Brown gold of marginal soil: Plant growth promoting bacteria to overcome plant abiotic stress for agriculture, biofuels and carbon sequestration
[Display omitted] •Marginal soil is an untapped resource which can be exploited using plants and bacteria.•Some PGPB enhance abiotic stress (drought, salinity and heavy metals) tolerance.•Molecular approaches employed by plant-soil-PGPB interactions crucial for the success.•Efficient utilization of...
Saved in:
Published in | The Science of the total environment Vol. 711; p. 135062 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0048-9697 1879-1026 1879-1026 |
DOI | 10.1016/j.scitotenv.2019.135062 |
Cover
Abstract | [Display omitted]
•Marginal soil is an untapped resource which can be exploited using plants and bacteria.•Some PGPB enhance abiotic stress (drought, salinity and heavy metals) tolerance.•Molecular approaches employed by plant-soil-PGPB interactions crucial for the success.•Efficient utilization of marginal soil will enhance crop productivity and soil remediation.
Marginal land is defined as land with poor soil characteristics and low crop productivity with no potential for profit. Poor soil quality due to the presence of xenobiotics or climate change is of great concern. Sustainable food production with increasing population is a challenge which becomes more difficult due to poor soil quality. Marginal soil can be made productive with the use of Plant Growth Promoting Bacteria (PGPB). This review outlines how PGPB can be used to improve marginal soil quality and its implications on agriculture, rhizoremediation, abiotic stress (drought, salinity and heavy metals) tolerance, carbon sequestration and production of biofuels. The feasibility of the idea is supported by several studies which showed maximal increase in the growth of plants inoculated with PGPB than to uninoculated plants grown in marginal soil when compared to the growth of plants inoculated with PGPB in healthy soil. The combination of PGPB and plants grown in marginal soil will serve as a green technology leading to the next green revolution, reduction in soil pollution and fossil fuel use, neutralizing abiotic stress and climate change effects. |
---|---|
AbstractList | Marginal land is defined as land with poor soil characteristics and low crop productivity with no potential for profit. Poor soil quality due to the presence of xenobiotics or climate change is of great concern. Sustainable food production with increasing population is a challenge which becomes more difficult due to poor soil quality. Marginal soil can be made productive with the use of Plant Growth Promoting Bacteria (PGPB). This review outlines how PGPB can be used to improve marginal soil quality and its implications on agriculture, rhizoremediation, abiotic stress (drought, salinity and heavy metals) tolerance, carbon sequestration and production of biofuels. The feasibility of the idea is supported by several studies which showed maximal increase in the growth of plants inoculated with PGPB than to uninoculated plants grown in marginal soil when compared to the growth of plants inoculated with PGPB in healthy soil. The combination of PGPB and plants grown in marginal soil will serve as a green technology leading to the next green revolution, reduction in soil pollution and fossil fuel use, neutralizing abiotic stress and climate change effects. Marginal land is defined as land with poor soil characteristics and low crop productivity with no potential for profit. Poor soil quality due to the presence of xenobiotics or climate change is of great concern. Sustainable food production with increasing population is a challenge which becomes more difficult due to poor soil quality. Marginal soil can be made productive with the use of Plant Growth Promoting Bacteria (PGPB). This review outlines how PGPB can be used to improve marginal soil quality and its implications on agriculture, rhizoremediation, abiotic stress (drought, salinity and heavy metals) tolerance, carbon sequestration and production of biofuels. The feasibility of the idea is supported by several studies which showed maximal increase in the growth of plants inoculated with PGPB than to uninoculated plants grown in marginal soil when compared to the growth of plants inoculated with PGPB in healthy soil. The combination of PGPB and plants grown in marginal soil will serve as a green technology leading to the next green revolution, reduction in soil pollution and fossil fuel use, neutralizing abiotic stress and climate change effects.Marginal land is defined as land with poor soil characteristics and low crop productivity with no potential for profit. Poor soil quality due to the presence of xenobiotics or climate change is of great concern. Sustainable food production with increasing population is a challenge which becomes more difficult due to poor soil quality. Marginal soil can be made productive with the use of Plant Growth Promoting Bacteria (PGPB). This review outlines how PGPB can be used to improve marginal soil quality and its implications on agriculture, rhizoremediation, abiotic stress (drought, salinity and heavy metals) tolerance, carbon sequestration and production of biofuels. The feasibility of the idea is supported by several studies which showed maximal increase in the growth of plants inoculated with PGPB than to uninoculated plants grown in marginal soil when compared to the growth of plants inoculated with PGPB in healthy soil. The combination of PGPB and plants grown in marginal soil will serve as a green technology leading to the next green revolution, reduction in soil pollution and fossil fuel use, neutralizing abiotic stress and climate change effects. [Display omitted] •Marginal soil is an untapped resource which can be exploited using plants and bacteria.•Some PGPB enhance abiotic stress (drought, salinity and heavy metals) tolerance.•Molecular approaches employed by plant-soil-PGPB interactions crucial for the success.•Efficient utilization of marginal soil will enhance crop productivity and soil remediation. Marginal land is defined as land with poor soil characteristics and low crop productivity with no potential for profit. Poor soil quality due to the presence of xenobiotics or climate change is of great concern. Sustainable food production with increasing population is a challenge which becomes more difficult due to poor soil quality. Marginal soil can be made productive with the use of Plant Growth Promoting Bacteria (PGPB). This review outlines how PGPB can be used to improve marginal soil quality and its implications on agriculture, rhizoremediation, abiotic stress (drought, salinity and heavy metals) tolerance, carbon sequestration and production of biofuels. The feasibility of the idea is supported by several studies which showed maximal increase in the growth of plants inoculated with PGPB than to uninoculated plants grown in marginal soil when compared to the growth of plants inoculated with PGPB in healthy soil. The combination of PGPB and plants grown in marginal soil will serve as a green technology leading to the next green revolution, reduction in soil pollution and fossil fuel use, neutralizing abiotic stress and climate change effects. |
ArticleNumber | 135062 |
Author | Ramakrishna, Wusirika Rathore, Parikshita Yadav, Radheshyam Kumari, Ritu |
Author_xml | – sequence: 1 givenname: Wusirika orcidid: 0000-0002-8571-5827 surname: Ramakrishna fullname: Ramakrishna, Wusirika email: rk.wusirika@cup.edu.in – sequence: 2 givenname: Parikshita surname: Rathore fullname: Rathore, Parikshita – sequence: 3 givenname: Ritu surname: Kumari fullname: Kumari, Ritu – sequence: 4 givenname: Radheshyam surname: Yadav fullname: Yadav, Radheshyam |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32000336$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc9u1DAQxi1URLeFVwAfOZDFjpM4RuJQKv5JleAAZ8sZT4JXWXuxna14Cx4Z727pgQudi0fy75vRfN8FOfPBIyEvOFtzxrvXm3UCl0NGv1_XjKs1Fy3r6kdkxXupKs7q7oysGGv6SnVKnpOLlDaslOz5E3Iu6tIK0a3I73cx3Ho6hdnSMNKtiZPzZqYpuPkN_Tobn-lUkPyD7mLYhuz8RAcDGaMzNAca9hghbJHujqwZXGGAphwxJTqGSM0UHSxzXiK-ouV7XHBO1HhLwcQheJrw54JFYLIL_il5PJo54bO795J8__D-2_Wn6ubLx8_XVzcVNJLlSgIwAGzFKPqW26ZFHDmHobMN48yqvlOtUDUM0jaikWD6wTRta22nLBuAiUvy8jS3nHVcr7cuAc7lCgxL0rXoeymF7NQD0JYxJXvBC_r8Dl2GLVq9i65Y-kv_NbwA8gRADClFHO8RzvQhWr3R99HqQ7T6FG1Rvv1HWbCjZcU5Nz9Af3XSF_dx7zAeOPSA1kWErG1w_53xBwNqyIs |
CitedBy_id | crossref_primary_10_3390_agriculture13101865 crossref_primary_10_1093_jambio_lxaf041 crossref_primary_10_1111_jam_14951 crossref_primary_10_3390_agronomy13122983 crossref_primary_10_1007_s10725_023_01059_0 crossref_primary_10_1002_imt2_134 crossref_primary_10_3390_agronomy12102403 crossref_primary_10_1016_j_agwat_2024_108889 crossref_primary_10_3390_horticulturae10090969 crossref_primary_10_1016_j_envexpbot_2024_106010 crossref_primary_10_1016_j_chemosphere_2022_135701 crossref_primary_10_1016_j_fuel_2023_128913 crossref_primary_10_1093_lambio_ovac067 crossref_primary_10_1016_j_envres_2023_116418 crossref_primary_10_1080_15427528_2024_2378358 crossref_primary_10_1111_jam_15371 crossref_primary_10_1088_1755_1315_1255_1_012006 crossref_primary_10_3390_agriculture13020401 crossref_primary_10_1016_j_hpj_2024_04_006 crossref_primary_10_3389_fpls_2022_952212 crossref_primary_10_1007_s44372_024_00023_0 crossref_primary_10_1007_s12298_020_00900_4 crossref_primary_10_1038_s43247_024_01227_8 crossref_primary_10_1016_j_jhazmat_2024_134370 crossref_primary_10_1016_j_scitotenv_2023_168749 crossref_primary_10_3390_microorganisms9071491 crossref_primary_10_1007_s12033_024_01346_9 crossref_primary_10_1111_jam_15480 crossref_primary_10_3389_fpls_2022_999866 crossref_primary_10_3389_fsoil_2022_927148 crossref_primary_10_1016_j_foreco_2024_121786 crossref_primary_10_1007_s11356_021_13317_7 crossref_primary_10_1007_s13199_023_00945_5 crossref_primary_10_1111_gcb_16604 crossref_primary_10_1016_j_pecs_2024_101161 crossref_primary_10_1016_j_jarmap_2021_100351 crossref_primary_10_1016_j_jhazmat_2020_123146 crossref_primary_10_3390_ijms221910529 crossref_primary_10_1590_1807_1929_agriambi_v27n5p407_414 crossref_primary_10_3390_environments11060111 crossref_primary_10_3390_biology13050348 crossref_primary_10_1007_s13205_021_02904_7 crossref_primary_10_3390_plants12244074 crossref_primary_10_3389_fpls_2021_710139 crossref_primary_10_1016_j_jenvman_2021_112830 crossref_primary_10_3390_microorganisms9081619 crossref_primary_10_1515_opag_2022_0247 crossref_primary_10_3390_agronomy13123060 crossref_primary_10_1016_j_indcrop_2023_117553 crossref_primary_10_47836_pjtas_47_3_14 crossref_primary_10_31857_S0032180X22601372 crossref_primary_10_3390_su13084422 crossref_primary_10_3389_fmicb_2021_693535 crossref_primary_10_3390_biology9090305 crossref_primary_10_1016_j_rser_2020_110691 crossref_primary_10_3390_agronomy11020362 crossref_primary_10_1007_s42729_022_00984_9 crossref_primary_10_1016_j_indcrop_2024_120377 crossref_primary_10_1016_j_agee_2024_109200 crossref_primary_10_1016_j_jbiosc_2024_07_008 crossref_primary_10_1007_s00299_022_02866_x crossref_primary_10_1016_j_plaphy_2020_02_039 crossref_primary_10_1016_j_ecolind_2025_113272 crossref_primary_10_1134_S1064229322602761 crossref_primary_10_17221_1_2023_JFS crossref_primary_10_1007_s11104_021_05218_y crossref_primary_10_1038_s41598_024_56381_y |
Cites_doi | 10.1016/j.biotechadv.2012.04.011 10.1007/s00253-018-9214-z 10.1016/j.agee.2016.06.031 10.1016/j.chemosphere.2016.04.112 10.1016/j.jgeb.2018.09.001 10.1016/j.envsci.2017.10.011 10.1007/978-981-10-5343-6_6 10.1007/978-3-319-52669-0_7 10.3389/fpls.2017.02223 10.1016/j.spc.2016.08.003 10.1111/1477-8947.12054 10.1021/es103338e 10.1016/j.gexplo.2010.01.006 10.1016/j.micres.2017.11.004 10.2134/jeq2009.0032 10.3389/fmicb.2018.00148 10.2136/sssaj2016.03.0080 10.1016/j.chemosphere.2017.11.087 10.1016/j.biortech.2014.10.075 10.1155/2016/7830182 10.3390/md14050100 10.1016/j.apsoil.2015.05.006 10.1111/ppl.12221 10.1016/j.envexpbot.2015.05.001 10.1016/j.jhazmat.2011.02.075 10.3389/fpls.2017.01768 10.1016/S1002-0160(15)60068-6 10.4014/jmb.1007.07011 10.1002/jobm.200700365 10.1371/journal.pone.0201738 10.1016/j.biotechadv.2013.12.005 10.1111/j.1751-7915.2009.00109.x 10.1007/s10533-018-0528-9 10.1016/B978-0-12-815879-1.00005-7 10.1016/j.cell.2016.08.029 10.1021/es4047395 10.3390/ijerph14121504 10.1016/j.tibtech.2009.12.002 10.1016/j.jhazmat.2012.02.023 10.1016/j.atmosenv.2010.08.026 10.1155/2013/158764 10.1080/07352689409701906 10.1016/j.agee.2017.06.037 10.1016/j.jenvman.2016.02.047 10.1016/j.ecoenv.2016.12.024 10.1016/j.sjbs.2014.12.001 10.1007/s12298-019-00661-9 10.1146/annurev.arplant.59.032607.092911 10.1016/j.ejsobi.2012.01.005 10.1099/mic.0.037143-0 10.1016/j.plantsci.2005.03.013 10.1111/j.1574-6941.2005.00045.x 10.1002/jobm.201800309 10.1007/978-981-10-3084-0_14 10.1016/j.rser.2017.08.032 10.1016/j.biotechadv.2015.05.003 10.1016/j.bmc.2015.11.010 10.1016/S2095-6339(15)30047-2 10.26814/cps2018002 10.1016/j.apgeog.2014.11.024 10.1016/j.rser.2015.10.050 10.1111/j.1758-2229.2009.00126.x 10.1126/science.1133306 10.1016/j.ecoleng.2014.05.008 10.1093/jxb/erl164 10.1006/eesa.1999.1860 10.1105/tpc.000596 10.1038/srep09212 10.1023/A:1019859319617 10.1007/s11157-016-9391-0 10.1007/s00374-008-0344-9 10.1038/sj.embor.7400445 10.1038/srep34768 10.1016/j.tplants.2006.06.001 10.1080/24761028.2016.11869089 10.1128/AEM.72.2.1129-1134.2006 10.1007/s10811-019-01862-1 10.1007/s13213-014-0939-3 10.1016/j.plaphy.2015.10.028 10.1016/j.jhazmat.2013.12.018 10.3389/fmicb.2017.01268 10.1034/j.1399-3054.2000.100409.x 10.1007/s11356-014-3083-5 10.3390/molecules21050573 10.1111/ppl.12117 10.3390/ijgi3020430 10.1007/s00299-016-2093-9 10.5696/2156-9614-8.18.180607 10.1007/s11274-008-9800-9 10.1016/j.soilbio.2009.11.021 10.1016/j.tplants.2014.02.001 10.1016/j.algal.2018.06.006 10.1016/j.jplph.2012.09.012 10.1080/23312041.2016.1213689 10.1007/978-3-030-18975-4_6 10.1093/aob/mcn125 10.2307/1885598 10.1128/AEM.02239-08 10.3389/fmicb.2018.00954 10.1016/j.plaphy.2015.11.001 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2019.135062 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences Agriculture |
EISSN | 1879-1026 |
ExternalDocumentID | 32000336 10_1016_j_scitotenv_2019_135062 S0048969719350545 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ XPP ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 ACLOT EFKBS ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c470t-7cc0cce53f3851d45eef11cb6d4010d98695392cb7d4347ca8ba455dd69d0bc03 |
IEDL.DBID | AIKHN |
ISSN | 0048-9697 1879-1026 |
IngestDate | Sat Sep 27 23:29:00 EDT 2025 Sun Sep 28 16:01:35 EDT 2025 Wed Feb 19 02:31:10 EST 2025 Thu Apr 24 22:55:26 EDT 2025 Tue Jul 01 03:35:20 EDT 2025 Fri Feb 23 02:46:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Plant growth promoting bacteria Rhizoremediation Marginal land Heavy metals Sustainable food production Salinity |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-7cc0cce53f3851d45eef11cb6d4010d98695392cb7d4347ca8ba455dd69d0bc03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8571-5827 |
PMID | 32000336 |
PQID | 2350097831 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2388773769 proquest_miscellaneous_2350097831 pubmed_primary_32000336 crossref_primary_10_1016_j_scitotenv_2019_135062 crossref_citationtrail_10_1016_j_scitotenv_2019_135062 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2019_135062 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 2020-04-00 2020-Apr-01 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Caravaca, Alguacil, Hernández, Roldán (b0075) 2005; 169 Bruins, Kapil, Oehme (b0065) 2000; 45 Pandey, Yadav, Sahu, Muthamilarasan, Prasad (b0365) 2017; 36 Chirakkara, Cameselle, Reddy (b9015) 2016; 15 Bermudez, Jasan, Plá, Pignata (b0030) 2012; 213 Dao, Wu, Wang, Zhang, Zhan, Hu (b0110) 2018; 33 Enebe, Babalola (b0160) 2018; 102 Mandal (b0290) 2016; 2 Ahemad (b0010) 2015; 5 Naylor, Coleman-Derr (b0330) 2018; 8 Dhawi, Datta, Ramakrishna (b9405) 2015; 97 Banerjee A., Sarkar S., Cuadros-Orellana S., Bandopadhyay R., 2019. Exopolysaccharides and biofilms in mitigating salinity stress: The biotechnological potential of halophilic and soil-inhabiting PGPR microorganisms. In: Giri B., Varma A. (eds) Microorganisms in Saline Environments: Strategies and Functions. Soil Biology, 56, 133-153 Springer, Cham. Pérez, García-Ribera, Quesada, Aguilera, Ramos-Cormenzana, Monteoliva-Sánchez (b0375) 2008; 24 Singh, Bundela, Sethi, Lal, Kamra (b0490) 2010; 39 Shrivastava, Kumar (b0480) 2015; 22 Tiwari, Lata, Chauhan, Nautiyal (b0535) 2016; 99 Ma, Rajkumar, Zhang, Freitas (b0285) 2016; 174 Mellado-Vázquez, Lange, Gleixner (b0300) 2019; 142 Dhawi, Datta, Ramakrishna (b0135) 2018; 8 Harrison, Rabiei, Turner, Badry, Sproule, Ceri (b0205) 2006; 55 Chaves, Flexas, Pinheiro (b0085) 2009; 103 Singh, Anderson, Brune, Cai, Cohen, Crawford, Cubison, Czech, Emmons, Fuelberg (b0495) 2010; 44 Braud, Geoffroy, Hoegy, Mislin, Schalk (b0060) 2010; 2 Li, Pidatala, Shaik, Datta, Ramakrishna (b0270) 2014; 48 Millennium Ecosystem Assessment., 2005. Ecosystems and human well-being: Current state and trends, Vol. 1, Ed. Hassan R, Scholes R, Ash N., Island Press. Botella, Del Amor, Amorós, Serrano, Martínez, Cerdá (b0055) 2000; 109 Chibeba, Kyei-Boahen, Guimarães, Nogueira, Hungria (b0095) 2018; 261 Cohen, Bottini, Pontin, Berli, Moreno, Boccanlandro, Travaglia, Piccoli (b0100) 2015; 153 Mehmood, Ibrahim, Rashid, Nawaz, Ali, Hussain, Gull (b0295) 2017; 9 Taghavi, Garafola, Monchy, Newman, Hoffman, Weyens, Barac, Vangronsveld, van der Lelie (b0515) 2009; 75 Zhu (b0580) 2016; 167 Nadeem, Ahmad, Zahir, Javaid, Ashraf (b0315) 2014; 32 Xiong L, Schumaker KS, Zhu JK., 2002. Cell signaling during cold, drought, and salt stress. Plant Cell 14, S165-1283. Ojuederie, Babalola (b0350) 2017; 14 Rajkumar, Sandhya, Prasad, Freitas (b0420) 2012; 30 Nosheen, Naz, Tahir, Yasmin, Keyani, Mitrevski, Bano, Chin, Marriott, Hussain (b0345) 2018; 13 Srivastava, Singh (b0510) 2014; 70 Agbodjato NA, Noumavo PA, Adjanohoun A, Agbessi L, Baba-Moussa L., 2016. Synergistic effects of plant growth promoting rhizobacteria and chitosan on in vitro seeds germination, greenhouse growth, and nutrient uptake of maize Deinlein, Stephan, Horie, Luo, Xu, Schroeder (b0120) 2014; 19 Lewis, Kelly (b0260) 2014; 3 FAO/IIASA/ISRIC/ISS-CAS/JRC., 2008. Harmonized world soil database (version 1.0). Rome: FAO. Ashraf, Wu (b0015) 1994; 13 Chen, Xu, Zeng, Yang, Huang, Zhang (b0090) 2015; 33 Ilangumaran, Smith (b9004) 2017; 8 Grover, Maheswari, Desai, Gopinath, Venkateswarlu (b0195) 2015; 95 Hollander (b0225) 1895; 9 Pidatala, Li, Sarkar, Wusirika, Datta (b0385) 2018; 193 Yadav, Ramakrishna (b0575) 2019; 8 Naseem, Ahsan, Shahid, Khan (b0325) 2018; 58 Wu, Wood, Mulchandani, Chen (b0555) 2006; 72 Chandra, Askari, Kumari (b0080) 2018; 16 Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD., 2014. Economics of salt‐induced land degradation and restoration. In: Natural Resources Forum, pp. 282-295. Wiley Online Library. Munns, Tester (b0310) 2008; 59 Gadd (b0180) 2010; 156 Fuentes, Garbayo, Cuaresma, Montero, González-del-Valle, Vílchez (b0175) 2016; 14 Zörb, Geilfus, Mühling, Ludwig-Müller (b0585) 2013; 170 Li, Pang, He, Wang, Sheng (b0280) 2017; 138 Sen, Chandrasekhar (b0455) 2014; 4 Wu CH, Bernard SM, Andersen GL, Chen W., 2009. Developing microbe–plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microbial Biotechnol. 2, 428–440. Li, Ramakrishna (b0275) 2011; 189 Bharti P, Singh B, Bauddh K, Dey R, Korstad J., 2017. Efficiency of bioenergy plant in phytoremediation of saline and sodic soil. In: Phytoremediation Potential of Bioenergy Plants pp. 353-69, Springer. L.). Biotechnol. Res. Intl. 2016, 7830182. Goswami, Thakker, Dhandhukia (b0190) 2016; 2 Quinn, Davis (b0410) 2015; 184 Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense‐related terpenes in in vitro cultured grapevine. Physiologia Plantarum 151, 359-374. Nadeem, Zahir, Naveed, Asghar, Arshad (b0320) 2010; 74 Dogra, Yadav, Kaur, Adhikary, Kumar, Ramakrishna (b0145) 2019; 25 Shifaw (b0470) 2018; 8 Kumar, Verma (b0255) 2018; 207 Kaushal, Wani (b0235) 2016; 231 Ramos-Ibarra, Rubio-Ramírez, Mondragón-Cortez, Torres-Velázquez, Choix (b0395) 2019 Helander, Vaidya, Cutler (b0215) 2016; 24 Shi, Zhu (b0465) 2002; 50 Schlesinger, Bernhardt (b0400) 2013 Shinozaki, Yamaguchi-Shinozaki (b0475) 2007; 58 Bano, Fatima (b0025) 2009; 45 Salomon MV, Bottini R, de Souza Filho GA, Cohen AC, Moreno D, Gil M, Piccoli P., 2014. Salomon MV, Pinter IF, Piccoli P, Bottini R., 2017. Use of plant growth-promoting rhizobacteria as biocontrol agents: Induced systemic resistance against biotic stress in plants. In: Microbial Applications 2, pp. 133-152. Springer. Platten, Cotsaftis, Berthomieu, Bohnert, Davenport, Fairbairn, Horie, Leigh, Lin, Luan (b0390) 2006; 11 Xue G, Xishu Z, Lauren H, Mengting Y, Jiajie F, Daliang N, et al., 2018. Taxonomic and responses of soil microbial communities to annual removal of aboveground plant biomass. Front. Microbiol. 9, 954. Takahashi (b0520) 2016; 5 Gibbs, Salmon (b0185) 2015; 57 Dragone, Fernandes, Vicente, Teixeira (b0140) 2010; 2 Bharti, Pandey, Barnawal, Patel, Kalra (b0035) 2016; 6 Dhawi, Datta, Ramakrishna (b0130) 2017; 1865 Kittredge (b0240) 2015 Bharti N, Barnawal D., 2019. Amelioration of salinity stress by PGPR: ACC deaminase and ROS scavenging enzymes activity. In: PGPR Amelioration in Sustainable Agriculture: Food Security and Environmental Management Ed: Singh AK, Kumar A, Singh PK, pp. 85-106, Woodhead Publishing. Li, Singh, Singh (b0265) 2017; 8 Gupta (b0200) 2010 Hietala, Roane (b0220) 2009 Sofi, Lone, Ganie, Dar, Bhat (b0505) 2016; 26 Ullah, Heng, Munis, Fahad, Yang (b0540) 2015; 117 Cai, Zhang, Wang (b0070) 2010; 45 Rana, Joshi, Prasanna, Shivay, Nain (b0425) 2012; 50 de Souza, Meyer, Schoenfeld, da Costa, Passaglia (b0115) 2015; 65 Shahid, Al-Shankiti (b0460) 2013; 1 Hassan, Bano, Bashir, David (b0210) 2014; 21 Tilman, Hill, Lehman (b0530) 2006; 314 Etesami, Beattie (b0165) 2018; 9 Vejan, Abdullah, Khadiran, Ismail, Nasrulhaq (b0550) 2016; 21 Nie, Bell, Wallenstein, Pendall (b0340) 2015; 5 Ricardo D., 1817. On the principles of political economy and taxation. Piero Sraffa (Ed.) Works and Correspondence of David Ricardo, Volume I, Cambridge University Press, 1951. Panagos, Van Liedekerke, Yigini, Montanarella (b0360) 2013; 2013 Peuke, Rennenberg (b0380) 2005; 6 Teng, Ni, Wang, Zuo, Yang (b0525) 2010; 104 Nia, Zarea, Rejali, Varma (b0335) 2012; 11 Padda KP, Puri A, Chanway CP.. 2017. Paenibacillus polymyxa: A prominent biofertilizer and biocontrol agent for sustainable agriculture. In: Agriculturally Important Microbes for Sustainable Agriculture pp. 165-191. Springer. Dhawi, Datta, Ramakrishna (b0125) 2016; 157 Rajkumar, Ae, Prasad, Freitas (b0415) 2010; 28 Siddikee, Chauhan, Anandham, Han, Sa (b0485) 2010; 20 Bolan, Kunhikrishnan, Thangarajan, Kumpiene, Park, Makino, Kirkham, Scheckel (b0050) 2014; 266 Elrayies (b0155) 2018; 81 Paul, Nair (b0370) 2008; 48 Singh (b0500) 2018; 6 Umara, Abdullahi, Dibal, Ahmad (b0545) 2013; 3 Blanco-Canqui (b9005) 2016; 80 Cowie AL, Orr B, Sanchez VMC, Chasek P, Crossmane ND, Erlewein A, et al., 2018. Land in balance: The scientific conceptual framework for land degradation neutrality. Environ. Sci. Policy 79, 25-35. Edrisi, Abhilash (b0150) 2016; 54 Kohler, Caravaca, Roldán (b0250) 2010; 42 Gibbs (10.1016/j.scitotenv.2019.135062_b0185) 2015; 57 Vejan (10.1016/j.scitotenv.2019.135062_b0550) 2016; 21 10.1016/j.scitotenv.2019.135062_b0170 10.1016/j.scitotenv.2019.135062_b0045 Nie (10.1016/j.scitotenv.2019.135062_b0340) 2015; 5 Edrisi (10.1016/j.scitotenv.2019.135062_b0150) 2016; 54 Dao (10.1016/j.scitotenv.2019.135062_b0110) 2018; 33 Li (10.1016/j.scitotenv.2019.135062_b0265) 2017; 8 10.1016/j.scitotenv.2019.135062_b0565 Peuke (10.1016/j.scitotenv.2019.135062_b0380) 2005; 6 10.1016/j.scitotenv.2019.135062_b0560 10.1016/j.scitotenv.2019.135062_b0440 Takahashi (10.1016/j.scitotenv.2019.135062_b0520) 2016; 5 Teng (10.1016/j.scitotenv.2019.135062_b0525) 2010; 104 Bruins (10.1016/j.scitotenv.2019.135062_b0065) 2000; 45 Cohen (10.1016/j.scitotenv.2019.135062_b0100) 2015; 153 10.1016/j.scitotenv.2019.135062_b0445 10.1016/j.scitotenv.2019.135062_b9010 Deinlein (10.1016/j.scitotenv.2019.135062_b0120) 2014; 19 Mandal (10.1016/j.scitotenv.2019.135062_b0290) 2016; 2 10.1016/j.scitotenv.2019.135062_b0040 Tilman (10.1016/j.scitotenv.2019.135062_b0530) 2006; 314 Shi (10.1016/j.scitotenv.2019.135062_b0465) 2002; 50 Nadeem (10.1016/j.scitotenv.2019.135062_b0315) 2014; 32 Naseem (10.1016/j.scitotenv.2019.135062_b0325) 2018; 58 10.1016/j.scitotenv.2019.135062_b0430 Shrivastava (10.1016/j.scitotenv.2019.135062_b0480) 2015; 22 Li (10.1016/j.scitotenv.2019.135062_b0275) 2011; 189 Nia (10.1016/j.scitotenv.2019.135062_b0335) 2012; 11 Ramos-Ibarra (10.1016/j.scitotenv.2019.135062_b0395) 2019 Nadeem (10.1016/j.scitotenv.2019.135062_b0320) 2010; 74 Enebe (10.1016/j.scitotenv.2019.135062_b0160) 2018; 102 Singh (10.1016/j.scitotenv.2019.135062_b0495) 2010; 44 Ojuederie (10.1016/j.scitotenv.2019.135062_b0350) 2017; 14 Dhawi (10.1016/j.scitotenv.2019.135062_b0125) 2016; 157 Hassan (10.1016/j.scitotenv.2019.135062_b0210) 2014; 21 Shahid (10.1016/j.scitotenv.2019.135062_b0460) 2013; 1 Chen (10.1016/j.scitotenv.2019.135062_b0090) 2015; 33 10.1016/j.scitotenv.2019.135062_b0020 Bano (10.1016/j.scitotenv.2019.135062_b0025) 2009; 45 Kohler (10.1016/j.scitotenv.2019.135062_b0250) 2010; 42 Bermudez (10.1016/j.scitotenv.2019.135062_b0030) 2012; 213 Chirakkara (10.1016/j.scitotenv.2019.135062_b9015) 2016; 15 Hietala (10.1016/j.scitotenv.2019.135062_b0220) 2009 Lewis (10.1016/j.scitotenv.2019.135062_b0260) 2014; 3 Pidatala (10.1016/j.scitotenv.2019.135062_b0385) 2018; 193 Singh (10.1016/j.scitotenv.2019.135062_b0490) 2010; 39 Sofi (10.1016/j.scitotenv.2019.135062_b0505) 2016; 26 Nosheen (10.1016/j.scitotenv.2019.135062_b0345) 2018; 13 Pérez (10.1016/j.scitotenv.2019.135062_b0375) 2008; 24 Siddikee (10.1016/j.scitotenv.2019.135062_b0485) 2010; 20 Blanco-Canqui (10.1016/j.scitotenv.2019.135062_b9005) 2016; 80 de Souza (10.1016/j.scitotenv.2019.135062_b0115) 2015; 65 Kittredge (10.1016/j.scitotenv.2019.135062_b0240) 2015 Platten (10.1016/j.scitotenv.2019.135062_b0390) 2006; 11 Helander (10.1016/j.scitotenv.2019.135062_b0215) 2016; 24 Mehmood (10.1016/j.scitotenv.2019.135062_b0295) 2017; 9 Naylor (10.1016/j.scitotenv.2019.135062_b0330) 2018; 8 Grover (10.1016/j.scitotenv.2019.135062_b0195) 2015; 95 Yadav (10.1016/j.scitotenv.2019.135062_b0575) 2019; 8 Srivastava (10.1016/j.scitotenv.2019.135062_b0510) 2014; 70 Bolan (10.1016/j.scitotenv.2019.135062_b0050) 2014; 266 Harrison (10.1016/j.scitotenv.2019.135062_b0205) 2006; 55 Cai (10.1016/j.scitotenv.2019.135062_b0070) 2010; 45 Rana (10.1016/j.scitotenv.2019.135062_b0425) 2012; 50 Ma (10.1016/j.scitotenv.2019.135062_b0285) 2016; 174 Bharti (10.1016/j.scitotenv.2019.135062_b0035) 2016; 6 Wu (10.1016/j.scitotenv.2019.135062_b0555) 2006; 72 Umara (10.1016/j.scitotenv.2019.135062_b0545) 2013; 3 Dogra (10.1016/j.scitotenv.2019.135062_b0145) 2019; 25 Mellado-Vázquez (10.1016/j.scitotenv.2019.135062_b0300) 2019; 142 Panagos (10.1016/j.scitotenv.2019.135062_b0360) 2013; 2013 Chaves (10.1016/j.scitotenv.2019.135062_b0085) 2009; 103 Caravaca (10.1016/j.scitotenv.2019.135062_b0075) 2005; 169 10.1016/j.scitotenv.2019.135062_b0405 Munns (10.1016/j.scitotenv.2019.135062_b0310) 2008; 59 Pandey (10.1016/j.scitotenv.2019.135062_b0365) 2017; 36 Shifaw (10.1016/j.scitotenv.2019.135062_b0470) 2018; 8 10.1016/j.scitotenv.2019.135062_b0005 Chibeba (10.1016/j.scitotenv.2019.135062_b0095) 2018; 261 Gupta (10.1016/j.scitotenv.2019.135062_b0200) 2010 Shinozaki (10.1016/j.scitotenv.2019.135062_b0475) 2007; 58 Zörb (10.1016/j.scitotenv.2019.135062_b0585) 2013; 170 Gadd (10.1016/j.scitotenv.2019.135062_b0180) 2010; 156 10.1016/j.scitotenv.2019.135062_b0355 Li (10.1016/j.scitotenv.2019.135062_b0280) 2017; 138 Rajkumar (10.1016/j.scitotenv.2019.135062_b0420) 2012; 30 Fuentes (10.1016/j.scitotenv.2019.135062_b0175) 2016; 14 Sen (10.1016/j.scitotenv.2019.135062_b0455) 2014; 4 Rajkumar (10.1016/j.scitotenv.2019.135062_b0415) 2010; 28 Ashraf (10.1016/j.scitotenv.2019.135062_b0015) 1994; 13 Dhawi (10.1016/j.scitotenv.2019.135062_b0135) 2018; 8 Chandra (10.1016/j.scitotenv.2019.135062_b0080) 2018; 16 Quinn (10.1016/j.scitotenv.2019.135062_b0410) 2015; 184 Tiwari (10.1016/j.scitotenv.2019.135062_b0535) 2016; 99 Paul (10.1016/j.scitotenv.2019.135062_b0370) 2008; 48 Kaushal (10.1016/j.scitotenv.2019.135062_b0235) 2016; 231 Etesami (10.1016/j.scitotenv.2019.135062_b0165) 2018; 9 Ilangumaran (10.1016/j.scitotenv.2019.135062_b9004) 2017; 8 Ahemad (10.1016/j.scitotenv.2019.135062_b0010) 2015; 5 Schlesinger (10.1016/j.scitotenv.2019.135062_b0400) 2013 Kumar (10.1016/j.scitotenv.2019.135062_b0255) 2018; 207 10.1016/j.scitotenv.2019.135062_b0105 Taghavi (10.1016/j.scitotenv.2019.135062_b0515) 2009; 75 Elrayies (10.1016/j.scitotenv.2019.135062_b0155) 2018; 81 Hollander (10.1016/j.scitotenv.2019.135062_b0225) 1895; 9 Botella (10.1016/j.scitotenv.2019.135062_b0055) 2000; 109 Dhawi (10.1016/j.scitotenv.2019.135062_b0130) 2017; 1865 Dragone (10.1016/j.scitotenv.2019.135062_b0140) 2010; 2 Zhu (10.1016/j.scitotenv.2019.135062_b0580) 2016; 167 10.1016/j.scitotenv.2019.135062_b0570 10.1016/j.scitotenv.2019.135062_b0450 Goswami (10.1016/j.scitotenv.2019.135062_b0190) 2016; 2 Braud (10.1016/j.scitotenv.2019.135062_b0060) 2010; 2 Dhawi (10.1016/j.scitotenv.2019.135062_b9405) 2015; 97 Li (10.1016/j.scitotenv.2019.135062_b0270) 2014; 48 Singh (10.1016/j.scitotenv.2019.135062_b0500) 2018; 6 Ullah (10.1016/j.scitotenv.2019.135062_b0540) 2015; 117 |
References_xml | – volume: 8 start-page: 8 year: 2018 end-page: 14 ident: b0135 article-title: Metabolomics, biomass and lignocellulosic total sugars analysis in foxtail millet ( publication-title: Comm. Plant Sci. – volume: 95 start-page: 73 year: 2015 end-page: 85 ident: b0195 article-title: Elevated CO publication-title: Appl. Soil Ecol. – volume: 42 start-page: 429 year: 2010 end-page: 434 ident: b0250 article-title: An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of publication-title: Soil Biol. Biochem. – volume: 11 start-page: 113 year: 2012 end-page: 121 ident: b0335 article-title: Yield and yield components of wheat as affected by salinity and inoculation with publication-title: J. Saudi Soc. Agric. Sci. – volume: 28 start-page: 142 year: 2010 end-page: 149 ident: b0415 article-title: Potential of siderophore-producing bacteria for improving heavy metal phytoextraction publication-title: Trends Biotechnol. – volume: 8 start-page: 2938 year: 2019 end-page: 2943 ident: b0575 article-title: Nutrient enhancement and growth promotion of wheat cultivars by native plant growth promoting bacteria from Punjab state publication-title: India. J. Pharmacognosy Phytochem. – volume: 5 start-page: 11 year: 2016 end-page: 25 ident: b0520 article-title: Damage and heavy metal pollution in China's farmland: Reality and solutions publication-title: J. Contemporary East Asia Studies – reference: Padda KP, Puri A, Chanway CP.. 2017. Paenibacillus polymyxa: A prominent biofertilizer and biocontrol agent for sustainable agriculture. In: Agriculturally Important Microbes for Sustainable Agriculture pp. 165-191. Springer. – volume: 48 start-page: 1184 year: 2014 end-page: 1193 ident: b0270 article-title: Integrated metabolomic and proteomic approaches dissect the effect of metal-resistant bacteria on maize biomass and copper uptake publication-title: Environ. Sci. Technol. – volume: 1865 start-page: 243 year: 2017 end-page: 251 ident: b0130 article-title: Proteomics provides insights into biological pathways altered by plant growth promoting bacteria and arbuscular mycorrhiza in sorghum grown in marginal soil. Biochim. Biophys. Acta (BBA)-Prot publication-title: Proteomics – volume: 314 start-page: 1598 year: 2006 end-page: 1600 ident: b0530 article-title: Carbon-negative biofuels from low-input high-diversity grassland biomass publication-title: Science – year: 2019 ident: b0395 article-title: -microalga interaction increases growth and accumulation of cell compounds in publication-title: J. Appl. Phycol. – volume: 80 start-page: 845 year: 2016 end-page: 858 ident: b9005 article-title: Growing dedicated energy crops on marginal lands and ecosystem services publication-title: Soil Sci. Soc. Amer. J. – volume: 81 start-page: 1175 year: 2018 end-page: 1191 ident: b0155 article-title: Microalgae: prospects for greener future buildings publication-title: Renew. Sustain. Energy Rev. – volume: 39 start-page: 5 year: 2010 end-page: 15 ident: b0490 article-title: Remote sensing and geographic information system for appraisal of salt-affected soils in India publication-title: J. Environ Quality – volume: 213 start-page: 447 year: 2012 end-page: 456 ident: b0030 article-title: Heavy metals and trace elements in atmospheric fall-out: their relationship with topsoil and wheat element composition publication-title: J. Hazard. Mater. – reference: Cowie AL, Orr B, Sanchez VMC, Chasek P, Crossmane ND, Erlewein A, et al., 2018. Land in balance: The scientific conceptual framework for land degradation neutrality. Environ. Sci. Policy 79, 25-35. – volume: 231 start-page: 68 year: 2016 end-page: 78 ident: b0235 article-title: Rhizobacterial-plant interactions: strategies ensuring plant growth promotion under drought and salinity stress publication-title: Agric. Ecosyst. Environ. – volume: 156 start-page: 609 year: 2010 end-page: 643 ident: b0180 article-title: Metals, minerals and microbes: geomicrobiology and bioremediation publication-title: Microbiol. – volume: 33 start-page: 345 year: 2018 end-page: 351 ident: b0110 article-title: Enhanced microalgae growth through stimulated secretion of indole acetic acid by symbiotic bacteria publication-title: Algal Res. – volume: 75 start-page: 748 year: 2009 end-page: 757 ident: b0515 article-title: Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees publication-title: Appl. Environ. Microbiol. – volume: 14 start-page: 100 year: 2016 ident: b0175 article-title: Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds publication-title: Mar. Drugs – volume: 2 start-page: 1127500 year: 2016 ident: b0190 article-title: Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review publication-title: Cogent Food Agric. – volume: 142 start-page: 175 year: 2019 end-page: 187 ident: b0300 article-title: Soil microbial communities and their carbon assimilation are affected by soil properties and season but not by plants differing in their photosynthetic pathways (C3 vs. C4) publication-title: Biogeochem. – volume: 193 start-page: 903e911 year: 2018 ident: b0385 article-title: Comparative metabolic profiling of vetiver ( publication-title: Chemosphere – reference: Agbodjato NA, Noumavo PA, Adjanohoun A, Agbessi L, Baba-Moussa L., 2016. Synergistic effects of plant growth promoting rhizobacteria and chitosan on in vitro seeds germination, greenhouse growth, and nutrient uptake of maize ( – volume: 15 start-page: 299 year: 2016 end-page: 326 ident: b9015 article-title: Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants publication-title: Rev. Environ. Sci. Bio/Technol. – volume: 50 start-page: 118 year: 2012 end-page: 126 ident: b0425 article-title: Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria publication-title: European J. Soil Biol. – volume: 266 start-page: 141 year: 2014 end-page: 166 ident: b0050 article-title: Remediation of heavy metal(loid)s contaminated soils–to mobilize or to immobilize? publication-title: J. Hazard. Mater. – volume: 30 start-page: 1562 year: 2012 end-page: 1574 ident: b0420 article-title: Perspectives of plant-associated microbes in heavy metal phytoremediation publication-title: Biotechnol. Adv. – volume: 261 start-page: 230 year: 2018 end-page: 240 ident: b0095 article-title: Feasibility of transference of inoculation-related technologies: A case study of evaluation of soybean rhizobial strains under the agro-climatic conditions of Brazil and Mozambique publication-title: Agric. Ecosyst. Environ. – volume: 184 start-page: 444 year: 2015 end-page: 452 ident: b0410 article-title: The potentials and challenges of algae based biofuels: A review of the techno-economic, life cycle, and resource assessment modeling publication-title: Bioresource Technol. – volume: 55 start-page: 479 year: 2006 end-page: 491 ident: b0205 article-title: Metal resistance in Candida biofilms publication-title: FEMS Microbiol. Ecol. – volume: 24 start-page: 2699 year: 2008 ident: b0375 article-title: Biosorption of heavy metals by the exopolysaccharide produced by publication-title: World J. Microbiol. Biotechnol. – reference: Salomon MV, Pinter IF, Piccoli P, Bottini R., 2017. Use of plant growth-promoting rhizobacteria as biocontrol agents: Induced systemic resistance against biotic stress in plants. In: Microbial Applications 2, pp. 133-152. Springer. – volume: 20 start-page: 1577 year: 2010 end-page: 1584 ident: b0485 article-title: Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil publication-title: J. Microbiol. Biotechnol. – reference: Millennium Ecosystem Assessment., 2005. Ecosystems and human well-being: Current state and trends, Vol. 1, Ed. Hassan R, Scholes R, Ash N., Island Press. – volume: 74 start-page: 533 year: 2010 end-page: 542 ident: b0320 article-title: Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat publication-title: Soil Biol. Biochem. – year: 2013 ident: b0400 article-title: Biogeochemistry: an analysis of global change – reference: Banerjee A., Sarkar S., Cuadros-Orellana S., Bandopadhyay R., 2019. Exopolysaccharides and biofilms in mitigating salinity stress: The biotechnological potential of halophilic and soil-inhabiting PGPR microorganisms. In: Giri B., Varma A. (eds) Microorganisms in Saline Environments: Strategies and Functions. Soil Biology, 56, 133-153 Springer, Cham. – volume: 6 start-page: 1 year: 2018 end-page: 7 ident: b0500 article-title: Climate change and sustainable management of salinity in agriculture publication-title: Res. Med. Eng. Sci. – volume: 33 start-page: 745 year: 2015 end-page: 755 ident: b0090 article-title: Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs publication-title: Biotechnol. Adv. – volume: 9 start-page: 175 year: 1895 end-page: 187 ident: b0225 article-title: The concept of marginal rent publication-title: Quarterly J. Econ. – volume: 103 start-page: 551 year: 2009 end-page: 560 ident: b0085 article-title: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell publication-title: Annals Bot. – volume: 6 start-page: 497 year: 2005 end-page: 501 ident: b0380 article-title: Phytoremediation: molecular biology, requirements for application, environmental protection, public attention and feasibility publication-title: EMBO Rep. – volume: 11 start-page: 372 year: 2006 end-page: 374 ident: b0390 article-title: Nomenclature for HKT transporters, key determinants of plant salinity tolerance publication-title: Trends Plant Sci. – reference: Bharti P, Singh B, Bauddh K, Dey R, Korstad J., 2017. Efficiency of bioenergy plant in phytoremediation of saline and sodic soil. In: Phytoremediation Potential of Bioenergy Plants pp. 353-69, Springer. – volume: 16 start-page: 581 year: 2018 end-page: 586 ident: b0080 article-title: Optimization of indole acetic acid production by isolated bacteria from publication-title: J. Genet. Eng. Biotechnol. – volume: 174 start-page: 14 year: 2016 end-page: 25 ident: b0285 article-title: Beneficial role of bacterial endophytes in heavy metal phytoremediation publication-title: J. Environ. Management – volume: 32 start-page: 429 year: 2014 end-page: 448 ident: b0315 article-title: The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments publication-title: Biotechnol. Adv. – volume: 19 start-page: 371 year: 2014 end-page: 379 ident: b0120 article-title: Plant salt-tolerance mechanisms publication-title: Trends Plant Sci. – volume: 2 start-page: 1355 year: 2010 end-page: 1366 ident: b0140 article-title: Third generation biofuels from microalgae. Curr. Res. Technol. Education Topics in Appl publication-title: Microbiol. Microbial Biotechnol. – volume: 99 start-page: 108 year: 2016 end-page: 117 ident: b0535 article-title: attunes morphophysiological, biochemical and molecular responses in publication-title: Plant Physiol. Biochem. – volume: 157 start-page: 33 year: 2016 end-page: 41 ident: b0125 article-title: Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil publication-title: Chemosphere – volume: 45 start-page: 334 year: 2010 end-page: 339 ident: b0070 article-title: Land availability for biofuel production publication-title: Environ. Sci. Technol. – volume: 117 start-page: 28 year: 2015 end-page: 40 ident: b0540 article-title: Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review publication-title: Environ. Exp. Bot. – volume: 50 start-page: 543 year: 2002 end-page: 550 ident: b0465 article-title: Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid publication-title: Plant Mol. Biol. – volume: 6 start-page: 34768 year: 2016 ident: b0035 article-title: Plant growth promoting rhizobacteria publication-title: Sci. Rep. – volume: 102 start-page: 7821 year: 2018 end-page: 7835 ident: b0160 article-title: The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy publication-title: Appl. Microbiol. Biotechnol. – volume: 57 start-page: 12 year: 2015 end-page: 21 ident: b0185 article-title: Mapping the world's degraded lands publication-title: Appl. Geography – volume: 65 start-page: 951 year: 2015 end-page: 964 ident: b0115 article-title: Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils publication-title: Annals Microbiol. – volume: 26 start-page: 577 year: 2016 end-page: 591 ident: b0505 article-title: Soil microbiological activity and carbon dynamics in the current climate change scenarios: A review publication-title: Pedosphere – volume: 109 start-page: 428 year: 2000 end-page: 434 ident: b0055 article-title: Polyamine, ethylene and other physico-chemical parameters in tomato ( publication-title: Physiol. Plant. – volume: 2 start-page: 1213689 year: 2016 ident: b0290 article-title: Mapping and characterization of salt-affected and waterlogged soils in the Gangetic plain of central Haryana (India) for reclamation and management publication-title: Cogent Geosci. – volume: 3 start-page: 430 year: 2014 end-page: 459 ident: b0260 article-title: Mapping the potential for biofuel production on marginal lands: differences in definitions, data and models across scales publication-title: ISPRS Internat. J. Geo-Information – reference: Xue G, Xishu Z, Lauren H, Mengting Y, Jiajie F, Daliang N, et al., 2018. Taxonomic and responses of soil microbial communities to annual removal of aboveground plant biomass. Front. Microbiol. 9, 954. – volume: 59 start-page: 651 year: 2008 end-page: 681 ident: b0310 article-title: Mechanisms of salinity tolerance publication-title: Annu. Rev. Plant Biol. – volume: 44 start-page: 4553 year: 2010 end-page: 4564 ident: b0495 article-title: Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions publication-title: Atmospheric Environ. – volume: 13 year: 2018 ident: b0345 article-title: Improvement of safflower oil quality for biodiesel production by integrated application of PGPR under reduced amount of NP fertilizers publication-title: PLoS One – volume: 21 start-page: 573 year: 2016 ident: b0550 article-title: Role of plant growth promoting rhizobacteria in agricultural sustainability—a review publication-title: Molecules – start-page: 201 year: 2009 end-page: 220 ident: b0220 article-title: Microbial remediation of metals in soils publication-title: Advances in Applied Bioremediation – reference: Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense‐related terpenes in in vitro cultured grapevine. Physiologia Plantarum 151, 359-374. – volume: 24 start-page: 493 year: 2016 end-page: 500 ident: b0215 article-title: Chemical manipulation of plant water use publication-title: Bioorg. Med. Chem. – volume: 1 start-page: 24 year: 2013 end-page: 38 ident: b0460 article-title: Sustainable food production in marginal lands—Case of GDLA member countries publication-title: Intl. Soil Water Conservation Res. – volume: 25 start-page: 1251 year: 2019 end-page: 1259 ident: b0145 article-title: Nutrient enhancement of chickpea grown with plant growth promoting bacteria grown in local soil of Bathinda, Northwestern India publication-title: Physiol. Mol. Biol. Plants – volume: 8 year: 2018 ident: b0470 article-title: Review of heavy metals pollution in China in agricultural and urban soils publication-title: J. Health Pollut. – volume: 45 start-page: 405 year: 2009 end-page: 413 ident: b0025 article-title: Salt tolerance in publication-title: Biol. Fertil. Soils – volume: 36 start-page: 759 year: 2017 end-page: 772 ident: b0365 article-title: Salinity induced differential methylation patterns in contrasting cultivars of foxtail millet ( publication-title: Plant Cell Rep. – volume: 189 start-page: 531 year: 2011 end-page: 539 ident: b0275 article-title: Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth publication-title: J. Hazard. Mat. – reference: Bharti N, Barnawal D., 2019. Amelioration of salinity stress by PGPR: ACC deaminase and ROS scavenging enzymes activity. In: PGPR Amelioration in Sustainable Agriculture: Food Security and Environmental Management Ed: Singh AK, Kumar A, Singh PK, pp. 85-106, Woodhead Publishing. – volume: 21 start-page: 10983 year: 2014 end-page: 10996 ident: b0210 article-title: Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize ( publication-title: Environ. Sci. Pollut. Res. – volume: 72 start-page: 1129 year: 2006 end-page: 1134 ident: b0555 article-title: Engineering plant-microbe symbiosis for rhizoremediation of heavy metals publication-title: Appl. Environ. Microbiol. – volume: 2013 year: 2013 ident: b0360 article-title: Contaminated sites in Europe: review of the current situation based on data collected through a European network publication-title: J. Environ. Public Health – reference: Salomon MV, Bottini R, de Souza Filho GA, Cohen AC, Moreno D, Gil M, Piccoli P., 2014. – volume: 8 start-page: 2223 year: 2018 ident: b0330 article-title: Drought stress and root-associated bacterial communities publication-title: Front. Plant Sci. – volume: 54 start-page: 1537 year: 2016 end-page: 1551 ident: b0150 article-title: Exploring marginal and degraded lands for biomass and bioenergy production: an Indian scenario publication-title: Renew. Sustain. Energy Rev. – volume: 4 start-page: 62 year: 2014 end-page: 67 ident: b0455 article-title: Effect of PGPR on growth promotion of rice ( publication-title: Asian J. Plant Sci. Res. – reference: Xiong L, Schumaker KS, Zhu JK., 2002. Cell signaling during cold, drought, and salt stress. Plant Cell 14, S165-1283. – volume: 167 start-page: 313 year: 2016 end-page: 324 ident: b0580 article-title: Abiotic stress signaling and responses in plants publication-title: Cell – volume: 97 start-page: 390 year: 2015 end-page: 399 ident: b9405 article-title: Mycorrhiza and PGPB modulate maize biomass, nutrient uptake and metabolic pathways in maize grown in mining-impacted soil publication-title: Plant Physiol. Biochem. – volume: 22 start-page: 123 year: 2015 end-page: 131 ident: b0480 article-title: Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation publication-title: Saudi J. Biol. Sci. – volume: 70 start-page: 146 year: 2014 end-page: 153 ident: b0510 article-title: Mitigation approach of arsenic toxicity in chickpea grown in arsenic amended soil with arsenic tolerant plant growth promoting publication-title: Ecol. Eng. – volume: 3 start-page: 288 year: 2013 end-page: 291 ident: b0545 article-title: Effects of salts concentration on emergence and growth of tomato ( publication-title: J. Eng. Innov. Technol. (UEIT) – volume: 58 start-page: 221 year: 2007 end-page: 227 ident: b0475 article-title: Gene networks involved in drought stress response and tolerance publication-title: J. Exp. Bot. – volume: 104 start-page: 118 year: 2010 end-page: 127 ident: b0525 article-title: A geochemical survey of trace elements in agricultural and non-agricultural topsoil in Dexing area publication-title: China. J. Geochem. Exploration – volume: 169 start-page: 191 year: 2005 end-page: 197 ident: b0075 article-title: Involvement of antioxidant enzyme and nitrate reductase activities during water stress and recovery of mycorrhizal publication-title: Plant Sci. – volume: 58 start-page: 1009 year: 2018 end-page: 1022 ident: b0325 article-title: Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance publication-title: J. Basic Microbiol. – volume: 2 start-page: 419 year: 2010 end-page: 425 ident: b0060 article-title: Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in publication-title: Environ. Microbiol. Rep. – start-page: 62 year: 2010 ident: b0200 article-title: Management of alkali water (Technical Bulletin CSSRI/Karnal/2010/01 – volume: 207 start-page: 41 year: 2018 end-page: 52 ident: b0255 article-title: Does plant-microbe interaction confer stress tolerance in plants: a review? publication-title: Microbiol. Res. – volume: 153 start-page: 79 year: 2015 end-page: 90 ident: b0100 article-title: ameliorates the response of publication-title: Physiol. Plant. – volume: 170 start-page: 220 year: 2013 end-page: 224 ident: b0585 article-title: The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance publication-title: J. Plant Physiol. – volume: 13 start-page: 17 year: 1994 end-page: 42 ident: b0015 article-title: Breeding for salinity tolerance in plants publication-title: Crit. Rev. Plant Sci. – reference: Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD., 2014. Economics of salt‐induced land degradation and restoration. In: Natural Resources Forum, pp. 282-295. Wiley Online Library. – reference: Ricardo D., 1817. On the principles of political economy and taxation. Piero Sraffa (Ed.) Works and Correspondence of David Ricardo, Volume I, Cambridge University Press, 1951. – year: 2015 ident: b0240 article-title: Soil carbon restoration: Can biology do the job? publication-title: Northeast Organic. – volume: 5 start-page: 9212 year: 2015 ident: b0340 article-title: Increased plant productivity and decreased microbial respiratory C loss by plant growth-promoting rhizobacteria under elevated CO publication-title: Sci. Rep. – volume: 9 start-page: 3 year: 2017 end-page: 21 ident: b0295 article-title: Biomass production for bioenergy using marginal lands publication-title: Sustainable Product. Consumpt. – reference: FAO/IIASA/ISRIC/ISS-CAS/JRC., 2008. Harmonized world soil database (version 1.0). Rome: FAO. – volume: 9 start-page: 148 year: 2018 ident: b0165 article-title: Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops publication-title: Front. Microbiol. – volume: 138 start-page: 56 year: 2017 end-page: 63 ident: b0280 article-title: Cd immobilization and reduced tissue Cd accumulation of rice ( publication-title: Ecotoxicol. Environ. Safety – volume: 14 start-page: 1504 year: 2017 ident: b0350 article-title: Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review publication-title: Intl. J. Environ. Res. Public Health – volume: 8 start-page: 1268 year: 2017 ident: b0265 article-title: Genetic diversity of nitrogen-fixing and plant growth promoting publication-title: Front. Microbiol. – reference: Wu CH, Bernard SM, Andersen GL, Chen W., 2009. Developing microbe–plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microbial Biotechnol. 2, 428–440. – volume: 45 start-page: 198 year: 2000 end-page: 207 ident: b0065 article-title: Microbial resistance to metals in the environment publication-title: Ecotoxicol. Environ. Safety – reference: L.). Biotechnol. Res. Intl. 2016, 7830182. – volume: 8 start-page: 1768 year: 2017 ident: b9004 article-title: Plant growth promoting rhizobacteria in amelioration of salinity stress: A systems biology perspective publication-title: Front. Plant Sci. – volume: 5 start-page: 111 year: 2015 end-page: 121 ident: b0010 article-title: Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3 publication-title: Biotech – volume: 48 start-page: 378 year: 2008 end-page: 384 ident: b0370 article-title: Stress adaptations in a Plant Growth Promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils publication-title: J. Basic Microbiol. – start-page: 201 year: 2009 ident: 10.1016/j.scitotenv.2019.135062_b0220 article-title: Microbial remediation of metals in soils – volume: 30 start-page: 1562 year: 2012 ident: 10.1016/j.scitotenv.2019.135062_b0420 article-title: Perspectives of plant-associated microbes in heavy metal phytoremediation publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2012.04.011 – volume: 102 start-page: 7821 year: 2018 ident: 10.1016/j.scitotenv.2019.135062_b0160 article-title: The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-018-9214-z – volume: 231 start-page: 68 year: 2016 ident: 10.1016/j.scitotenv.2019.135062_b0235 article-title: Rhizobacterial-plant interactions: strategies ensuring plant growth promotion under drought and salinity stress publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2016.06.031 – volume: 157 start-page: 33 year: 2016 ident: 10.1016/j.scitotenv.2019.135062_b0125 article-title: Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.04.112 – volume: 3 start-page: 288 year: 2013 ident: 10.1016/j.scitotenv.2019.135062_b0545 article-title: Effects of salts concentration on emergence and growth of tomato (Lycopersicon esculentum) in tropical areas. lntl publication-title: J. Eng. Innov. Technol. (UEIT) – volume: 16 start-page: 581 year: 2018 ident: 10.1016/j.scitotenv.2019.135062_b0080 article-title: Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth publication-title: J. Genet. Eng. Biotechnol. doi: 10.1016/j.jgeb.2018.09.001 – ident: 10.1016/j.scitotenv.2019.135062_b0105 doi: 10.1016/j.envsci.2017.10.011 – ident: 10.1016/j.scitotenv.2019.135062_b0355 doi: 10.1007/978-981-10-5343-6_6 – ident: 10.1016/j.scitotenv.2019.135062_b0450 doi: 10.1007/978-3-319-52669-0_7 – volume: 8 start-page: 2223 year: 2018 ident: 10.1016/j.scitotenv.2019.135062_b0330 article-title: Drought stress and root-associated bacterial communities publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.02223 – volume: 9 start-page: 3 year: 2017 ident: 10.1016/j.scitotenv.2019.135062_b0295 article-title: Biomass production for bioenergy using marginal lands publication-title: Sustainable Product. Consumpt. doi: 10.1016/j.spc.2016.08.003 – ident: 10.1016/j.scitotenv.2019.135062_b0405 doi: 10.1111/1477-8947.12054 – volume: 45 start-page: 334 year: 2010 ident: 10.1016/j.scitotenv.2019.135062_b0070 article-title: Land availability for biofuel production publication-title: Environ. Sci. Technol. doi: 10.1021/es103338e – volume: 104 start-page: 118 year: 2010 ident: 10.1016/j.scitotenv.2019.135062_b0525 article-title: A geochemical survey of trace elements in agricultural and non-agricultural topsoil in Dexing area publication-title: China. J. Geochem. Exploration doi: 10.1016/j.gexplo.2010.01.006 – ident: 10.1016/j.scitotenv.2019.135062_b0170 – volume: 207 start-page: 41 year: 2018 ident: 10.1016/j.scitotenv.2019.135062_b0255 article-title: Does plant-microbe interaction confer stress tolerance in plants: a review? publication-title: Microbiol. Res. doi: 10.1016/j.micres.2017.11.004 – volume: 39 start-page: 5 year: 2010 ident: 10.1016/j.scitotenv.2019.135062_b0490 article-title: Remote sensing and geographic information system for appraisal of salt-affected soils in India publication-title: J. Environ Quality doi: 10.2134/jeq2009.0032 – volume: 9 start-page: 148 year: 2018 ident: 10.1016/j.scitotenv.2019.135062_b0165 article-title: Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.00148 – volume: 80 start-page: 845 year: 2016 ident: 10.1016/j.scitotenv.2019.135062_b9005 article-title: Growing dedicated energy crops on marginal lands and ecosystem services publication-title: Soil Sci. Soc. Amer. J. doi: 10.2136/sssaj2016.03.0080 – volume: 193 start-page: 903e911 year: 2018 ident: 10.1016/j.scitotenv.2019.135062_b0385 article-title: Comparative metabolic profiling of vetiver (Chrysopogon zizanioides) and maize (Zea mays) under lead stress publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.11.087 – volume: 184 start-page: 444 year: 2015 ident: 10.1016/j.scitotenv.2019.135062_b0410 article-title: The potentials and challenges of algae based biofuels: A review of the techno-economic, life cycle, and resource assessment modeling publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2014.10.075 – ident: 10.1016/j.scitotenv.2019.135062_b0005 doi: 10.1155/2016/7830182 – volume: 14 start-page: 100 year: 2016 ident: 10.1016/j.scitotenv.2019.135062_b0175 article-title: Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds publication-title: Mar. Drugs doi: 10.3390/md14050100 – volume: 8 start-page: 2938 year: 2019 ident: 10.1016/j.scitotenv.2019.135062_b0575 article-title: Nutrient enhancement and growth promotion of wheat cultivars by native plant growth promoting bacteria from Punjab state publication-title: India. J. Pharmacognosy Phytochem. – volume: 95 start-page: 73 year: 2015 ident: 10.1016/j.scitotenv.2019.135062_b0195 article-title: Elevated CO2: Plant associated microorganisms and carbon sequestration publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2015.05.006 – volume: 153 start-page: 79 year: 2015 ident: 10.1016/j.scitotenv.2019.135062_b0100 article-title: Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels publication-title: Physiol. Plant. doi: 10.1111/ppl.12221 – volume: 117 start-page: 28 year: 2015 ident: 10.1016/j.scitotenv.2019.135062_b0540 article-title: Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2015.05.001 – volume: 189 start-page: 531 year: 2011 ident: 10.1016/j.scitotenv.2019.135062_b0275 article-title: Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth publication-title: J. Hazard. Mat. doi: 10.1016/j.jhazmat.2011.02.075 – volume: 8 start-page: 1768 year: 2017 ident: 10.1016/j.scitotenv.2019.135062_b9004 article-title: Plant growth promoting rhizobacteria in amelioration of salinity stress: A systems biology perspective publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01768 – volume: 26 start-page: 577 year: 2016 ident: 10.1016/j.scitotenv.2019.135062_b0505 article-title: Soil microbiological activity and carbon dynamics in the current climate change scenarios: A review publication-title: Pedosphere doi: 10.1016/S1002-0160(15)60068-6 – volume: 20 start-page: 1577 year: 2010 ident: 10.1016/j.scitotenv.2019.135062_b0485 article-title: Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil publication-title: J. Microbiol. Biotechnol. doi: 10.4014/jmb.1007.07011 – volume: 48 start-page: 378 year: 2008 ident: 10.1016/j.scitotenv.2019.135062_b0370 article-title: Stress adaptations in a Plant Growth Promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils publication-title: J. Basic Microbiol. doi: 10.1002/jobm.200700365 – volume: 13 year: 2018 ident: 10.1016/j.scitotenv.2019.135062_b0345 article-title: Improvement of safflower oil quality for biodiesel production by integrated application of PGPR under reduced amount of NP fertilizers publication-title: PLoS One doi: 10.1371/journal.pone.0201738 – volume: 32 start-page: 429 year: 2014 ident: 10.1016/j.scitotenv.2019.135062_b0315 article-title: The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2013.12.005 – ident: 10.1016/j.scitotenv.2019.135062_b0560 doi: 10.1111/j.1751-7915.2009.00109.x – volume: 142 start-page: 175 year: 2019 ident: 10.1016/j.scitotenv.2019.135062_b0300 article-title: Soil microbial communities and their carbon assimilation are affected by soil properties and season but not by plants differing in their photosynthetic pathways (C3 vs. C4) publication-title: Biogeochem. doi: 10.1007/s10533-018-0528-9 – ident: 10.1016/j.scitotenv.2019.135062_b0045 doi: 10.1016/B978-0-12-815879-1.00005-7 – volume: 167 start-page: 313 year: 2016 ident: 10.1016/j.scitotenv.2019.135062_b0580 article-title: Abiotic stress signaling and responses in plants publication-title: Cell doi: 10.1016/j.cell.2016.08.029 – volume: 5 start-page: 111 year: 2015 ident: 10.1016/j.scitotenv.2019.135062_b0010 article-title: Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3 publication-title: Biotech – volume: 48 start-page: 1184 year: 2014 ident: 10.1016/j.scitotenv.2019.135062_b0270 article-title: Integrated metabolomic and proteomic approaches dissect the effect of metal-resistant bacteria on maize biomass and copper uptake publication-title: Environ. Sci. Technol. doi: 10.1021/es4047395 – volume: 14 start-page: 1504 year: 2017 ident: 10.1016/j.scitotenv.2019.135062_b0350 article-title: Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review publication-title: Intl. J. Environ. Res. Public Health doi: 10.3390/ijerph14121504 – ident: 10.1016/j.scitotenv.2019.135062_b0430 – volume: 28 start-page: 142 year: 2010 ident: 10.1016/j.scitotenv.2019.135062_b0415 article-title: Potential of siderophore-producing bacteria for improving heavy metal phytoextraction publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2009.12.002 – volume: 1865 start-page: 243 year: 2017 ident: 10.1016/j.scitotenv.2019.135062_b0130 article-title: Proteomics provides insights into biological pathways altered by plant growth promoting bacteria and arbuscular mycorrhiza in sorghum grown in marginal soil. Biochim. Biophys. Acta (BBA)-Prot publication-title: Proteomics – volume: 213 start-page: 447 year: 2012 ident: 10.1016/j.scitotenv.2019.135062_b0030 article-title: Heavy metals and trace elements in atmospheric fall-out: their relationship with topsoil and wheat element composition publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.02.023 – volume: 44 start-page: 4553 year: 2010 ident: 10.1016/j.scitotenv.2019.135062_b0495 article-title: Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions publication-title: Atmospheric Environ. doi: 10.1016/j.atmosenv.2010.08.026 – volume: 2013 year: 2013 ident: 10.1016/j.scitotenv.2019.135062_b0360 article-title: Contaminated sites in Europe: review of the current situation based on data collected through a European network publication-title: J. Environ. Public Health doi: 10.1155/2013/158764 – volume: 13 start-page: 17 year: 1994 ident: 10.1016/j.scitotenv.2019.135062_b0015 article-title: Breeding for salinity tolerance in plants publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352689409701906 – volume: 261 start-page: 230 year: 2018 ident: 10.1016/j.scitotenv.2019.135062_b0095 article-title: Feasibility of transference of inoculation-related technologies: A case study of evaluation of soybean rhizobial strains under the agro-climatic conditions of Brazil and Mozambique publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2017.06.037 – volume: 174 start-page: 14 year: 2016 ident: 10.1016/j.scitotenv.2019.135062_b0285 article-title: Beneficial role of bacterial endophytes in heavy metal phytoremediation publication-title: J. Environ. Management doi: 10.1016/j.jenvman.2016.02.047 – volume: 138 start-page: 56 year: 2017 ident: 10.1016/j.scitotenv.2019.135062_b0280 article-title: Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the presence of heavy metal-resistant bacteria publication-title: Ecotoxicol. Environ. Safety doi: 10.1016/j.ecoenv.2016.12.024 – volume: 22 start-page: 123 year: 2015 ident: 10.1016/j.scitotenv.2019.135062_b0480 article-title: Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation publication-title: Saudi J. Biol. Sci. doi: 10.1016/j.sjbs.2014.12.001 – volume: 25 start-page: 1251 year: 2019 ident: 10.1016/j.scitotenv.2019.135062_b0145 article-title: Nutrient enhancement of chickpea grown with plant growth promoting bacteria grown in local soil of Bathinda, Northwestern India publication-title: Physiol. Mol. Biol. Plants doi: 10.1007/s12298-019-00661-9 – ident: 10.1016/j.scitotenv.2019.135062_b9010 – volume: 59 start-page: 651 year: 2008 ident: 10.1016/j.scitotenv.2019.135062_b0310 article-title: Mechanisms of salinity tolerance publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092911 – volume: 50 start-page: 118 year: 2012 ident: 10.1016/j.scitotenv.2019.135062_b0425 article-title: Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria publication-title: European J. Soil Biol. doi: 10.1016/j.ejsobi.2012.01.005 – volume: 156 start-page: 609 year: 2010 ident: 10.1016/j.scitotenv.2019.135062_b0180 article-title: Metals, minerals and microbes: geomicrobiology and bioremediation publication-title: Microbiol. doi: 10.1099/mic.0.037143-0 – volume: 169 start-page: 191 year: 2005 ident: 10.1016/j.scitotenv.2019.135062_b0075 article-title: Involvement of antioxidant enzyme and nitrate reductase activities during water stress and recovery of mycorrhizal Myrtus communis and Phillyrea angustifolia plants publication-title: Plant Sci. doi: 10.1016/j.plantsci.2005.03.013 – volume: 55 start-page: 479 year: 2006 ident: 10.1016/j.scitotenv.2019.135062_b0205 article-title: Metal resistance in Candida biofilms publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2005.00045.x – volume: 58 start-page: 1009 year: 2018 ident: 10.1016/j.scitotenv.2019.135062_b0325 article-title: Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance publication-title: J. Basic Microbiol. doi: 10.1002/jobm.201800309 – ident: 10.1016/j.scitotenv.2019.135062_b0040 doi: 10.1007/978-981-10-3084-0_14 – volume: 81 start-page: 1175 year: 2018 ident: 10.1016/j.scitotenv.2019.135062_b0155 article-title: Microalgae: prospects for greener future buildings publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.08.032 – volume: 33 start-page: 745 year: 2015 ident: 10.1016/j.scitotenv.2019.135062_b0090 article-title: Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2015.05.003 – volume: 24 start-page: 493 year: 2016 ident: 10.1016/j.scitotenv.2019.135062_b0215 article-title: Chemical manipulation of plant water use publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2015.11.010 – volume: 1 start-page: 24 year: 2013 ident: 10.1016/j.scitotenv.2019.135062_b0460 article-title: Sustainable food production in marginal lands—Case of GDLA member countries publication-title: Intl. Soil Water Conservation Res. doi: 10.1016/S2095-6339(15)30047-2 – volume: 8 start-page: 8 year: 2018 ident: 10.1016/j.scitotenv.2019.135062_b0135 article-title: Metabolomics, biomass and lignocellulosic total sugars analysis in foxtail millet (Setaria italica) inoculated with different combinations of plant growth promoting bacteria and mycorrhiza publication-title: Comm. Plant Sci. doi: 10.26814/cps2018002 – volume: 57 start-page: 12 year: 2015 ident: 10.1016/j.scitotenv.2019.135062_b0185 article-title: Mapping the world's degraded lands publication-title: Appl. Geography doi: 10.1016/j.apgeog.2014.11.024 – volume: 4 start-page: 62 year: 2014 ident: 10.1016/j.scitotenv.2019.135062_b0455 article-title: Effect of PGPR on growth promotion of rice (Oryza sativa L.) under salt stress publication-title: Asian J. Plant Sci. Res. – volume: 54 start-page: 1537 year: 2016 ident: 10.1016/j.scitotenv.2019.135062_b0150 article-title: Exploring marginal and degraded lands for biomass and bioenergy production: an Indian scenario publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.10.050 – volume: 2 start-page: 419 year: 2010 ident: 10.1016/j.scitotenv.2019.135062_b0060 article-title: Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance publication-title: Environ. Microbiol. Rep. doi: 10.1111/j.1758-2229.2009.00126.x – volume: 314 start-page: 1598 year: 2006 ident: 10.1016/j.scitotenv.2019.135062_b0530 article-title: Carbon-negative biofuels from low-input high-diversity grassland biomass publication-title: Science doi: 10.1126/science.1133306 – volume: 70 start-page: 146 year: 2014 ident: 10.1016/j.scitotenv.2019.135062_b0510 article-title: Mitigation approach of arsenic toxicity in chickpea grown in arsenic amended soil with arsenic tolerant plant growth promoting Acinetobacter sp publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2014.05.008 – volume: 58 start-page: 221 year: 2007 ident: 10.1016/j.scitotenv.2019.135062_b0475 article-title: Gene networks involved in drought stress response and tolerance publication-title: J. Exp. Bot. doi: 10.1093/jxb/erl164 – volume: 6 start-page: 1 year: 2018 ident: 10.1016/j.scitotenv.2019.135062_b0500 article-title: Climate change and sustainable management of salinity in agriculture publication-title: Res. Med. Eng. Sci. – volume: 45 start-page: 198 year: 2000 ident: 10.1016/j.scitotenv.2019.135062_b0065 article-title: Microbial resistance to metals in the environment publication-title: Ecotoxicol. Environ. Safety doi: 10.1006/eesa.1999.1860 – ident: 10.1016/j.scitotenv.2019.135062_b0565 doi: 10.1105/tpc.000596 – volume: 5 start-page: 9212 year: 2015 ident: 10.1016/j.scitotenv.2019.135062_b0340 article-title: Increased plant productivity and decreased microbial respiratory C loss by plant growth-promoting rhizobacteria under elevated CO2 publication-title: Sci. Rep. doi: 10.1038/srep09212 – volume: 50 start-page: 543 year: 2002 ident: 10.1016/j.scitotenv.2019.135062_b0465 article-title: Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid publication-title: Plant Mol. Biol. doi: 10.1023/A:1019859319617 – volume: 15 start-page: 299 year: 2016 ident: 10.1016/j.scitotenv.2019.135062_b9015 article-title: Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants publication-title: Rev. Environ. Sci. Bio/Technol. doi: 10.1007/s11157-016-9391-0 – volume: 2 start-page: 1127500 year: 2016 ident: 10.1016/j.scitotenv.2019.135062_b0190 article-title: Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review publication-title: Cogent Food Agric. – volume: 45 start-page: 405 year: 2009 ident: 10.1016/j.scitotenv.2019.135062_b0025 article-title: Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-008-0344-9 – start-page: 62 year: 2010 ident: 10.1016/j.scitotenv.2019.135062_b0200 – volume: 6 start-page: 497 year: 2005 ident: 10.1016/j.scitotenv.2019.135062_b0380 article-title: Phytoremediation: molecular biology, requirements for application, environmental protection, public attention and feasibility publication-title: EMBO Rep. doi: 10.1038/sj.embor.7400445 – volume: 6 start-page: 34768 year: 2016 ident: 10.1016/j.scitotenv.2019.135062_b0035 article-title: Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress publication-title: Sci. Rep. doi: 10.1038/srep34768 – volume: 11 start-page: 372 year: 2006 ident: 10.1016/j.scitotenv.2019.135062_b0390 article-title: Nomenclature for HKT transporters, key determinants of plant salinity tolerance publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2006.06.001 – volume: 5 start-page: 11 year: 2016 ident: 10.1016/j.scitotenv.2019.135062_b0520 article-title: Damage and heavy metal pollution in China's farmland: Reality and solutions publication-title: J. Contemporary East Asia Studies doi: 10.1080/24761028.2016.11869089 – volume: 72 start-page: 1129 year: 2006 ident: 10.1016/j.scitotenv.2019.135062_b0555 article-title: Engineering plant-microbe symbiosis for rhizoremediation of heavy metals publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.72.2.1129-1134.2006 – year: 2019 ident: 10.1016/j.scitotenv.2019.135062_b0395 article-title: Azospirillum brasilense-microalga interaction increases growth and accumulation of cell compounds in Chlorella vulgaris and Tetradesmus obliquus cultured under nitrogen stress publication-title: J. Appl. Phycol. doi: 10.1007/s10811-019-01862-1 – volume: 11 start-page: 113 year: 2012 ident: 10.1016/j.scitotenv.2019.135062_b0335 article-title: Yield and yield components of wheat as affected by salinity and inoculation with Azospirillum strains from saline or non-saline soil publication-title: J. Saudi Soc. Agric. Sci. – volume: 65 start-page: 951 year: 2015 ident: 10.1016/j.scitotenv.2019.135062_b0115 article-title: Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils publication-title: Annals Microbiol. doi: 10.1007/s13213-014-0939-3 – volume: 2 start-page: 1355 year: 2010 ident: 10.1016/j.scitotenv.2019.135062_b0140 article-title: Third generation biofuels from microalgae. Curr. Res. Technol. Education Topics in Appl publication-title: Microbiol. Microbial Biotechnol. – volume: 97 start-page: 390 year: 2015 ident: 10.1016/j.scitotenv.2019.135062_b9405 article-title: Mycorrhiza and PGPB modulate maize biomass, nutrient uptake and metabolic pathways in maize grown in mining-impacted soil publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2015.10.028 – volume: 266 start-page: 141 year: 2014 ident: 10.1016/j.scitotenv.2019.135062_b0050 article-title: Remediation of heavy metal(loid)s contaminated soils–to mobilize or to immobilize? publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.12.018 – volume: 8 start-page: 1268 year: 2017 ident: 10.1016/j.scitotenv.2019.135062_b0265 article-title: Genetic diversity of nitrogen-fixing and plant growth promoting Pseudomonas species isolated from sugarcane rhizosphere publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.01268 – volume: 74 start-page: 533 year: 2010 ident: 10.1016/j.scitotenv.2019.135062_b0320 article-title: Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat publication-title: Soil Biol. Biochem. – year: 2013 ident: 10.1016/j.scitotenv.2019.135062_b0400 – ident: 10.1016/j.scitotenv.2019.135062_b0440 – volume: 109 start-page: 428 year: 2000 ident: 10.1016/j.scitotenv.2019.135062_b0055 article-title: Polyamine, ethylene and other physico-chemical parameters in tomato (Lycopersicon esculentum) fruits as affected by salinity publication-title: Physiol. Plant. doi: 10.1034/j.1399-3054.2000.100409.x – volume: 21 start-page: 10983 year: 2014 ident: 10.1016/j.scitotenv.2019.135062_b0210 article-title: Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-3083-5 – volume: 21 start-page: 573 year: 2016 ident: 10.1016/j.scitotenv.2019.135062_b0550 article-title: Role of plant growth promoting rhizobacteria in agricultural sustainability—a review publication-title: Molecules doi: 10.3390/molecules21050573 – ident: 10.1016/j.scitotenv.2019.135062_b0445 doi: 10.1111/ppl.12117 – volume: 3 start-page: 430 year: 2014 ident: 10.1016/j.scitotenv.2019.135062_b0260 article-title: Mapping the potential for biofuel production on marginal lands: differences in definitions, data and models across scales publication-title: ISPRS Internat. J. Geo-Information doi: 10.3390/ijgi3020430 – volume: 36 start-page: 759 year: 2017 ident: 10.1016/j.scitotenv.2019.135062_b0365 article-title: Salinity induced differential methylation patterns in contrasting cultivars of foxtail millet (Setaria italica L.) publication-title: Plant Cell Rep. doi: 10.1007/s00299-016-2093-9 – volume: 8 year: 2018 ident: 10.1016/j.scitotenv.2019.135062_b0470 article-title: Review of heavy metals pollution in China in agricultural and urban soils publication-title: J. Health Pollut. doi: 10.5696/2156-9614-8.18.180607 – volume: 24 start-page: 2699 year: 2008 ident: 10.1016/j.scitotenv.2019.135062_b0375 article-title: Biosorption of heavy metals by the exopolysaccharide produced by Paenibacillus jamilae publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-008-9800-9 – year: 2015 ident: 10.1016/j.scitotenv.2019.135062_b0240 article-title: Soil carbon restoration: Can biology do the job? publication-title: Northeast Organic. – volume: 42 start-page: 429 year: 2010 ident: 10.1016/j.scitotenv.2019.135062_b0250 article-title: An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.11.021 – volume: 19 start-page: 371 year: 2014 ident: 10.1016/j.scitotenv.2019.135062_b0120 article-title: Plant salt-tolerance mechanisms publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2014.02.001 – volume: 33 start-page: 345 year: 2018 ident: 10.1016/j.scitotenv.2019.135062_b0110 article-title: Enhanced microalgae growth through stimulated secretion of indole acetic acid by symbiotic bacteria publication-title: Algal Res. doi: 10.1016/j.algal.2018.06.006 – volume: 170 start-page: 220 year: 2013 ident: 10.1016/j.scitotenv.2019.135062_b0585 article-title: The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2012.09.012 – volume: 2 start-page: 1213689 year: 2016 ident: 10.1016/j.scitotenv.2019.135062_b0290 article-title: Mapping and characterization of salt-affected and waterlogged soils in the Gangetic plain of central Haryana (India) for reclamation and management publication-title: Cogent Geosci. doi: 10.1080/23312041.2016.1213689 – ident: 10.1016/j.scitotenv.2019.135062_b0020 doi: 10.1007/978-3-030-18975-4_6 – volume: 103 start-page: 551 year: 2009 ident: 10.1016/j.scitotenv.2019.135062_b0085 article-title: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell publication-title: Annals Bot. doi: 10.1093/aob/mcn125 – volume: 9 start-page: 175 year: 1895 ident: 10.1016/j.scitotenv.2019.135062_b0225 article-title: The concept of marginal rent publication-title: Quarterly J. Econ. doi: 10.2307/1885598 – volume: 75 start-page: 748 year: 2009 ident: 10.1016/j.scitotenv.2019.135062_b0515 article-title: Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02239-08 – ident: 10.1016/j.scitotenv.2019.135062_b0570 doi: 10.3389/fmicb.2018.00954 – volume: 99 start-page: 108 year: 2016 ident: 10.1016/j.scitotenv.2019.135062_b0535 article-title: Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2015.11.001 |
SSID | ssj0000781 |
Score | 2.5594962 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Marginal soil is an untapped resource which can be exploited using plants and bacteria.•Some PGPB enhance abiotic stress (drought, salinity... Marginal land is defined as land with poor soil characteristics and low crop productivity with no potential for profit. Poor soil quality due to the presence... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 135062 |
SubjectTerms | abiotic stress Agriculture Bacteria Biofuels Carbon Sequestration climate change drought fossil fuels Gold Heavy metals Marginal land neutralization plant growth Plant growth promoting bacteria plant growth-promoting rhizobacteria population growth Rhizoremediation Salinity Soil soil pollution soil properties soil quality Stress, Physiological sustainable agriculture Sustainable food production sustainable technology xenobiotics |
Title | Brown gold of marginal soil: Plant growth promoting bacteria to overcome plant abiotic stress for agriculture, biofuels and carbon sequestration |
URI | https://dx.doi.org/10.1016/j.scitotenv.2019.135062 https://www.ncbi.nlm.nih.gov/pubmed/32000336 https://www.proquest.com/docview/2350097831 https://www.proquest.com/docview/2388773769 |
Volume | 711 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtNAcNSmQkJCCAItAVoNEkdM1_Z6bfdWVa0CET0gKnqz9uUQlNpR4lTqhW_gk5n12ql6aHvgZMk7Y613dl678wD4qGUZlyxRgc3DOHA3gUEmjAzKiAmZS2Nt287n27kYX_Cvl8nlFpz0uTAurLKT_V6mt9K6e3PYrebhYjZzOb48y0WekglCapwn27ATkbbPBrBz_GUyPr8VyGnmG-dx4m1CuBPmRZ9uajJPr12YV-7aQDAR3aek7jNCW2V09gKed1YkHvuJvoQtWw3hie8reTOE3dPb9DUC6_h3NYRn_pQOffLRK_jbeuE4recG6xKv5LLtkoWrejY_QtfQqMEpgTS_cOHj9qopKl_gWWJTowsApaWzuGhhpZoRjEafgYJkEKOcLrvyHvYT0nC5ph9FWRnUcqnqCttg7r5672u4ODv9cTIOuh4NgeYpa4JUa6a1TeIyJtvN8MTaMgy1EoYcN2byTOQJEUWr1PCYp1pmSvIkMUbkhinN4l0YVHVl3wCqMJXSOaiRIB9HpxlRVWaakQEXchVmIxA9UQrdFTB3fTTmRR-p9rvYULNw1Cw8NUfANogLX8PjcZSjnurFne1YkKZ5HPlDv08KYlZ3AyMrW69XRUTjbeJM-BAMyf2U5H4-gj2_yTazjl1iVRyLt_8zvXfwNHKHBm340XsYNMu13SfLqlEHsP35T3jQ8Y97Tr7_nPwDDBMoIQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKEaISQrDQsjwHiSOhTuw4SW-oarVA21Mr9Wb5le2iJVntZpG48Bv4yYztZKseSg9ck3HkeMbjz_Y3M4R8MKpmNc114qqUJf4mMCmFVUmdUaEqZZ0L5XxOz8Tkgn-9zC-3yOEQC-Nplb3vjz49eOv-yX4_mvuL2czH-PKyElWBEASXcZ7fI_e5L3OARv3p9zXPw2ezidfMOLNR_AbJCz_ctQhOf3qSV-WLQFCR3bZE3QZBw1J0_IQ87jEkfI7dfEq2XDMiD2JVyV8jsnt0HbyGYv3sXY3Io3hGBzH06Bn5E_bgMG3nFtoafqhlqJEFq3Y2PwBfzqiDKYp0V7CIrL1mCjqmd1bQteDpnzhwDhZBVukZyhiI8SeAcBjUdNkn93AfAV_Xa_xRUI0Fo5a6bSBQuYfcvc_JxfHR-eEk6Ss0JIYXtEsKY6gxLmc1Q-Rmee5cnaZGC4vbNmqrUlQ5AjCjC8sZL4wqteJ5bq2oLNWGsl2y3bSNe0FAp4VSfnuaCdzhmKJEnarSUIRvKddpOSZiUIo0ffpyX0VjLgee2ne50ab02pRRm2NCNw0XMYPH3U0OBq3LG8YocZ25u_H7wU4kTlV__6Ia165XMsP3IWwm_ZcMev0CvX41JnvRyDa9Zj6sijHx8n-69448nJyfnsiTL2ffXpGdzB8fBCLSa7LdLdfuDWKsTr8Nc-gvP0EnQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brown+gold+of+marginal+soil%3A+Plant+growth+promoting+bacteria+to+overcome+plant+abiotic+stress+for+agriculture%2C+biofuels+and+carbon+sequestration&rft.jtitle=The+Science+of+the+total+environment&rft.au=Ramakrishna%2C+Wusirika&rft.au=Rathore%2C+Parikshita&rft.au=Kumari%2C+Ritu&rft.au=Yadav%2C+Radheshyam&rft.date=2020-04-01&rft.issn=0048-9697&rft.volume=711+p.135062-&rft_id=info:doi/10.1016%2Fj.scitotenv.2019.135062&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |