Detecting REM sleep from the finger: an automatic REM sleep algorithm based on peripheral arterial tone (PAT) and actigraphy
Scoring of REM sleep based on polysomnographic recordings is a laborious and time-consuming process. The growing number of ambulatory devices designed for cost-effective home-based diagnostic sleep recordings necessitates the development of a reliable automatic REM sleep detection algorithm that is...
        Saved in:
      
    
          | Published in | Physiological measurement Vol. 28; no. 2; pp. 129 - 140 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          IOP Publishing
    
        01.02.2007
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0967-3334 1361-6579  | 
| DOI | 10.1088/0967-3334/28/2/002 | 
Cover
| Abstract | Scoring of REM sleep based on polysomnographic recordings is a laborious and time-consuming process. The growing number of ambulatory devices designed for cost-effective home-based diagnostic sleep recordings necessitates the development of a reliable automatic REM sleep detection algorithm that is not based on the traditional electroencephalographic, electrooccolographic and electromyographic recordings trio. This paper presents an automatic REM detection algorithm based on the peripheral arterial tone (PAT) signal and actigraphy which are recorded with an ambulatory wrist-worn device (Watch-PAT100). The PAT signal is a measure of the pulsatile volume changes at the finger tip reflecting sympathetic tone variations. The algorithm was developed using a training set of 30 patients recorded simultaneously with polysomnography and Watch-PAT100. Sleep records were divided into 5 min intervals and two time series were constructed from the PAT amplitudes and PAT-derived inter-pulse periods in each interval. A prediction function based on 16 features extracted from the above time series that determines the likelihood of detecting a REM epoch was developed. The coefficients of the prediction function were determined using a genetic algorithm (GA) optimizing process tuned to maximize a price function depending on the sensitivity, specificity and agreement of the algorithm in comparison with the gold standard of polysomnographic manual scoring. Based on a separate validation set of 30 patients overall sensitivity, specificity and agreement of the automatic algorithm to identify standard 30 s epochs of REM sleep were 78%, 92%, 89%, respectively. Deploying this REM detection algorithm in a wrist worn device could be very useful for unattended ambulatory sleep monitoring. The innovative method of optimization using a genetic algorithm has been proven to yield robust results in the validation set. | 
    
|---|---|
| AbstractList | Scoring of REM sleep based on polysomnographic recordings is a laborious and time-consuming process. The growing number of ambulatory devices designed for cost-effective home-based diagnostic sleep recordings necessitates the development of a reliable automatic REM sleep detection algorithm that is not based on the traditional electroencephalographic, electrooccolographic and electromyographic recordings trio. This paper presents an automatic REM detection algorithm based on the peripheral arterial tone (PAT) signal and actigraphy which are recorded with an ambulatory wrist-worn device (Watch-PAT100). The PAT signal is a measure of the pulsatile volume changes at the finger tip reflecting sympathetic tone variations. The algorithm was developed using a training set of 30 patients recorded simultaneously with polysomnography and Watch-PAT100. Sleep records were divided into 5 min intervals and two time series were constructed from the PAT amplitudes and PAT-derived inter-pulse periods in each interval. A prediction function based on 16 features extracted from the above time series that determines the likelihood of detecting a REM epoch was developed. The coefficients of the prediction function were determined using a genetic algorithm (GA) optimizing process tuned to maximize a price function depending on the sensitivity, specificity and agreement of the algorithm in comparison with the gold standard of polysomnographic manual scoring. Based on a separate validation set of 30 patients overall sensitivity, specificity and agreement of the automatic algorithm to identify standard 30 s epochs of REM sleep were 78%, 92%, 89%, respectively. Deploying this REM detection algorithm in a wrist worn device could be very useful for unattended ambulatory sleep monitoring. The innovative method of optimization using a genetic algorithm has been proven to yield robust results in the validation set.Scoring of REM sleep based on polysomnographic recordings is a laborious and time-consuming process. The growing number of ambulatory devices designed for cost-effective home-based diagnostic sleep recordings necessitates the development of a reliable automatic REM sleep detection algorithm that is not based on the traditional electroencephalographic, electrooccolographic and electromyographic recordings trio. This paper presents an automatic REM detection algorithm based on the peripheral arterial tone (PAT) signal and actigraphy which are recorded with an ambulatory wrist-worn device (Watch-PAT100). The PAT signal is a measure of the pulsatile volume changes at the finger tip reflecting sympathetic tone variations. The algorithm was developed using a training set of 30 patients recorded simultaneously with polysomnography and Watch-PAT100. Sleep records were divided into 5 min intervals and two time series were constructed from the PAT amplitudes and PAT-derived inter-pulse periods in each interval. A prediction function based on 16 features extracted from the above time series that determines the likelihood of detecting a REM epoch was developed. The coefficients of the prediction function were determined using a genetic algorithm (GA) optimizing process tuned to maximize a price function depending on the sensitivity, specificity and agreement of the algorithm in comparison with the gold standard of polysomnographic manual scoring. Based on a separate validation set of 30 patients overall sensitivity, specificity and agreement of the automatic algorithm to identify standard 30 s epochs of REM sleep were 78%, 92%, 89%, respectively. Deploying this REM detection algorithm in a wrist worn device could be very useful for unattended ambulatory sleep monitoring. The innovative method of optimization using a genetic algorithm has been proven to yield robust results in the validation set. Scoring of REM sleep based on polysomnographic recordings is a laborious and time-consuming process. The growing number of ambulatory devices designed for cost-effective home-based diagnostic sleep recordings necessitates the development of a reliable automatic REM sleep detection algorithm that is not based on the traditional electroencephalographic, electrooccolographic and electromyographic recordings trio. This paper presents an automatic REM detection algorithm based on the peripheral arterial tone (PAT) signal and actigraphy which are recorded with an ambulatory wrist-worn device (Watch-PAT100). The PAT signal is a measure of the pulsatile volume changes at the finger tip reflecting sympathetic tone variations. The algorithm was developed using a training set of 30 patients recorded simultaneously with polysomnography and Watch-PAT100. Sleep records were divided into 5 min intervals and two time series were constructed from the PAT amplitudes and PAT-derived inter-pulse periods in each interval. A prediction function based on 16 features extracted from the above time series that determines the likelihood of detecting a REM epoch was developed. The coefficients of the prediction function were determined using a genetic algorithm (GA) optimizing process tuned to maximize a price function depending on the sensitivity, specificity and agreement of the algorithm in comparison with the gold standard of polysomnographic manual scoring. Based on a separate validation set of 30 patients overall sensitivity, specificity and agreement of the automatic algorithm to identify standard 30 s epochs of REM sleep were 78%, 92%, 89%, respectively. Deploying this REM detection algorithm in a wrist worn device could be very useful for unattended ambulatory sleep monitoring. The innovative method of optimization using a genetic algorithm has been proven to yield robust results in the validation set. Scoring of REM sleep based on polysomnographic recordings is a laborious and time-consuming process. The growing number of ambulatory devices designed for cost-effective home-based diagnostic sleep recordings necessitates the development of a reliable automatic REM sleep detection algorithm that is not based on the traditional electroencephalographic, electrooccolographic and electromyographic recordings trio. This paper presents an automatic REM detection algorithm based on the peripheral arterial tone (PAT) signal and actigraphy which are recorded with an ambulatory wrist-worn device (Watch-PAT100). The PAT signal is a measure of the pulsatile volume changes at the finger tip reflecting sympathetic tone variations. The algorithm was developed using a training set of 30 patients recorded simultaneously with polysomnography and Watch-PAT100. Sleep records were divided into 5 min intervals and two time series were constructed from the PAT amplitudes and PAT-derived inter-pulse periods in each interval. A prediction function based on 16 features extracted from the above time series that determines the likelihood of detecting a REM epoch was developed. The coefficients of the prediction function were determined using a genetic algorithm (GA) optimizing process tuned to maximize a price function depending on the sensitivity, specificity and agreement of the algorithm in comparison with the gold standard of polysomnographic manual scoring. Based on a separate validation set of 30 patients overall sensitivity, specificity and agreement of the automatic algorithm to identify standard 30 s epochs of REM sleep were 78%, 92%, 89%, respectively. Deploying this REM detection algorithm in a wrist worn device could be very useful for unattended ambulatory sleep monitoring.  | 
    
| Author | Herscovici, Sarah Pe'er, Avivit Papyan, Surik Lavie, Peretz  | 
    
| Author_xml | – sequence: 1 fullname: Herscovici, Sarah – sequence: 2 fullname: Pe'er, Avivit – sequence: 3 fullname: Papyan, Surik – sequence: 4 fullname: Lavie, Peretz  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17237585$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkU1v1DAQhi1URLeFP8AB-YToIaw_44RbVcqHVARC5WxNnPFuUBIH23uoxI_Hqy0FUamcxmM97zujeU_I0RxmJOQ5Z685a5o1a2tTSSnVWjRrsWZMPCIrLmte1dq0R2R1BxyTk5S-M8Z5I_QTcsyNkEY3ekV-vsWMLg_zhn69_ETTiLhQH8NE8xapL_8Y31CYKexymCAP7i8Oxk2IQ95OtIOEPQ0zXTAOyxYjjBRiLk155LI2ffXl_PqsGPUUyrhNhGV785Q89jAmfHZbT8m3d5fXFx-qq8_vP16cX1VOGZYrY7hABT1HZIJrMB7RSaeE8wrqVmngHlitOi06ppTuaq6kZ62UHXOoO3lKXh58lxh-7DBlOw3J4TjCjGGXbN20knNl_gvytmZaG17AF7fgrpuwt0scJog39vdhCyAOgIshpYj-D8LsPj27D8fuw7GiscKW9Iqo-UfkhlxuHuYcYRgflp4dpENY7kbd5-zS-8JW99kHvH8BiD-37w | 
    
| CitedBy_id | crossref_primary_10_1016_j_jocn_2020_01_085 crossref_primary_10_1111_jsr_12126 crossref_primary_10_1002_lary_23233 crossref_primary_10_1016_j_compbiomed_2018_10_010 crossref_primary_10_1016_j_bspc_2014_08_001 crossref_primary_10_1016_j_jneumeth_2009_01_035 crossref_primary_10_1523_JNEUROSCI_1314_15_2015 crossref_primary_10_1093_sleep_zsx097 crossref_primary_10_1007_s13534_023_00305_8 crossref_primary_10_1177_0194599818768215 crossref_primary_10_1088_1361_6579_aa63c9 crossref_primary_10_1142_S021947751750033X crossref_primary_10_1089_ham_2014_1110 crossref_primary_10_1111_jsr_14143 crossref_primary_10_1016_j_jsmc_2021_05_001 crossref_primary_10_1109_JBHI_2015_2487446 crossref_primary_10_31083_j_jin2308159 crossref_primary_10_1002_cpt_1077 crossref_primary_10_1007_s13534_018_0091_2 crossref_primary_10_3389_fpsyt_2021_572660 crossref_primary_10_1007_s13246_010_0009_5 crossref_primary_10_1007_s00405_013_2555_4 crossref_primary_10_1157_13111377 crossref_primary_10_1111_nuf_12566 crossref_primary_10_1016_j_ajog_2015_01_001 crossref_primary_10_1088_0967_3334_29_5_004 crossref_primary_10_1186_s12931_020_01573_z crossref_primary_10_1007_s41347_022_00287_x crossref_primary_10_1093_sleepadvances_zpae027 crossref_primary_10_3389_frsle_2023_1148316 crossref_primary_10_1253_circrep_CR_20_0097 crossref_primary_10_1016_j_bjorl_2015_07_005 crossref_primary_10_2147_NSS_S278752 crossref_primary_10_1016_j_neuroimage_2018_11_001 crossref_primary_10_1088_0967_3334_35_12_2529 crossref_primary_10_3389_frsle_2023_1256078 crossref_primary_10_3390_life13030697 crossref_primary_10_2196_29573 crossref_primary_10_1097_MCP_0b013e3283318585 crossref_primary_10_1016_j_bspc_2022_103562 crossref_primary_10_1080_15412555_2017_1365119 crossref_primary_10_1002_trc2_12343 crossref_primary_10_1016_j_jsmc_2011_05_002 crossref_primary_10_1016_j_nut_2022_111962 crossref_primary_10_5005_ijcdas_58_4_217 crossref_primary_10_1038_s41598_018_31748_0 crossref_primary_10_2196_12408 crossref_primary_10_1016_j_jsmc_2011_05_010 crossref_primary_10_1007_s12652_017_0477_5 crossref_primary_10_1016_j_smrv_2021_101566 crossref_primary_10_3390_clockssleep3020017 crossref_primary_10_1002_alr_22212 crossref_primary_10_9718_JBER_2014_35_6_211 crossref_primary_10_1002_alr_22738 crossref_primary_10_3390_s23052390 crossref_primary_10_1016_j_sleh_2023_05_001 crossref_primary_10_1109_JBHI_2020_2979168  | 
    
| Cites_doi | 10.1152/ajpheart.00336.2001 10.7551/mitpress/1090.001.0001 10.1056/NEJM199302043280502 10.1210/jc.84.8.2686 10.1093/sleep/12.2.157 10.1080/00140137308924479 10.1016/S1388-2457(03)00312-2 10.1046/j.1365-2869.2001.00263.x 10.1111/j.1365-2869.1993.tb00067.x 10.1212/WNL.16.1.18 10.1126/science.118.3062.273 10.1016/0013-4694(75)90052-8 10.1056/NEJM199304293281704 10.1113/jphysiol.2003.055525 10.1103/PhysRevLett.85.3736 10.1063/1.166141 10.1097/00004691-199605000-00006 10.1378/chest.123.3.695 10.1088/0967-3334/25/4/019 10.1016/0020-7101(78)90052-1 10.1111/j.1469-8986.1968.tb02811.x 10.1093/sleep/22.5.667 10.1093/sleep/27.8.1560 10.1093/sleep/20.9.705 10.1046/j.1440-1819.2000.00676.x 10.1016/S1388-2457(01)00507-7 10.1038/76135 10.1016/S0278-5846(97)00091-2 10.1046/j.1365-2869.2002.00277.x 10.1016/0013-4694(86)90161-6 10.1016/0013-4694(88)90018-1 10.1111/j.1469-8986.2004.00200.x 10.1016/0013-4694(79)90106-8 10.1001/archinte.157.4.419 10.1093/sleep/27.5.923 10.1016/S1389-9457(00)00069-1 10.1159/000023159 10.1111/j.1469-8986.1986.tb00642.x 10.1016/j.jacc.2004.01.050  | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8  | 
    
| DOI | 10.1088/0967-3334/28/2/002 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE Neurosciences Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Engineering Physics  | 
    
| EISSN | 1361-6579 | 
    
| EndPage | 140 | 
    
| ExternalDocumentID | 17237585 10_1088_0967_3334_28_2_002  | 
    
| Genre | Clinical Trial Journal Article  | 
    
| GroupedDBID | - 02O 123 1JI 1PV 1WK 29O 4.4 53G 5B3 5VS 5ZH 7.M 7.Q AAGCD AAJIO AALHV AAPBV ABHWH ABPTK ABQJV ACGFS ADCOW AEFHF AENEX AFYNE AHSEE ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CJUJL CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P FEDTE HAK HVGLF IHE IOP IZVLO KNG KOT LAP M45 MGA N5L N9A NT- NT. P2P Q02 R4D RIN RKQ RNS RO9 ROL RPA RW3 S3P SY9 UCJ UNR W28 X XPP ZMT --- -~X AAJKP AATNI AAYXX ABJNI ABVAM ACAFW ACARI ACHIP ADEQX AEINN AERVB AGQPQ AKPSB AOAED ARNYC CITATION CRLBU IJHAN PJBAE .GJ AAGCF ABCXL CBCFC CEBXE CGR CUY CVF ECM EIF JCGBZ NPM T37 7TK 7X8  | 
    
| ID | FETCH-LOGICAL-c470t-7712e4ad1ee0215a7feec3c42cf4a6945a1fa064b52b0445b6143f0933b0ce5b3 | 
    
| IEDL.DBID | IOP | 
    
| ISSN | 0967-3334 | 
    
| IngestDate | Thu Oct 02 11:42:59 EDT 2025 Fri Sep 05 14:44:10 EDT 2025 Wed Feb 19 01:47:12 EST 2025 Wed Oct 01 02:38:12 EDT 2025 Thu Apr 24 22:54:16 EDT 2025 Tue Nov 10 14:16:16 EST 2020 Mon May 13 12:50:58 EDT 2019  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c470t-7712e4ad1ee0215a7feec3c42cf4a6945a1fa064b52b0445b6143f0933b0ce5b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1  | 
    
| PMID | 17237585 | 
    
| PQID | 19605571 | 
    
| PQPubID | 23462 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | proquest_miscellaneous_68931147 iop_primary_10_1088_0967_3334_28_2_002 proquest_miscellaneous_19605571 pubmed_primary_17237585 crossref_primary_10_1088_0967_3334_28_2_002 crossref_citationtrail_10_1088_0967_3334_28_2_002  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2007-02-01 | 
    
| PublicationDateYYYYMMDD | 2007-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2007 text: 2007-02-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England | 
    
| PublicationTitle | Physiological measurement | 
    
| PublicationTitleAlternate | Physiol Meas | 
    
| PublicationYear | 2007 | 
    
| Publisher | IOP Publishing | 
    
| Publisher_xml | – name: IOP Publishing | 
    
| References | 22 44 46 25 Kupfer D J (26) 1976; 33 Goldberg D E (15) 1989 28 Likhtik E (29) 2001; 24 Penzel T (33) 2004; 25 Koza J R (23) 1992 Rechtschaffen A (35) 1968 Dvir I (14) 2002; 283 Dement W (13) 1966; 16 Sayers B M (37) 1973; 16 31 10 32 11 Krynicki V (24) 1975; 39 12 Schnall R P (38) 1999; 22 36 16 Hedner J (19) 2004; 27 17 Mamelak A (30) 1989; 12 Pittman S D (34) 2004; 27 Sei H (39) 1999; 46 Berlad I (6) 1993; 2 (2) 1999; 22 3 4 5 7 Helfand R (20) 1986; 23 8 Holland J H (21) 1992 9 Young T (45) 1997; 20 Haustein W (18) 1986; 64 Lavie P (27) 1979; 46 Agnew H W (1) 1968; 5 40 41 42 43  | 
    
| References_xml | – volume: 283 start-page: H434 issn: 0363-6135 year: 2002 ident: 14 publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00336.2001 – year: 1992 ident: 21 publication-title: Adaptation in Natural and Artificial Systems doi: 10.7551/mitpress/1090.001.0001 – ident: 41 doi: 10.1056/NEJM199302043280502 – ident: 16 doi: 10.1210/jc.84.8.2686 – volume: 22 start-page: 939 year: 1999 ident: 38 publication-title: Sleep – volume: 12 start-page: 157 year: 1989 ident: 30 publication-title: Sleep doi: 10.1093/sleep/12.2.157 – volume: 16 start-page: 17 issn: 0014-0139 year: 1973 ident: 37 publication-title: Ergonomics doi: 10.1080/00140137308924479 – ident: 11 doi: 10.1016/S1388-2457(03)00312-2 – ident: 42 doi: 10.1046/j.1365-2869.2001.00263.x – volume: 2 start-page: 88 issn: 0962-1105 year: 1993 ident: 6 publication-title: J. Sleep Res. doi: 10.1111/j.1365-2869.1993.tb00067.x – volume: 16 start-page: 18 year: 1966 ident: 13 publication-title: Neurology doi: 10.1212/WNL.16.1.18 – ident: 3 doi: 10.1126/science.118.3062.273 – volume: 39 start-page: 507 issn: 0013-4694 year: 1975 ident: 24 publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(75)90052-8 – volume: 33 start-page: 622 year: 1976 ident: 26 publication-title: Am. J. Psychiatry – ident: 46 doi: 10.1056/NEJM199304293281704 – ident: 31 doi: 10.1113/jphysiol.2003.055525 – ident: 10 doi: 10.1103/PhysRevLett.85.3736 – ident: 32 doi: 10.1063/1.166141 – ident: 40 doi: 10.1097/00004691-199605000-00006 – ident: 5 doi: 10.1378/chest.123.3.695 – volume: 25 start-page: 1025 issn: 0967-3334 year: 2004 ident: 33 publication-title: Physiol. Meas. doi: 10.1088/0967-3334/25/4/019 – ident: 25 doi: 10.1016/0020-7101(78)90052-1 – volume: 5 start-page: 142 issn: 0048-5772 year: 1968 ident: 1 publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1968.tb02811.x – volume: 22 start-page: 667 year: 1999 ident: 2 publication-title: Sleep doi: 10.1093/sleep/22.5.667 – volume: 27 start-page: 1560 year: 2004 ident: 19 publication-title: Sleep doi: 10.1093/sleep/27.8.1560 – year: 1992 ident: 23 publication-title: Genetic Programming: on the Programming of Computers by Means of Natural Selection – volume: 20 start-page: 705 year: 1997 ident: 45 publication-title: Sleep doi: 10.1093/sleep/20.9.705 – ident: 43 doi: 10.1046/j.1440-1819.2000.00676.x – ident: 9 doi: 10.1016/S1388-2457(01)00507-7 – ident: 28 doi: 10.1038/76135 – ident: 17 doi: 10.1016/S0278-5846(97)00091-2 – ident: 12 doi: 10.1046/j.1365-2869.2002.00277.x – volume: 64 start-page: 364 issn: 0013-4694 year: 1986 ident: 18 publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(86)90161-6 – ident: 7 doi: 10.1016/0013-4694(88)90018-1 – year: 1968 ident: 35 publication-title: A Manual of Standardized Terminology, Techniques, and Scoring System for Sleep Stages of Human Subjects – ident: 22 doi: 10.1111/j.1469-8986.2004.00200.x – volume: 24 start-page: A78 year: 2001 ident: 29 publication-title: Sleep – volume: 46 start-page: 683 issn: 0013-4694 year: 1979 ident: 27 publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(79)90106-8 – volume: 46 start-page: 11 year: 1999 ident: 39 publication-title: J. Med. Invest. – ident: 4 doi: 10.1001/archinte.157.4.419 – volume: 27 start-page: 923 year: 2004 ident: 34 publication-title: Sleep doi: 10.1093/sleep/27.5.923 – ident: 44 doi: 10.1016/S1389-9457(00)00069-1 – ident: 8 doi: 10.1159/000023159 – year: 1989 ident: 15 publication-title: Genetic Algorithms in Search, Optimization and Machine Learning – volume: 23 start-page: 334 issn: 0048-5772 year: 1986 ident: 20 publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1986.tb00642.x – ident: 36 doi: 10.1016/j.jacc.2004.01.050  | 
    
| SSID | ssj0011825 | 
    
| Score | 2.0879524 | 
    
| Snippet | Scoring of REM sleep based on polysomnographic recordings is a laborious and time-consuming process. The growing number of ambulatory devices designed for... | 
    
| SourceID | proquest pubmed crossref iop  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 129 | 
    
| SubjectTerms | Adult Algorithms Arteries - physiology Artificial Intelligence Female Fingers - blood supply Fingers - physiology Humans Male Middle Aged Monitoring, Ambulatory - methods Movement - physiology Muscle Tonus - physiology Muscle, Smooth, Vascular - physiology Polysomnography Regional Blood Flow - physiology Reproducibility of Results ROC Curve Sleep Apnea Syndromes - diagnosis Sleep Apnea Syndromes - physiopathology Sleep, REM - physiology  | 
    
| Title | Detecting REM sleep from the finger: an automatic REM sleep algorithm based on peripheral arterial tone (PAT) and actigraphy | 
    
| URI | http://iopscience.iop.org/0967-3334/28/2/002 https://www.ncbi.nlm.nih.gov/pubmed/17237585 https://www.proquest.com/docview/19605571 https://www.proquest.com/docview/68931147  | 
    
| Volume | 28 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1361-6579 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011825 issn: 0967-3334 databaseCode: IOP dateStart: 19930101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4xpKHtAUZhWzcGFkIIhNImjpO0e0MDhCYVEAKJN8t27Q2tSyqavqD98btzkq4TP8RbHi52Yp99n3133wHsoA5o8rcEqTIuEMrxQNuYB2jtrLAZVSykROHBWXp6Lb7fJDcL0JSSuy3G9c7fwUfvyUeMjcsgjkWX97q8WzFHkuGnbL3zi5nLAIGyj1dsxOsMGVxFjzTxnxV6hV09DTC9oTlZgUGTrlPFl_zqTEvdMfcP2Rtf9A_vYLlGnOywUpFVWLB5C97O8RC2YGlQe9hb8NqHhJrJGvw5suRgQAF2eTxgk5G1Y0bZKAwxI3P-OvArUzlT07LwxK9zcmr0o7i7LX_-ZmQmh6zIGVEqew6DEfNxpKj4jJjA2d7F4dU-NjRklGRRMWivw_XJ8dW306Cu1RAYkYUlgvSIW6GGkbWEIlTmrDWxEdw4odK-SFTkFMIfnXAdCpFohAWxo-sUHRqb6Pg9LObY50dgOjVRlvX7JrFa6H6kktClqTaZCum06toQNXMnTU1kTvU0RtI71Hs9ScMtabgl70kucbjbcDB7Z1zReDwrvY0zNxN8KCDHQ_yM3Xmh51rbalRL4tolh4zKbTGdSNz9iAIteloiRTiJJ9asDR8qnfzXX8ZjOut9eulnfIY31b00heJswGJ5N7VfEFCVetMvpL9U6BFY | 
    
| linkProvider | IOP Publishing | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZbxMxEB7RIip44AhXuGohhEBok12v9-Ktoo1aICVCrcSbZTt2iwi7UbN5Qfx4Zry7IRytkHjbh_Gxtsfz2TPzGeAZrgFN_pYgVcYFQjkeaBvzAK2dFTajFwspUXh8mO4fi7efki6a0OfCVPN26x_gZ0MU3AxhGxCXDxF0o17EsRjyfMgpn3s4n7oNuJzESUGPGBx8mKwcCQiffRRjV6bNm_l7Pb_Ypg1s_3zY6c3P6AboruNN1MmXwbLWA_PtN07H__qzm3C9BadspylwCy7ZsgfX1igLe7A1bp3xPbjio0fN4jZ837Xki0AB9nFvzBYza-eMElcYwkvm_M3ha6ZKppZ15Tli1-TU7KQ6-1yffmVkUaesKhmxL3u6gxnzIaeoI4xIw9mLyc7RS6xoyigfoyHbvgPHo72jN_tB-6xDYEQW1ojnI26FmkbWEuBQmbPWxEZw44RKC5GoyClESjrhOhQi0YggYkc3Lzo0NtHxXdgssc37wHRqoiwrCpNYLXQRqSR0aapNpkI62Lo-RN2EStNyntPTGzPpfe95LmnIJQ255LnkEoe8D69WZeYN48eF0k9xNleCfwpInME-PF8Xuqi27W69SVRz8t2o0lbLhcSNktjSovMlUkSeeLjN-nCvWag_28t4TMfCB__ajW3YmuyO5PuDw3cP4Wpzm00BPI9gsz5b2scIw2r9xCvaDy-MIUY | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+REM+sleep+from+the+finger%3A+an+automatic+REM+sleep+algorithm+based+on+peripheral+arterial+tone+%28PAT%29+and+actigraphy&rft.jtitle=Physiological+measurement&rft.au=Herscovici%2C+Sarah&rft.au=Pe%27er%2C+Avivit&rft.au=Papyan%2C+Surik&rft.au=Lavie%2C+Peretz&rft.date=2007-02-01&rft.issn=0967-3334&rft.volume=28&rft.issue=2&rft.spage=129&rft_id=info:doi/10.1088%2F0967-3334%2F28%2F2%2F002&rft_id=info%3Apmid%2F17237585&rft.externalDocID=17237585 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-3334&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-3334&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-3334&client=summon |