A study on several Machine-learning methods for classification of Malignant and benign clustered microcalcifications
In this paper, we investigate several state-of-the-art machine-learning methods for automated classification of clustered microcalcifications (MCs). The classifier is part of a computer-aided diagnosis (CADx) scheme that is aimed to assisting radiologists in making more accurate diagnoses of breast...
Saved in:
| Published in | IEEE transactions on medical imaging Vol. 24; no. 3; pp. 371 - 380 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.03.2005
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-0062 1558-254X |
| DOI | 10.1109/TMI.2004.842457 |
Cover
| Abstract | In this paper, we investigate several state-of-the-art machine-learning methods for automated classification of clustered microcalcifications (MCs). The classifier is part of a computer-aided diagnosis (CADx) scheme that is aimed to assisting radiologists in making more accurate diagnoses of breast cancer on mammograms. The methods we considered were: support vector machine (SVM), kernel Fisher discriminant (KFD), relevance vector machine (RVM), and committee machines (ensemble averaging and AdaBoost), of which most have been developed recently in statistical learning theory. We formulated differentiation of malignant from benign MCs as a supervised learning problem, and applied these learning methods to develop the classification algorithm. As input, these methods used image features automatically extracted from clustered MCs. We tested these methods using a database of 697 clinical mammograms from 386 cases, which included a wide spectrum of difficult-to-classify cases. We analyzed the distribution of the cases in this database using the multidimensional scaling technique, which reveals that in the feature space the malignant cases are not trivially separable from the benign ones. We used receiver operating characteristic (ROC) analysis to evaluate and to compare classification performance by the different methods. In addition, we also investigated how to combine information from multiple-view mammograms of the same case so that the best decision can be made by a classifier. In our experiments, the kernel-based methods (i.e., SVM, KFD, and RVM) yielded the best performance (A/sub z/=0.85, SVM), significantly outperforming a well-established, clinically-proven CADx approach that is based on neural network (A/sub z/=0.80). |
|---|---|
| AbstractList | In this paper, we investigate several state-of-the-art machine-learning methods for automated classification of clustered microcalcifications (MCs). The classifier is part of a computer-aided diagnosis (CADx) scheme that is aimed to assisting radiologists in making more accurate diagnoses of breast cancer on mammograms. The methods we considered were: support vector machine (SVM), kernel Fisher discriminant (KFD), relevance vector machine (RVM), and committee machines (ensemble averaging and AdaBoost), of which most have been developed recently in statistical learning theory. We formulated differentiation of malignant from benign MCs as a supervised learning problem, and applied these learning methods to develop the classification algorithm. As input, these methods used image features automatically extracted from clustered MCs. We tested these methods using a database of 697 clinical mammograms from 386 cases, which included a wide spectrum of difficult-to-classify cases. We analyzed the distribution of the cases in this database using the multidimensional scaling technique, which reveals that in the feature space the malignant cases are not trivially separable from the benign ones. We used receiver operating characteristic (ROC) analysis to evaluate and to compare classification performance by the different methods. In addition, we also investigated how to combine information from multiple-view mammograms of the same case so that the best decision can be made by a classifier. In our experiments, the kernel-based methods (i.e., SVM, KFD, and RVM) yielded the best performance (Az = 0.85, SVM), significantly outperforming a well-established, clinically-proven CADx approach that is based on neural network (Az = 0.80). In this paper, we investigate several state-of-the-art machine-learning methods for automated classification of clustered microcalcifications (MCs). The classifier is part of a computer-aided diagnosis (CADx) scheme that is aimed to assisting radiologists in making more accurate diagnoses of breast cancer on mammograms. The methods we considered were: support vector machine (SVM), kernel Fisher discriminant (KFD), relevance vector machine (RVM), and committee machines (ensemble averaging and AdaBoost), of which most have been developed recently in statistical learning theory. We formulated differentiation of malignant from benign MCs as a supervised learning problem, and applied these learning methods to develop the classification algorithm. As input, these methods used image features automatically extracted from clustered MCs. We tested these methods using a database of 697 clinical mammograms from 386 cases, which included a wide spectrum of difficult-to-classify cases. We analyzed the distribution of the cases in this database using the multidimensional scaling technique, which reveals that in the feature space the malignant cases are not trivially separable from the benign ones. We used receiver operating characteristic (ROC) analysis to evaluate and to compare classification performance by the different methods. In addition, we also investigated how to combine information from multiple-view mammograms of the same case so that the best decision can be made by a classifier. In our experiments, the kernel-based methods (i.e., SVM, KFD, and RVM) yielded the best performance (A/sub z/=0.85, SVM), significantly outperforming a well-established, clinically-proven CADx approach that is based on neural network (A/sub z/=0.80). In this paper, we investigate several state-of-the-art machine-learning methods for automated classification of clustered microcalcifications (MCs). The classifier is part of a computer-aided diagnosis (CADx) scheme that is aimed to assisting radiologists in making more accurate diagnoses of breast cancer on mammograms. The methods we considered were: support vector machine (SVM), kernel Fisher discriminant (KFD), relevance vector machine (RVM), and committee machines (ensemble averaging and AdaBoost), of which most have been developed recently in statistical learning theory. We formulated differentiation of malignant from benign MCs as a supervised learning problem, and applied these learning methods to develop the classification algorithm. As input, these methods used image features automatically extracted from clustered MCs. We tested these methods using a database of 697 clinical mammograms from 386 cases, which included a wide spectrum of difficult-to-classify cases. We analyzed the distribution of the cases in this database using the multidimensional scaling technique, which reveals that in the feature space the malignant cases are not trivially separable from the benign ones. We used receiver operating characteristic (ROC) analysis to evaluate and to compare classification performance by the different methods. In addition, we also investigated how to combine information from multiple-view mammograms of the same case so that the best decision can be made by a classifier. In our experiments, the kernel-based methods (i.e., SVM, KFD, and RVM) yielded the best performance (Az = 0.85, SVM), significantly outperforming a well-established, clinically-proven CADx approach that is based on neural network (Az = 0.80).In this paper, we investigate several state-of-the-art machine-learning methods for automated classification of clustered microcalcifications (MCs). The classifier is part of a computer-aided diagnosis (CADx) scheme that is aimed to assisting radiologists in making more accurate diagnoses of breast cancer on mammograms. The methods we considered were: support vector machine (SVM), kernel Fisher discriminant (KFD), relevance vector machine (RVM), and committee machines (ensemble averaging and AdaBoost), of which most have been developed recently in statistical learning theory. We formulated differentiation of malignant from benign MCs as a supervised learning problem, and applied these learning methods to develop the classification algorithm. As input, these methods used image features automatically extracted from clustered MCs. We tested these methods using a database of 697 clinical mammograms from 386 cases, which included a wide spectrum of difficult-to-classify cases. We analyzed the distribution of the cases in this database using the multidimensional scaling technique, which reveals that in the feature space the malignant cases are not trivially separable from the benign ones. We used receiver operating characteristic (ROC) analysis to evaluate and to compare classification performance by the different methods. In addition, we also investigated how to combine information from multiple-view mammograms of the same case so that the best decision can be made by a classifier. In our experiments, the kernel-based methods (i.e., SVM, KFD, and RVM) yielded the best performance (Az = 0.85, SVM), significantly outperforming a well-established, clinically-proven CADx approach that is based on neural network (Az = 0.80). The methods we considered were: support vector machine (SVM), kernel Fisher discriminant (KFD), relevance vector machine (RVM), and committee machines (ensemble averaging and AdaBoost), of which most have been developed recently in statistical learning theory. In this paper, we investigate several state-of-the-art machine-learning methods for automated classification of clustered microcalcifications (MCs). The classifier is part of a computer-aided diagnosis (CADx) scheme that is aimed to assisting radiologists in making more accurate diagnoses of breast cancer on mammograms. The methods we considered were: support vector machine (SVM), kernel Fisher discriminant (KFD), relevance vector machine (RVM), and committee machines (ensemble averaging and AdaBoost), of which most have been developed recently in statistical learning theory. We formulated differentiation of malignant from benign MCs as a supervised learning problem, and applied these learning methods to develop the classification algorithm. As input, these methods used image features automatically extracted from clustered MCs. We tested these methods using a database of 697 clinical mammograms from 386 cases, which included a wide spectrum of difficult-to-classify cases. We analyzed the distribution of the cases in this database using the multidimensional scaling technique, which reveals that in the feature space the malignant cases are not trivially separable from the benign ones. We used receiver operating characteristic (ROC) analysis to evaluate and to compare classification performance by the different methods. In addition, we also investigated how to combine information from multiple-view mammograms of the same case so that the best decision can be made by a classifier. In our experiments, the kernel-based methods (i.e., SVM, KFD, and RVM) yielded the best performance (A_z=0.85, SVM), significantly outperforming a well-established, clinically-proven CADx approach that is based on neural network(A_z=0.80). |
| Author | Yulei Jiang Liyang Wei Yongyi Yang Nishikawa, R.M. |
| Author_xml | – sequence: 1 surname: Liyang Wei fullname: Liyang Wei organization: Dept. of Biomed. Eng., Illinois Inst. of Technol., Chicago, IL, USA – sequence: 2 surname: Yongyi Yang fullname: Yongyi Yang – sequence: 3 givenname: R.M. surname: Nishikawa fullname: Nishikawa, R.M. – sequence: 4 surname: Yulei Jiang fullname: Yulei Jiang |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15754987$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFksFLHTEQh0Ox1KftuYdCCR562-ckm7wkRxFtBaUXBW9LNpnVyG7WJtmC_32jz1bwUE9h4PtmyMxvj-zEOSIhnxmsGQNzeHlxtuYAYq0FF1K9IysmpW64FNc7ZAVc6QZgw3fJXs53AExIMB_ILpNKCqPVipQjmsviH-gcacbfmOxIL6y7DRGbEW2KId7QCcvt7DMd5kTdaHMOQ3C2hOrMQ8XHcBNtLNRGT3uMtarYkgsm9HQKLs3Oju6flD-S94MdM356fvfJ1enJ5fGP5vzn97Pjo_PGCQWlkc6j8MoMEtAI7ZTVChzWwiETKK0AP7RKIHe27532WvYcBttz5rV1st0n37Z979P8a8Fcuilkh-NoI85L7jZKGLUB9SbINUhjGLwJMiW5amVbwYNX4N28pFh_22ndinajwFTo6zO09BP67j6FyaaH7u95KnC4BeoKc044vCDQPQagqwHoHgPQbQNQDfnKcKE8bb0kG8b_eF-2XkDElymtUZqL9g8SnL5w |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_25259_IJMIO_21_2022 crossref_primary_10_1016_j_isatra_2020_03_018 crossref_primary_10_1109_JSTSP_2008_2011159 crossref_primary_10_1590_S0100_39842012000100011 crossref_primary_10_4103_ija_ija_549_24 crossref_primary_10_1016_j_ejrad_2020_109309 crossref_primary_10_1109_TBME_2016_2605627 crossref_primary_10_2174_1573405614666181012103750 crossref_primary_10_1007_s11042_020_09105_z crossref_primary_10_1007_s13534_015_0191_1 crossref_primary_10_25046_aj020332 crossref_primary_10_1016_j_cmpb_2008_10_008 crossref_primary_10_1259_bjr_30415751 crossref_primary_10_1111_jmi_13062 crossref_primary_10_1016_j_artmed_2010_04_007 crossref_primary_10_1111_exsy_12281 crossref_primary_10_1007_s12046_018_0805_2 crossref_primary_10_1038_s41746_019_0135_8 crossref_primary_10_1038_s41598_017_03780_z crossref_primary_10_1097_RLI_0000000000000518 crossref_primary_10_1080_0952813X_2017_1280088 crossref_primary_10_1109_TIM_2013_2278562 crossref_primary_10_1007_s10803_014_2268_6 crossref_primary_10_1088_1757_899X_1115_1_012018 crossref_primary_10_1016_j_cmpb_2019_05_019 crossref_primary_10_3745_KIPSTB_2009_16_B_2_165 crossref_primary_10_1109_ACCESS_2020_2964050 crossref_primary_10_1118_1_4870959 crossref_primary_10_1364_BOE_405502 crossref_primary_10_1155_2012_145926 crossref_primary_10_1118_1_2432409 crossref_primary_10_1118_1_3002311 crossref_primary_10_1118_1_3121511 crossref_primary_10_1155_2021_5543101 crossref_primary_10_1016_j_media_2012_02_005 crossref_primary_10_1109_TUFFC_2019_2925592 crossref_primary_10_1016_j_crad_2023_02_012 crossref_primary_10_1117_1_JMI_6_4_044501 crossref_primary_10_1016_j_patrec_2017_05_002 crossref_primary_10_1371_journal_pone_0104049 crossref_primary_10_1109_TMI_2017_2751523 crossref_primary_10_3390_s19030612 crossref_primary_10_1186_1471_2342_14_23 crossref_primary_10_1016_j_patcog_2008_08_028 crossref_primary_10_1186_s12880_019_0308_6 crossref_primary_10_1007_s11517_019_02038_2 crossref_primary_10_1016_j_cmpb_2021_105939 crossref_primary_10_1136_amiajnl_2012_001332 crossref_primary_10_1016_j_jfranklin_2006_09_005 crossref_primary_10_1016_j_knosys_2011_07_016 crossref_primary_10_1016_j_patrec_2009_06_012 crossref_primary_10_1109_RBME_2012_2232289 crossref_primary_10_1109_MSP_2010_936730 crossref_primary_10_1016_j_eswa_2008_07_040 crossref_primary_10_1016_j_ejrad_2019_108711 crossref_primary_10_1016_j_patcog_2018_01_009 crossref_primary_10_1016_j_bspc_2022_103924 crossref_primary_10_1109_TMI_2017_2654799 crossref_primary_10_1007_s11767_007_0211_0 crossref_primary_10_1186_1472_6947_9_S1_S1 crossref_primary_10_1155_2020_9162464 crossref_primary_10_1007_s10278_012_9465_7 crossref_primary_10_1007_s10278_022_00678_9 crossref_primary_10_1109_TMTT_2016_2637909 crossref_primary_10_1016_j_engappai_2011_02_011 crossref_primary_10_3233_THC_170851 crossref_primary_10_1007_s00138_020_01094_1 crossref_primary_10_1021_acsomega_4c03640 crossref_primary_10_1146_annurev_bioeng_8_061505_095802 crossref_primary_10_1093_bfgp_elae015 crossref_primary_10_1002_bdr2_1767 crossref_primary_10_1109_ACCESS_2018_2817593 crossref_primary_10_1177_10732748221095946 crossref_primary_10_1002_mp_14216 crossref_primary_10_2139_ssrn_4162288 crossref_primary_10_1002_mp_12152 crossref_primary_10_1007_s10462_012_9335_1 crossref_primary_10_1007_s12046_014_0278_x crossref_primary_10_1016_j_acra_2006_09_053 crossref_primary_10_1016_j_compbiomed_2019_103422 crossref_primary_10_3923_jai_2014_113_122 crossref_primary_10_1007_s10278_008_9147_7 crossref_primary_10_1166_jbt_2022_3091 crossref_primary_10_1016_j_patcog_2016_09_027 crossref_primary_10_1016_j_compbiomed_2022_105458 crossref_primary_10_1016_j_acra_2008_08_012 crossref_primary_10_14407_jrpr_2019_44_4_149 crossref_primary_10_1016_j_neucom_2013_04_005 crossref_primary_10_1142_S021812662050156X crossref_primary_10_2463_mrms_mp_2017_0178 crossref_primary_10_1007_s11042_018_6560_x crossref_primary_10_7785_tcrtexpress_2013_600262 crossref_primary_10_1007_s10044_017_0653_4 crossref_primary_10_1101_cshperspect_a039537 crossref_primary_10_1109_ACCESS_2020_2975135 crossref_primary_10_1117_1_3099710 crossref_primary_10_1177_147323000903700603 crossref_primary_10_1088_0031_9155_57_16_5295 crossref_primary_10_1108_17563780910959929 crossref_primary_10_3923_jas_2009_3531_3538 crossref_primary_10_7763_IJMLC_2014_V4_390 crossref_primary_10_1002_lary_27850 crossref_primary_10_1117_1_JMI_4_1_014502 crossref_primary_10_1016_j_media_2010_02_004 crossref_primary_10_3390_s130404855 crossref_primary_10_1039_C7LC00955K crossref_primary_10_9746_jcmsi_13_183 crossref_primary_10_3390_cancers14205055 crossref_primary_10_1080_15325000802046496 crossref_primary_10_1109_JBHI_2019_2902298 crossref_primary_10_1016_j_jksuci_2022_03_023 crossref_primary_10_1117_1_JMI_4_2_024501 crossref_primary_10_1155_2014_970287 crossref_primary_10_1118_1_3675600 crossref_primary_10_1007_s10278_019_00289_x crossref_primary_10_1177_0954411913480669 crossref_primary_10_1109_TFUZZ_2005_864083 crossref_primary_10_1109_TPDS_2021_3090328 crossref_primary_10_1016_j_bspc_2010_10_003 crossref_primary_10_1002_mp_12316 crossref_primary_10_1016_j_artmed_2023_102629 crossref_primary_10_1007_s10396_010_0278_3 crossref_primary_10_1007_s10916_019_1494_z crossref_primary_10_1016_j_jfoodeng_2014_08_024 crossref_primary_10_1016_j_cie_2008_09_018 crossref_primary_10_1097_01_gco_0000192965_29449_da crossref_primary_10_1118_1_2938517 crossref_primary_10_1371_journal_pone_0229226 crossref_primary_10_1016_j_ejco_2022_100046 crossref_primary_10_1049_iet_cvi_2016_0163 |
| Cites_doi | 10.1118/1.599017 10.1017/CBO9780511812651 10.1148/radiology.212.3.r99au47817 10.1109/NNSP.1999.788121 10.1111/j.1469-1809.1936.tb02137.x 10.1109/34.683777 10.1109/IEMBS.1995.575237 10.1023/A:1009715923555 10.1118/1.598805 10.1148/radiology.203.1.9122385 10.2214/ajr.158.3.1310825 10.1016/s1076-6332(99)80058-0 10.1006/jcss.1997.1504 10.1034/j.1600-0455.2003.00008.x 10.1109/TMI.2002.806569 10.1007/978-0-387-21606-5 10.1148/radiology.184.3.1509042 10.1097/00004424-199209000-00015 10.1118/1.598389 10.1148/radiology.198.1.8539365 10.1148/radiology.198.3.8628853 10.1109/NNSP.2000.890157 10.1007/978-1-4757-2711-1 10.1002/(SICI)1097-0258(19980515)17:9<1033::AID-SIM784>3.0.CO;2-Z 10.1148/radiology.187.1.8451441 10.1118/1.1318221 10.1007/bfb0020278 10.1016/s0025-6196(12)60194-3 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/TMI.2004.842457 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Technology Research Database MEDLINE - Academic Materials Research Database Engineering Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 380 |
| ExternalDocumentID | 2425570021 15754987 10_1109_TMI_2004_842457 1397824 |
| Genre | orig-research Validation Studies Research Support, U.S. Gov't, P.H.S Comparative Study Evaluation Studies Journal Article |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: CA89668 |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION AAYOK CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c470t-5cde4d79f50e948c7a870ce0e9ce14e5a40df374e2cabbc8d85b20fab21d8ac53 |
| IEDL.DBID | RIE |
| ISSN | 0278-0062 |
| IngestDate | Thu Oct 02 19:00:33 EDT 2025 Wed Oct 01 13:20:25 EDT 2025 Mon Oct 06 18:06:47 EDT 2025 Mon Jun 30 06:37:46 EDT 2025 Thu Apr 03 06:54:47 EDT 2025 Thu Apr 24 23:09:08 EDT 2025 Wed Oct 01 06:37:11 EDT 2025 Tue Aug 26 16:40:09 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-5cde4d79f50e948c7a870ce0e9ce14e5a40df374e2cabbc8d85b20fab21d8ac53 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 ObjectType-Undefined-3 |
| PMID | 15754987 |
| PQID | 883436709 |
| PQPubID | 85460 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_1397824 pubmed_primary_15754987 crossref_primary_10_1109_TMI_2004_842457 proquest_miscellaneous_67497607 proquest_miscellaneous_17527353 proquest_journals_883436709 proquest_miscellaneous_28059910 crossref_citationtrail_10_1109_TMI_2004_842457 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2005-March 2005-03-00 2005-Mar 20050301 |
| PublicationDateYYYYMMDD | 2005-03-01 |
| PublicationDate_xml | – month: 03 year: 2005 text: 2005-March |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2005 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref37 ref14 Metz (ref39) 1998; 17 ref11 ref10 Ferrari (ref15) 1998 Fukunaga (ref32) 1990 ref2 ref1 Joachims (ref26) ref16 Haykin (ref21) 1999 ref19 Viola (ref35) Osuna (ref25) ref24 Giger (ref3) 1998 ref42 Huo (ref7) 2000; 7 Ripley (ref30) 1996 ref41 ref22 Pontil (ref23) 1998; 20 Fisher (ref31) 1936; 7 ref28 ref29 ref8 ref9 ref4 Tipping (ref20) 2001 Burges (ref27) 1998; 2 ref6 Vapnik (ref18) 1998 ref5 (ref36) 1998 Zaiane (ref17) ref40 Kapkowicz (ref38) 2000 Scholkopf (ref33) 2002 |
| References_xml | – start-page: 10 volume-title: “Learning from imbalanced data sets: a comparison of various strategies,” Proceedings of Learning From Imbalanced Data Sets, AAAI Workshop year: 2000 ident: ref38 – ident: ref42 doi: 10.1118/1.599017 – volume-title: Pattern Recognition and Neural Networks year: 1996 ident: ref30 doi: 10.1017/CBO9780511812651 – volume: 7 start-page: 1077 year: 2000 ident: ref7 article-title: Effectiveness of CAD in the diagnosis of breast cancer: an observer study on an independent database of mammograms publication-title: Radiology – ident: ref10 doi: 10.1148/radiology.212.3.r99au47817 – ident: ref19 doi: 10.1109/NNSP.1999.788121 – volume: 7 start-page: 179 year: 1936 ident: ref31 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann. Eugenics doi: 10.1111/j.1469-1809.1936.tb02137.x – volume: 20 start-page: 637 issue: 6 year: 1998 ident: ref23 article-title: Support vector machines for 3-D object recognition publication-title: IEEE Trans. Pattern Anal. Machine Intell. doi: 10.1109/34.683777 – start-page: 167 volume-title: Comput.-Aided Diagnosis in Medical Imaging year: 1998 ident: ref3 article-title: Overview of computer-aided diagnosis in breast imaging – volume-title: Statistical Learning Theory year: 1998 ident: ref18 – ident: ref13 doi: 10.1109/IEMBS.1995.575237 – volume: 2 start-page: 121 year: 1998 ident: ref27 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Mining Knowledge Discovery doi: 10.1023/A:1009715923555 – start-page: 281 volume-title: Computer-Aided Diagnosis in Medical Imaging year: 1998 ident: ref15 article-title: Characterization of breast cancer using statistical approaches – volume-title: Introduction to Statistical Pattern Recognition year: 1990 ident: ref32 – ident: ref41 doi: 10.1118/1.598805 – ident: ref11 doi: 10.1148/radiology.203.1.9122385 – ident: ref2 doi: 10.2214/ajr.158.3.1310825 – ident: ref5 doi: 10.1016/s1076-6332(99)80058-0 – start-page: 130 volume-title: Proc. Computer Vision and Pattern Recognition ident: ref25 article-title: Training support vector machines: application to face detection – ident: ref22 doi: 10.1006/jcss.1997.1504 – start-page: 200 volume-title: Proc. 16th Int. Conf. Machine Learning ident: ref26 article-title: Transductive inference for text classification using support vector machines – ident: ref14 doi: 10.1034/j.1600-0455.2003.00008.x – volume-title: Neural Network—A Comprehensive Foundation year: 1999 ident: ref21 – ident: ref28 doi: 10.1109/TMI.2002.806569 – ident: ref37 doi: 10.1007/978-0-387-21606-5 – ident: ref8 doi: 10.1148/radiology.184.3.1509042 – ident: ref40 doi: 10.1097/00004424-199209000-00015 – ident: ref12 doi: 10.1118/1.598389 – volume-title: American College of Radiology Breast Imaging-Reporting and Data Systems (BI-RADS) year: 1998 ident: ref36 – start-page: 511 volume-title: Int. Conf. Computer Vision and Pattern Recognition ident: ref35 article-title: Rapid object detection using a boosted cascade of simple features – ident: ref9 doi: 10.1148/radiology.198.1.8539365 – start-page: 62 volume-title: Proc. MDK/KDD 2002: Int. Workshop Multimedia Data Mining ident: ref17 article-title: Mammography classification by an association rule-based classifier – ident: ref4 doi: 10.1148/radiology.198.3.8628853 – volume-title: Learning With Kernels—Support Vector Machines, Regularization, Optimization and Beyond year: 2002 ident: ref33 – ident: ref24 doi: 10.1109/NNSP.2000.890157 – ident: ref29 doi: 10.1007/978-1-4757-2711-1 – volume: 17 start-page: 1033 year: 1998 ident: ref39 article-title: Maximum-likelihood estimation of receiver operating (ROC) curves from continuously-distributed data publication-title: Statist. Med. doi: 10.1002/(SICI)1097-0258(19980515)17:9<1033::AID-SIM784>3.0.CO;2-Z – ident: ref6 doi: 10.1148/radiology.187.1.8451441 – ident: ref16 doi: 10.1118/1.1318221 – start-page: 211 issue: 1 year: 2001 ident: ref20 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J. Machine Learn. Res. – ident: ref34 doi: 10.1007/bfb0020278 – ident: ref1 doi: 10.1016/s0025-6196(12)60194-3 |
| SSID | ssj0014509 |
| Score | 2.3148954 |
| Snippet | In this paper, we investigate several state-of-the-art machine-learning methods for automated classification of clustered microcalcifications (MCs). The... The methods we considered were: support vector machine (SVM), kernel Fisher discriminant (KFD), relevance vector machine (RVM), and committee machines... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 371 |
| SubjectTerms | Algorithms Artificial Intelligence Breast cancer Breast Neoplasms - classification Breast Neoplasms - diagnostic imaging Calcinosis - classification Calcinosis - diagnostic imaging Clustered microcalcifications Computer aided diagnosis Female Humans Image databases Kernel kernel methods Learning systems Mammography Neural networks Pattern Recognition, Automated - methods Precancerous Conditions - classification Precancerous Conditions - diagnostic imaging Radiographic Image Enhancement - methods Radiographic Image Interpretation, Computer-Assisted - methods relevance vector machine Reproducibility of Results Sensitivity and Specificity Severity of Illness Index Spatial databases Statistical learning Studies Supervised learning support vector machine Support vector machine classification Support vector machines |
| Title | A study on several Machine-learning methods for classification of Malignant and benign clustered microcalcifications |
| URI | https://ieeexplore.ieee.org/document/1397824 https://www.ncbi.nlm.nih.gov/pubmed/15754987 https://www.proquest.com/docview/883436709 https://www.proquest.com/docview/17527353 https://www.proquest.com/docview/28059910 https://www.proquest.com/docview/67497607 |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA48Gh5LOXhAwcOJHW8dmIfK0RVkMKplXqL_EqFKAlikwu_nhknm1aIlbjFyjhyNGP5s-fzNwDvSH_EiFZnUQvcoIhKZMaaMhO2VIRwlUvVGuqv5fml_HKlrvbgw3IXJsaYyGcxp8eUyw-9H-mo7ITQihZyH_YrXU53tZaMgVQTnUOQYiwvxSzjU3BzclF_ThvBXFOaL5XdQ5AiDdHo7ixGqbrKbqCZFpyzR1BvhzrxTL7n4-By__svFcf__ZfH8HBGnux0CpUnsBe7Q3hwR4_wEO7Vc6b9CIZTlpRnWd8xXDzp5IrViXgZs7nSxDWbyk9vGAJf5gmGE-8ouZr1LZrffLsmng2zXWAudthCs5GkGWJgP4gKiBHil06bp3B59uni43k2V2jIvKz4kCkfogyVaRWPRmpfWZz-PmLDx0JGZSUP7bqSUXjrnNdBKyd4a50ogrZerZ_BQdd38QWwUOJSKrVzxnLpo7HCFbaQLmj8TqXXK8i3rmr8LF9OVTRumrSN4aZBN1NRTdlMbl7B-6XDz0m5Y7fpETno1mzyzQqOt7HQzDN702i9lkn0bgVvl7c4JSnPYrvYj5sGERmCQrXebSE0yeIUfLdFWUkEihyH9nwKwtvBzbH78t-DPob7SV020eRewcHwa4yvETcN7k2aMH8AJVQToQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIvE48Gh5LAXqAwcOJHUcO7GPFaLaQtPTVuot8itVRUkQm1z49XicbFohVuIWK5PI0Yzjz57P3wB8QP0RxRqZeMnCAoWVLFFaFQnThUCEK0ys1lCdF8sL_vVSXO7Ap_ksjPc-ks98ipcxl-86O-BW2RGiFcn4PbgvOOdiPK015wy4GAkdDDVjacEmIZ-MqqNVdRqXgqnERF8svBdgCldIpLszHcX6KtuhZpxyTp5CtensyDT5ng69Se3vv3Qc__drnsGTCXuS4zFYnsOOb_fg8R1Fwj14UE259n3oj0nUniVdS8L0iXtXpIrUS59MtSauyFiAek0C9CUWgTgyj6KzSdcE85vrK2TaEN06YnwbWsFsQHEG78gPJAOGGLHzQ-sXcHHyZfV5mUw1GhLLS9onwjrPXakaQb3i0pY6_ACsDw3rM-6F5tQ1eck9s9oYK50UhtFGG5Y5qa3IX8Ju27X-NRBXhMmUS2OUptx6pZnJdMaNk-E9pcwXkG5cVdtJwBzraNzUcSFDVR3cjGU1eT26eQEf5wd-jtod20330UG3ZqNvFnCwiYV6GtvrWsqcR9m7BRzOd8OgxEyLbn03rOuAyQIsFPl2CyZRGCej2y2KkgeoSEPXXo1BeNu5KXbf_LvTh_BwuarO6rPT828H8ChqzUbS3FvY7X8N_l1AUb15HwfPH6w2Fu4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+on+several+Machine-learning+methods+for+classification+of+Malignant+and+benign+clustered+microcalcifications&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Liyang+Wei&rft.au=Yongyi+Yang&rft.au=Nishikawa%2C+R.M.&rft.au=Yulei+Jiang&rft.date=2005-03-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=24&rft.issue=3&rft.spage=371&rft.epage=380&rft_id=info:doi/10.1109%2FTMI.2004.842457&rft_id=info%3Apmid%2F15754987&rft.externalDocID=1397824 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |