 2015; 33
10.1016/j.scitotenv.2019.135062_b0020
Bano (10.1016/j.scitotenv.2019.135062_b0025) 2009; 45
Kohler (10.1016/j.scitotenv.2019.135062_b0250) 2010; 42
Bermudez (10.1016/j.scitotenv.2019.135062_b0030) 2012; 213
Chirakkara (10.1016/j.scitotenv.2019.135062_b9015) 2016; 15
Hietala (10.1016/j.scitotenv.2019.135062_b0220) 2009
Lewis (10.1016/j.scitotenv.2019.135062_b0260) 2014; 3
Pidatala (10.1016/j.scitotenv.2019.135062_b0385) 2018; 193
Singh (10.1016/j.scitotenv.2019.135062_b0490) 2010; 39
Sofi (10.1016/j.scitotenv.2019.135062_b0505) 2016; 26
Nosheen (10.1016/j.scitotenv.2019.135062_b0345) 2018; 13
Pérez (10.1016/j.scitotenv.2019.135062_b0375) 2008; 24
Siddikee (10.1016/j.scitotenv.2019.135062_b0485) 2010; 20
Blanco-Canqui (10.1016/j.scitotenv.2019.135062_b9005) 2016; 80
de Souza (10.1016/j.scitotenv.2019.135062_b0115) 2015; 65
Kittredge (10.1016/j.scitotenv.2019.135062_b0240) 2015
Platten (10.1016/j.scitotenv.2019.135062_b0390) 2006; 11
Helander (10.1016/j.scitotenv.2019.135062_b0215) 2016; 24
Mehmood (10.1016/j.scitotenv.2019.135062_b0295) 2017; 9
Naylor (10.1016/j.scitotenv.2019.135062_b0330) 2018; 8
Grover (10.1016/j.scitotenv.2019.135062_b0195) 2015; 95
Yadav (10.1016/j.scitotenv.2019.135062_b0575) 2019; 8
Srivastava (10.1016/j.scitotenv.2019.135062_b0510) 2014; 70
Bolan (10.1016/j.scitotenv.2019.135062_b0050) 2014; 266
Harrison (10.1016/j.scitotenv.2019.135062_b0205) 2006; 55
Cai (10.1016/j.scitotenv.2019.135062_b0070) 2010; 45
Rana (10.1016/j.scitotenv.2019.135062_b0425) 2012; 50
Ma (10.1016/j.scitotenv.2019.135062_b0285) 2016; 174
Bharti (10.1016/j.scitotenv.2019.135062_b0035) 2016; 6
Wu (10.1016/j.scitotenv.2019.135062_b0555) 2006; 72
Umara (10.1016/j.scitotenv.2019.135062_b0545) 2013; 3
Dogra (10.1016/j.scitotenv.2019.135062_b0145) 2019; 25
Mellado-Vázquez (10.1016/j.scitotenv.2019.135062_b0300) 2019; 142
Panagos (10.1016/j.scitotenv.2019.135062_b0360) 2013; 2013
Chaves (10.1016/j.scitotenv.2019.135062_b0085) 2009; 103
Caravaca (10.1016/j.scitotenv.2019.135062_b0075) 2005; 169
10.1016/j.scitotenv.2019.135062_b0405
Munns (10.1016/j.scitotenv.2019.135062_b0310) 2008; 59
Pandey (10.1016/j.scitotenv.2019.135062_b0365) 2017; 36
Shifaw (10.1016/j.scitotenv.2019.135062_b0470) 2018; 8
10.1016/j.scitotenv.2019.135062_b0005
Chibeba (10.1016/j.scitotenv.2019.135062_b0095) 2018; 261
Gupta (10.1016/j.scitotenv.2019.135062_b0200) 2010
Shinozaki (10.1016/j.scitotenv.2019.135062_b0475) 2007; 58
Zörb (10.1016/j.scitotenv.2019.135062_b0585) 2013; 170
Gadd (10.1016/j.scitotenv.2019.135062_b0180) 2010; 156
10.1016/j.scitotenv.2019.135062_b0355
Li (10.1016/j.scitotenv.2019.135062_b0280) 2017; 138
Rajkumar (10.1016/j.scitotenv.2019.135062_b0420) 2012; 30
Fuentes (10.1016/j.scitotenv.2019.135062_b0175) 2016; 14
Sen (10.1016/j.scitotenv.2019.135062_b0455) 2014; 4
Rajkumar (10.1016/j.scitotenv.2019.135062_b0415) 2010; 28
Ashraf (10.1016/j.scitotenv.2019.135062_b0015) 1994; 13
Dhawi (10.1016/j.scitotenv.2019.135062_b0135) 2018; 8
Chandra (10.1016/j.scitotenv.2019.135062_b0080) 2018; 16
Quinn (10.1016/j.scitotenv.2019.135062_b0410) 2015; 184
Tiwari (10.1016/j.scitotenv.2019.135062_b0535) 2016; 99
Paul (10.1016/j.scitotenv.2019.135062_b0370) 2008; 48
Kaushal (10.1016/j.scitotenv.2019.135062_b0235) 2016; 231
Etesami (10.1016/j.scitotenv.2019.135062_b0165) 2018; 9
Ilangumaran (10.1016/j.scitotenv.2019.135062_b9004) 2017; 8
Ahemad (10.1016/j.scitotenv.2019.135062_b0010) 2015; 5
Schlesinger (10.1016/j.scitotenv.2019.135062_b0400) 2013
Kumar (10.1016/j.scitotenv.2019.135062_b0255) 2018; 207
10.1016/j.scitotenv.2019.135062_b0105
Taghavi (10.1016/j.scitotenv.2019.135062_b0515) 2009; 75
Elrayies (10.1016/j.scitotenv.2019.135062_b0155) 2018; 81
Hollander (10.1016/j.scitotenv.2019.135062_b0225) 1895; 9
Botella (10.1016/j.scitotenv.2019.135062_b0055) 2000; 109
Dhawi (10.1016/j.scitotenv.2019.135062_b0130) 2017; 1865
Dragone (10.1016/j.scitotenv.2019.135062_b0140) 2010; 2
Zhu (10.1016/j.scitotenv.2019.135062_b0580) 2016; 167
10.1016/j.scitotenv.2019.135062_b0570
10.1016/j.scitotenv.2019.135062_b0450
Goswami (10.1016/j.scitotenv.2019.135062_b0190) 2016; 2
Braud (10.1016/j.scitotenv.2019.135062_b0060) 2010; 2
Dhawi (10.1016/j.scitotenv.2019.135062_b9405) 2015; 97
Li (10.1016/j.scitotenv.2019.135062_b0270) 2014; 48
Singh (10.1016/j.scitotenv.2019.135062_b0500) 2018; 6
Ullah (10.1016/j.scitotenv.2019.135062_b0540) 2015; 117
References_xml – volume: 8
  start-page: 8
  year: 2018
  end-page: 14
  ident: b0135
  article-title: Metabolomics, biomass and lignocellulosic total sugars analysis in foxtail millet (
  publication-title: Comm. Plant Sci.
– volume: 95
  start-page: 73
  year: 2015
  end-page: 85
  ident: b0195
  article-title: Elevated CO
  publication-title: Appl. Soil Ecol.
– volume: 42
  start-page: 429
  year: 2010
  end-page: 434
  ident: b0250
  article-title: An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of
  publication-title: Soil Biol. Biochem.
– volume: 11
  start-page: 113
  year: 2012
  end-page: 121
  ident: b0335
  article-title: Yield and yield components of wheat as affected by salinity and inoculation with
  publication-title: J. Saudi Soc. Agric. Sci.
– volume: 28
  start-page: 142
  year: 2010
  end-page: 149
  ident: b0415
  article-title: Potential of siderophore-producing bacteria for improving heavy metal phytoextraction
  publication-title: Trends Biotechnol.
– volume: 8
  start-page: 2938
  year: 2019
  end-page: 2943
  ident: b0575
  article-title: Nutrient enhancement and growth promotion of wheat cultivars by native plant growth promoting bacteria from Punjab state
  publication-title: India. J. Pharmacognosy Phytochem.
– volume: 5
  start-page: 11
  year: 2016
  end-page: 25
  ident: b0520
  article-title: Damage and heavy metal pollution in China's farmland: Reality and solutions
  publication-title: J. Contemporary East Asia Studies
– reference: Padda KP, Puri A, Chanway CP.. 2017. Paenibacillus polymyxa: A prominent biofertilizer and biocontrol agent for sustainable agriculture. In: Agriculturally Important Microbes for Sustainable Agriculture pp. 165-191. Springer.
– volume: 48
  start-page: 1184
  year: 2014
  end-page: 1193
  ident: b0270
  article-title: Integrated metabolomic and proteomic approaches dissect the effect of metal-resistant bacteria on maize biomass and copper uptake
  publication-title: Environ. Sci. Technol.
– volume: 1865
  start-page: 243
  year: 2017
  end-page: 251
  ident: b0130
  article-title: Proteomics provides insights into biological pathways altered by plant growth promoting bacteria and arbuscular mycorrhiza in sorghum grown in marginal soil. Biochim. Biophys. Acta (BBA)-Prot
  publication-title: Proteomics
– volume: 314
  start-page: 1598
  year: 2006
  end-page: 1600
  ident: b0530
  article-title: Carbon-negative biofuels from low-input high-diversity grassland biomass
  publication-title: Science
– year: 2019
  ident: b0395
  article-title: -microalga interaction increases growth and accumulation of cell compounds in
  publication-title: J. Appl. Phycol.
– volume: 80
  start-page: 845
  year: 2016
  end-page: 858
  ident: b9005
  article-title: Growing dedicated energy crops on marginal lands and ecosystem services
  publication-title: Soil Sci. Soc. Amer. J.
– volume: 81
  start-page: 1175
  year: 2018
  end-page: 1191
  ident: b0155
  article-title: Microalgae: prospects for greener future buildings
  publication-title: Renew. Sustain. Energy Rev.
– volume: 39
  start-page: 5
  year: 2010
  end-page: 15
  ident: b0490
  article-title: Remote sensing and geographic information system for appraisal of salt-affected soils in India
  publication-title: J. Environ Quality
– volume: 213
  start-page: 447
  year: 2012
  end-page: 456
  ident: b0030
  article-title: Heavy metals and trace elements in atmospheric fall-out: their relationship with topsoil and wheat element composition
  publication-title: J. Hazard. Mater.
– reference: Cowie AL, Orr B, Sanchez VMC, Chasek P, Crossmane ND, Erlewein A, et al., 2018. Land in balance: The scientific conceptual framework for land degradation neutrality. Environ. Sci. Policy 79, 25-35.
– volume: 231
  start-page: 68
  year: 2016
  end-page: 78
  ident: b0235
  article-title: Rhizobacterial-plant interactions: strategies ensuring plant growth promotion under drought and salinity stress
  publication-title: Agric. Ecosyst. Environ.
– volume: 156
  start-page: 609
  year: 2010
  end-page: 643
  ident: b0180
  article-title: Metals, minerals and microbes: geomicrobiology and bioremediation
  publication-title: Microbiol.
– volume: 33
  start-page: 345
  year: 2018
  end-page: 351
  ident: b0110
  article-title: Enhanced microalgae growth through stimulated secretion of indole acetic acid by symbiotic bacteria
  publication-title: Algal Res.
– volume: 75
  start-page: 748
  year: 2009
  end-page: 757
  ident: b0515
  article-title: Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees
  publication-title: Appl. Environ. Microbiol.
– volume: 14
  start-page: 100
  year: 2016
  ident: b0175
  article-title: Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds
  publication-title: Mar. Drugs
– volume: 2
  start-page: 1127500
  year: 2016
  ident: b0190
  article-title: Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review
  publication-title: Cogent Food Agric.
– volume: 142
  start-page: 175
  year: 2019
  end-page: 187
  ident: b0300
  article-title: Soil microbial communities and their carbon assimilation are affected by soil properties and season but not by plants differing in their photosynthetic pathways (C3 vs. C4)
  publication-title: Biogeochem.
– volume: 193
  start-page: 903e911
  year: 2018
  ident: b0385
  article-title: Comparative metabolic profiling of vetiver (
  publication-title: Chemosphere
– reference: Agbodjato NA, Noumavo PA, Adjanohoun A, Agbessi L, Baba-Moussa L., 2016. Synergistic effects of plant growth promoting rhizobacteria and chitosan on in vitro seeds germination, greenhouse growth, and nutrient uptake of maize (
– volume: 15
  start-page: 299
  year: 2016
  end-page: 326
  ident: b9015
  article-title: Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants
  publication-title: Rev. Environ. Sci. Bio/Technol.
– volume: 50
  start-page: 118
  year: 2012
  end-page: 126
  ident: b0425
  article-title: Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria
  publication-title: European J. Soil Biol.
– volume: 266
  start-page: 141
  year: 2014
  end-page: 166
  ident: b0050
  article-title: Remediation of heavy metal(loid)s contaminated soils–to mobilize or to immobilize?
  publication-title: J. Hazard. Mater.
– volume: 30
  start-page: 1562
  year: 2012
  end-page: 1574
  ident: b0420
  article-title: Perspectives of plant-associated microbes in heavy metal phytoremediation
  publication-title: Biotechnol. Adv.
– volume: 261
  start-page: 230
  year: 2018
  end-page: 240
  ident: b0095
  article-title: Feasibility of transference of inoculation-related technologies: A case study of evaluation of soybean rhizobial strains under the agro-climatic conditions of Brazil and Mozambique
  publication-title: Agric. Ecosyst. Environ.
– volume: 184
  start-page: 444
  year: 2015
  end-page: 452
  ident: b0410
  article-title: The potentials and challenges of algae based biofuels: A review of the techno-economic, life cycle, and resource assessment modeling
  publication-title: Bioresource Technol.
– volume: 55
  start-page: 479
  year: 2006
  end-page: 491
  ident: b0205
  article-title: Metal resistance in Candida biofilms
  publication-title: FEMS Microbiol. Ecol.
– volume: 24
  start-page: 2699
  year: 2008
  ident: b0375
  article-title: Biosorption of heavy metals by the exopolysaccharide produced by
  publication-title: World J. Microbiol. Biotechnol.
– reference: Salomon MV, Pinter IF, Piccoli P, Bottini R., 2017. Use of plant growth-promoting rhizobacteria as biocontrol agents: Induced systemic resistance against biotic stress in plants. In: Microbial Applications 2, pp. 133-152. Springer.
– volume: 20
  start-page: 1577
  year: 2010
  end-page: 1584
  ident: b0485
  article-title: Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil
  publication-title: J. Microbiol. Biotechnol.
– reference: Millennium Ecosystem Assessment., 2005. Ecosystems and human well-being: Current state and trends, Vol. 1, Ed. Hassan R, Scholes R, Ash N., Island Press.
– volume: 74
  start-page: 533
  year: 2010
  end-page: 542
  ident: b0320
  article-title: Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat
  publication-title: Soil Biol. Biochem.
– year: 2013
  ident: b0400
  article-title: Biogeochemistry: an analysis of global change
– reference: Banerjee A., Sarkar S., Cuadros-Orellana S., Bandopadhyay R., 2019. Exopolysaccharides and biofilms in mitigating salinity stress: The biotechnological potential of halophilic and soil-inhabiting PGPR microorganisms. In: Giri B., Varma A. (eds) Microorganisms in Saline Environments: Strategies and Functions. Soil Biology, 56, 133-153 Springer, Cham.
– volume: 6
  start-page: 1
  year: 2018
  end-page: 7
  ident: b0500
  article-title: Climate change and sustainable management of salinity in agriculture
  publication-title: Res. Med. Eng. Sci.
– volume: 33
  start-page: 745
  year: 2015
  end-page: 755
  ident: b0090
  article-title: Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs
  publication-title: Biotechnol. Adv.
– volume: 9
  start-page: 175
  year: 1895
  end-page: 187
  ident: b0225
  article-title: The concept of marginal rent
  publication-title: Quarterly J. Econ.
– volume: 103
  start-page: 551
  year: 2009
  end-page: 560
  ident: b0085
  article-title: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell
  publication-title: Annals Bot.
– volume: 6
  start-page: 497
  year: 2005
  end-page: 501
  ident: b0380
  article-title: Phytoremediation: molecular biology, requirements for application, environmental protection, public attention and feasibility
  publication-title: EMBO Rep.
– volume: 11
  start-page: 372
  year: 2006
  end-page: 374
  ident: b0390
  article-title: Nomenclature for HKT transporters, key determinants of plant salinity tolerance
  publication-title: Trends Plant Sci.
– reference: Bharti P, Singh B, Bauddh K, Dey R, Korstad J., 2017. Efficiency of bioenergy plant in phytoremediation of saline and sodic soil. In: Phytoremediation Potential of Bioenergy Plants pp. 353-69, Springer.
– volume: 16
  start-page: 581
  year: 2018
  end-page: 586
  ident: b0080
  article-title: Optimization of indole acetic acid production by isolated bacteria from
  publication-title: J. Genet. Eng. Biotechnol.
– volume: 174
  start-page: 14
  year: 2016
  end-page: 25
  ident: b0285
  article-title: Beneficial role of bacterial endophytes in heavy metal phytoremediation
  publication-title: J. Environ. Management
– volume: 32
  start-page: 429
  year: 2014
  end-page: 448
  ident: b0315
  article-title: The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments
  publication-title: Biotechnol. Adv.
– volume: 19
  start-page: 371
  year: 2014
  end-page: 379
  ident: b0120
  article-title: Plant salt-tolerance mechanisms
  publication-title: Trends Plant Sci.
– volume: 2
  start-page: 1355
  year: 2010
  end-page: 1366
  ident: b0140
  article-title: Third generation biofuels from microalgae. Curr. Res. Technol. Education Topics in Appl
  publication-title: Microbiol. Microbial Biotechnol.
– volume: 99
  start-page: 108
  year: 2016
  end-page: 117
  ident: b0535
  article-title: attunes morphophysiological, biochemical and molecular responses in
  publication-title: Plant Physiol. Biochem.
– volume: 157
  start-page: 33
  year: 2016
  end-page: 41
  ident: b0125
  article-title: Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil
  publication-title: Chemosphere
– volume: 45
  start-page: 334
  year: 2010
  end-page: 339
  ident: b0070
  article-title: Land availability for biofuel production
  publication-title: Environ. Sci. Technol.
– volume: 117
  start-page: 28
  year: 2015
  end-page: 40
  ident: b0540
  article-title: Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review
  publication-title: Environ. Exp. Bot.
– volume: 50
  start-page: 543
  year: 2002
  end-page: 550
  ident: b0465
  article-title: Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid
  publication-title: Plant Mol. Biol.
– volume: 6
  start-page: 34768
  year: 2016
  ident: b0035
  article-title: Plant growth promoting rhizobacteria
  publication-title: Sci. Rep.
– volume: 102
  start-page: 7821
  year: 2018
  end-page: 7835
  ident: b0160
  article-title: The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 57
  start-page: 12
  year: 2015
  end-page: 21
  ident: b0185
  article-title: Mapping the world's degraded lands
  publication-title: Appl. Geography
– volume: 65
  start-page: 951
  year: 2015
  end-page: 964
  ident: b0115
  article-title: Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils
  publication-title: Annals Microbiol.
– volume: 26
  start-page: 577
  year: 2016
  end-page: 591
  ident: b0505
  article-title: Soil microbiological activity and carbon dynamics in the current climate change scenarios: A review
  publication-title: Pedosphere
– volume: 109
  start-page: 428
  year: 2000
  end-page: 434
  ident: b0055
  article-title: Polyamine, ethylene and other physico-chemical parameters in tomato (
  publication-title: Physiol. Plant.
– volume: 2
  start-page: 1213689
  year: 2016
  ident: b0290
  article-title: Mapping and characterization of salt-affected and waterlogged soils in the Gangetic plain of central Haryana (India) for reclamation and management
  publication-title: Cogent Geosci.
– volume: 3
  start-page: 430
  year: 2014
  end-page: 459
  ident: b0260
  article-title: Mapping the potential for biofuel production on marginal lands: differences in definitions, data and models across scales
  publication-title: ISPRS Internat. J. Geo-Information
– reference: Xue G, Xishu Z, Lauren H, Mengting Y, Jiajie F, Daliang N, et al., 2018. Taxonomic and responses of soil microbial communities to annual removal of aboveground plant biomass. Front. Microbiol. 9, 954.
– volume: 59
  start-page: 651
  year: 2008
  end-page: 681
  ident: b0310
  article-title: Mechanisms of salinity tolerance
  publication-title: Annu. Rev. Plant Biol.
– volume: 44
  start-page: 4553
  year: 2010
  end-page: 4564
  ident: b0495
  article-title: Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions
  publication-title: Atmospheric Environ.
– volume: 13
  year: 2018
  ident: b0345
  article-title: Improvement of safflower oil quality for biodiesel production by integrated application of PGPR under reduced amount of NP fertilizers
  publication-title: PLoS One
– volume: 21
  start-page: 573
  year: 2016
  ident: b0550
  article-title: Role of plant growth promoting rhizobacteria in agricultural sustainability—a review
  publication-title: Molecules
– start-page: 201
  year: 2009
  end-page: 220
  ident: b0220
  article-title: Microbial remediation of metals in soils
  publication-title: Advances in Applied Bioremediation
– reference: Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense‐related terpenes in in vitro cultured grapevine. Physiologia Plantarum 151, 359-374.
– volume: 24
  start-page: 493
  year: 2016
  end-page: 500
  ident: b0215
  article-title: Chemical manipulation of plant water use
  publication-title: Bioorg. Med. Chem.
– volume: 1
  start-page: 24
  year: 2013
  end-page: 38
  ident: b0460
  article-title: Sustainable food production in marginal lands—Case of GDLA member countries
  publication-title: Intl. Soil Water Conservation Res.
– volume: 25
  start-page: 1251
  year: 2019
  end-page: 1259
  ident: b0145
  article-title: Nutrient enhancement of chickpea grown with plant growth promoting bacteria grown in local soil of Bathinda, Northwestern India
  publication-title: Physiol. Mol. Biol. Plants
– volume: 8
  year: 2018
  ident: b0470
  article-title: Review of heavy metals pollution in China in agricultural and urban soils
  publication-title: J. Health Pollut.
– volume: 45
  start-page: 405
  year: 2009
  end-page: 413
  ident: b0025
  article-title: Salt tolerance in
  publication-title: Biol. Fertil. Soils
– volume: 36
  start-page: 759
  year: 2017
  end-page: 772
  ident: b0365
  article-title: Salinity induced differential methylation patterns in contrasting cultivars of foxtail millet (
  publication-title: Plant Cell Rep.
– volume: 189
  start-page: 531
  year: 2011
  end-page: 539
  ident: b0275
  article-title: Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth
  publication-title: J. Hazard. Mat.
– reference: Bharti N, Barnawal D., 2019. Amelioration of salinity stress by PGPR: ACC deaminase and ROS scavenging enzymes activity. In: PGPR Amelioration in Sustainable Agriculture: Food Security and Environmental Management Ed: Singh AK, Kumar A, Singh PK, pp. 85-106, Woodhead Publishing.
– volume: 21
  start-page: 10983
  year: 2014
  end-page: 10996
  ident: b0210
  article-title: Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (
  publication-title: Environ. Sci. Pollut. Res.
– volume: 72
  start-page: 1129
  year: 2006
  end-page: 1134
  ident: b0555
  article-title: Engineering plant-microbe symbiosis for rhizoremediation of heavy metals
  publication-title: Appl. Environ. Microbiol.
– volume: 2013
  year: 2013
  ident: b0360
  article-title: Contaminated sites in Europe: review of the current situation based on data collected through a European network
  publication-title: J. Environ. Public Health
– reference: Salomon MV, Bottini R, de Souza Filho GA, Cohen AC, Moreno D, Gil M, Piccoli P., 2014.
– volume: 8
  start-page: 2223
  year: 2018
  ident: b0330
  article-title: Drought stress and root-associated bacterial communities
  publication-title: Front. Plant Sci.
– volume: 54
  start-page: 1537
  year: 2016
  end-page: 1551
  ident: b0150
  article-title: Exploring marginal and degraded lands for biomass and bioenergy production: an Indian scenario
  publication-title: Renew. Sustain. Energy Rev.
– volume: 4
  start-page: 62
  year: 2014
  end-page: 67
  ident: b0455
  article-title: Effect of PGPR on growth promotion of rice (
  publication-title: Asian J. Plant Sci. Res.
– reference: Xiong L, Schumaker KS, Zhu JK., 2002. Cell signaling during cold, drought, and salt stress. Plant Cell 14, S165-1283.
– volume: 167
  start-page: 313
  year: 2016
  end-page: 324
  ident: b0580
  article-title: Abiotic stress signaling and responses in plants
  publication-title: Cell
– volume: 97
  start-page: 390
  year: 2015
  end-page: 399
  ident: b9405
  article-title: Mycorrhiza and PGPB modulate maize biomass, nutrient uptake and metabolic pathways in maize grown in mining-impacted soil
  publication-title: Plant Physiol. Biochem.
– volume: 22
  start-page: 123
  year: 2015
  end-page: 131
  ident: b0480
  article-title: Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation
  publication-title: Saudi J. Biol. Sci.
– volume: 70
  start-page: 146
  year: 2014
  end-page: 153
  ident: b0510
  article-title: Mitigation approach of arsenic toxicity in chickpea grown in arsenic amended soil with arsenic tolerant plant growth promoting
  publication-title: Ecol. Eng.
– volume: 3
  start-page: 288
  year: 2013
  end-page: 291
  ident: b0545
  article-title: Effects of salts concentration on emergence and growth of tomato (
  publication-title: J. Eng. Innov. Technol. (UEIT)
– volume: 58
  start-page: 221
  year: 2007
  end-page: 227
  ident: b0475
  article-title: Gene networks involved in drought stress response and tolerance
  publication-title: J. Exp. Bot.
– volume: 104
  start-page: 118
  year: 2010
  end-page: 127
  ident: b0525
  article-title: A geochemical survey of trace elements in agricultural and non-agricultural topsoil in Dexing area
  publication-title: China. J. Geochem. Exploration
– volume: 169
  start-page: 191
  year: 2005
  end-page: 197
  ident: b0075
  article-title: Involvement of antioxidant enzyme and nitrate reductase activities during water stress and recovery of mycorrhizal
  publication-title: Plant Sci.
– volume: 58
  start-page: 1009
  year: 2018
  end-page: 1022
  ident: b0325
  article-title: Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance
  publication-title: J. Basic Microbiol.
– volume: 2
  start-page: 419
  year: 2010
  end-page: 425
  ident: b0060
  article-title: Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in
  publication-title: Environ. Microbiol. Rep.
– start-page: 62
  year: 2010
  ident: b0200
  article-title: Management of alkali water (Technical Bulletin CSSRI/Karnal/2010/01
– volume: 207
  start-page: 41
  year: 2018
  end-page: 52
  ident: b0255
  article-title: Does plant-microbe interaction confer stress tolerance in plants: a review?
  publication-title: Microbiol. Res.
– volume: 153
  start-page: 79
  year: 2015
  end-page: 90
  ident: b0100
  article-title: ameliorates the response of
  publication-title: Physiol. Plant.
– volume: 170
  start-page: 220
  year: 2013
  end-page: 224
  ident: b0585
  article-title: The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance
  publication-title: J. Plant Physiol.
– volume: 13
  start-page: 17
  year: 1994
  end-page: 42
  ident: b0015
  article-title: Breeding for salinity tolerance in plants
  publication-title: Crit. Rev. Plant Sci.
– reference: Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD., 2014. Economics of salt‐induced land degradation and restoration. In: Natural Resources Forum, pp. 282-295. Wiley Online Library.
– reference: Ricardo D., 1817. On the principles of political economy and taxation. Piero Sraffa (Ed.) Works and Correspondence of David Ricardo, Volume I, Cambridge University Press, 1951.
– year: 2015
  ident: b0240
  article-title: Soil carbon restoration: Can biology do the job?
  publication-title: Northeast Organic.
– volume: 5
  start-page: 9212
  year: 2015
  ident: b0340
  article-title: Increased plant productivity and decreased microbial respiratory C loss by plant growth-promoting rhizobacteria under elevated CO
  publication-title: Sci. Rep.
– volume: 9
  start-page: 3
  year: 2017
  end-page: 21
  ident: b0295
  article-title: Biomass production for bioenergy using marginal lands
  publication-title: Sustainable Product. Consumpt.
– reference: FAO/IIASA/ISRIC/ISS-CAS/JRC., 2008. Harmonized world soil database (version 1.0). Rome: FAO.
– volume: 9
  start-page: 148
  year: 2018
  ident: b0165
  article-title: Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops
  publication-title: Front. Microbiol.
– volume: 138
  start-page: 56
  year: 2017
  end-page: 63
  ident: b0280
  article-title: Cd immobilization and reduced tissue Cd accumulation of rice (
  publication-title: Ecotoxicol. Environ. Safety
– volume: 14
  start-page: 1504
  year: 2017
  ident: b0350
  article-title: Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review
  publication-title: Intl. J. Environ. Res. Public Health
– volume: 8
  start-page: 1268
  year: 2017
  ident: b0265
  article-title: Genetic diversity of nitrogen-fixing and plant growth promoting
  publication-title: Front. Microbiol.
– reference: Wu CH, Bernard SM, Andersen GL, Chen W., 2009. Developing microbe–plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microbial Biotechnol. 2, 428–440.
– volume: 45
  start-page: 198
  year: 2000
  end-page: 207
  ident: b0065
  article-title: Microbial resistance to metals in the environment
  publication-title: Ecotoxicol. Environ. Safety
– reference: L.). Biotechnol. Res. Intl. 2016, 7830182.
– volume: 8
  start-page: 1768
  year: 2017
  ident: b9004
  article-title: Plant growth promoting rhizobacteria in amelioration of salinity stress: A systems biology perspective
  publication-title: Front. Plant Sci.
– volume: 5
  start-page: 111
  year: 2015
  end-page: 121
  ident: b0010
  article-title: Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3
  publication-title: Biotech
– volume: 48
  start-page: 378
  year: 2008
  end-page: 384
  ident: b0370
  article-title: Stress adaptations in a Plant Growth Promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils
  publication-title: J. Basic Microbiol.
– start-page: 201
  year: 2009
  ident: 10.1016/j.scitotenv.2019.135062_b0220
  article-title: Microbial remediation of metals in soils
– volume: 30
  start-page: 1562
  year: 2012
  ident: 10.1016/j.scitotenv.2019.135062_b0420
  article-title: Perspectives of plant-associated microbes in heavy metal phytoremediation
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2012.04.011
– volume: 102
  start-page: 7821
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135062_b0160
  article-title: The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-018-9214-z
– volume: 231
  start-page: 68
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135062_b0235
  article-title: Rhizobacterial-plant interactions: strategies ensuring plant growth promotion under drought and salinity stress
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2016.06.031
– volume: 157
  start-page: 33
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135062_b0125
  article-title: Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.04.112
– volume: 3
  start-page: 288
  year: 2013
  ident: 10.1016/j.scitotenv.2019.135062_b0545
  article-title: Effects of salts concentration on emergence and growth of tomato (Lycopersicon esculentum) in tropical areas. lntl
  publication-title: J. Eng. Innov. Technol. (UEIT)
– volume: 16
  start-page: 581
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135062_b0080
  article-title: Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth
  publication-title: J. Genet. Eng. Biotechnol.
  doi: 10.1016/j.jgeb.2018.09.001
– ident: 10.1016/j.scitotenv.2019.135062_b0105
  doi: 10.1016/j.envsci.2017.10.011
– ident: 10.1016/j.scitotenv.2019.135062_b0355
  doi: 10.1007/978-981-10-5343-6_6
– ident: 10.1016/j.scitotenv.2019.135062_b0450
  doi: 10.1007/978-3-319-52669-0_7
– volume: 8
  start-page: 2223
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135062_b0330
  article-title: Drought stress and root-associated bacterial communities
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.02223
– volume: 9
  start-page: 3
  year: 2017
  ident: 10.1016/j.scitotenv.2019.135062_b0295
  article-title: Biomass production for bioenergy using marginal lands
  publication-title: Sustainable Product. Consumpt.
  doi: 10.1016/j.spc.2016.08.003
– ident: 10.1016/j.scitotenv.2019.135062_b0405
  doi: 10.1111/1477-8947.12054
– volume: 45
  start-page: 334
  year: 2010
  ident: 10.1016/j.scitotenv.2019.135062_b0070
  article-title: Land availability for biofuel production
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es103338e
– volume: 104
  start-page: 118
  year: 2010
  ident: 10.1016/j.scitotenv.2019.135062_b0525
  article-title: A geochemical survey of trace elements in agricultural and non-agricultural topsoil in Dexing area
  publication-title: China. J. Geochem. Exploration
  doi: 10.1016/j.gexplo.2010.01.006
– ident: 10.1016/j.scitotenv.2019.135062_b0170
– volume: 207
  start-page: 41
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135062_b0255
  article-title: Does plant-microbe interaction confer stress tolerance in plants: a review?
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2017.11.004
– volume: 39
  start-page: 5
  year: 2010
  ident: 10.1016/j.scitotenv.2019.135062_b0490
  article-title: Remote sensing and geographic information system for appraisal of salt-affected soils in India
  publication-title: J. Environ Quality
  doi: 10.2134/jeq2009.0032
– volume: 9
  start-page: 148
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135062_b0165
  article-title: Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.00148
– volume: 80
  start-page: 845
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135062_b9005
  article-title: Growing dedicated energy crops on marginal lands and ecosystem services
  publication-title: Soil Sci. Soc. Amer. J.
  doi: 10.2136/sssaj2016.03.0080
– volume: 193
  start-page: 903e911
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135062_b0385
  article-title: Comparative metabolic profiling of vetiver (Chrysopogon zizanioides) and maize (Zea mays) under lead stress
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.11.087
– volume: 184
  start-page: 444
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135062_b0410
  article-title: The potentials and challenges of algae based biofuels: A review of the techno-economic, life cycle, and resource assessment modeling
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2014.10.075
– ident: 10.1016/j.scitotenv.2019.135062_b0005
  doi: 10.1155/2016/7830182
– volume: 14
  start-page: 100
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135062_b0175
  article-title: Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds
  publication-title: Mar. Drugs
  doi: 10.3390/md14050100
– volume: 8
  start-page: 2938
  year: 2019
  ident: 10.1016/j.scitotenv.2019.135062_b0575
  article-title: Nutrient enhancement and growth promotion of wheat cultivars by native plant growth promoting bacteria from Punjab state
  publication-title: India. J. Pharmacognosy Phytochem.
– volume: 95
  start-page: 73
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135062_b0195
  article-title: Elevated CO2: Plant associated microorganisms and carbon sequestration
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2015.05.006
– volume: 153
  start-page: 79
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135062_b0100
  article-title: Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.12221
– volume: 117
  start-page: 28
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135062_b0540
  article-title: Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2015.05.001
– volume: 189
  start-page: 531
  year: 2011
  ident: 10.1016/j.scitotenv.2019.135062_b0275
  article-title: Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth
  publication-title: J. Hazard. Mat.
  doi: 10.1016/j.jhazmat.2011.02.075
– volume: 8
  start-page: 1768
  year: 2017
  ident: 10.1016/j.scitotenv.2019.135062_b9004
  article-title: Plant growth promoting rhizobacteria in amelioration of salinity stress: A systems biology perspective
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01768
– volume: 26
  start-page: 577
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135062_b0505
  article-title: Soil microbiological activity and carbon dynamics in the current climate change scenarios: A review
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(15)60068-6
– volume: 20
  start-page: 1577
  year: 2010
  ident: 10.1016/j.scitotenv.2019.135062_b0485
  article-title: Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.1007.07011
– volume: 48
  start-page: 378
  year: 2008
  ident: 10.1016/j.scitotenv.2019.135062_b0370
  article-title: Stress adaptations in a Plant Growth Promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils
  publication-title: J. Basic Microbiol.
  doi: 10.1002/jobm.200700365
– volume: 13
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135062_b0345
  article-title: Improvement of safflower oil quality for biodiesel production by integrated application of PGPR under reduced amount of NP fertilizers
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0201738
– volume: 32
  start-page: 429
  year: 2014
  ident: 10.1016/j.scitotenv.2019.135062_b0315
  article-title: The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2013.12.005
– ident: 10.1016/j.scitotenv.2019.135062_b0560
  doi: 10.1111/j.1751-7915.2009.00109.x
– volume: 142
  start-page: 175
  year: 2019
  ident: 10.1016/j.scitotenv.2019.135062_b0300
  article-title: Soil microbial communities and their carbon assimilation are affected by soil properties and season but not by plants differing in their photosynthetic pathways (C3 vs. C4)
  publication-title: Biogeochem.
  doi: 10.1007/s10533-018-0528-9
– ident: 10.1016/j.scitotenv.2019.135062_b0045
  doi: 10.1016/B978-0-12-815879-1.00005-7
– volume: 167
  start-page: 313
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135062_b0580
  article-title: Abiotic stress signaling and responses in plants
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.029
– volume: 5
  start-page: 111
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135062_b0010
  article-title: Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3
  publication-title: Biotech
– volume: 48
  start-page: 1184
  year: 2014
  ident: 10.1016/j.scitotenv.2019.135062_b0270
  article-title: Integrated metabolomic and proteomic approaches dissect the effect of metal-resistant bacteria on maize biomass and copper uptake
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4047395
– volume: 14
  start-page: 1504
  year: 2017
  ident: 10.1016/j.scitotenv.2019.135062_b0350
  article-title: Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review
  publication-title: Intl. J. Environ. Res. Public Health
  doi: 10.3390/ijerph14121504
– ident: 10.1016/j.scitotenv.2019.135062_b0430
– volume: 28
  start-page: 142
  year: 2010
  ident: 10.1016/j.scitotenv.2019.135062_b0415
  article-title: Potential of siderophore-producing bacteria for improving heavy metal phytoextraction
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2009.12.002
– volume: 1865
  start-page: 243
  year: 2017
  ident: 10.1016/j.scitotenv.2019.135062_b0130
  article-title: Proteomics provides insights into biological pathways altered by plant growth promoting bacteria and arbuscular mycorrhiza in sorghum grown in marginal soil. Biochim. Biophys. Acta (BBA)-Prot
  publication-title: Proteomics
– volume: 213
  start-page: 447
  year: 2012
  ident: 10.1016/j.scitotenv.2019.135062_b0030
  article-title: Heavy metals and trace elements in atmospheric fall-out: their relationship with topsoil and wheat element composition
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.02.023
– volume: 44
  start-page: 4553
  year: 2010
  ident: 10.1016/j.scitotenv.2019.135062_b0495
  article-title: Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions
  publication-title: Atmospheric Environ.
  doi: 10.1016/j.atmosenv.2010.08.026
– volume: 2013
  year: 2013
  ident: 10.1016/j.scitotenv.2019.135062_b0360
  article-title: Contaminated sites in Europe: review of the current situation based on data collected through a European network
  publication-title: J. Environ. Public Health
  doi: 10.1155/2013/158764
– volume: 13
  start-page: 17
  year: 1994
  ident: 10.1016/j.scitotenv.2019.135062_b0015
  article-title: Breeding for salinity tolerance in plants
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352689409701906
– volume: 261
  start-page: 230
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135062_b0095
  article-title: Feasibility of transference of inoculation-related technologies: A case study of evaluation of soybean rhizobial strains under the agro-climatic conditions of Brazil and Mozambique
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2017.06.037
– volume: 174
  start-page: 14
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135062_b0285
  article-title: Beneficial role of bacterial endophytes in heavy metal phytoremediation
  publication-title: J. Environ. Management
  doi: 10.1016/j.jenvman.2016.02.047
– volume: 138
  start-page: 56
  year: 2017
  ident: 10.1016/j.scitotenv.2019.135062_b0280
  article-title: Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the presence of heavy metal-resistant bacteria
  publication-title: Ecotoxicol. Environ. Safety
  doi: 10.1016/j.ecoenv.2016.12.024
– volume: 22
  start-page: 123
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135062_b0480
  article-title: Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2014.12.001
– volume: 25
  start-page: 1251
  year: 2019
  ident: 10.1016/j.scitotenv.2019.135062_b0145
  article-title: Nutrient enhancement of chickpea grown with plant growth promoting bacteria grown in local soil of Bathinda, Northwestern India
  publication-title: Physiol. Mol. Biol. Plants
  doi: 10.1007/s12298-019-00661-9
– ident: 10.1016/j.scitotenv.2019.135062_b9010
– volume: 59
  start-page: 651
  year: 2008
  ident: 10.1016/j.scitotenv.2019.135062_b0310
  article-title: Mechanisms of salinity tolerance
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092911
– volume: 50
  start-page: 118
  year: 2012
  ident: 10.1016/j.scitotenv.2019.135062_b0425
  article-title: Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria
  publication-title: European J. Soil Biol.
  doi: 10.1016/j.ejsobi.2012.01.005
– volume: 156
  start-page: 609
  year: 2010
  ident: 10.1016/j.scitotenv.2019.135062_b0180
  article-title: Metals, minerals and microbes: geomicrobiology and bioremediation
  publication-title: Microbiol.
  doi: 10.1099/mic.0.037143-0
– volume: 169
  start-page: 191
  year: 2005
  ident: 10.1016/j.scitotenv.2019.135062_b0075
  article-title: Involvement of antioxidant enzyme and nitrate reductase activities during water stress and recovery of mycorrhizal Myrtus communis and Phillyrea angustifolia plants
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2005.03.013
– volume: 55
  start-page: 479
  year: 2006
  ident: 10.1016/j.scitotenv.2019.135062_b0205
  article-title: Metal resistance in Candida biofilms
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2005.00045.x
– volume: 58
  start-page: 1009
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135062_b0325
  article-title: Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance
  publication-title: J. Basic Microbiol.
  doi: 10.1002/jobm.201800309
– ident: 10.1016/j.scitotenv.2019.135062_b0040
  doi: 10.1007/978-981-10-3084-0_14
– volume: 81
  start-page: 1175
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135062_b0155
  article-title: Microalgae: prospects for greener future buildings
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.08.032
– volume: 33
  start-page: 745
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135062_b0090
  article-title: Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2015.05.003
– volume: 24
  start-page: 493
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135062_b0215
  article-title: Chemical manipulation of plant water use
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2015.11.010
– volume: 1
  start-page: 24
  year: 2013
  ident: 10.1016/j.scitotenv.2019.135062_b0460
  article-title: Sustainable food production in marginal lands—Case of GDLA member countries
  publication-title: Intl. Soil Water Conservation Res.
  doi: 10.1016/S2095-6339(15)30047-2
– volume: 8
  start-page: 8
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135062_b0135
  article-title: Metabolomics, biomass and lignocellulosic total sugars analysis in foxtail millet (Setaria italica) inoculated with different combinations of plant growth promoting bacteria and mycorrhiza
  publication-title: Comm. Plant Sci.
  doi: 10.26814/cps2018002
– volume: 57
  start-page: 12
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135062_b0185
  article-title: Mapping the world's degraded lands
  publication-title: Appl. Geography
  doi: 10.1016/j.apgeog.2014.11.024
– volume: 4
  start-page: 62
  year: 2014
  ident: 10.1016/j.scitotenv.2019.135062_b0455
  article-title: Effect of PGPR on growth promotion of rice (Oryza sativa L.) under salt stress
  publication-title: Asian J. Plant Sci. Res.
– volume: 54
  start-page: 1537
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135062_b0150
  article-title: Exploring marginal and degraded lands for biomass and bioenergy production: an Indian scenario
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.10.050
– volume: 2
  start-page: 419
  year: 2010
  ident: 10.1016/j.scitotenv.2019.135062_b0060
  article-title: Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance
  publication-title: Environ. Microbiol. Rep.
  doi: 10.1111/j.1758-2229.2009.00126.x
– volume: 314
  start-page: 1598
  year: 2006
  ident: 10.1016/j.scitotenv.2019.135062_b0530
  article-title: Carbon-negative biofuels from low-input high-diversity grassland biomass
  publication-title: Science
  doi: 10.1126/science.1133306
– volume: 70
  start-page: 146
  year: 2014
  ident: 10.1016/j.scitotenv.2019.135062_b0510
  article-title: Mitigation approach of arsenic toxicity in chickpea grown in arsenic amended soil with arsenic tolerant plant growth promoting Acinetobacter sp
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2014.05.008
– volume: 58
  start-page: 221
  year: 2007
  ident: 10.1016/j.scitotenv.2019.135062_b0475
  article-title: Gene networks involved in drought stress response and tolerance
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erl164
– volume: 6
  start-page: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135062_b0500
  article-title: Climate change and sustainable management of salinity in agriculture
  publication-title: Res. Med. Eng. Sci.
– volume: 45
  start-page: 198
  year: 2000
  ident: 10.1016/j.scitotenv.2019.135062_b0065
  article-title: Microbial resistance to metals in the environment
  publication-title: Ecotoxicol. Environ. Safety
  doi: 10.1006/eesa.1999.1860
– ident: 10.1016/j.scitotenv.2019.135062_b0565
  doi: 10.1105/tpc.000596
– volume: 5
  start-page: 9212
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135062_b0340
  article-title: Increased plant productivity and decreased microbial respiratory C loss by plant growth-promoting rhizobacteria under elevated CO2
  publication-title: Sci. Rep.
  doi: 10.1038/srep09212
– volume: 50
  start-page: 543
  year: 2002
  ident: 10.1016/j.scitotenv.2019.135062_b0465
  article-title: Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid
  publication-title: Plant Mol. Biol.
  doi: 10.1023/A:1019859319617
– volume: 15
  start-page: 299
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135062_b9015
  article-title: Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants
  publication-title: Rev. Environ. Sci. Bio/Technol.
  doi: 10.1007/s11157-016-9391-0
– volume: 2
  start-page: 1127500
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135062_b0190
  article-title: Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review
  publication-title: Cogent Food Agric.
– volume: 45
  start-page: 405
  year: 2009
  ident: 10.1016/j.scitotenv.2019.135062_b0025
  article-title: Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-008-0344-9
– start-page: 62
  year: 2010
  ident: 10.1016/j.scitotenv.2019.135062_b0200
– volume: 6
  start-page: 497
  year: 2005
  ident: 10.1016/j.scitotenv.2019.135062_b0380
  article-title: Phytoremediation: molecular biology, requirements for application, environmental protection, public attention and feasibility
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7400445
– volume: 6
  start-page: 34768
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135062_b0035
  article-title: Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress
  publication-title: Sci. Rep.
  doi: 10.1038/srep34768
– volume: 11
  start-page: 372
  year: 2006
  ident: 10.1016/j.scitotenv.2019.135062_b0390
  article-title: Nomenclature for HKT transporters, key determinants of plant salinity tolerance
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2006.06.001
– volume: 5
  start-page: 11
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135062_b0520
  article-title: Damage and heavy metal pollution in China's farmland: Reality and solutions
  publication-title: J. Contemporary East Asia Studies
  doi: 10.1080/24761028.2016.11869089
– volume: 72
  start-page: 1129
  year: 2006
  ident: 10.1016/j.scitotenv.2019.135062_b0555
  article-title: Engineering plant-microbe symbiosis for rhizoremediation of heavy metals
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.72.2.1129-1134.2006
– year: 2019
  ident: 10.1016/j.scitotenv.2019.135062_b0395
  article-title: Azospirillum brasilense-microalga interaction increases growth and accumulation of cell compounds in Chlorella vulgaris and Tetradesmus obliquus cultured under nitrogen stress
  publication-title: J. Appl. Phycol.
  doi: 10.1007/s10811-019-01862-1
– volume: 11
  start-page: 113
  year: 2012
  ident: 10.1016/j.scitotenv.2019.135062_b0335
  article-title: Yield and yield components of wheat as affected by salinity and inoculation with Azospirillum strains from saline or non-saline soil
  publication-title: J. Saudi Soc. Agric. Sci.
– volume: 65
  start-page: 951
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135062_b0115
  article-title: Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils
  publication-title: Annals Microbiol.
  doi: 10.1007/s13213-014-0939-3
– volume: 2
  start-page: 1355
  year: 2010
  ident: 10.1016/j.scitotenv.2019.135062_b0140
  article-title: Third generation biofuels from microalgae. Curr. Res. Technol. Education Topics in Appl
  publication-title: Microbiol. Microbial Biotechnol.
– volume: 97
  start-page: 390
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135062_b9405
  article-title: Mycorrhiza and PGPB modulate maize biomass, nutrient uptake and metabolic pathways in maize grown in mining-impacted soil
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2015.10.028
– volume: 266
  start-page: 141
  year: 2014
  ident: 10.1016/j.scitotenv.2019.135062_b0050
  article-title: Remediation of heavy metal(loid)s contaminated soils–to mobilize or to immobilize?
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.12.018
– volume: 8
  start-page: 1268
  year: 2017
  ident: 10.1016/j.scitotenv.2019.135062_b0265
  article-title: Genetic diversity of nitrogen-fixing and plant growth promoting Pseudomonas species isolated from sugarcane rhizosphere
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.01268
– volume: 74
  start-page: 533
  year: 2010
  ident: 10.1016/j.scitotenv.2019.135062_b0320
  article-title: Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat
  publication-title: Soil Biol. Biochem.
– year: 2013
  ident: 10.1016/j.scitotenv.2019.135062_b0400
– ident: 10.1016/j.scitotenv.2019.135062_b0440
– volume: 109
  start-page: 428
  year: 2000
  ident: 10.1016/j.scitotenv.2019.135062_b0055
  article-title: Polyamine, ethylene and other physico-chemical parameters in tomato (Lycopersicon esculentum) fruits as affected by salinity
  publication-title: Physiol. Plant.
  doi: 10.1034/j.1399-3054.2000.100409.x
– volume: 21
  start-page: 10983
  year: 2014
  ident: 10.1016/j.scitotenv.2019.135062_b0210
  article-title: Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-3083-5
– volume: 21
  start-page: 573
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135062_b0550
  article-title: Role of plant growth promoting rhizobacteria in agricultural sustainability—a review
  publication-title: Molecules
  doi: 10.3390/molecules21050573
– ident: 10.1016/j.scitotenv.2019.135062_b0445
  doi: 10.1111/ppl.12117
– volume: 3
  start-page: 430
  year: 2014
  ident: 10.1016/j.scitotenv.2019.135062_b0260
  article-title: Mapping the potential for biofuel production on marginal lands: differences in definitions, data and models across scales
  publication-title: ISPRS Internat. J. Geo-Information
  doi: 10.3390/ijgi3020430
– volume: 36
  start-page: 759
  year: 2017
  ident: 10.1016/j.scitotenv.2019.135062_b0365
  article-title: Salinity induced differential methylation patterns in contrasting cultivars of foxtail millet (Setaria italica L.)
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-016-2093-9
– volume: 8
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135062_b0470
  article-title: Review of heavy metals pollution in China in agricultural and urban soils
  publication-title: J. Health Pollut.
  doi: 10.5696/2156-9614-8.18.180607
– volume: 24
  start-page: 2699
  year: 2008
  ident: 10.1016/j.scitotenv.2019.135062_b0375
  article-title: Biosorption of heavy metals by the exopolysaccharide produced by Paenibacillus jamilae
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-008-9800-9
– year: 2015
  ident: 10.1016/j.scitotenv.2019.135062_b0240
  article-title: Soil carbon restoration: Can biology do the job?
  publication-title: Northeast Organic.
– volume: 42
  start-page: 429
  year: 2010
  ident: 10.1016/j.scitotenv.2019.135062_b0250
  article-title: An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2009.11.021
– volume: 19
  start-page: 371
  year: 2014
  ident: 10.1016/j.scitotenv.2019.135062_b0120
  article-title: Plant salt-tolerance mechanisms
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2014.02.001
– volume: 33
  start-page: 345
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135062_b0110
  article-title: Enhanced microalgae growth through stimulated secretion of indole acetic acid by symbiotic bacteria
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2018.06.006
– volume: 170
  start-page: 220
  year: 2013
  ident: 10.1016/j.scitotenv.2019.135062_b0585
  article-title: The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2012.09.012
– volume: 2
  start-page: 1213689
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135062_b0290
  article-title: Mapping and characterization of salt-affected and waterlogged soils in the Gangetic plain of central Haryana (India) for reclamation and management
  publication-title: Cogent Geosci.
  doi: 10.1080/23312041.2016.1213689
– ident: 10.1016/j.scitotenv.2019.135062_b0020
  doi: 10.1007/978-3-030-18975-4_6
– volume: 103
  start-page: 551
  year: 2009
  ident: 10.1016/j.scitotenv.2019.135062_b0085
  article-title: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell
  publication-title: Annals Bot.
  doi: 10.1093/aob/mcn125
– volume: 9
  start-page: 175
  year: 1895
  ident: 10.1016/j.scitotenv.2019.135062_b0225
  article-title: The concept of marginal rent
  publication-title: Quarterly J. Econ.
  doi: 10.2307/1885598
– volume: 75
  start-page: 748
  year: 2009
  ident: 10.1016/j.scitotenv.2019.135062_b0515
  article-title: Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02239-08
– ident: 10.1016/j.scitotenv.2019.135062_b0570
  doi: 10.3389/fmicb.2018.00954
– volume: 99
  start-page: 108
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135062_b0535
  article-title: Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2015.11.001
SSID ssj0000781
Score 2.5594962
SecondaryResourceType review_article
Snippet [Display omitted] •Marginal soil is an untapped resource which can be exploited using plants and bacteria.•Some PGPB enhance abiotic stress (drought, salinity...
Marginal land is defined as land with poor soil characteristics and low crop productivity with no potential for profit. Poor soil quality due to the presence...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 135062
SubjectTerms abiotic stress
Agriculture
Bacteria
Biofuels
Carbon Sequestration
climate change
drought
fossil fuels
Gold
Heavy metals
Marginal land
neutralization
plant growth
Plant growth promoting bacteria
plant growth-promoting rhizobacteria
population growth
Rhizoremediation
Salinity
Soil
soil pollution
soil properties
soil quality
Stress, Physiological
sustainable agriculture
Sustainable food production
sustainable technology
xenobiotics
Title Brown gold of marginal soil: Plant growth promoting bacteria to overcome plant abiotic stress for agriculture, biofuels and carbon sequestration
URI https://dx.doi.org/10.1016/j.scitotenv.2019.135062
https://www.ncbi.nlm.nih.gov/pubmed/32000336
https://www.proquest.com/docview/2350097831
https://www.proquest.com/docview/2388773769
Volume 711
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtNAcNSmQkJCCAItAVoNEkdM1_Z6bfdWVa0CET0gKnqz9uUQlNpR4lTqhW_gk5n12ql6aHvgZMk7Y613dl678wD4qGUZlyxRgc3DOHA3gUEmjAzKiAmZS2Nt287n27kYX_Cvl8nlFpz0uTAurLKT_V6mt9K6e3PYrebhYjZzOb48y0WekglCapwn27ATkbbPBrBz_GUyPr8VyGnmG-dx4m1CuBPmRZ9uajJPr12YV-7aQDAR3aek7jNCW2V09gKed1YkHvuJvoQtWw3hie8reTOE3dPb9DUC6_h3NYRn_pQOffLRK_jbeuE4recG6xKv5LLtkoWrejY_QtfQqMEpgTS_cOHj9qopKl_gWWJTowsApaWzuGhhpZoRjEafgYJkEKOcLrvyHvYT0nC5ph9FWRnUcqnqCttg7r5672u4ODv9cTIOuh4NgeYpa4JUa6a1TeIyJtvN8MTaMgy1EoYcN2byTOQJEUWr1PCYp1pmSvIkMUbkhinN4l0YVHVl3wCqMJXSOaiRIB9HpxlRVWaakQEXchVmIxA9UQrdFTB3fTTmRR-p9rvYULNw1Cw8NUfANogLX8PjcZSjnurFne1YkKZ5HPlDv08KYlZ3AyMrW69XRUTjbeJM-BAMyf2U5H4-gj2_yTazjl1iVRyLt_8zvXfwNHKHBm340XsYNMu13SfLqlEHsP35T3jQ8Y97Tr7_nPwDDBMoIQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKEaISQrDQsjwHiSOhTuw4SW-oarVA21Mr9Wb5le2iJVntZpG48Bv4yYztZKseSg9ck3HkeMbjz_Y3M4R8MKpmNc114qqUJf4mMCmFVUmdUaEqZZ0L5XxOz8Tkgn-9zC-3yOEQC-Nplb3vjz49eOv-yX4_mvuL2czH-PKyElWBEASXcZ7fI_e5L3OARv3p9zXPw2ezidfMOLNR_AbJCz_ctQhOf3qSV-WLQFCR3bZE3QZBw1J0_IQ87jEkfI7dfEq2XDMiD2JVyV8jsnt0HbyGYv3sXY3Io3hGBzH06Bn5E_bgMG3nFtoafqhlqJEFq3Y2PwBfzqiDKYp0V7CIrL1mCjqmd1bQteDpnzhwDhZBVukZyhiI8SeAcBjUdNkn93AfAV_Xa_xRUI0Fo5a6bSBQuYfcvc_JxfHR-eEk6Ss0JIYXtEsKY6gxLmc1Q-Rmee5cnaZGC4vbNmqrUlQ5AjCjC8sZL4wqteJ5bq2oLNWGsl2y3bSNe0FAp4VSfnuaCdzhmKJEnarSUIRvKddpOSZiUIo0ffpyX0VjLgee2ne50ab02pRRm2NCNw0XMYPH3U0OBq3LG8YocZ25u_H7wU4kTlV__6Ia165XMsP3IWwm_ZcMev0CvX41JnvRyDa9Zj6sijHx8n-69448nJyfnsiTL2ffXpGdzB8fBCLSa7LdLdfuDWKsTr8Nc-gvP0EnQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brown+gold+of+marginal+soil%3A+Plant+growth+promoting+bacteria+to+overcome+plant+abiotic+stress+for+agriculture%2C+biofuels+and+carbon+sequestration&rft.jtitle=The+Science+of+the+total+environment&rft.au=Ramakrishna%2C+Wusirika&rft.au=Rathore%2C+Parikshita&rft.au=Kumari%2C+Ritu&rft.au=Yadav%2C+Radheshyam&rft.date=2020-04-01&rft.issn=0048-9697&rft.volume=711+p.135062-&rft_id=info:doi/10.1016%2Fj.scitotenv.2019.135062&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon