Detecting REM sleep from the finger: an automatic REM sleep algorithm based on peripheral arterial tone (PAT) and actigraphy

Scoring of REM sleep based on polysomnographic recordings is a laborious and time-consuming process. The growing number of ambulatory devices designed for cost-effective home-based diagnostic sleep recordings necessitates the development of a reliable automatic REM sleep detection algorithm that is...

Full description

Saved in:
Bibliographic Details
Published inPhysiological measurement Vol. 28; no. 2; pp. 129 - 140
Main Authors Herscovici, Sarah, Pe'er, Avivit, Papyan, Surik, Lavie, Peretz
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.02.2007
Subjects
Online AccessGet full text
ISSN0967-3334
1361-6579
DOI10.1088/0967-3334/28/2/002

Cover

Abstract Scoring of REM sleep based on polysomnographic recordings is a laborious and time-consuming process. The growing number of ambulatory devices designed for cost-effective home-based diagnostic sleep recordings necessitates the development of a reliable automatic REM sleep detection algorithm that is not based on the traditional electroencephalographic, electrooccolographic and electromyographic recordings trio. This paper presents an automatic REM detection algorithm based on the peripheral arterial tone (PAT) signal and actigraphy which are recorded with an ambulatory wrist-worn device (Watch-PAT100). The PAT signal is a measure of the pulsatile volume changes at the finger tip reflecting sympathetic tone variations. The algorithm was developed using a training set of 30 patients recorded simultaneously with polysomnography and Watch-PAT100. Sleep records were divided into 5 min intervals and two time series were constructed from the PAT amplitudes and PAT-derived inter-pulse periods in each interval. A prediction function based on 16 features extracted from the above time series that determines the likelihood of detecting a REM epoch was developed. The coefficients of the prediction function were determined using a genetic algorithm (GA) optimizing process tuned to maximize a price function depending on the sensitivity, specificity and agreement of the algorithm in comparison with the gold standard of polysomnographic manual scoring. Based on a separate validation set of 30 patients overall sensitivity, specificity and agreement of the automatic algorithm to identify standard 30 s epochs of REM sleep were 78%, 92%, 89%, respectively. Deploying this REM detection algorithm in a wrist worn device could be very useful for unattended ambulatory sleep monitoring. The innovative method of optimization using a genetic algorithm has been proven to yield robust results in the validation set.
AbstractList Scoring of REM sleep based on polysomnographic recordings is a laborious and time-consuming process. The growing number of ambulatory devices designed for cost-effective home-based diagnostic sleep recordings necessitates the development of a reliable automatic REM sleep detection algorithm that is not based on the traditional electroencephalographic, electrooccolographic and electromyographic recordings trio. This paper presents an automatic REM detection algorithm based on the peripheral arterial tone (PAT) signal and actigraphy which are recorded with an ambulatory wrist-worn device (Watch-PAT100). The PAT signal is a measure of the pulsatile volume changes at the finger tip reflecting sympathetic tone variations. The algorithm was developed using a training set of 30 patients recorded simultaneously with polysomnography and Watch-PAT100. Sleep records were divided into 5 min intervals and two time series were constructed from the PAT amplitudes and PAT-derived inter-pulse periods in each interval. A prediction function based on 16 features extracted from the above time series that determines the likelihood of detecting a REM epoch was developed. The coefficients of the prediction function were determined using a genetic algorithm (GA) optimizing process tuned to maximize a price function depending on the sensitivity, specificity and agreement of the algorithm in comparison with the gold standard of polysomnographic manual scoring. Based on a separate validation set of 30 patients overall sensitivity, specificity and agreement of the automatic algorithm to identify standard 30 s epochs of REM sleep were 78%, 92%, 89%, respectively. Deploying this REM detection algorithm in a wrist worn device could be very useful for unattended ambulatory sleep monitoring. The innovative method of optimization using a genetic algorithm has been proven to yield robust results in the validation set.Scoring of REM sleep based on polysomnographic recordings is a laborious and time-consuming process. The growing number of ambulatory devices designed for cost-effective home-based diagnostic sleep recordings necessitates the development of a reliable automatic REM sleep detection algorithm that is not based on the traditional electroencephalographic, electrooccolographic and electromyographic recordings trio. This paper presents an automatic REM detection algorithm based on the peripheral arterial tone (PAT) signal and actigraphy which are recorded with an ambulatory wrist-worn device (Watch-PAT100). The PAT signal is a measure of the pulsatile volume changes at the finger tip reflecting sympathetic tone variations. The algorithm was developed using a training set of 30 patients recorded simultaneously with polysomnography and Watch-PAT100. Sleep records were divided into 5 min intervals and two time series were constructed from the PAT amplitudes and PAT-derived inter-pulse periods in each interval. A prediction function based on 16 features extracted from the above time series that determines the likelihood of detecting a REM epoch was developed. The coefficients of the prediction function were determined using a genetic algorithm (GA) optimizing process tuned to maximize a price function depending on the sensitivity, specificity and agreement of the algorithm in comparison with the gold standard of polysomnographic manual scoring. Based on a separate validation set of 30 patients overall sensitivity, specificity and agreement of the automatic algorithm to identify standard 30 s epochs of REM sleep were 78%, 92%, 89%, respectively. Deploying this REM detection algorithm in a wrist worn device could be very useful for unattended ambulatory sleep monitoring. The innovative method of optimization using a genetic algorithm has been proven to yield robust results in the validation set.
Scoring of REM sleep based on polysomnographic recordings is a laborious and time-consuming process. The growing number of ambulatory devices designed for cost-effective home-based diagnostic sleep recordings necessitates the development of a reliable automatic REM sleep detection algorithm that is not based on the traditional electroencephalographic, electrooccolographic and electromyographic recordings trio. This paper presents an automatic REM detection algorithm based on the peripheral arterial tone (PAT) signal and actigraphy which are recorded with an ambulatory wrist-worn device (Watch-PAT100). The PAT signal is a measure of the pulsatile volume changes at the finger tip reflecting sympathetic tone variations. The algorithm was developed using a training set of 30 patients recorded simultaneously with polysomnography and Watch-PAT100. Sleep records were divided into 5 min intervals and two time series were constructed from the PAT amplitudes and PAT-derived inter-pulse periods in each interval. A prediction function based on 16 features extracted from the above time series that determines the likelihood of detecting a REM epoch was developed. The coefficients of the prediction function were determined using a genetic algorithm (GA) optimizing process tuned to maximize a price function depending on the sensitivity, specificity and agreement of the algorithm in comparison with the gold standard of polysomnographic manual scoring. Based on a separate validation set of 30 patients overall sensitivity, specificity and agreement of the automatic algorithm to identify standard 30 s epochs of REM sleep were 78%, 92%, 89%, respectively. Deploying this REM detection algorithm in a wrist worn device could be very useful for unattended ambulatory sleep monitoring. The innovative method of optimization using a genetic algorithm has been proven to yield robust results in the validation set.
Scoring of REM sleep based on polysomnographic recordings is a laborious and time-consuming process. The growing number of ambulatory devices designed for cost-effective home-based diagnostic sleep recordings necessitates the development of a reliable automatic REM sleep detection algorithm that is not based on the traditional electroencephalographic, electrooccolographic and electromyographic recordings trio. This paper presents an automatic REM detection algorithm based on the peripheral arterial tone (PAT) signal and actigraphy which are recorded with an ambulatory wrist-worn device (Watch-PAT100). The PAT signal is a measure of the pulsatile volume changes at the finger tip reflecting sympathetic tone variations. The algorithm was developed using a training set of 30 patients recorded simultaneously with polysomnography and Watch-PAT100. Sleep records were divided into 5 min intervals and two time series were constructed from the PAT amplitudes and PAT-derived inter-pulse periods in each interval. A prediction function based on 16 features extracted from the above time series that determines the likelihood of detecting a REM epoch was developed. The coefficients of the prediction function were determined using a genetic algorithm (GA) optimizing process tuned to maximize a price function depending on the sensitivity, specificity and agreement of the algorithm in comparison with the gold standard of polysomnographic manual scoring. Based on a separate validation set of 30 patients overall sensitivity, specificity and agreement of the automatic algorithm to identify standard 30 s epochs of REM sleep were 78%, 92%, 89%, respectively. Deploying this REM detection algorithm in a wrist worn device could be very useful for unattended ambulatory sleep monitoring.
Author Herscovici, Sarah
Pe'er, Avivit
Papyan, Surik
Lavie, Peretz
Author_xml – sequence: 1
  fullname: Herscovici, Sarah
– sequence: 2
  fullname: Pe'er, Avivit
– sequence: 3
  fullname: Papyan, Surik
– sequence: 4
  fullname: Lavie, Peretz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17237585$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URLeFP8AB-YToIaw_44RbVcqHVARC5WxNnPFuUBIH23uoxI_Hqy0FUamcxmM97zujeU_I0RxmJOQ5Z685a5o1a2tTSSnVWjRrsWZMPCIrLmte1dq0R2R1BxyTk5S-M8Z5I_QTcsyNkEY3ekV-vsWMLg_zhn69_ETTiLhQH8NE8xapL_8Y31CYKexymCAP7i8Oxk2IQ95OtIOEPQ0zXTAOyxYjjBRiLk155LI2ffXl_PqsGPUUyrhNhGV785Q89jAmfHZbT8m3d5fXFx-qq8_vP16cX1VOGZYrY7hABT1HZIJrMB7RSaeE8wrqVmngHlitOi06ppTuaq6kZ62UHXOoO3lKXh58lxh-7DBlOw3J4TjCjGGXbN20knNl_gvytmZaG17AF7fgrpuwt0scJog39vdhCyAOgIshpYj-D8LsPj27D8fuw7GiscKW9Iqo-UfkhlxuHuYcYRgflp4dpENY7kbd5-zS-8JW99kHvH8BiD-37w
CitedBy_id crossref_primary_10_1016_j_jocn_2020_01_085
crossref_primary_10_1111_jsr_12126
crossref_primary_10_1002_lary_23233
crossref_primary_10_1016_j_compbiomed_2018_10_010
crossref_primary_10_1016_j_bspc_2014_08_001
crossref_primary_10_1016_j_jneumeth_2009_01_035
crossref_primary_10_1523_JNEUROSCI_1314_15_2015
crossref_primary_10_1093_sleep_zsx097
crossref_primary_10_1007_s13534_023_00305_8
crossref_primary_10_1177_0194599818768215
crossref_primary_10_1088_1361_6579_aa63c9
crossref_primary_10_1142_S021947751750033X
crossref_primary_10_1089_ham_2014_1110
crossref_primary_10_1111_jsr_14143
crossref_primary_10_1016_j_jsmc_2021_05_001
crossref_primary_10_1109_JBHI_2015_2487446
crossref_primary_10_31083_j_jin2308159
crossref_primary_10_1002_cpt_1077
crossref_primary_10_1007_s13534_018_0091_2
crossref_primary_10_3389_fpsyt_2021_572660
crossref_primary_10_1007_s13246_010_0009_5
crossref_primary_10_1007_s00405_013_2555_4
crossref_primary_10_1157_13111377
crossref_primary_10_1111_nuf_12566
crossref_primary_10_1016_j_ajog_2015_01_001
crossref_primary_10_1088_0967_3334_29_5_004
crossref_primary_10_1186_s12931_020_01573_z
crossref_primary_10_1007_s41347_022_00287_x
crossref_primary_10_1093_sleepadvances_zpae027
crossref_primary_10_3389_frsle_2023_1148316
crossref_primary_10_1253_circrep_CR_20_0097
crossref_primary_10_1016_j_bjorl_2015_07_005
crossref_primary_10_2147_NSS_S278752
crossref_primary_10_1016_j_neuroimage_2018_11_001
crossref_primary_10_1088_0967_3334_35_12_2529
crossref_primary_10_3389_frsle_2023_1256078
crossref_primary_10_3390_life13030697
crossref_primary_10_2196_29573
crossref_primary_10_1097_MCP_0b013e3283318585
crossref_primary_10_1016_j_bspc_2022_103562
crossref_primary_10_1080_15412555_2017_1365119
crossref_primary_10_1002_trc2_12343
crossref_primary_10_1016_j_jsmc_2011_05_002
crossref_primary_10_1016_j_nut_2022_111962
crossref_primary_10_5005_ijcdas_58_4_217
crossref_primary_10_1038_s41598_018_31748_0
crossref_primary_10_2196_12408
crossref_primary_10_1016_j_jsmc_2011_05_010
crossref_primary_10_1007_s12652_017_0477_5
crossref_primary_10_1016_j_smrv_2021_101566
crossref_primary_10_3390_clockssleep3020017
crossref_primary_10_1002_alr_22212
crossref_primary_10_9718_JBER_2014_35_6_211
crossref_primary_10_1002_alr_22738
crossref_primary_10_3390_s23052390
crossref_primary_10_1016_j_sleh_2023_05_001
crossref_primary_10_1109_JBHI_2020_2979168
Cites_doi 10.1152/ajpheart.00336.2001
10.7551/mitpress/1090.001.0001
10.1056/NEJM199302043280502
10.1210/jc.84.8.2686
10.1093/sleep/12.2.157
10.1080/00140137308924479
10.1016/S1388-2457(03)00312-2
10.1046/j.1365-2869.2001.00263.x
10.1111/j.1365-2869.1993.tb00067.x
10.1212/WNL.16.1.18
10.1126/science.118.3062.273
10.1016/0013-4694(75)90052-8
10.1056/NEJM199304293281704
10.1113/jphysiol.2003.055525
10.1103/PhysRevLett.85.3736
10.1063/1.166141
10.1097/00004691-199605000-00006
10.1378/chest.123.3.695
10.1088/0967-3334/25/4/019
10.1016/0020-7101(78)90052-1
10.1111/j.1469-8986.1968.tb02811.x
10.1093/sleep/22.5.667
10.1093/sleep/27.8.1560
10.1093/sleep/20.9.705
10.1046/j.1440-1819.2000.00676.x
10.1016/S1388-2457(01)00507-7
10.1038/76135
10.1016/S0278-5846(97)00091-2
10.1046/j.1365-2869.2002.00277.x
10.1016/0013-4694(86)90161-6
10.1016/0013-4694(88)90018-1
10.1111/j.1469-8986.2004.00200.x
10.1016/0013-4694(79)90106-8
10.1001/archinte.157.4.419
10.1093/sleep/27.5.923
10.1016/S1389-9457(00)00069-1
10.1159/000023159
10.1111/j.1469-8986.1986.tb00642.x
10.1016/j.jacc.2004.01.050
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
DOI 10.1088/0967-3334/28/2/002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Physics
EISSN 1361-6579
EndPage 140
ExternalDocumentID 17237585
10_1088_0967_3334_28_2_002
Genre Clinical Trial
Journal Article
GroupedDBID -
02O
123
1JI
1PV
1WK
29O
4.4
53G
5B3
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AALHV
AAPBV
ABHWH
ABPTK
ABQJV
ACGFS
ADCOW
AEFHF
AENEX
AFYNE
AHSEE
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CJUJL
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HAK
HVGLF
IHE
IOP
IZVLO
KNG
KOT
LAP
M45
MGA
N5L
N9A
NT-
NT.
P2P
Q02
R4D
RIN
RKQ
RNS
RO9
ROL
RPA
RW3
S3P
SY9
UCJ
UNR
W28
X
XPP
ZMT
---
-~X
AAJKP
AATNI
AAYXX
ABJNI
ABVAM
ACAFW
ACARI
ACHIP
ADEQX
AEINN
AERVB
AGQPQ
AKPSB
AOAED
ARNYC
CITATION
CRLBU
IJHAN
PJBAE
.GJ
AAGCF
ABCXL
CBCFC
CEBXE
CGR
CUY
CVF
ECM
EIF
JCGBZ
NPM
T37
7TK
7X8
ID FETCH-LOGICAL-c470t-7712e4ad1ee0215a7feec3c42cf4a6945a1fa064b52b0445b6143f0933b0ce5b3
IEDL.DBID IOP
ISSN 0967-3334
IngestDate Thu Oct 02 11:42:59 EDT 2025
Fri Sep 05 14:44:10 EDT 2025
Wed Feb 19 01:47:12 EST 2025
Wed Oct 01 02:38:12 EDT 2025
Thu Apr 24 22:54:16 EDT 2025
Tue Nov 10 14:16:16 EST 2020
Mon May 13 12:50:58 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-7712e4ad1ee0215a7feec3c42cf4a6945a1fa064b52b0445b6143f0933b0ce5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 17237585
PQID 19605571
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_68931147
iop_primary_10_1088_0967_3334_28_2_002
proquest_miscellaneous_19605571
pubmed_primary_17237585
crossref_primary_10_1088_0967_3334_28_2_002
crossref_citationtrail_10_1088_0967_3334_28_2_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-02-01
PublicationDateYYYYMMDD 2007-02-01
PublicationDate_xml – month: 02
  year: 2007
  text: 2007-02-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physiological measurement
PublicationTitleAlternate Physiol Meas
PublicationYear 2007
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 22
44
46
25
Kupfer D J (26) 1976; 33
Goldberg D E (15) 1989
28
Likhtik E (29) 2001; 24
Penzel T (33) 2004; 25
Koza J R (23) 1992
Rechtschaffen A (35) 1968
Dvir I (14) 2002; 283
Dement W (13) 1966; 16
Sayers B M (37) 1973; 16
31
10
32
11
Krynicki V (24) 1975; 39
12
Schnall R P (38) 1999; 22
36
16
Hedner J (19) 2004; 27
17
Mamelak A (30) 1989; 12
Pittman S D (34) 2004; 27
Sei H (39) 1999; 46
Berlad I (6) 1993; 2
(2) 1999; 22
3
4
5
7
Helfand R (20) 1986; 23
8
Holland J H (21) 1992
9
Young T (45) 1997; 20
Haustein W (18) 1986; 64
Lavie P (27) 1979; 46
Agnew H W (1) 1968; 5
40
41
42
43
References_xml – volume: 283
  start-page: H434
  issn: 0363-6135
  year: 2002
  ident: 14
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00336.2001
– year: 1992
  ident: 21
  publication-title: Adaptation in Natural and Artificial Systems
  doi: 10.7551/mitpress/1090.001.0001
– ident: 41
  doi: 10.1056/NEJM199302043280502
– ident: 16
  doi: 10.1210/jc.84.8.2686
– volume: 22
  start-page: 939
  year: 1999
  ident: 38
  publication-title: Sleep
– volume: 12
  start-page: 157
  year: 1989
  ident: 30
  publication-title: Sleep
  doi: 10.1093/sleep/12.2.157
– volume: 16
  start-page: 17
  issn: 0014-0139
  year: 1973
  ident: 37
  publication-title: Ergonomics
  doi: 10.1080/00140137308924479
– ident: 11
  doi: 10.1016/S1388-2457(03)00312-2
– ident: 42
  doi: 10.1046/j.1365-2869.2001.00263.x
– volume: 2
  start-page: 88
  issn: 0962-1105
  year: 1993
  ident: 6
  publication-title: J. Sleep Res.
  doi: 10.1111/j.1365-2869.1993.tb00067.x
– volume: 16
  start-page: 18
  year: 1966
  ident: 13
  publication-title: Neurology
  doi: 10.1212/WNL.16.1.18
– ident: 3
  doi: 10.1126/science.118.3062.273
– volume: 39
  start-page: 507
  issn: 0013-4694
  year: 1975
  ident: 24
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(75)90052-8
– volume: 33
  start-page: 622
  year: 1976
  ident: 26
  publication-title: Am. J. Psychiatry
– ident: 46
  doi: 10.1056/NEJM199304293281704
– ident: 31
  doi: 10.1113/jphysiol.2003.055525
– ident: 10
  doi: 10.1103/PhysRevLett.85.3736
– ident: 32
  doi: 10.1063/1.166141
– ident: 40
  doi: 10.1097/00004691-199605000-00006
– ident: 5
  doi: 10.1378/chest.123.3.695
– volume: 25
  start-page: 1025
  issn: 0967-3334
  year: 2004
  ident: 33
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/25/4/019
– ident: 25
  doi: 10.1016/0020-7101(78)90052-1
– volume: 5
  start-page: 142
  issn: 0048-5772
  year: 1968
  ident: 1
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1968.tb02811.x
– volume: 22
  start-page: 667
  year: 1999
  ident: 2
  publication-title: Sleep
  doi: 10.1093/sleep/22.5.667
– volume: 27
  start-page: 1560
  year: 2004
  ident: 19
  publication-title: Sleep
  doi: 10.1093/sleep/27.8.1560
– year: 1992
  ident: 23
  publication-title: Genetic Programming: on the Programming of Computers by Means of Natural Selection
– volume: 20
  start-page: 705
  year: 1997
  ident: 45
  publication-title: Sleep
  doi: 10.1093/sleep/20.9.705
– ident: 43
  doi: 10.1046/j.1440-1819.2000.00676.x
– ident: 9
  doi: 10.1016/S1388-2457(01)00507-7
– ident: 28
  doi: 10.1038/76135
– ident: 17
  doi: 10.1016/S0278-5846(97)00091-2
– ident: 12
  doi: 10.1046/j.1365-2869.2002.00277.x
– volume: 64
  start-page: 364
  issn: 0013-4694
  year: 1986
  ident: 18
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(86)90161-6
– ident: 7
  doi: 10.1016/0013-4694(88)90018-1
– year: 1968
  ident: 35
  publication-title: A Manual of Standardized Terminology, Techniques, and Scoring System for Sleep Stages of Human Subjects
– ident: 22
  doi: 10.1111/j.1469-8986.2004.00200.x
– volume: 24
  start-page: A78
  year: 2001
  ident: 29
  publication-title: Sleep
– volume: 46
  start-page: 683
  issn: 0013-4694
  year: 1979
  ident: 27
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(79)90106-8
– volume: 46
  start-page: 11
  year: 1999
  ident: 39
  publication-title: J. Med. Invest.
– ident: 4
  doi: 10.1001/archinte.157.4.419
– volume: 27
  start-page: 923
  year: 2004
  ident: 34
  publication-title: Sleep
  doi: 10.1093/sleep/27.5.923
– ident: 44
  doi: 10.1016/S1389-9457(00)00069-1
– ident: 8
  doi: 10.1159/000023159
– year: 1989
  ident: 15
  publication-title: Genetic Algorithms in Search, Optimization and Machine Learning
– volume: 23
  start-page: 334
  issn: 0048-5772
  year: 1986
  ident: 20
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1986.tb00642.x
– ident: 36
  doi: 10.1016/j.jacc.2004.01.050
SSID ssj0011825
Score 2.0879524
Snippet Scoring of REM sleep based on polysomnographic recordings is a laborious and time-consuming process. The growing number of ambulatory devices designed for...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129
SubjectTerms Adult
Algorithms
Arteries - physiology
Artificial Intelligence
Female
Fingers - blood supply
Fingers - physiology
Humans
Male
Middle Aged
Monitoring, Ambulatory - methods
Movement - physiology
Muscle Tonus - physiology
Muscle, Smooth, Vascular - physiology
Polysomnography
Regional Blood Flow - physiology
Reproducibility of Results
ROC Curve
Sleep Apnea Syndromes - diagnosis
Sleep Apnea Syndromes - physiopathology
Sleep, REM - physiology
Title Detecting REM sleep from the finger: an automatic REM sleep algorithm based on peripheral arterial tone (PAT) and actigraphy
URI http://iopscience.iop.org/0967-3334/28/2/002
https://www.ncbi.nlm.nih.gov/pubmed/17237585
https://www.proquest.com/docview/19605571
https://www.proquest.com/docview/68931147
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1361-6579
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011825
  issn: 0967-3334
  databaseCode: IOP
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4xpKHtAUZhWzcGFkIIhNImjpO0e0MDhCYVEAKJN8t27Q2tSyqavqD98btzkq4TP8RbHi52Yp99n3133wHsoA5o8rcEqTIuEMrxQNuYB2jtrLAZVSykROHBWXp6Lb7fJDcL0JSSuy3G9c7fwUfvyUeMjcsgjkWX97q8WzFHkuGnbL3zi5nLAIGyj1dsxOsMGVxFjzTxnxV6hV09DTC9oTlZgUGTrlPFl_zqTEvdMfcP2Rtf9A_vYLlGnOywUpFVWLB5C97O8RC2YGlQe9hb8NqHhJrJGvw5suRgQAF2eTxgk5G1Y0bZKAwxI3P-OvArUzlT07LwxK9zcmr0o7i7LX_-ZmQmh6zIGVEqew6DEfNxpKj4jJjA2d7F4dU-NjRklGRRMWivw_XJ8dW306Cu1RAYkYUlgvSIW6GGkbWEIlTmrDWxEdw4odK-SFTkFMIfnXAdCpFohAWxo-sUHRqb6Pg9LObY50dgOjVRlvX7JrFa6H6kktClqTaZCum06toQNXMnTU1kTvU0RtI71Hs9ScMtabgl70kucbjbcDB7Z1zReDwrvY0zNxN8KCDHQ_yM3Xmh51rbalRL4tolh4zKbTGdSNz9iAIteloiRTiJJ9asDR8qnfzXX8ZjOut9eulnfIY31b00heJswGJ5N7VfEFCVetMvpL9U6BFY
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZbxMxEB7RIip44AhXuGohhEBok12v9-Ktoo1aICVCrcSbZTt2iwi7UbN5Qfx4Zry7IRytkHjbh_Gxtsfz2TPzGeAZrgFN_pYgVcYFQjkeaBvzAK2dFTajFwspUXh8mO4fi7efki6a0OfCVPN26x_gZ0MU3AxhGxCXDxF0o17EsRjyfMgpn3s4n7oNuJzESUGPGBx8mKwcCQiffRRjV6bNm_l7Pb_Ypg1s_3zY6c3P6AboruNN1MmXwbLWA_PtN07H__qzm3C9BadspylwCy7ZsgfX1igLe7A1bp3xPbjio0fN4jZ837Xki0AB9nFvzBYza-eMElcYwkvm_M3ha6ZKppZ15Tli1-TU7KQ6-1yffmVkUaesKhmxL3u6gxnzIaeoI4xIw9mLyc7RS6xoyigfoyHbvgPHo72jN_tB-6xDYEQW1ojnI26FmkbWEuBQmbPWxEZw44RKC5GoyClESjrhOhQi0YggYkc3Lzo0NtHxXdgssc37wHRqoiwrCpNYLXQRqSR0aapNpkI62Lo-RN2EStNyntPTGzPpfe95LmnIJQ255LnkEoe8D69WZeYN48eF0k9xNleCfwpInME-PF8Xuqi27W69SVRz8t2o0lbLhcSNktjSovMlUkSeeLjN-nCvWag_28t4TMfCB__ajW3YmuyO5PuDw3cP4Wpzm00BPI9gsz5b2scIw2r9xCvaDy-MIUY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+REM+sleep+from+the+finger%3A+an+automatic+REM+sleep+algorithm+based+on+peripheral+arterial+tone+%28PAT%29+and+actigraphy&rft.jtitle=Physiological+measurement&rft.au=Herscovici%2C+Sarah&rft.au=Pe%27er%2C+Avivit&rft.au=Papyan%2C+Surik&rft.au=Lavie%2C+Peretz&rft.date=2007-02-01&rft.issn=0967-3334&rft.volume=28&rft.issue=2&rft.spage=129&rft_id=info:doi/10.1088%2F0967-3334%2F28%2F2%2F002&rft_id=info%3Apmid%2F17237585&rft.externalDocID=17237585
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-3334&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-3334&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-3334&client=summon