Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations
Background Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensi...
Saved in:
| Published in | Biomedical engineering online Vol. 16; no. 1; p. 21 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
17.01.2017
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1475-925X 1475-925X |
| DOI | 10.1186/s12938-016-0291-x |
Cover
| Abstract | Background
Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensive—and therefore off-line—solutions to calculate the anatomical joint angles from motion captured raw measurement data (also referred as inverse kinematics). In addition, recent developments in inertial motion sensing technology show that it may replace large, immobile and expensive optical systems with small, mobile and cheaper solutions in cases when a laboratory-free measurement setup is needed. The objective of the presented work is to extend the workflow of measurement and analysis of human arm movements with an algorithm that allows accurate and real-time estimation of anatomical joint angles for a widely used OpenSim upper limb kinematic model when inertial sensors are used for movement recording.
Methods
The internal structure of the selected upper limb model is analyzed and used as the underlying platform for the development of the proposed algorithm. Based on this structure, a prototype marker set is constructed that facilitates the reconstruction of model-based joint angles using orientation data directly available from inertial measurement systems. The mathematical formulation of the reconstruction algorithm is presented along with the validation of the algorithm on various platforms, including embedded environments.
Results
Execution performance tables of the proposed algorithm show significant improvement on all tested platforms. Compared to OpenSim’s Inverse Kinematics tool 50–15,000x speedup is achieved while maintaining numerical accuracy.
Conclusions
The proposed algorithm is capable of real-time reconstruction of standardized anatomical joint angles even in embedded environments, establishing a new way for complex applications to take advantage of accurate and fast model-based inverse kinematics calculations. |
|---|---|
| AbstractList | BACKGROUNDModel based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensive-and therefore off-line-solutions to calculate the anatomical joint angles from motion captured raw measurement data (also referred as inverse kinematics). In addition, recent developments in inertial motion sensing technology show that it may replace large, immobile and expensive optical systems with small, mobile and cheaper solutions in cases when a laboratory-free measurement setup is needed. The objective of the presented work is to extend the workflow of measurement and analysis of human arm movements with an algorithm that allows accurate and real-time estimation of anatomical joint angles for a widely used OpenSim upper limb kinematic model when inertial sensors are used for movement recording.METHODSThe internal structure of the selected upper limb model is analyzed and used as the underlying platform for the development of the proposed algorithm. Based on this structure, a prototype marker set is constructed that facilitates the reconstruction of model-based joint angles using orientation data directly available from inertial measurement systems. The mathematical formulation of the reconstruction algorithm is presented along with the validation of the algorithm on various platforms, including embedded environments.RESULTSExecution performance tables of the proposed algorithm show significant improvement on all tested platforms. Compared to OpenSim's Inverse Kinematics tool 50-15,000x speedup is achieved while maintaining numerical accuracy.CONCLUSIONSThe proposed algorithm is capable of real-time reconstruction of standardized anatomical joint angles even in embedded environments, establishing a new way for complex applications to take advantage of accurate and fast model-based inverse kinematics calculations. Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensive-and therefore off-line-solutions to calculate the anatomical joint angles from motion captured raw measurement data (also referred as inverse kinematics). In addition, recent developments in inertial motion sensing technology show that it may replace large, immobile and expensive optical systems with small, mobile and cheaper solutions in cases when a laboratory-free measurement setup is needed. The objective of the presented work is to extend the workflow of measurement and analysis of human arm movements with an algorithm that allows accurate and real-time estimation of anatomical joint angles for a widely used OpenSim upper limb kinematic model when inertial sensors are used for movement recording. The internal structure of the selected upper limb model is analyzed and used as the underlying platform for the development of the proposed algorithm. Based on this structure, a prototype marker set is constructed that facilitates the reconstruction of model-based joint angles using orientation data directly available from inertial measurement systems. The mathematical formulation of the reconstruction algorithm is presented along with the validation of the algorithm on various platforms, including embedded environments. Execution performance tables of the proposed algorithm show significant improvement on all tested platforms. Compared to OpenSim's Inverse Kinematics tool 50-15,000x speedup is achieved while maintaining numerical accuracy. The proposed algorithm is capable of real-time reconstruction of standardized anatomical joint angles even in embedded environments, establishing a new way for complex applications to take advantage of accurate and fast model-based inverse kinematics calculations. Background Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensive-and therefore off-line-solutions to calculate the anatomical joint angles from motion captured raw measurement data (also referred as inverse kinematics). In addition, recent developments in inertial motion sensing technology show that it may replace large, immobile and expensive optical systems with small, mobile and cheaper solutions in cases when a laboratory-free measurement setup is needed. The objective of the presented work is to extend the workflow of measurement and analysis of human arm movements with an algorithm that allows accurate and real-time estimation of anatomical joint angles for a widely used OpenSim upper limb kinematic model when inertial sensors are used for movement recording. Methods The internal structure of the selected upper limb model is analyzed and used as the underlying platform for the development of the proposed algorithm. Based on this structure, a prototype marker set is constructed that facilitates the reconstruction of model-based joint angles using orientation data directly available from inertial measurement systems. The mathematical formulation of the reconstruction algorithm is presented along with the validation of the algorithm on various platforms, including embedded environments. Results Execution performance tables of the proposed algorithm show significant improvement on all tested platforms. Compared to OpenSim's Inverse Kinematics tool 50-15,000x speedup is achieved while maintaining numerical accuracy. Conclusions The proposed algorithm is capable of real-time reconstruction of standardized anatomical joint angles even in embedded environments, establishing a new way for complex applications to take advantage of accurate and fast model-based inverse kinematics calculations. Background Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensive—and therefore off-line—solutions to calculate the anatomical joint angles from motion captured raw measurement data (also referred as inverse kinematics). In addition, recent developments in inertial motion sensing technology show that it may replace large, immobile and expensive optical systems with small, mobile and cheaper solutions in cases when a laboratory-free measurement setup is needed. The objective of the presented work is to extend the workflow of measurement and analysis of human arm movements with an algorithm that allows accurate and real-time estimation of anatomical joint angles for a widely used OpenSim upper limb kinematic model when inertial sensors are used for movement recording. Methods The internal structure of the selected upper limb model is analyzed and used as the underlying platform for the development of the proposed algorithm. Based on this structure, a prototype marker set is constructed that facilitates the reconstruction of model-based joint angles using orientation data directly available from inertial measurement systems. The mathematical formulation of the reconstruction algorithm is presented along with the validation of the algorithm on various platforms, including embedded environments. Results Execution performance tables of the proposed algorithm show significant improvement on all tested platforms. Compared to OpenSim’s Inverse Kinematics tool 50–15,000x speedup is achieved while maintaining numerical accuracy. Conclusions The proposed algorithm is capable of real-time reconstruction of standardized anatomical joint angles even in embedded environments, establishing a new way for complex applications to take advantage of accurate and fast model-based inverse kinematics calculations. |
| ArticleNumber | 21 |
| Author | Borbély, Bence J. Szolgay, Péter |
| Author_xml | – sequence: 1 givenname: Bence J. surname: Borbély fullname: Borbély, Bence J. email: borbely.bence@itk.ppke.hu organization: Faculty of Information Technology and Bionics, Pázmány Péter Catholic University – sequence: 2 givenname: Péter surname: Szolgay fullname: Szolgay, Péter organization: Faculty of Information Technology and Bionics, Pázmány Péter Catholic University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28095857$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUVuL1TAYDLLiXvQH-CIBX3yp5tI2qQ_CsniDBUEUfAtp-rUna5rUpF13_70pPepxQfEpIZmZb2a-U3TkgweEHlPynFJZv0iUNVwWhNYFYQ0tbu6hE1qKqmhY9eXo4H6MTlO6IoQRUjcP0DGTpKlkJU6Q-QjaFbMdAVt_DTEB_mo9jHq2JuE-RDzvAC_TBBE7O7YvscZj6MAVrU7QYe2GEO28G_GSrB9wgmEEP-P8mI-sEnx6iO732iV4tD_P0Oc3rz9dvCsuP7x9f3F-WZhSkLmoK9G3pZG1oFyAYbKVVEtZ6V5IzvuyJLQ1rGq5zKk7bspOEM4EF4LLJifiZ4htuouf9O137Zyaoh11vFWUqLUxtTWmcmNqbUzdZNKrjTQt7Qidya6j_k0M2qo_f7zdqSFcq4qVpKybLPBsLxDDtwXSrEabDDinPYQlqTyWVnWTx2Xo0zvQq7BEnztZUatc3ayoJ4eOfln5ubQMoBvAxJBShP6_Yoo7HGO39eRQ1v2TuW815Sl-gHhg-q-kH0mFy-8 |
| CitedBy_id | crossref_primary_10_1109_TIM_2018_2889233 crossref_primary_10_1109_LRA_2021_3057794 crossref_primary_10_1109_LRA_2023_3291921 crossref_primary_10_1080_10255842_2018_1522532 crossref_primary_10_7717_peerj_15097 crossref_primary_10_1016_j_autcon_2022_104232 crossref_primary_10_1007_s11517_018_1903_3 crossref_primary_10_1109_ACCESS_2019_2956951 crossref_primary_10_3389_fbioe_2024_1492232 crossref_primary_10_1115_1_4048573 crossref_primary_10_1177_21695067231192538 crossref_primary_10_1155_2022_5227955 crossref_primary_10_1016_j_bspc_2019_02_011 crossref_primary_10_1061__ASCE_CO_1943_7862_0002289 crossref_primary_10_1186_s12938_017_0383_2 crossref_primary_10_3389_fneur_2024_1470759 crossref_primary_10_32604_cmc_2022_021667 |
| Cites_doi | 10.1088/0957-0233/22/2/025801 10.1016/j.gaitpost.2010.07.009 10.1109/TNSRE.2011.2178039 10.1016/j.jbiomech.2010.03.007 10.1109/TAC.2008.923738 10.1109/TNSRE.2012.2205706 10.1016/j.sna.2009.10.008 10.1177/1545968307303411 10.1016/j.bspc.2007.09.001 10.1016/S1350-4533(01)00121-7 10.3233/978-1-60750-080-3-164 10.1109/BioCAS.2013.6679643 10.1016/j.math.2010.09.004 10.1007/s10439-008-9461-8 10.1007/s00422-012-0532-4 10.1007/s11517-012-0979-4 10.1109/TBME.2007.901024 10.1016/j.gaitpost.2009.07.115 10.1109/10.102791 10.1016/j.ergon.2014.03.006 10.1016/j.neunet.2014.09.003. 10.1016/j.clinbiomech.2008.12.009 10.1109/ICORR.2011.5975346 10.1007/s00221-013-3801-0 10.1109/TRO.2012.2184951 10.1007/s11517-013-1099-5 10.1016/j.jelekin.2015.06.010 10.1109/SAS.2012.6166315 10.1109/BSN.2015.7299398 10.1007/BF02345966 10.1007/s11517-007-0296-5 10.1007/BF02344720 10.1016/j.gaitpost.2008.05.013 10.1186/1743-0003-9-42 10.1109/ECCTD.2015.7300047 10.1016/j.jbiomech.2004.05.042. 10.1007/s10439-009-9852-5 10.1007/s10439-005-3320-7 10.1007/s11517-013-1076-z |
| ContentType | Journal Article |
| Copyright | The Author(s) 2017 Copyright BioMed Central 2017 |
| Copyright_xml | – notice: The Author(s) 2017 – notice: Copyright BioMed Central 2017 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M1P M7P M7S P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM ADTOC UNPAY |
| DOI | 10.1186/s12938-016-0291-x |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences Health & Medical Collection (Alumni Edition) ProQuest Medical Database Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1475-925X |
| EndPage | 21 |
| ExternalDocumentID | 10.1186/s12938-016-0291-x PMC5240469 4311915181 28095857 10_1186_s12938_016_0291_x |
| Genre | Journal Article |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5GY 5VS 6J9 6PF 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABJCF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FRP FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE I-F IAO IGS IHR INH INR ISR ITC KQ8 L6V LK8 M1P M48 M7P M7S MK~ ML~ M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO RBZ RNS ROL RPM RSV SEG SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF NPM 7QO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 5PM 2VQ 4.4 ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c470t-657fb4c867137ec28b81a885af7833f4401bc25b38293d3c4d703273773892803 |
| IEDL.DBID | M48 |
| ISSN | 1475-925X |
| IngestDate | Sun Oct 26 04:03:35 EDT 2025 Tue Sep 30 15:47:07 EDT 2025 Thu Sep 04 19:40:27 EDT 2025 Mon Oct 06 18:23:41 EDT 2025 Wed Feb 19 02:00:01 EST 2025 Thu Apr 24 22:52:51 EDT 2025 Wed Oct 01 00:48:12 EDT 2025 Sat Sep 06 07:30:07 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | OpenSim Embedded systems Real-time Inertial measurement unit (IMU) Upper limb Wearable Inverse kinematics (IK) |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-657fb4c867137ec28b81a885af7833f4401bc25b38293d3c4d703273773892803 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12938-016-0291-x |
| PMID | 28095857 |
| PQID | 1864046699 |
| PQPubID | 42562 |
| PageCount | 1 |
| ParticipantIDs | unpaywall_primary_10_1186_s12938_016_0291_x pubmedcentral_primary_oai_pubmedcentral_nih_gov_5240469 proquest_miscellaneous_1861569029 proquest_journals_1864046699 pubmed_primary_28095857 crossref_primary_10_1186_s12938_016_0291_x crossref_citationtrail_10_1186_s12938_016_0291_x springer_journals_10_1186_s12938_016_0291_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-01-17 |
| PublicationDateYYYYMMDD | 2017-01-17 |
| PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-17 day: 17 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Biomedical engineering online |
| PublicationTitleAbbrev | BioMed Eng OnLine |
| PublicationTitleAlternate | Biomed Eng Online |
| PublicationYear | 2017 |
| Publisher | BioMed Central Springer Nature B.V |
| Publisher_xml | – name: BioMed Central – name: Springer Nature B.V |
| References | SL Delp (291_CR32) 2007; 54 BJ Borbély (291_CR8) 2013; 232 N Jiang (291_CR35) 2013; 51 B Bolsterlee (291_CR15) 2013; 51 WH Press (291_CR44) 1992 291_CR36 N Yang (291_CR6) 2002; 24 H Zheng (291_CR1) 2005; 43 A Kontaxis (291_CR23) 2009; 24 P O’Donoghue (291_CR5) 2010 AG Cutti (291_CR22) 2008; 46 JL Stephenson (291_CR4) 2009; 29 EM Arnold (291_CR12) 2010; 38 291_CR38 A Vandenberghe (291_CR7) 2010; 32 Y Tian (291_CR20) 2013; 21 291_CR17 MS Park (291_CR11) 2009; 30 G Piovan (291_CR48) 2012; 28 R Mahony (291_CR19) 2008; 53 WHK Vries de (291_CR24) 2010; 43 A Gustus (291_CR14) 2012; 106 I Parel (291_CR25) 2012; 35 N Jiang (291_CR34) 2012; 9 CY Wu (291_CR2) 2007; 21 S Bonnet (291_CR46) 2009; 156 AJ Bogert van den (291_CR30) 2013; 51 N Vignais (291_CR9) 2014; 44 S Muceli (291_CR33) 2012; 20 D Blana (291_CR37) 2015; 29 291_CR45 G Wu (291_CR27) 2005; 38 291_CR47 H Zhou (291_CR3) 2008; 3 291_CR41 DHEJ Veeger (291_CR13) 2011; 16 291_CR40 291_CR43 291_CR42 J Schmidhuber (291_CR39) 2015; 61 HJ Luinge (291_CR16) 2005; 43 SOH Madgwick (291_CR18) 2011; 2011 A Olivares (291_CR21) 2011; 22 D Song (291_CR10) 2008; 36 KRS Holzbaur (291_CR26) 2005; 33 291_CR29 291_CR28 SL Delp (291_CR31) 1990; 37 18299994 - Ann Biomed Eng. 2008 Jun;36(6):1033-48 23884905 - Med Biol Eng Comput. 2013 Oct;51(10):1069-77 20382385 - J Biomech. 2010 Jul 20;43(10):1983-8 22742707 - J Neuroeng Rehabil. 2012 Jun 28;9:42 15844264 - J Biomech. 2005 May;38(5):981-992 18087742 - Med Biol Eng Comput. 2008 Feb;46(2):169-78 22300730 - Gait Posture. 2012 Apr;35(4):636-40 20951628 - Man Ther. 2011 Feb;16(1):48-50 17601803 - Neurorehabil Neural Repair. 2007 Sep-Oct;21(5):460-6 22275550 - IEEE Int Conf Rehabil Robot. 2011;2011:5975346 19665381 - Gait Posture. 2009 Nov;30(4):487-91 18620861 - Gait Posture. 2009 Jan;29(1):11-6 22801527 - IEEE Trans Neural Syst Rehabil Eng. 2013 Mar;21(2):254-64 25462637 - Neural Netw. 2015 Jan;61:85-117 16078622 - Ann Biomed Eng. 2005 Jun;33(6):829-40 22180516 - IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):371-8 23132432 - Biol Cybern. 2012 Dec;106(11-12):741-55 18018689 - IEEE Trans Biomed Eng. 2007 Nov;54(11):1940-50 24352608 - Exp Brain Res. 2014 Mar;232(3):889-901 20729085 - Gait Posture. 2010 Oct;32(4):500-7 23090099 - Med Biol Eng Comput. 2013 Feb;51(1-2):143-51 19957039 - Ann Biomed Eng. 2010 Feb;38(2):269-79 23873010 - Med Biol Eng Comput. 2013 Sep;51(9):953-63 26190031 - J Electromyogr Kinesiol. 2016 Aug;29:21-7 11886830 - Med Eng Phys. 2002 Mar;24(2):115-20 19200628 - Clin Biomech (Bristol, Avon). 2009 Mar;24(3):246-53 15865139 - Med Biol Eng Comput. 2005 Mar;43(2):273-82 16255421 - Med Biol Eng Comput. 2005 Jul;43(4):413-20 2210784 - IEEE Trans Biomed Eng. 1990 Aug;37(8):757-67 |
| References_xml | – ident: 291_CR29 – volume: 22 start-page: 25801 issue: 2 year: 2011 ident: 291_CR21 publication-title: Meas Sci Technol doi: 10.1088/0957-0233/22/2/025801 – volume: 32 start-page: 500 issue: 4 year: 2010 ident: 291_CR7 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2010.07.009 – volume: 20 start-page: 371 issue: 3 year: 2012 ident: 291_CR33 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2011.2178039 – volume: 43 start-page: 1983 issue: 10 year: 2010 ident: 291_CR24 publication-title: J Biomech doi: 10.1016/j.jbiomech.2010.03.007 – volume-title: Research methods for sports performance analysis year: 2010 ident: 291_CR5 – volume: 53 start-page: 1203 issue: 5 year: 2008 ident: 291_CR19 publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2008.923738 – volume: 21 start-page: 254 issue: 2 year: 2013 ident: 291_CR20 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2012.2205706 – volume: 156 start-page: 302 issue: 2 year: 2009 ident: 291_CR46 publication-title: Sens Actuators A Phys doi: 10.1016/j.sna.2009.10.008 – volume: 21 start-page: 460 issue: 5 year: 2007 ident: 291_CR2 publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968307303411 – volume: 3 start-page: 1 issue: 1 year: 2008 ident: 291_CR3 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2007.09.001 – volume: 24 start-page: 115 issue: 2 year: 2002 ident: 291_CR6 publication-title: Med Eng Phys doi: 10.1016/S1350-4533(01)00121-7 – volume: 35 start-page: 636 year: 2012 ident: 291_CR25 publication-title: Gait Posture doi: 10.3233/978-1-60750-080-3-164 – ident: 291_CR36 doi: 10.1109/BioCAS.2013.6679643 – volume: 16 start-page: 48 issue: 1 year: 2011 ident: 291_CR13 publication-title: Man Ther doi: 10.1016/j.math.2010.09.004 – volume: 36 start-page: 1033 issue: 6 year: 2008 ident: 291_CR10 publication-title: Ann Biomed Eng doi: 10.1007/s10439-008-9461-8 – volume: 106 start-page: 741 year: 2012 ident: 291_CR14 publication-title: Biol Cybern doi: 10.1007/s00422-012-0532-4 – ident: 291_CR43 – ident: 291_CR41 – start-page: 359 volume-title: Numerical recipes in the art of scientific computing year: 1992 ident: 291_CR44 – volume: 51 start-page: 143 issue: 1–2 year: 2013 ident: 291_CR35 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-012-0979-4 – volume: 54 start-page: 1940 issue: 11 year: 2007 ident: 291_CR32 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2007.901024 – volume: 30 start-page: 487 issue: 4 year: 2009 ident: 291_CR11 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2009.07.115 – volume: 37 start-page: 757 issue: 8 year: 1990 ident: 291_CR31 publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.102791 – volume: 44 start-page: 535 issue: 4 year: 2014 ident: 291_CR9 publication-title: Int J Ind Ergon doi: 10.1016/j.ergon.2014.03.006 – volume: 61 start-page: 85 year: 2015 ident: 291_CR39 publication-title: Neural Netw doi: 10.1016/j.neunet.2014.09.003. – ident: 291_CR28 – volume: 24 start-page: 246 issue: 3 year: 2009 ident: 291_CR23 publication-title: Clin Biomech doi: 10.1016/j.clinbiomech.2008.12.009 – volume: 2011 start-page: 5975346 year: 2011 ident: 291_CR18 publication-title: IEEE Int Conf Rehabil Robot doi: 10.1109/ICORR.2011.5975346 – volume: 232 start-page: 1 issue: 3 year: 2013 ident: 291_CR8 publication-title: Exp Brain Res doi: 10.1007/s00221-013-3801-0 – volume: 28 start-page: 728 issue: 3 year: 2012 ident: 291_CR48 publication-title: IEEE Trans Robot doi: 10.1109/TRO.2012.2184951 – volume: 51 start-page: 953 issue: 9 year: 2013 ident: 291_CR15 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-013-1099-5 – volume: 29 start-page: 21 year: 2015 ident: 291_CR37 publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2015.06.010 – ident: 291_CR17 doi: 10.1109/SAS.2012.6166315 – ident: 291_CR47 doi: 10.1109/BSN.2015.7299398 – ident: 291_CR42 – volume: 43 start-page: 273 issue: 2 year: 2005 ident: 291_CR16 publication-title: Med Biol Eng Comput doi: 10.1007/BF02345966 – volume: 46 start-page: 169 issue: 2 year: 2008 ident: 291_CR22 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-007-0296-5 – ident: 291_CR38 – volume: 43 start-page: 413 issue: 4 year: 2005 ident: 291_CR1 publication-title: Med Biol Eng Comput doi: 10.1007/BF02344720 – volume: 29 start-page: 11 issue: 1 year: 2009 ident: 291_CR4 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2008.05.013 – volume: 9 start-page: 42 issue: 1 year: 2012 ident: 291_CR34 publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-9-42 – ident: 291_CR40 – ident: 291_CR45 doi: 10.1109/ECCTD.2015.7300047 – volume: 38 start-page: 981 issue: 5 year: 2005 ident: 291_CR27 publication-title: J Biomech doi: 10.1016/j.jbiomech.2004.05.042. – volume: 38 start-page: 269 issue: 2 year: 2010 ident: 291_CR12 publication-title: Ann Biomed Eng doi: 10.1007/s10439-009-9852-5 – volume: 33 start-page: 829 issue: 6 year: 2005 ident: 291_CR26 publication-title: Ann Biomed Eng doi: 10.1007/s10439-005-3320-7 – volume: 51 start-page: 1069 issue: 10 year: 2013 ident: 291_CR30 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-013-1076-z – reference: 26190031 - J Electromyogr Kinesiol. 2016 Aug;29:21-7 – reference: 25462637 - Neural Netw. 2015 Jan;61:85-117 – reference: 18018689 - IEEE Trans Biomed Eng. 2007 Nov;54(11):1940-50 – reference: 22801527 - IEEE Trans Neural Syst Rehabil Eng. 2013 Mar;21(2):254-64 – reference: 23090099 - Med Biol Eng Comput. 2013 Feb;51(1-2):143-51 – reference: 16255421 - Med Biol Eng Comput. 2005 Jul;43(4):413-20 – reference: 19200628 - Clin Biomech (Bristol, Avon). 2009 Mar;24(3):246-53 – reference: 23873010 - Med Biol Eng Comput. 2013 Sep;51(9):953-63 – reference: 24352608 - Exp Brain Res. 2014 Mar;232(3):889-901 – reference: 16078622 - Ann Biomed Eng. 2005 Jun;33(6):829-40 – reference: 17601803 - Neurorehabil Neural Repair. 2007 Sep-Oct;21(5):460-6 – reference: 20951628 - Man Ther. 2011 Feb;16(1):48-50 – reference: 19665381 - Gait Posture. 2009 Nov;30(4):487-91 – reference: 22275550 - IEEE Int Conf Rehabil Robot. 2011;2011:5975346 – reference: 20729085 - Gait Posture. 2010 Oct;32(4):500-7 – reference: 23132432 - Biol Cybern. 2012 Dec;106(11-12):741-55 – reference: 11886830 - Med Eng Phys. 2002 Mar;24(2):115-20 – reference: 23884905 - Med Biol Eng Comput. 2013 Oct;51(10):1069-77 – reference: 18620861 - Gait Posture. 2009 Jan;29(1):11-6 – reference: 20382385 - J Biomech. 2010 Jul 20;43(10):1983-8 – reference: 18299994 - Ann Biomed Eng. 2008 Jun;36(6):1033-48 – reference: 19957039 - Ann Biomed Eng. 2010 Feb;38(2):269-79 – reference: 15865139 - Med Biol Eng Comput. 2005 Mar;43(2):273-82 – reference: 15844264 - J Biomech. 2005 May;38(5):981-992 – reference: 22300730 - Gait Posture. 2012 Apr;35(4):636-40 – reference: 22180516 - IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):371-8 – reference: 22742707 - J Neuroeng Rehabil. 2012 Jun 28;9:42 – reference: 2210784 - IEEE Trans Biomed Eng. 1990 Aug;37(8):757-67 – reference: 18087742 - Med Biol Eng Comput. 2008 Feb;46(2):169-78 |
| SSID | ssj0020069 |
| Score | 2.2794156 |
| Snippet | Background
Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various... Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation... Background Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various... BACKGROUNDModel based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 21 |
| SubjectTerms | Arm - physiology Biomaterials Biomedical Engineering and Bioengineering Biomedical Engineering/Biotechnology Biotechnology Computer Simulation Engineering Humans Image Interpretation, Computer-Assisted - methods Models, Biological Movement - physiology Muscle Contraction - physiology Muscle, Skeletal - physiology Range of Motion, Articular - physiology Software Torque Whole Body Imaging - methods |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-NTgL2gGB8rDCQkXhistYkTuwgIQRo04S0Ck1M2ltkO05XkaVZ04rx33OXOqHVxHj2t322f-c7_w7gnYuVRVwecIUHMBdhXvBUpYbHNjdFgmVM-8P7dJycnItvF_HFFoy7vzDkVtmdie1Bnc8svZEfBioRqMslafqpvuYUNYqsq10IDe1DK-QfW4qxe7AdEjPWALa_HI2_n_UqGBHzetsmVnjY0G1HzlzkiIsdvtm8nW5Bztuek735dAceLKta__6ly3Lthjp-DI88tGSfV7LwBLZctQs7a4SDu3D_1JvSn4I9Q4jIKbQ8m1bkm-HYT0xoGVwbhlCWITRky7p2c1ZOr8wHplkbNofTxZczXU5wehaXV4xc5yescRN6aGSz-dR_Z6qaZ3B-fPTj6wn3ERe4FXK0ID-YwghLnHeRdDZURgVaqVgXUkVRIVAZMzaMTaRw3vLIihwPDARAUiLuoThXz2FQzSq3ByywCWZV-Ug5KQoltIqCQDql8jANTSyHMOpmOrOejpyiYpRZq5aoJFstTkYuaLQ42c0Q3vdF6hUXx12Z97vly_y2bLK_QjSEt30ybiiykujKzZZtHtRpU6xlCC9Wq923hkNMUb_CzssNOegzEFn3Zko1vWxJu-OQWsY6DzqJWevWvwdx0AvV_4f88u4hv4KHIWGSUcADuQ-DxXzpXiOiWpg3fpv8AYS_Hw8 priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5NIPHjAQEbUGCTJ-1pyFqTOPGFN4SG0CT2gEDiLYodp0SEtGpaAf89d2katWJj2rPPTuyzc9_lzt8BfHMhWsLlnkT6AEvlZ7mMMTYytJnJI-pjmhveV7-jy1v16y68a8mi-S7MYvzew-hHzfaI0604VZaGJLi4SjYqauKy0XnnWzHjbhu0_GO3ZbPzBku-TYns4qKbsD6tRunLU1qWC6bnYhu2WswozmZK3oEPrtqFzQUmwV1Yu2pj5B_BXhP2k1wzXhQVJ1048UANDTVrLQijCsJ8YjoaubEoi0dzKlLR1MORbNEykZaD4biY3D8KzokfiNoN-A-iGI6L9p5SVX-C24ufN-eXsi2lIK3S_QknuORGWSazC7SzPhr0UsQwzTUGQa7IyzLWD02AtG5ZYFVGXwJCNloToOECVnuwUg0rdwDCsxGJYtZHp1WOKsXA87RDzPzYN6HuQX--0olteca53EWZNP4GRslMOQnnlrFykucefO-6jGYkG-8JH8_Vl7TnrU5IUpGnH8VxD752zXRSOPyRVm44bWTIWY1plB7sz7TdPY2mGJPjRC-vl_ZBJ8As3MstVXHfsHGHPj-ZxjyZ75iF1_r7JE66TfXvKR_-19hHsOEz9uh70tPHsDIZT91nQk4T86U5M6_qCBFx priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnogUd5LRRkJE5U3uZhxw63ClFVSK0QYqVFHKLYcbbRptlok4iH-PGMk2zYpTzEgVskjx2PM7Y_xzPfADw3XGrE5S6VuABT5iUpDWWoKNeJSgOso9oI77Pz4HTK3sz4bAc-rmNhuqBz2z9qfhDy0Y42YrIZkp636zg-6MVRmaTd9JfBUWV3MOugZZ1rsRMIMHcDjkB9BLvT87fHH9p4I8Fp6PFZf8_5y3rbO9UV-HnVi3K4St2D601Rxl8-xXm-sVud3IJvaz07J5XFpKnVRH_9iQLyPw3EbbjZo1xy3JnlHdgxxT7sbXAf7sO1s_5W_y7od4hWqc1yT7LCuokYssCClky2IoiqCaJU0pSlWZE8u1QvSUzaDD7U7sEJifP5cpXVF5fEevHPSWXm9p8nWa6yPrKqqO7B9OT1-1entE_-QDUTTm1dclLFtKXf84XRnlTSjaXkcSqk76cMz4VKe1z5ErVMfM0SXLsQiwmBEMym3LoPo2JZmIdAXB2gqEwcaQRLJYul77rCSJl4oae4GIOz_tCR7pnRbYKOPGpPSDKIuqGMrDecHcro8xheDFXKjhbkT8IHa-uJ-hWiilCSOSwIwnAMz4ZinNv2wiYuzLJpZfB4HWIrY3jQGdvwNlQxxKMedl5smeEgYHnDt0uK7KLlD-eefTO2ebg22I1u_V6Jw8Gm_67yo3-Sfgw3PIuWHJe64gBG9aoxTxDr1eppP2e_A4OjUUc priority: 102 providerName: Unpaywall |
| Title | Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations |
| URI | https://link.springer.com/article/10.1186/s12938-016-0291-x https://www.ncbi.nlm.nih.gov/pubmed/28095857 https://www.proquest.com/docview/1864046699 https://www.proquest.com/docview/1861569029 https://pubmed.ncbi.nlm.nih.gov/PMC5240469 https://biomedical-engineering-online.biomedcentral.com/track/pdf/10.1186/s12938-016-0291-x |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: RBZ dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: KQ8 dateStart: 20020101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: KQ8 dateStart: 20020501 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: DOA dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: ABDBF dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: ADMLS dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: DIK dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: GX1 dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: M~E dateStart: 20020101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: RPM dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1475-925X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: M48 dateStart: 20020501 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: AAJSJ dateStart: 20021201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: C6C dateStart: 20020112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGJgF7QDC-CqMyEk9MgXw4sY2E0KhWJqRW00Sl8hTFjtNFZGlJWrH999y5SdRqA8RLpMhnO7bPvt_lzneEvDGh0IDLPUfAAewwP80cKaRyQp2qLII6yt7wHo2j0wn7Og2nO6RNb9VMYH2raof5pCZV8e7q5_Un2PAf7YYX0fsaZRa6ZKE7LXQLkHIPBJXETA4j1hkVUHmW9rIRDx3ph9PGyHlrE9ti6gb2vOlC2dlR98m9VblIrn8lRbEhqoYPyYMGY9LjNVM8IjumPCD7G5EHD8jdUWNTf0z0OWBFB3PM07xEJw1Df0CBDeVaU8C0FDAiXS0WpqJFfqk-0ITa_DkOSsCUJsVsXuXLi0uKPvQzWpsZ_nGk8ypv7jWV9RMyGZ58G5w6TeoFRzPuLtEhJlNMY_C7gBvtCyW8RIgwybgIgoyBVqa0H6pAwLylgWYpnByAhDgHAIQJr56S3XJemueEejoCUpG6wnCWCZaIwPO4ESL1pa9C3iNuO9OxbuKSY3qMIrb6iYji9eLE6IuGixNf9cjbrspiHZTjb8SH7fLFLXvFQMlcFkVS9sjrrhh2FppLktLMV5YGlFsJrfTIs_Vqd73BECUoWvDxfIsPOgKM2r1dUuYXNnp36GPP0OZRyzEbn_XnQRx1TPXvIb_4n_l5Se77CFVcz_H4IdldVivzCoDWUvXJHT7l8BTDL32y9_lkfHYOb4No0Le_Lvp2e0HJZHx2_P03nbAofA |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1dT9RAcIKYiDwYxQ9OUddEXyQbru22uzUxxqjkEI4HA8m9le52e1wsvXK9C_Cn_I3O9NpyFyI-8bzf87EzszM7A_De-sqgXu5whRcwF26S8lCFmvsm0WmAY3T1w7t_GPSOxc-BP1iBP81fGAqrbO7E6qJOxobeyHccFQi05YIw_FKcc6oaRd7VpoTGnCz27dUFmmzl573viN8Prrv74-hbj9dVBbgRsjulWI9UC0N53Txpjau0cmKl_DiVyvNSgQaHNq6vPYWSMPGMSJApUMhLibKdajnhvPfgvvDwLkH-kYNrA4_S_taeU9zuTkmylELFKMwXwXG5LPtuKLQ34zJb5-w6rM3yIr66iLNsQf7tPoZHteLKvs4p7Qms2HwD1hfSGW7Ag37tqH8K5hcqoJwK17NRTpEflv3Ghio_bMlQUWaoeLJZUdgJy0Zn-hOLWVWUh5NYTVicDRH409MzRoH5Q1baIT1jsvFkVH-WystncHwnkH8Oq_k4t5vAHBNgV5V0lZUiVSJWnuNIq1Tihq72ZQe6DaQjUyc7p5obWVQZPSqI5siJKMCNkBNdduBjO6SYZ_q4rfNWg76oZvoyuibRDrxrm5FdyQcT53Y8q_qgxRziLB14Mcd2uxoeMUTrDTcvl-ig7UCpwJdb8tFplRLcd2llnHO7oZiFbf37ENstUf3_yC9vP_JbWOsd9Q-ig73D_Vfw0CXtp-twR27B6nQys69Rd5vqNxXDMDi5aw79C28oUkw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6hIhV6QFCgLBQwEicqq5vEiR1uaGFVHq0QolJvUew424jUG22yAv49M3lpV-Uhzh7bccbOfJMZfwPw0obKIC73uMIPMBd-lvNYxZqHJtN5hH10e8P79Cw6ORcfLsKLvs5pPWS7DyHJ7k4DsTS55rjK8u6Iq-i4JitFSViUQIsTIYi8KdC4UQmDWTQbPS7i4e1Dmb_ttm2MriHM64mSY7R0D26tXZX-_J6W5YZBmt-FOz2SZG861d-DG9btw94Gv-A-7J72kfP7YL4gIuRUSZ4VjlIxLPuGDS1ha80QuTJEgmxdVXbFyuJKv2Ypa6vkcLJzGUvLxXJVNJdXjDLlF6y2C_qvyJaror-95OoHcD5_93V2wvsCC9wIOW0o7SXXwhDFXSCt8ZVWXqpUmOZSBUEu0PfSxg91oPC9ZYERGX4fEO9IiTCHylo9hB23dPYRMM9EKKqyqbJS5EqkKvA8aZXK_NjXoZzAdHjTienZx6kIRpm0XoiKkk45CWWckXKSHxN4NXapOuqNvwkfDupL-lNYJygp0P-P4ngCL8ZmPD8UFEmdXa5bGXRhYxxlAgedtsfZcIkxulP48HJrH4wCxM293eKKy5ajO_RpZhzzaNgxG4_150UcjZvq30t-_F9jP4fdz2_nyaf3Zx-fwG2fwMnU4548hJ1mtbZPEVo1-ll7fH4BQf8cpw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnogUd5LRRkJE5U3uZhxw63ClFVSK0QYqVFHKLYcbbRptlok4iH-PGMk2zYpTzEgVskjx2PM7Y_xzPfADw3XGrE5S6VuABT5iUpDWWoKNeJSgOso9oI77Pz4HTK3sz4bAc-rmNhuqBz2z9qfhDy0Y42YrIZkp636zg-6MVRmaTd9JfBUWV3MOugZZ1rsRMIMHcDjkB9BLvT87fHH9p4I8Fp6PFZf8_5y3rbO9UV-HnVi3K4St2D601Rxl8-xXm-sVud3IJvaz07J5XFpKnVRH_9iQLyPw3EbbjZo1xy3JnlHdgxxT7sbXAf7sO1s_5W_y7od4hWqc1yT7LCuokYssCClky2IoiqCaJU0pSlWZE8u1QvSUzaDD7U7sEJifP5cpXVF5fEevHPSWXm9p8nWa6yPrKqqO7B9OT1-1entE_-QDUTTm1dclLFtKXf84XRnlTSjaXkcSqk76cMz4VKe1z5ErVMfM0SXLsQiwmBEMym3LoPo2JZmIdAXB2gqEwcaQRLJYul77rCSJl4oae4GIOz_tCR7pnRbYKOPGpPSDKIuqGMrDecHcro8xheDFXKjhbkT8IHa-uJ-hWiilCSOSwIwnAMz4ZinNv2wiYuzLJpZfB4HWIrY3jQGdvwNlQxxKMedl5smeEgYHnDt0uK7KLlD-eefTO2ebg22I1u_V6Jw8Gm_67yo3-Sfgw3PIuWHJe64gBG9aoxTxDr1eppP2e_A4OjUUc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+inverse+kinematics+for+the+upper+limb%3A+a+model-based+algorithm+using+segment+orientations&rft.jtitle=Biomedical+engineering+online&rft.au=Borb%C3%A9ly%2C+Bence+J.&rft.au=Szolgay%2C+P%C3%A9ter&rft.date=2017-01-17&rft.issn=1475-925X&rft.eissn=1475-925X&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1186%2Fs12938-016-0291-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12938_016_0291_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-925X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-925X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-925X&client=summon |