Adoption of Convolutional Neural Network Algorithm Combined with Augmented Reality in Building Data Visualization and Intelligent Detection
It aims to improve the degree of visualization of building data, ensure the ability of intelligent detection, and effectively solve the problems encountered in building data processing. Convolutional neural network and augmented reality technology are adopted, and a building visualization model base...
        Saved in:
      
    
          | Published in | Complexity (New York, N.Y.) Vol. 2021; no. 1 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hoboken
          Hindawi
    
        2021
     John Wiley & Sons, Inc Wiley  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1076-2787 1099-0526 1099-0526  | 
| DOI | 10.1155/2021/5161111 | 
Cover
| Abstract | It aims to improve the degree of visualization of building data, ensure the ability of intelligent detection, and effectively solve the problems encountered in building data processing. Convolutional neural network and augmented reality technology are adopted, and a building visualization model based on convolutional neural network and augmented reality is proposed. The performance of the proposed algorithm is further confirmed by performance verification on public datasets. It is found that the building target detection model based on convolutional neural network and augmented reality has obvious advantages in algorithm complexity and recognition accuracy. It is 25 percent more accurate than the latest model. The model can make full use of mobile computing resources, avoid network delay and dependence, and guarantee the real-time requirement of data processing. Moreover, the model can also well realize the augmented reality navigation and interaction effect of buildings in outdoor scenes. To sum up, this study provides a research idea for the identification, data processing, and intelligent detection of urban buildings. | 
    
|---|---|
| AbstractList | It aims to improve the degree of visualization of building data, ensure the ability of intelligent detection, and effectively solve the problems encountered in building data processing. Convolutional neural network and augmented reality technology are adopted, and a building visualization model based on convolutional neural network and augmented reality is proposed. The performance of the proposed algorithm is further confirmed by performance verification on public datasets. It is found that the building target detection model based on convolutional neural network and augmented reality has obvious advantages in algorithm complexity and recognition accuracy. It is 25 percent more accurate than the latest model. The model can make full use of mobile computing resources, avoid network delay and dependence, and guarantee the real‐time requirement of data processing. Moreover, the model can also well realize the augmented reality navigation and interaction effect of buildings in outdoor scenes. To sum up, this study provides a research idea for the identification, data processing, and intelligent detection of urban buildings. | 
    
| Audience | Academic | 
    
| Author | Gai, Xiaohui Tang, Jingjing Wei, Minghui Zhao, Rui Tang, Haotian Lin, Renying  | 
    
| Author_xml | – sequence: 1 givenname: Minghui orcidid: 0000-0003-0413-7808 surname: Wei fullname: Wei, Minghui organization: University of Technology SydneySydney 2007Australiauts.edu.au – sequence: 2 givenname: Jingjing surname: Tang fullname: Tang, Jingjing organization: University of Technology SydneySydney 2007Australiauts.edu.au – sequence: 3 givenname: Haotian surname: Tang fullname: Tang, Haotian organization: University of Technology SydneySydney 2007Australiauts.edu.au – sequence: 4 givenname: Rui surname: Zhao fullname: Zhao, Rui organization: University of Technology SydneySydney 2007Australiauts.edu.au – sequence: 5 givenname: Xiaohui surname: Gai fullname: Gai, Xiaohui organization: University of Technology SydneySydney 2007Australiauts.edu.au – sequence: 6 givenname: Renying surname: Lin fullname: Lin, Renying organization: University of SydneySydney 2006Australiasydney.edu.au  | 
    
| BookMark | eNqFUk1v1DAQjVCRaAs3foAljpDWduI4Pi5bKCtVICHgak1sJ_Xi2IvjsFr-Qv803t0KBOLDPoxn_N7MeJ7PihMfvCmKpwRfEMLYJcWUXDLSkLweFKcEC1FiRpuT_Zk3JeUtf1ScTdMaYyyaip8WdwsdNskGj0KPlsF_DW7eu-DQWzPHg0nbED-jhRtCtOl2zLCxs95otM0uWszDaHzK7nsDzqYdsh69nK3T1g_oChKgT3aa89U3OBQCr9EqE5yzQyaiK5OM2t88Lh724Cbz5N6eFx9fv_qwfFPevLteLRc3pao5TiWnzIhe8baGhjEs-q5VwmAMdStY2wimjKYNZ5XArGJVXXeEYNN1usF9a6CuzovVMa8OsJabaEeIOxnAykMgxEFCTFY5I6lo8tDqjgoGtTakJQJaVWuhOVCB-5yrPOaa_QZ2W3DuR0KC5V4VuVdF3quS8c-O-E0MX2YzJbkOc8zjniTNjyGc0Qr_RA2Qm7C-DymCGu2k5KKtCOeMVU1GXfwBlbc2o1X5a_Q2x38hvDgSVAzTFE3_v17pb3Bl00HDXMe6v5GeH0m31mvY2n-X-A5EMtQF | 
    
| CitedBy_id | crossref_primary_10_1155_2024_9810679 crossref_primary_10_1049_ccs2_12082 crossref_primary_10_2478_amns_2024_1552 crossref_primary_10_4018_JGIM_296145 crossref_primary_10_1007_s10055_024_01044_6  | 
    
| Cites_doi | 10.13474/J.CNKI.11-2246.2017.0056 10.3390/electronics8070776 10.1061/(asce)cp.1943-5487.0000958 10.1016/j.entcs.2019.04.012 10.1016/j.scs.2017.12.022 10.1016/j.autcon.2017.02.007 10.1016/j.patrec.2018.05.018 10.1016/j.ymssp.2017.03.005 10.1016/j.patcog.2017.06.032 10.1016/j.autcon.2020.103414 10.1080/01431161.2017.1362131 10.1080/24725854.2018.1493244 10.1371/journal.pone.0208996 10.1108/JTF-12-2017-0060 10.1007/s13244-018-0639-9 10.1007/s11042-019-08419-x 10.1109/access.2021.3064372 10.1109/TCYB.2018.2864670 10.1016/j.patrec.2017.12.005 10.1016/j.micpro.2020.103342 10.1109/jstars.2018.2866284 10.1016/j.future.2019.07.044 10.1016/j.isprsjprs.2019.02.010 10.1016/j.compedu.2019.103734 10.1016/j.autcon.2019.103041 10.3934/mbe.2019292 10.1007/s10586-020-03229-5 10.1117/1.JMI.7.4.042803  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2021 Minghui Wei et al. COPYRIGHT 2021 John Wiley & Sons, Inc. Copyright © 2021 Minghui Wei et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0  | 
    
| Copyright_xml | – notice: Copyright © 2021 Minghui Wei et al. – notice: COPYRIGHT 2021 John Wiley & Sons, Inc. – notice: Copyright © 2021 Minghui Wei et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0  | 
    
| DBID | RHU RHW RHX AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY DOA  | 
    
| DOI | 10.1155/2021/5161111 | 
    
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals (DOAJ) (Open Access)  | 
    
| DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni)  | 
    
| DatabaseTitleList | CrossRef Research Library Prep  | 
    
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) Mathematics  | 
    
| EISSN | 1099-0526 | 
    
| Editor | Lv, Zhihan | 
    
| Editor_xml | – sequence: 1 givenname: Zhihan surname: Lv fullname: Lv, Zhihan  | 
    
| ExternalDocumentID | oai_doaj_org_article_2962784b295a4de1819a8c4d9d7a290f 10.1155/2021/5161111 A831775536 10_1155_2021_5161111  | 
    
| GeographicLocations | Arkansas | 
    
| GeographicLocations_xml | – name: Arkansas | 
    
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8G5 8UM 930 A03 AAESR AAFWJ AAJEY AAONW ABCQN ABEML ABIJN ABPVW ABUWG ACSCC ADBBV ADIZJ AENEX AFBPY AFKRA AFPKN AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ATUGU AZBYB AZQEC AZVAB BAFTC BCNDV BENPR BGLVJ BHBCM BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 D-E D-F DPXWK DR2 DU5 DWQXO EBD EBS F00 F01 F04 F5P G-S G.N GNP GNUQQ GODZA GROUPED_DOAJ GUQSH H.T H.X HBH HCIFZ HHY HZ~ IAO ITC IX1 J0M JPC K6V K7- KQQ LAW LC2 LC3 LP6 LP7 M2O MK4 N04 N05 N9A NF~ NNB O66 O9- OIG OK1 P2P P2W P2X P4D P62 PQQKQ PROAC Q.N Q11 QB0 QRW R.K RHU RHW RHX RWI RX1 RYL SUPJJ TUS V2E W8V W99 WBKPD WIH WQJ WRC XBAML XG1 XPP XSW XV2 ~IA ~WT .Y3 24P 31~ 3R3 5VS AAEVG AAMMB AANHP AAYXX ACBWZ ACCMX ACRPL ACXQS ACYXJ ADNMO AEFGJ AEIMD AFZJQ AGQPQ AGXDD AIDQK AIDYY AMVHM ASPBG AVWKF AZFZN BDRZF BFHJK CITATION DCZOG EJD FEDTE H13 HF~ HVGLF ICD LH4 LW6 PHGZM PHGZT PQGLB PUEGO ROL WYUIH 7XB 8FK JQ2 MBDVC PKEHL PQEST PQUKI PRINS Q9U ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c470t-725e9fc784a65509fb8c9e00a48958695ced2675390535344b110ebbd60f8ea43 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 1076-2787 1099-0526  | 
    
| IngestDate | Fri Oct 03 12:50:45 EDT 2025 Tue Aug 19 18:15:09 EDT 2025 Fri Jul 25 21:02:38 EDT 2025 Mon Oct 20 22:44:25 EDT 2025 Mon Oct 20 16:57:03 EDT 2025 Thu Apr 24 22:58:28 EDT 2025 Wed Oct 01 02:50:20 EDT 2025 Sun Jun 02 19:16:56 EDT 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c470t-725e9fc784a65509fb8c9e00a48958695ced2675390535344b110ebbd60f8ea43 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-0413-7808 | 
    
| OpenAccessLink | https://doaj.org/article/2962784b295a4de1819a8c4d9d7a290f | 
    
| PQID | 2550175230 | 
    
| PQPubID | 2029978 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2962784b295a4de1819a8c4d9d7a290f unpaywall_primary_10_1155_2021_5161111 proquest_journals_2550175230 gale_infotracmisc_A831775536 gale_infotracacademiconefile_A831775536 crossref_primary_10_1155_2021_5161111 crossref_citationtrail_10_1155_2021_5161111 hindawi_primary_10_1155_2021_5161111  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-00-00 | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – year: 2021 text: 2021-00-00  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Hoboken | 
    
| PublicationPlace_xml | – name: Hoboken | 
    
| PublicationTitle | Complexity (New York, N.Y.) | 
    
| PublicationYear | 2021 | 
    
| Publisher | Hindawi John Wiley & Sons, Inc Wiley  | 
    
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley  | 
    
| References | e_1_2_8_27_2 e_1_2_8_28_2 e_1_2_8_23_2 e_1_2_8_24_2 e_1_2_8_25_2 e_1_2_8_26_2 e_1_2_8_9_2 e_1_2_8_2_2 e_1_2_8_1_2 e_1_2_8_4_2 e_1_2_8_3_2 e_1_2_8_6_2 e_1_2_8_5_2 e_1_2_8_8_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_21_2 e_1_2_8_22_2 e_1_2_8_16_2 e_1_2_8_17_2 e_1_2_8_18_2 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_13_2 e_1_2_8_14_2 e_1_2_8_15_2 e_1_2_8_10_2 e_1_2_8_11_2  | 
    
| References_xml | – ident: e_1_2_8_2_2 doi: 10.13474/J.CNKI.11-2246.2017.0056 – ident: e_1_2_8_23_2 doi: 10.3390/electronics8070776 – ident: e_1_2_8_20_2 doi: 10.1061/(asce)cp.1943-5487.0000958 – ident: e_1_2_8_17_2 doi: 10.1016/j.entcs.2019.04.012 – ident: e_1_2_8_3_2 doi: 10.1016/j.scs.2017.12.022 – ident: e_1_2_8_16_2 doi: 10.1016/j.autcon.2017.02.007 – ident: e_1_2_8_15_2 doi: 10.1016/j.patrec.2018.05.018 – ident: e_1_2_8_6_2 doi: 10.1016/j.ymssp.2017.03.005 – ident: e_1_2_8_11_2 doi: 10.1016/j.patcog.2017.06.032 – ident: e_1_2_8_25_2 doi: 10.1016/j.autcon.2020.103414 – ident: e_1_2_8_5_2 doi: 10.1080/01431161.2017.1362131 – ident: e_1_2_8_9_2 doi: 10.1080/24725854.2018.1493244 – ident: e_1_2_8_26_2 doi: 10.1371/journal.pone.0208996 – ident: e_1_2_8_1_2 doi: 10.1108/JTF-12-2017-0060 – ident: e_1_2_8_7_2 doi: 10.1007/s13244-018-0639-9 – ident: e_1_2_8_19_2 doi: 10.1007/s11042-019-08419-x – ident: e_1_2_8_24_2 doi: 10.1109/access.2021.3064372 – ident: e_1_2_8_21_2 doi: 10.1109/TCYB.2018.2864670 – ident: e_1_2_8_14_2 doi: 10.1016/j.patrec.2017.12.005 – ident: e_1_2_8_28_2 doi: 10.1016/j.micpro.2020.103342 – ident: e_1_2_8_4_2 doi: 10.1109/jstars.2018.2866284 – ident: e_1_2_8_22_2 doi: 10.1016/j.future.2019.07.044 – ident: e_1_2_8_12_2 doi: 10.1016/j.isprsjprs.2019.02.010 – ident: e_1_2_8_10_2 doi: 10.1016/j.compedu.2019.103734 – ident: e_1_2_8_18_2 doi: 10.1016/j.autcon.2019.103041 – ident: e_1_2_8_13_2 doi: 10.3934/mbe.2019292 – ident: e_1_2_8_27_2 doi: 10.1007/s10586-020-03229-5 – ident: e_1_2_8_8_2 doi: 10.1117/1.JMI.7.4.042803  | 
    
| SSID | ssj0009637 | 
    
| Score | 2.2358644 | 
    
| SecondaryResourceType | retracted_publication | 
    
| Snippet | It aims to improve the degree of visualization of building data, ensure the ability of intelligent detection, and effectively solve the problems encountered in... | 
    
| SourceID | doaj unpaywall proquest gale crossref hindawi  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| SubjectTerms | Accuracy Algorithms Analysis Artificial neural networks Augmented Reality Building construction Buildings Cellular telephones Cities Data processing Deep learning Efficiency Flexibility Mobile computing Neural networks Remote sensing Scientific visualization Target detection Teaching User experience Visualization Visualization (Computers)  | 
    
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagEgIOiBYQoQvyobyEIvKwk_iYtlQLEhwqivYWTRy7XWmbVE22Fb-BP82M1xtYEI9TlGTiOJoZ-xtn5jNje7GtlSEH1LlpQgFZHdZRDGEtNeS5jQnDU7bFp2x6Ij7M5MyTJPW__8LH2Y7C8_itRGQSUw3vzSKjzK3j6ewHt27mqDExkMnCBA1wnd_-y7MbM48j6B-H4VtnFABfzzdg5u1lewFfr2Gx-GnGObrP7nmoyMuVbrfZDdPusLsfR57Vfodte9fs-SvPH_36AftWNp0bCHhn-UHXXnnrwraIisMdXO43Lxen3eV8ODtHsXMMkU3DaV2Wl8tTx9XZ8GPjcDqft3zfb6DND2EA_mXeUznmqoiTQ9vw9yO558APzeBSvNqH7OTo3eeDaej3XAi1yKMhzBNplNV5gWrD4EXZutDKRBGIQskiU1KbJsEgI1VEDJMKUSN-MHXdZJEtDIj0Edtqu9Y8ZlymNstBmRxsJCDJIBJWx0rEIAHQHgL2Zq2PSntCctoXY1G5wETKirRXee0F7PkofbEi4viD3D6pdpQh-mx3AU2q8t5YJbTlUCHqREkQjUGUo6DQolFNDomKbMBekmFU5OTYJQ2-VgE_jOiyqrJA2JVLmWYBm2xIonPqjdt73rT-0enJ2u4qP4b0FQZ7OFzSqn3AXoy2-Nd2nvzf63bZHTpdrSRN2NZwuTRPEVsN9TPnWd8Bg08X_g priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELbKVgh6QLRQEViQD-UlFDUPO4kPCGX7UEFihSqKeosmtrNdaZss3WwrfgN_Go_XSdkD5RQpGVlJ5pFvJuNvCNkLq1JodECZauUzSEq_DELwSy4hTasQMTx2W4yTkzP25Zyfb5BxtxcG2yq7mGgDtWok1sj3DfQ1xoM1zE_znz5OjcK_q90IDXCjFdRHSzF2j2xGyIw1IJujo_G301sa3sSyaJqcJ_EjY6tdKzznWAUI97kBQGEYrn2kLJd_H7HvX2CufDNdQ6QPlvUcft3AbPbXx-n4MXnkUCXNV2awTTZ0vUO2vvaUrIsdsu28eEHfOarp90_I71w1NmbQpqIHTX3tDNGshawd9mDbxGk-m5i30V5cGrFLk01rRbGES_PlxNJ6KnqqLaSn05qO3Kxteggt0B_TBe7cXO33pFAr-rnnAW3poW5tN1j9lJwdH30_OPHdeAZfsjRo_TTiWlQyzYyGjXJEVWZS6CAAlgmeJYJLrSKTj8QCOWRixkoDNXRZqiSoMg0s3iWDuqn1M0J5XCUpCJ1CFTCIEghYJUPBQuAAxnQ88qHTRyEddzmO0JgVNofhvEDtFU57HnndS89XnB3_kBuhansZZNq2J5qrSeEct4hwOlHGykhwYEobQCQgk0wJlUIkgsojb9EwCowH5pYkuG0N5sGQWavIM4PQUs7jxCPDNUnjx3Lt8p4zrf_c9LCzu8KFm0Vx6xweedPb4p3rPL97nRfkIUqvik1DMmivlvqlgV9t-cr51B_R_ijM priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLagEwIegA0QgYL8MG5C6ZLUjuPHbGMaSExoomgIocjxpavokqpNGfBH-Lv4OG60InGRyEuU5Miy4y8n30mOv4PQdmxKruEBlEyrkIi0DMsoFmFJpWDMxMDhIdviKD0ckdcn9OTCWhgFEvG1UIvBKcSk5xPnrf19Xey4PGv91RJUiNrjHWoJi90GM2Uuo42UWj7eQxujo7f5hzbZMA0T5qrkwR-gEMRNVtnvlK41sfZecvL9nZO-4ruyRkKvLquZ-HYuptML76ODm0iuRtKmoXweLJtyIL__IvL4f0O9hW54uorzFl-b6JKuttD1N53W62ILbXr3sMDPvIb189vox8dj3TglaPUJ56p2jgnXBu_V1RePdtsuSIO4nctFx_l0XM8nzemZNTuzIbtWGL4T43w5dtqhCh9rFzfgSYV3fUFvvC8agd9PFrA8tF1UikWl8KtObLTB-7pxKWfVHTQ6ePlu7zD0NSBCSVjUhCyhmhvJMgsjG0xxU2aS6ygSJOM0SzmVWiU26BlyEKoZElJaPqPLUqWRybQgw7uoV9WVvocwHZqUCa6ZMBERSSoiYmTMSSyoEBafAXqxQkAhvUA61OmYFi5QorSAeSj8PATocWc9a4VBfmO3C2DqbEDO252o5-PCe4cigRJIGSkTTgVR2rIuLjJJFFdMJDwyAXoKUCzA6cDkCb92wg4M5LuKPLM0kFE6TAPUX7O0zkKuXd72YPtLp_srpBcrQBY2-LTuG_4iBOhJh_4_tnP_Xw0foGtw2H7b6qNeM1_qh5btNeUj_zj_BIxeTp4 priority: 102 providerName: Unpaywall  | 
    
| Title | Adoption of Convolutional Neural Network Algorithm Combined with Augmented Reality in Building Data Visualization and Intelligent Detection | 
    
| URI | https://dx.doi.org/10.1155/2021/5161111 https://www.proquest.com/docview/2550175230 https://downloads.hindawi.com/journals/complexity/2021/5161111.pdf https://doaj.org/article/2962784b295a4de1819a8c4d9d7a290f  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 2021 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1099-0526 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1099-0526 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: AMVHM dateStart: 20120701 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1099-0526 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1099-0526 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: 8FG dateStart: 20120501 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1076-2787 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-0526 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009637 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1099-0526 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: 24P dateStart: 20170101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgCMEeEBsgCqXyw_glFC1J7SR-TLeVgkQ1VRSVp-jiOFulLp3WdBN_A_80d44brQ-wF14aKblaTu678511_o6xg6DMlSED1LEpPAFR7uV-AF4uNcRxGVAMT9UW42g0FV9ncnar1RfVhDX0wM2HOwypO0wi8lBJEIXBBUlBokWhihhC5Zfkff1EbZKpDd1uZNkyMbeJPPx7vCl5l5Ky_eBQYqATBMHWYmQ5-1vP_PCccuKb-Vbk-WhdXcKvG1gsbi1Cw6fsiYseedrMeo_dM9U-2_3WUq-u9tmes9YV_-AopT8-Y7_TYml9A1-W_GhZXTvA4VjEzmEvthycp4uz5dW8Pr9AsQvMmk3BaauWp-szS99Z8ImxoTufV3zgemrzY6iB_5iv6IRmc66TQ1XwLy3fZ82PTW2rvqrnbDo8-X408lwbBk-L2K-9OJRGlRqVABHmM6rME62M74NIlEwiJbUpQsw7-oq4YvpC5BhSmDwvIr9MDIj-C7ZTLSvzknHZL6MYlImh9AWEEfii1IESAUgAhEiHfdroI9OOo5xaZSwym6tImZH2Mqe9DnvbSl823Bx_kRuQalsZYtS2NxBnmcNZdhfOOuw9ASMju8cpaXDHF_DFiEErSxOMxGIp-1GHdbck0V711uMDB607Jt3d4C5zbmWVYf6HHpQ28jvsXYvFf47z6n-8_Gv2mMZstp66bKe-Wps3GIzVeY_dT4afe-zB4GR8OulZK8TfyWiG96bj0_TnHzbDL6A | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjR4QGyAKBTww8aHULR82En8MKF23dSyrULTNu0tOLbTVeqSsqRU-xv4n_jbOLtORh8YT3uK1Fxdp_fhu8vd7xDa8rKUKa2AIlLSITxMndT1uJNSwaMo87QPr6sthmH_jHy9oBcr6HfdC6PLKmubaAy1LITOke-A6wvCo3OYX6Y_HD01Sr9drUdocDtaQe4aiDHb2HGobuYQwpW7gx7we9v3D_ZP9_qOnTLgCBK5lRP5VLFMRDFsFH6DZWksmHJdTmJG45BRoaQPbnXANBRKQEgKJ6ZKUxm6Waw4CWDdB2iNBIRB8LfW3R9-O7mF_Q0NaifEWKHjg27UpfeU6qyDt0PB4fI8b-lQNLMDmhPi4aWOzefjJQ94fZZP-c2cTyZ_HYYHT9ET68XizkLsNtCKyjfR4-MGArbcRBvWapT4o4W2_vQM_erIwtgoXGR4r8h_WsGHtTRKiLmYsnTcmYzg368ur4DsCqJ3JbFOGePObGRgRCU-USaEwOMcd-1sb9zjFcfn41J3ii76SzHPJR40uKMV7qnKVJ_lz9HZvTDqBVrNi1y9RJgGWRhxpiKeuYT7IXdJJjxGPE45B1Ftoc81PxJhsdL1yI5JYmImShPNvcRyr4W2G-rpAiPkH3RdzdqGRiN7mw-K61FiDUXi62lIMUl9RjmRChwwxmNBJJMR95mbtdAHLRiJtj-wJcFtGwU8mEbySjoxeIQRpUHYQu0lSrAbYun2lhWt_2y6XctdYs1bmdwqYwu9b2TxznVe3b3OO7TePz0-So4Gw8PX6JH-5iLR1Uar1fVMvQHXr0rfWv3C6Pt9q_QfvNlkOA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLagEwIegA0QgYL8MG5C6ZLUjuPHbGMaSExoomgIocjxpavokqpNGfBH-Lv4OG60InGRyEuU5Miy4y8n30mOv4PQdmxKruEBlEyrkIi0DMsoFmFJpWDMxMDhIdviKD0ckdcn9OTCWhgFEvG1UIvBKcSk5xPnrf19Xey4PGv91RJUiNrjHWoJi90GM2Uuo42UWj7eQxujo7f5hzbZMA0T5qrkwR-gEMRNVtnvlK41sfZecvL9nZO-4ruyRkKvLquZ-HYuptML76ODm0iuRtKmoXweLJtyIL__IvL4f0O9hW54uorzFl-b6JKuttD1N53W62ILbXr3sMDPvIb189vox8dj3TglaPUJ56p2jgnXBu_V1RePdtsuSIO4nctFx_l0XM8nzemZNTuzIbtWGL4T43w5dtqhCh9rFzfgSYV3fUFvvC8agd9PFrA8tF1UikWl8KtObLTB-7pxKWfVHTQ6ePlu7zD0NSBCSVjUhCyhmhvJMgsjG0xxU2aS6ygSJOM0SzmVWiU26BlyEKoZElJaPqPLUqWRybQgw7uoV9WVvocwHZqUCa6ZMBERSSoiYmTMSSyoEBafAXqxQkAhvUA61OmYFi5QorSAeSj8PATocWc9a4VBfmO3C2DqbEDO252o5-PCe4cigRJIGSkTTgVR2rIuLjJJFFdMJDwyAXoKUCzA6cDkCb92wg4M5LuKPLM0kFE6TAPUX7O0zkKuXd72YPtLp_srpBcrQBY2-LTuG_4iBOhJh_4_tnP_Xw0foGtw2H7b6qNeM1_qh5btNeUj_zj_BIxeTp4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%5BRetracted%5D+Adoption+of+Convolutional+Neural+Network+Algorithm+Combined+with+Augmented+Reality+in+Building+Data+Visualization+and+Intelligent+Detection&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Wei%2C+Minghui&rft.au=Tang%2C+Jingjing&rft.au=Tang%2C+Haotian&rft.au=Zhao%2C+Rui&rft.date=2021&rft.issn=1076-2787&rft.eissn=1099-0526&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1155%2F2021%2F5161111&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2021_5161111 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon |