Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations

Background Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensi...

Full description

Saved in:
Bibliographic Details
Published inBiomedical engineering online Vol. 16; no. 1; p. 21
Main Authors Borbély, Bence J., Szolgay, Péter
Format Journal Article
LanguageEnglish
Published London BioMed Central 17.01.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1475-925X
1475-925X
DOI10.1186/s12938-016-0291-x

Cover

Abstract Background Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensive—and therefore off-line—solutions to calculate the anatomical joint angles from motion captured raw measurement data (also referred as inverse kinematics). In addition, recent developments in inertial motion sensing technology show that it may replace large, immobile and expensive optical systems with small, mobile and cheaper solutions in cases when a laboratory-free measurement setup is needed. The objective of the presented work is to extend the workflow of measurement and analysis of human arm movements with an algorithm that allows accurate and real-time estimation of anatomical joint angles for a widely used OpenSim upper limb kinematic model when inertial sensors are used for movement recording. Methods The internal structure of the selected upper limb model is analyzed and used as the underlying platform for the development of the proposed algorithm. Based on this structure, a prototype marker set is constructed that facilitates the reconstruction of model-based joint angles using orientation data directly available from inertial measurement systems. The mathematical formulation of the reconstruction algorithm is presented along with the validation of the algorithm on various platforms, including embedded environments. Results Execution performance tables of the proposed algorithm show significant improvement on all tested platforms. Compared to OpenSim’s Inverse Kinematics tool 50–15,000x speedup is achieved while maintaining numerical accuracy. Conclusions The proposed algorithm is capable of real-time reconstruction of standardized anatomical joint angles even in embedded environments, establishing a new way for complex applications to take advantage of accurate and fast model-based inverse kinematics calculations.
AbstractList BACKGROUNDModel based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensive-and therefore off-line-solutions to calculate the anatomical joint angles from motion captured raw measurement data (also referred as inverse kinematics). In addition, recent developments in inertial motion sensing technology show that it may replace large, immobile and expensive optical systems with small, mobile and cheaper solutions in cases when a laboratory-free measurement setup is needed. The objective of the presented work is to extend the workflow of measurement and analysis of human arm movements with an algorithm that allows accurate and real-time estimation of anatomical joint angles for a widely used OpenSim upper limb kinematic model when inertial sensors are used for movement recording.METHODSThe internal structure of the selected upper limb model is analyzed and used as the underlying platform for the development of the proposed algorithm. Based on this structure, a prototype marker set is constructed that facilitates the reconstruction of model-based joint angles using orientation data directly available from inertial measurement systems. The mathematical formulation of the reconstruction algorithm is presented along with the validation of the algorithm on various platforms, including embedded environments.RESULTSExecution performance tables of the proposed algorithm show significant improvement on all tested platforms. Compared to OpenSim's Inverse Kinematics tool 50-15,000x speedup is achieved while maintaining numerical accuracy.CONCLUSIONSThe proposed algorithm is capable of real-time reconstruction of standardized anatomical joint angles even in embedded environments, establishing a new way for complex applications to take advantage of accurate and fast model-based inverse kinematics calculations.
Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensive-and therefore off-line-solutions to calculate the anatomical joint angles from motion captured raw measurement data (also referred as inverse kinematics). In addition, recent developments in inertial motion sensing technology show that it may replace large, immobile and expensive optical systems with small, mobile and cheaper solutions in cases when a laboratory-free measurement setup is needed. The objective of the presented work is to extend the workflow of measurement and analysis of human arm movements with an algorithm that allows accurate and real-time estimation of anatomical joint angles for a widely used OpenSim upper limb kinematic model when inertial sensors are used for movement recording. The internal structure of the selected upper limb model is analyzed and used as the underlying platform for the development of the proposed algorithm. Based on this structure, a prototype marker set is constructed that facilitates the reconstruction of model-based joint angles using orientation data directly available from inertial measurement systems. The mathematical formulation of the reconstruction algorithm is presented along with the validation of the algorithm on various platforms, including embedded environments. Execution performance tables of the proposed algorithm show significant improvement on all tested platforms. Compared to OpenSim's Inverse Kinematics tool 50-15,000x speedup is achieved while maintaining numerical accuracy. The proposed algorithm is capable of real-time reconstruction of standardized anatomical joint angles even in embedded environments, establishing a new way for complex applications to take advantage of accurate and fast model-based inverse kinematics calculations.
Background Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensive-and therefore off-line-solutions to calculate the anatomical joint angles from motion captured raw measurement data (also referred as inverse kinematics). In addition, recent developments in inertial motion sensing technology show that it may replace large, immobile and expensive optical systems with small, mobile and cheaper solutions in cases when a laboratory-free measurement setup is needed. The objective of the presented work is to extend the workflow of measurement and analysis of human arm movements with an algorithm that allows accurate and real-time estimation of anatomical joint angles for a widely used OpenSim upper limb kinematic model when inertial sensors are used for movement recording. Methods The internal structure of the selected upper limb model is analyzed and used as the underlying platform for the development of the proposed algorithm. Based on this structure, a prototype marker set is constructed that facilitates the reconstruction of model-based joint angles using orientation data directly available from inertial measurement systems. The mathematical formulation of the reconstruction algorithm is presented along with the validation of the algorithm on various platforms, including embedded environments. Results Execution performance tables of the proposed algorithm show significant improvement on all tested platforms. Compared to OpenSim's Inverse Kinematics tool 50-15,000x speedup is achieved while maintaining numerical accuracy. Conclusions The proposed algorithm is capable of real-time reconstruction of standardized anatomical joint angles even in embedded environments, establishing a new way for complex applications to take advantage of accurate and fast model-based inverse kinematics calculations.
Background Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensive—and therefore off-line—solutions to calculate the anatomical joint angles from motion captured raw measurement data (also referred as inverse kinematics). In addition, recent developments in inertial motion sensing technology show that it may replace large, immobile and expensive optical systems with small, mobile and cheaper solutions in cases when a laboratory-free measurement setup is needed. The objective of the presented work is to extend the workflow of measurement and analysis of human arm movements with an algorithm that allows accurate and real-time estimation of anatomical joint angles for a widely used OpenSim upper limb kinematic model when inertial sensors are used for movement recording. Methods The internal structure of the selected upper limb model is analyzed and used as the underlying platform for the development of the proposed algorithm. Based on this structure, a prototype marker set is constructed that facilitates the reconstruction of model-based joint angles using orientation data directly available from inertial measurement systems. The mathematical formulation of the reconstruction algorithm is presented along with the validation of the algorithm on various platforms, including embedded environments. Results Execution performance tables of the proposed algorithm show significant improvement on all tested platforms. Compared to OpenSim’s Inverse Kinematics tool 50–15,000x speedup is achieved while maintaining numerical accuracy. Conclusions The proposed algorithm is capable of real-time reconstruction of standardized anatomical joint angles even in embedded environments, establishing a new way for complex applications to take advantage of accurate and fast model-based inverse kinematics calculations.
ArticleNumber 21
Author Borbély, Bence J.
Szolgay, Péter
Author_xml – sequence: 1
  givenname: Bence J.
  surname: Borbély
  fullname: Borbély, Bence J.
  email: borbely.bence@itk.ppke.hu
  organization: Faculty of Information Technology and Bionics, Pázmány Péter Catholic University
– sequence: 2
  givenname: Péter
  surname: Szolgay
  fullname: Szolgay, Péter
  organization: Faculty of Information Technology and Bionics, Pázmány Péter Catholic University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28095857$$D View this record in MEDLINE/PubMed
BookMark eNqNUVuL1TAYDLLiXvQH-CIBX3yp5tI2qQ_CsniDBUEUfAtp-rUna5rUpF13_70pPepxQfEpIZmZb2a-U3TkgweEHlPynFJZv0iUNVwWhNYFYQ0tbu6hE1qKqmhY9eXo4H6MTlO6IoQRUjcP0DGTpKlkJU6Q-QjaFbMdAVt_DTEB_mo9jHq2JuE-RDzvAC_TBBE7O7YvscZj6MAVrU7QYe2GEO28G_GSrB9wgmEEP-P8mI-sEnx6iO732iV4tD_P0Oc3rz9dvCsuP7x9f3F-WZhSkLmoK9G3pZG1oFyAYbKVVEtZ6V5IzvuyJLQ1rGq5zKk7bspOEM4EF4LLJifiZ4htuouf9O137Zyaoh11vFWUqLUxtTWmcmNqbUzdZNKrjTQt7Qidya6j_k0M2qo_f7zdqSFcq4qVpKybLPBsLxDDtwXSrEabDDinPYQlqTyWVnWTx2Xo0zvQq7BEnztZUatc3ayoJ4eOfln5ubQMoBvAxJBShP6_Yoo7HGO39eRQ1v2TuW815Sl-gHhg-q-kH0mFy-8
CitedBy_id crossref_primary_10_1109_TIM_2018_2889233
crossref_primary_10_1109_LRA_2021_3057794
crossref_primary_10_1109_LRA_2023_3291921
crossref_primary_10_1080_10255842_2018_1522532
crossref_primary_10_7717_peerj_15097
crossref_primary_10_1016_j_autcon_2022_104232
crossref_primary_10_1007_s11517_018_1903_3
crossref_primary_10_1109_ACCESS_2019_2956951
crossref_primary_10_3389_fbioe_2024_1492232
crossref_primary_10_1115_1_4048573
crossref_primary_10_1177_21695067231192538
crossref_primary_10_1155_2022_5227955
crossref_primary_10_1016_j_bspc_2019_02_011
crossref_primary_10_1061__ASCE_CO_1943_7862_0002289
crossref_primary_10_1186_s12938_017_0383_2
crossref_primary_10_3389_fneur_2024_1470759
crossref_primary_10_32604_cmc_2022_021667
Cites_doi 10.1088/0957-0233/22/2/025801
10.1016/j.gaitpost.2010.07.009
10.1109/TNSRE.2011.2178039
10.1016/j.jbiomech.2010.03.007
10.1109/TAC.2008.923738
10.1109/TNSRE.2012.2205706
10.1016/j.sna.2009.10.008
10.1177/1545968307303411
10.1016/j.bspc.2007.09.001
10.1016/S1350-4533(01)00121-7
10.3233/978-1-60750-080-3-164
10.1109/BioCAS.2013.6679643
10.1016/j.math.2010.09.004
10.1007/s10439-008-9461-8
10.1007/s00422-012-0532-4
10.1007/s11517-012-0979-4
10.1109/TBME.2007.901024
10.1016/j.gaitpost.2009.07.115
10.1109/10.102791
10.1016/j.ergon.2014.03.006
10.1016/j.neunet.2014.09.003.
10.1016/j.clinbiomech.2008.12.009
10.1109/ICORR.2011.5975346
10.1007/s00221-013-3801-0
10.1109/TRO.2012.2184951
10.1007/s11517-013-1099-5
10.1016/j.jelekin.2015.06.010
10.1109/SAS.2012.6166315
10.1109/BSN.2015.7299398
10.1007/BF02345966
10.1007/s11517-007-0296-5
10.1007/BF02344720
10.1016/j.gaitpost.2008.05.013
10.1186/1743-0003-9-42
10.1109/ECCTD.2015.7300047
10.1016/j.jbiomech.2004.05.042.
10.1007/s10439-009-9852-5
10.1007/s10439-005-3320-7
10.1007/s11517-013-1076-z
ContentType Journal Article
Copyright The Author(s) 2017
Copyright BioMed Central 2017
Copyright_xml – notice: The Author(s) 2017
– notice: Copyright BioMed Central 2017
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/s12938-016-0291-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
Health & Medical Collection (Alumni Edition)
ProQuest Medical Database
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1475-925X
EndPage 21
ExternalDocumentID 10.1186/s12938-016-0291-x
PMC5240469
4311915181
28095857
10_1186_s12938_016_0291_x
Genre Journal Article
GroupedDBID ---
0R~
23N
2WC
53G
5GY
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
I-F
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
L6V
LK8
M1P
M48
M7P
M7S
MK~
ML~
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RNS
ROL
RPM
RSV
SEG
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
2VQ
4.4
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c470t-657fb4c867137ec28b81a885af7833f4401bc25b38293d3c4d703273773892803
IEDL.DBID M48
ISSN 1475-925X
IngestDate Sun Oct 26 04:03:35 EDT 2025
Tue Sep 30 15:47:07 EDT 2025
Thu Sep 04 19:40:27 EDT 2025
Mon Oct 06 18:23:41 EDT 2025
Wed Feb 19 02:00:01 EST 2025
Thu Apr 24 22:52:51 EDT 2025
Wed Oct 01 00:48:12 EDT 2025
Sat Sep 06 07:30:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords OpenSim
Embedded systems
Real-time
Inertial measurement unit (IMU)
Upper limb
Wearable
Inverse kinematics (IK)
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-657fb4c867137ec28b81a885af7833f4401bc25b38293d3c4d703273773892803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12938-016-0291-x
PMID 28095857
PQID 1864046699
PQPubID 42562
PageCount 1
ParticipantIDs unpaywall_primary_10_1186_s12938_016_0291_x
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5240469
proquest_miscellaneous_1861569029
proquest_journals_1864046699
pubmed_primary_28095857
crossref_primary_10_1186_s12938_016_0291_x
crossref_citationtrail_10_1186_s12938_016_0291_x
springer_journals_10_1186_s12938_016_0291_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-17
PublicationDateYYYYMMDD 2017-01-17
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-17
  day: 17
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Biomedical engineering online
PublicationTitleAbbrev BioMed Eng OnLine
PublicationTitleAlternate Biomed Eng Online
PublicationYear 2017
Publisher BioMed Central
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
References SL Delp (291_CR32) 2007; 54
BJ Borbély (291_CR8) 2013; 232
N Jiang (291_CR35) 2013; 51
B Bolsterlee (291_CR15) 2013; 51
WH Press (291_CR44) 1992
291_CR36
N Yang (291_CR6) 2002; 24
H Zheng (291_CR1) 2005; 43
A Kontaxis (291_CR23) 2009; 24
P O’Donoghue (291_CR5) 2010
AG Cutti (291_CR22) 2008; 46
JL Stephenson (291_CR4) 2009; 29
EM Arnold (291_CR12) 2010; 38
291_CR38
A Vandenberghe (291_CR7) 2010; 32
Y Tian (291_CR20) 2013; 21
291_CR17
MS Park (291_CR11) 2009; 30
G Piovan (291_CR48) 2012; 28
R Mahony (291_CR19) 2008; 53
WHK Vries de (291_CR24) 2010; 43
A Gustus (291_CR14) 2012; 106
I Parel (291_CR25) 2012; 35
N Jiang (291_CR34) 2012; 9
CY Wu (291_CR2) 2007; 21
S Bonnet (291_CR46) 2009; 156
AJ Bogert van den (291_CR30) 2013; 51
N Vignais (291_CR9) 2014; 44
S Muceli (291_CR33) 2012; 20
D Blana (291_CR37) 2015; 29
291_CR45
G Wu (291_CR27) 2005; 38
291_CR47
H Zhou (291_CR3) 2008; 3
291_CR41
DHEJ Veeger (291_CR13) 2011; 16
291_CR40
291_CR43
291_CR42
J Schmidhuber (291_CR39) 2015; 61
HJ Luinge (291_CR16) 2005; 43
SOH Madgwick (291_CR18) 2011; 2011
A Olivares (291_CR21) 2011; 22
D Song (291_CR10) 2008; 36
KRS Holzbaur (291_CR26) 2005; 33
291_CR29
291_CR28
SL Delp (291_CR31) 1990; 37
18299994 - Ann Biomed Eng. 2008 Jun;36(6):1033-48
23884905 - Med Biol Eng Comput. 2013 Oct;51(10):1069-77
20382385 - J Biomech. 2010 Jul 20;43(10):1983-8
22742707 - J Neuroeng Rehabil. 2012 Jun 28;9:42
15844264 - J Biomech. 2005 May;38(5):981-992
18087742 - Med Biol Eng Comput. 2008 Feb;46(2):169-78
22300730 - Gait Posture. 2012 Apr;35(4):636-40
20951628 - Man Ther. 2011 Feb;16(1):48-50
17601803 - Neurorehabil Neural Repair. 2007 Sep-Oct;21(5):460-6
22275550 - IEEE Int Conf Rehabil Robot. 2011;2011:5975346
19665381 - Gait Posture. 2009 Nov;30(4):487-91
18620861 - Gait Posture. 2009 Jan;29(1):11-6
22801527 - IEEE Trans Neural Syst Rehabil Eng. 2013 Mar;21(2):254-64
25462637 - Neural Netw. 2015 Jan;61:85-117
16078622 - Ann Biomed Eng. 2005 Jun;33(6):829-40
22180516 - IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):371-8
23132432 - Biol Cybern. 2012 Dec;106(11-12):741-55
18018689 - IEEE Trans Biomed Eng. 2007 Nov;54(11):1940-50
24352608 - Exp Brain Res. 2014 Mar;232(3):889-901
20729085 - Gait Posture. 2010 Oct;32(4):500-7
23090099 - Med Biol Eng Comput. 2013 Feb;51(1-2):143-51
19957039 - Ann Biomed Eng. 2010 Feb;38(2):269-79
23873010 - Med Biol Eng Comput. 2013 Sep;51(9):953-63
26190031 - J Electromyogr Kinesiol. 2016 Aug;29:21-7
11886830 - Med Eng Phys. 2002 Mar;24(2):115-20
19200628 - Clin Biomech (Bristol, Avon). 2009 Mar;24(3):246-53
15865139 - Med Biol Eng Comput. 2005 Mar;43(2):273-82
16255421 - Med Biol Eng Comput. 2005 Jul;43(4):413-20
2210784 - IEEE Trans Biomed Eng. 1990 Aug;37(8):757-67
References_xml – ident: 291_CR29
– volume: 22
  start-page: 25801
  issue: 2
  year: 2011
  ident: 291_CR21
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/22/2/025801
– volume: 32
  start-page: 500
  issue: 4
  year: 2010
  ident: 291_CR7
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2010.07.009
– volume: 20
  start-page: 371
  issue: 3
  year: 2012
  ident: 291_CR33
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2011.2178039
– volume: 43
  start-page: 1983
  issue: 10
  year: 2010
  ident: 291_CR24
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2010.03.007
– volume-title: Research methods for sports performance analysis
  year: 2010
  ident: 291_CR5
– volume: 53
  start-page: 1203
  issue: 5
  year: 2008
  ident: 291_CR19
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2008.923738
– volume: 21
  start-page: 254
  issue: 2
  year: 2013
  ident: 291_CR20
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2012.2205706
– volume: 156
  start-page: 302
  issue: 2
  year: 2009
  ident: 291_CR46
  publication-title: Sens Actuators A Phys
  doi: 10.1016/j.sna.2009.10.008
– volume: 21
  start-page: 460
  issue: 5
  year: 2007
  ident: 291_CR2
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968307303411
– volume: 3
  start-page: 1
  issue: 1
  year: 2008
  ident: 291_CR3
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2007.09.001
– volume: 24
  start-page: 115
  issue: 2
  year: 2002
  ident: 291_CR6
  publication-title: Med Eng Phys
  doi: 10.1016/S1350-4533(01)00121-7
– volume: 35
  start-page: 636
  year: 2012
  ident: 291_CR25
  publication-title: Gait Posture
  doi: 10.3233/978-1-60750-080-3-164
– ident: 291_CR36
  doi: 10.1109/BioCAS.2013.6679643
– volume: 16
  start-page: 48
  issue: 1
  year: 2011
  ident: 291_CR13
  publication-title: Man Ther
  doi: 10.1016/j.math.2010.09.004
– volume: 36
  start-page: 1033
  issue: 6
  year: 2008
  ident: 291_CR10
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-008-9461-8
– volume: 106
  start-page: 741
  year: 2012
  ident: 291_CR14
  publication-title: Biol Cybern
  doi: 10.1007/s00422-012-0532-4
– ident: 291_CR43
– ident: 291_CR41
– start-page: 359
  volume-title: Numerical recipes in the art of scientific computing
  year: 1992
  ident: 291_CR44
– volume: 51
  start-page: 143
  issue: 1–2
  year: 2013
  ident: 291_CR35
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-012-0979-4
– volume: 54
  start-page: 1940
  issue: 11
  year: 2007
  ident: 291_CR32
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2007.901024
– volume: 30
  start-page: 487
  issue: 4
  year: 2009
  ident: 291_CR11
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2009.07.115
– volume: 37
  start-page: 757
  issue: 8
  year: 1990
  ident: 291_CR31
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.102791
– volume: 44
  start-page: 535
  issue: 4
  year: 2014
  ident: 291_CR9
  publication-title: Int J Ind Ergon
  doi: 10.1016/j.ergon.2014.03.006
– volume: 61
  start-page: 85
  year: 2015
  ident: 291_CR39
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2014.09.003.
– ident: 291_CR28
– volume: 24
  start-page: 246
  issue: 3
  year: 2009
  ident: 291_CR23
  publication-title: Clin Biomech
  doi: 10.1016/j.clinbiomech.2008.12.009
– volume: 2011
  start-page: 5975346
  year: 2011
  ident: 291_CR18
  publication-title: IEEE Int Conf Rehabil Robot
  doi: 10.1109/ICORR.2011.5975346
– volume: 232
  start-page: 1
  issue: 3
  year: 2013
  ident: 291_CR8
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-013-3801-0
– volume: 28
  start-page: 728
  issue: 3
  year: 2012
  ident: 291_CR48
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2012.2184951
– volume: 51
  start-page: 953
  issue: 9
  year: 2013
  ident: 291_CR15
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-013-1099-5
– volume: 29
  start-page: 21
  year: 2015
  ident: 291_CR37
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2015.06.010
– ident: 291_CR17
  doi: 10.1109/SAS.2012.6166315
– ident: 291_CR47
  doi: 10.1109/BSN.2015.7299398
– ident: 291_CR42
– volume: 43
  start-page: 273
  issue: 2
  year: 2005
  ident: 291_CR16
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02345966
– volume: 46
  start-page: 169
  issue: 2
  year: 2008
  ident: 291_CR22
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-007-0296-5
– ident: 291_CR38
– volume: 43
  start-page: 413
  issue: 4
  year: 2005
  ident: 291_CR1
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02344720
– volume: 29
  start-page: 11
  issue: 1
  year: 2009
  ident: 291_CR4
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2008.05.013
– volume: 9
  start-page: 42
  issue: 1
  year: 2012
  ident: 291_CR34
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-9-42
– ident: 291_CR40
– ident: 291_CR45
  doi: 10.1109/ECCTD.2015.7300047
– volume: 38
  start-page: 981
  issue: 5
  year: 2005
  ident: 291_CR27
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2004.05.042.
– volume: 38
  start-page: 269
  issue: 2
  year: 2010
  ident: 291_CR12
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-009-9852-5
– volume: 33
  start-page: 829
  issue: 6
  year: 2005
  ident: 291_CR26
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-005-3320-7
– volume: 51
  start-page: 1069
  issue: 10
  year: 2013
  ident: 291_CR30
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-013-1076-z
– reference: 26190031 - J Electromyogr Kinesiol. 2016 Aug;29:21-7
– reference: 25462637 - Neural Netw. 2015 Jan;61:85-117
– reference: 18018689 - IEEE Trans Biomed Eng. 2007 Nov;54(11):1940-50
– reference: 22801527 - IEEE Trans Neural Syst Rehabil Eng. 2013 Mar;21(2):254-64
– reference: 23090099 - Med Biol Eng Comput. 2013 Feb;51(1-2):143-51
– reference: 16255421 - Med Biol Eng Comput. 2005 Jul;43(4):413-20
– reference: 19200628 - Clin Biomech (Bristol, Avon). 2009 Mar;24(3):246-53
– reference: 23873010 - Med Biol Eng Comput. 2013 Sep;51(9):953-63
– reference: 24352608 - Exp Brain Res. 2014 Mar;232(3):889-901
– reference: 16078622 - Ann Biomed Eng. 2005 Jun;33(6):829-40
– reference: 17601803 - Neurorehabil Neural Repair. 2007 Sep-Oct;21(5):460-6
– reference: 20951628 - Man Ther. 2011 Feb;16(1):48-50
– reference: 19665381 - Gait Posture. 2009 Nov;30(4):487-91
– reference: 22275550 - IEEE Int Conf Rehabil Robot. 2011;2011:5975346
– reference: 20729085 - Gait Posture. 2010 Oct;32(4):500-7
– reference: 23132432 - Biol Cybern. 2012 Dec;106(11-12):741-55
– reference: 11886830 - Med Eng Phys. 2002 Mar;24(2):115-20
– reference: 23884905 - Med Biol Eng Comput. 2013 Oct;51(10):1069-77
– reference: 18620861 - Gait Posture. 2009 Jan;29(1):11-6
– reference: 20382385 - J Biomech. 2010 Jul 20;43(10):1983-8
– reference: 18299994 - Ann Biomed Eng. 2008 Jun;36(6):1033-48
– reference: 19957039 - Ann Biomed Eng. 2010 Feb;38(2):269-79
– reference: 15865139 - Med Biol Eng Comput. 2005 Mar;43(2):273-82
– reference: 15844264 - J Biomech. 2005 May;38(5):981-992
– reference: 22300730 - Gait Posture. 2012 Apr;35(4):636-40
– reference: 22180516 - IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):371-8
– reference: 22742707 - J Neuroeng Rehabil. 2012 Jun 28;9:42
– reference: 2210784 - IEEE Trans Biomed Eng. 1990 Aug;37(8):757-67
– reference: 18087742 - Med Biol Eng Comput. 2008 Feb;46(2):169-78
SSID ssj0020069
Score 2.2794156
Snippet Background Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various...
Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation...
Background Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various...
BACKGROUNDModel based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 21
SubjectTerms Arm - physiology
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
Biotechnology
Computer Simulation
Engineering
Humans
Image Interpretation, Computer-Assisted - methods
Models, Biological
Movement - physiology
Muscle Contraction - physiology
Muscle, Skeletal - physiology
Range of Motion, Articular - physiology
Software
Torque
Whole Body Imaging - methods
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-NTgL2gGB8rDCQkXhistYkTuwgIQRo04S0Ck1M2ltkO05XkaVZ04rx33OXOqHVxHj2t322f-c7_w7gnYuVRVwecIUHMBdhXvBUpYbHNjdFgmVM-8P7dJycnItvF_HFFoy7vzDkVtmdie1Bnc8svZEfBioRqMslafqpvuYUNYqsq10IDe1DK-QfW4qxe7AdEjPWALa_HI2_n_UqGBHzetsmVnjY0G1HzlzkiIsdvtm8nW5Bztuek735dAceLKta__6ly3Lthjp-DI88tGSfV7LwBLZctQs7a4SDu3D_1JvSn4I9Q4jIKbQ8m1bkm-HYT0xoGVwbhlCWITRky7p2c1ZOr8wHplkbNofTxZczXU5wehaXV4xc5yescRN6aGSz-dR_Z6qaZ3B-fPTj6wn3ERe4FXK0ID-YwghLnHeRdDZURgVaqVgXUkVRIVAZMzaMTaRw3vLIihwPDARAUiLuoThXz2FQzSq3ByywCWZV-Ug5KQoltIqCQDql8jANTSyHMOpmOrOejpyiYpRZq5aoJFstTkYuaLQ42c0Q3vdF6hUXx12Z97vly_y2bLK_QjSEt30ybiiykujKzZZtHtRpU6xlCC9Wq923hkNMUb_CzssNOegzEFn3Zko1vWxJu-OQWsY6DzqJWevWvwdx0AvV_4f88u4hv4KHIWGSUcADuQ-DxXzpXiOiWpg3fpv8AYS_Hw8
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5NIPHjAQEbUGCTJ-1pyFqTOPGFN4SG0CT2gEDiLYodp0SEtGpaAf89d2katWJj2rPPTuyzc9_lzt8BfHMhWsLlnkT6AEvlZ7mMMTYytJnJI-pjmhveV7-jy1v16y68a8mi-S7MYvzew-hHzfaI0604VZaGJLi4SjYqauKy0XnnWzHjbhu0_GO3ZbPzBku-TYns4qKbsD6tRunLU1qWC6bnYhu2WswozmZK3oEPrtqFzQUmwV1Yu2pj5B_BXhP2k1wzXhQVJ1048UANDTVrLQijCsJ8YjoaubEoi0dzKlLR1MORbNEykZaD4biY3D8KzokfiNoN-A-iGI6L9p5SVX-C24ufN-eXsi2lIK3S_QknuORGWSazC7SzPhr0UsQwzTUGQa7IyzLWD02AtG5ZYFVGXwJCNloToOECVnuwUg0rdwDCsxGJYtZHp1WOKsXA87RDzPzYN6HuQX--0olteca53EWZNP4GRslMOQnnlrFykucefO-6jGYkG-8JH8_Vl7TnrU5IUpGnH8VxD752zXRSOPyRVm44bWTIWY1plB7sz7TdPY2mGJPjRC-vl_ZBJ8As3MstVXHfsHGHPj-ZxjyZ75iF1_r7JE66TfXvKR_-19hHsOEz9uh70tPHsDIZT91nQk4T86U5M6_qCBFx
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnogUd5LRRkJE5U3uZhxw63ClFVSK0QYqVFHKLYcbbRptlok4iH-PGMk2zYpTzEgVskjx2PM7Y_xzPfADw3XGrE5S6VuABT5iUpDWWoKNeJSgOso9oI77Pz4HTK3sz4bAc-rmNhuqBz2z9qfhDy0Y42YrIZkp636zg-6MVRmaTd9JfBUWV3MOugZZ1rsRMIMHcDjkB9BLvT87fHH9p4I8Fp6PFZf8_5y3rbO9UV-HnVi3K4St2D601Rxl8-xXm-sVud3IJvaz07J5XFpKnVRH_9iQLyPw3EbbjZo1xy3JnlHdgxxT7sbXAf7sO1s_5W_y7od4hWqc1yT7LCuokYssCClky2IoiqCaJU0pSlWZE8u1QvSUzaDD7U7sEJifP5cpXVF5fEevHPSWXm9p8nWa6yPrKqqO7B9OT1-1entE_-QDUTTm1dclLFtKXf84XRnlTSjaXkcSqk76cMz4VKe1z5ErVMfM0SXLsQiwmBEMym3LoPo2JZmIdAXB2gqEwcaQRLJYul77rCSJl4oae4GIOz_tCR7pnRbYKOPGpPSDKIuqGMrDecHcro8xheDFXKjhbkT8IHa-uJ-hWiilCSOSwIwnAMz4ZinNv2wiYuzLJpZfB4HWIrY3jQGdvwNlQxxKMedl5smeEgYHnDt0uK7KLlD-eefTO2ebg22I1u_V6Jw8Gm_67yo3-Sfgw3PIuWHJe64gBG9aoxTxDr1eppP2e_A4OjUUc
  priority: 102
  providerName: Unpaywall
Title Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations
URI https://link.springer.com/article/10.1186/s12938-016-0291-x
https://www.ncbi.nlm.nih.gov/pubmed/28095857
https://www.proquest.com/docview/1864046699
https://www.proquest.com/docview/1861569029
https://pubmed.ncbi.nlm.nih.gov/PMC5240469
https://biomedical-engineering-online.biomedcentral.com/track/pdf/10.1186/s12938-016-0291-x
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RBZ
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: KQ8
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: KQ8
  dateStart: 20020501
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: DOA
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: ABDBF
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: ADMLS
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: DIK
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: GX1
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M~E
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RPM
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M48
  dateStart: 20020501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: AAJSJ
  dateStart: 20021201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: C6C
  dateStart: 20020112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGJgF7QDC-CqMyEk9MgXw4sY2E0KhWJqRW00Sl8hTFjtNFZGlJWrH999y5SdRqA8RLpMhnO7bPvt_lzneEvDGh0IDLPUfAAewwP80cKaRyQp2qLII6yt7wHo2j0wn7Og2nO6RNb9VMYH2raof5pCZV8e7q5_Un2PAf7YYX0fsaZRa6ZKE7LXQLkHIPBJXETA4j1hkVUHmW9rIRDx3ph9PGyHlrE9ti6gb2vOlC2dlR98m9VblIrn8lRbEhqoYPyYMGY9LjNVM8IjumPCD7G5EHD8jdUWNTf0z0OWBFB3PM07xEJw1Df0CBDeVaU8C0FDAiXS0WpqJFfqk-0ITa_DkOSsCUJsVsXuXLi0uKPvQzWpsZ_nGk8ypv7jWV9RMyGZ58G5w6TeoFRzPuLtEhJlNMY_C7gBvtCyW8RIgwybgIgoyBVqa0H6pAwLylgWYpnByAhDgHAIQJr56S3XJemueEejoCUpG6wnCWCZaIwPO4ESL1pa9C3iNuO9OxbuKSY3qMIrb6iYji9eLE6IuGixNf9cjbrspiHZTjb8SH7fLFLXvFQMlcFkVS9sjrrhh2FppLktLMV5YGlFsJrfTIs_Vqd73BECUoWvDxfIsPOgKM2r1dUuYXNnp36GPP0OZRyzEbn_XnQRx1TPXvIb_4n_l5Se77CFVcz_H4IdldVivzCoDWUvXJHT7l8BTDL32y9_lkfHYOb4No0Le_Lvp2e0HJZHx2_P03nbAofA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1dT9RAcIKYiDwYxQ9OUddEXyQbru22uzUxxqjkEI4HA8m9le52e1wsvXK9C_Cn_I3O9NpyFyI-8bzf87EzszM7A_De-sqgXu5whRcwF26S8lCFmvsm0WmAY3T1w7t_GPSOxc-BP1iBP81fGAqrbO7E6qJOxobeyHccFQi05YIw_FKcc6oaRd7VpoTGnCz27dUFmmzl573viN8Prrv74-hbj9dVBbgRsjulWI9UC0N53Txpjau0cmKl_DiVyvNSgQaHNq6vPYWSMPGMSJApUMhLibKdajnhvPfgvvDwLkH-kYNrA4_S_taeU9zuTkmylELFKMwXwXG5LPtuKLQ34zJb5-w6rM3yIr66iLNsQf7tPoZHteLKvs4p7Qms2HwD1hfSGW7Ag37tqH8K5hcqoJwK17NRTpEflv3Ghio_bMlQUWaoeLJZUdgJy0Zn-hOLWVWUh5NYTVicDRH409MzRoH5Q1baIT1jsvFkVH-WystncHwnkH8Oq_k4t5vAHBNgV5V0lZUiVSJWnuNIq1Tihq72ZQe6DaQjUyc7p5obWVQZPSqI5siJKMCNkBNdduBjO6SYZ_q4rfNWg76oZvoyuibRDrxrm5FdyQcT53Y8q_qgxRziLB14Mcd2uxoeMUTrDTcvl-ig7UCpwJdb8tFplRLcd2llnHO7oZiFbf37ENstUf3_yC9vP_JbWOsd9Q-ig73D_Vfw0CXtp-twR27B6nQys69Rd5vqNxXDMDi5aw79C28oUkw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6hIhV6QFCgLBQwEicqq5vEiR1uaGFVHq0QolJvUew424jUG22yAv49M3lpV-Uhzh7bccbOfJMZfwPw0obKIC73uMIPMBd-lvNYxZqHJtN5hH10e8P79Cw6ORcfLsKLvs5pPWS7DyHJ7k4DsTS55rjK8u6Iq-i4JitFSViUQIsTIYi8KdC4UQmDWTQbPS7i4e1Dmb_ttm2MriHM64mSY7R0D26tXZX-_J6W5YZBmt-FOz2SZG861d-DG9btw94Gv-A-7J72kfP7YL4gIuRUSZ4VjlIxLPuGDS1ha80QuTJEgmxdVXbFyuJKv2Ypa6vkcLJzGUvLxXJVNJdXjDLlF6y2C_qvyJaror-95OoHcD5_93V2wvsCC9wIOW0o7SXXwhDFXSCt8ZVWXqpUmOZSBUEu0PfSxg91oPC9ZYERGX4fEO9IiTCHylo9hB23dPYRMM9EKKqyqbJS5EqkKvA8aZXK_NjXoZzAdHjTienZx6kIRpm0XoiKkk45CWWckXKSHxN4NXapOuqNvwkfDupL-lNYJygp0P-P4ngCL8ZmPD8UFEmdXa5bGXRhYxxlAgedtsfZcIkxulP48HJrH4wCxM293eKKy5ajO_RpZhzzaNgxG4_150UcjZvq30t-_F9jP4fdz2_nyaf3Zx-fwG2fwMnU4548hJ1mtbZPEVo1-ll7fH4BQf8cpw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnogUd5LRRkJE5U3uZhxw63ClFVSK0QYqVFHKLYcbbRptlok4iH-PGMk2zYpTzEgVskjx2PM7Y_xzPfADw3XGrE5S6VuABT5iUpDWWoKNeJSgOso9oI77Pz4HTK3sz4bAc-rmNhuqBz2z9qfhDy0Y42YrIZkp636zg-6MVRmaTd9JfBUWV3MOugZZ1rsRMIMHcDjkB9BLvT87fHH9p4I8Fp6PFZf8_5y3rbO9UV-HnVi3K4St2D601Rxl8-xXm-sVud3IJvaz07J5XFpKnVRH_9iQLyPw3EbbjZo1xy3JnlHdgxxT7sbXAf7sO1s_5W_y7od4hWqc1yT7LCuokYssCClky2IoiqCaJU0pSlWZE8u1QvSUzaDD7U7sEJifP5cpXVF5fEevHPSWXm9p8nWa6yPrKqqO7B9OT1-1entE_-QDUTTm1dclLFtKXf84XRnlTSjaXkcSqk76cMz4VKe1z5ErVMfM0SXLsQiwmBEMym3LoPo2JZmIdAXB2gqEwcaQRLJYul77rCSJl4oae4GIOz_tCR7pnRbYKOPGpPSDKIuqGMrDecHcro8xheDFXKjhbkT8IHa-uJ-hWiilCSOSwIwnAMz4ZinNv2wiYuzLJpZfB4HWIrY3jQGdvwNlQxxKMedl5smeEgYHnDt0uK7KLlD-eefTO2ebg22I1u_V6Jw8Gm_67yo3-Sfgw3PIuWHJe64gBG9aoxTxDr1eppP2e_A4OjUUc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+inverse+kinematics+for+the+upper+limb%3A+a+model-based+algorithm+using+segment+orientations&rft.jtitle=Biomedical+engineering+online&rft.au=Borb%C3%A9ly%2C+Bence+J.&rft.au=Szolgay%2C+P%C3%A9ter&rft.date=2017-01-17&rft.issn=1475-925X&rft.eissn=1475-925X&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1186%2Fs12938-016-0291-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12938_016_0291_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-925X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-925X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-925X&client=summon