A study on several Machine-learning methods for classification of Malignant and benign clustered microcalcifications

In this paper, we investigate several state-of-the-art machine-learning methods for automated classification of clustered microcalcifications (MCs). The classifier is part of a computer-aided diagnosis (CADx) scheme that is aimed to assisting radiologists in making more accurate diagnoses of breast...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 24; no. 3; pp. 371 - 380
Main Authors Liyang Wei, Yongyi Yang, Nishikawa, R.M., Yulei Jiang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2005
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
DOI10.1109/TMI.2004.842457

Cover

Abstract In this paper, we investigate several state-of-the-art machine-learning methods for automated classification of clustered microcalcifications (MCs). The classifier is part of a computer-aided diagnosis (CADx) scheme that is aimed to assisting radiologists in making more accurate diagnoses of breast cancer on mammograms. The methods we considered were: support vector machine (SVM), kernel Fisher discriminant (KFD), relevance vector machine (RVM), and committee machines (ensemble averaging and AdaBoost), of which most have been developed recently in statistical learning theory. We formulated differentiation of malignant from benign MCs as a supervised learning problem, and applied these learning methods to develop the classification algorithm. As input, these methods used image features automatically extracted from clustered MCs. We tested these methods using a database of 697 clinical mammograms from 386 cases, which included a wide spectrum of difficult-to-classify cases. We analyzed the distribution of the cases in this database using the multidimensional scaling technique, which reveals that in the feature space the malignant cases are not trivially separable from the benign ones. We used receiver operating characteristic (ROC) analysis to evaluate and to compare classification performance by the different methods. In addition, we also investigated how to combine information from multiple-view mammograms of the same case so that the best decision can be made by a classifier. In our experiments, the kernel-based methods (i.e., SVM, KFD, and RVM) yielded the best performance (A/sub z/=0.85, SVM), significantly outperforming a well-established, clinically-proven CADx approach that is based on neural network (A/sub z/=0.80).
AbstractList In this paper, we investigate several state-of-the-art machine-learning methods for automated classification of clustered microcalcifications (MCs). The classifier is part of a computer-aided diagnosis (CADx) scheme that is aimed to assisting radiologists in making more accurate diagnoses of breast cancer on mammograms. The methods we considered were: support vector machine (SVM), kernel Fisher discriminant (KFD), relevance vector machine (RVM), and committee machines (ensemble averaging and AdaBoost), of which most have been developed recently in statistical learning theory. We formulated differentiation of malignant from benign MCs as a supervised learning problem, and applied these learning methods to develop the classification algorithm. As input, these methods used image features automatically extracted from clustered MCs. We tested these methods using a database of 697 clinical mammograms from 386 cases, which included a wide spectrum of difficult-to-classify cases. We analyzed the distribution of the cases in this database using the multidimensional scaling technique, which reveals that in the feature space the malignant cases are not trivially separable from the benign ones. We used receiver operating characteristic (ROC) analysis to evaluate and to compare classification performance by the different methods. In addition, we also investigated how to combine information from multiple-view mammograms of the same case so that the best decision can be made by a classifier. In our experiments, the kernel-based methods (i.e., SVM, KFD, and RVM) yielded the best performance (Az = 0.85, SVM), significantly outperforming a well-established, clinically-proven CADx approach that is based on neural network (Az = 0.80).
In this paper, we investigate several state-of-the-art machine-learning methods for automated classification of clustered microcalcifications (MCs). The classifier is part of a computer-aided diagnosis (CADx) scheme that is aimed to assisting radiologists in making more accurate diagnoses of breast cancer on mammograms. The methods we considered were: support vector machine (SVM), kernel Fisher discriminant (KFD), relevance vector machine (RVM), and committee machines (ensemble averaging and AdaBoost), of which most have been developed recently in statistical learning theory. We formulated differentiation of malignant from benign MCs as a supervised learning problem, and applied these learning methods to develop the classification algorithm. As input, these methods used image features automatically extracted from clustered MCs. We tested these methods using a database of 697 clinical mammograms from 386 cases, which included a wide spectrum of difficult-to-classify cases. We analyzed the distribution of the cases in this database using the multidimensional scaling technique, which reveals that in the feature space the malignant cases are not trivially separable from the benign ones. We used receiver operating characteristic (ROC) analysis to evaluate and to compare classification performance by the different methods. In addition, we also investigated how to combine information from multiple-view mammograms of the same case so that the best decision can be made by a classifier. In our experiments, the kernel-based methods (i.e., SVM, KFD, and RVM) yielded the best performance (A/sub z/=0.85, SVM), significantly outperforming a well-established, clinically-proven CADx approach that is based on neural network (A/sub z/=0.80).
In this paper, we investigate several state-of-the-art machine-learning methods for automated classification of clustered microcalcifications (MCs). The classifier is part of a computer-aided diagnosis (CADx) scheme that is aimed to assisting radiologists in making more accurate diagnoses of breast cancer on mammograms. The methods we considered were: support vector machine (SVM), kernel Fisher discriminant (KFD), relevance vector machine (RVM), and committee machines (ensemble averaging and AdaBoost), of which most have been developed recently in statistical learning theory. We formulated differentiation of malignant from benign MCs as a supervised learning problem, and applied these learning methods to develop the classification algorithm. As input, these methods used image features automatically extracted from clustered MCs. We tested these methods using a database of 697 clinical mammograms from 386 cases, which included a wide spectrum of difficult-to-classify cases. We analyzed the distribution of the cases in this database using the multidimensional scaling technique, which reveals that in the feature space the malignant cases are not trivially separable from the benign ones. We used receiver operating characteristic (ROC) analysis to evaluate and to compare classification performance by the different methods. In addition, we also investigated how to combine information from multiple-view mammograms of the same case so that the best decision can be made by a classifier. In our experiments, the kernel-based methods (i.e., SVM, KFD, and RVM) yielded the best performance (Az = 0.85, SVM), significantly outperforming a well-established, clinically-proven CADx approach that is based on neural network (Az = 0.80).In this paper, we investigate several state-of-the-art machine-learning methods for automated classification of clustered microcalcifications (MCs). The classifier is part of a computer-aided diagnosis (CADx) scheme that is aimed to assisting radiologists in making more accurate diagnoses of breast cancer on mammograms. The methods we considered were: support vector machine (SVM), kernel Fisher discriminant (KFD), relevance vector machine (RVM), and committee machines (ensemble averaging and AdaBoost), of which most have been developed recently in statistical learning theory. We formulated differentiation of malignant from benign MCs as a supervised learning problem, and applied these learning methods to develop the classification algorithm. As input, these methods used image features automatically extracted from clustered MCs. We tested these methods using a database of 697 clinical mammograms from 386 cases, which included a wide spectrum of difficult-to-classify cases. We analyzed the distribution of the cases in this database using the multidimensional scaling technique, which reveals that in the feature space the malignant cases are not trivially separable from the benign ones. We used receiver operating characteristic (ROC) analysis to evaluate and to compare classification performance by the different methods. In addition, we also investigated how to combine information from multiple-view mammograms of the same case so that the best decision can be made by a classifier. In our experiments, the kernel-based methods (i.e., SVM, KFD, and RVM) yielded the best performance (Az = 0.85, SVM), significantly outperforming a well-established, clinically-proven CADx approach that is based on neural network (Az = 0.80).
The methods we considered were: support vector machine (SVM), kernel Fisher discriminant (KFD), relevance vector machine (RVM), and committee machines (ensemble averaging and AdaBoost), of which most have been developed recently in statistical learning theory.
In this paper, we investigate several state-of-the-art machine-learning methods for automated classification of clustered microcalcifications (MCs). The classifier is part of a computer-aided diagnosis (CADx) scheme that is aimed to assisting radiologists in making more accurate diagnoses of breast cancer on mammograms. The methods we considered were: support vector machine (SVM), kernel Fisher discriminant (KFD), relevance vector machine (RVM), and committee machines (ensemble averaging and AdaBoost), of which most have been developed recently in statistical learning theory. We formulated differentiation of malignant from benign MCs as a supervised learning problem, and applied these learning methods to develop the classification algorithm. As input, these methods used image features automatically extracted from clustered MCs. We tested these methods using a database of 697 clinical mammograms from 386 cases, which included a wide spectrum of difficult-to-classify cases. We analyzed the distribution of the cases in this database using the multidimensional scaling technique, which reveals that in the feature space the malignant cases are not trivially separable from the benign ones. We used receiver operating characteristic (ROC) analysis to evaluate and to compare classification performance by the different methods. In addition, we also investigated how to combine information from multiple-view mammograms of the same case so that the best decision can be made by a classifier. In our experiments, the kernel-based methods (i.e., SVM, KFD, and RVM) yielded the best performance (A_z=0.85, SVM), significantly outperforming a well-established, clinically-proven CADx approach that is based on neural network(A_z=0.80).
Author Yulei Jiang
Liyang Wei
Yongyi Yang
Nishikawa, R.M.
Author_xml – sequence: 1
  surname: Liyang Wei
  fullname: Liyang Wei
  organization: Dept. of Biomed. Eng., Illinois Inst. of Technol., Chicago, IL, USA
– sequence: 2
  surname: Yongyi Yang
  fullname: Yongyi Yang
– sequence: 3
  givenname: R.M.
  surname: Nishikawa
  fullname: Nishikawa, R.M.
– sequence: 4
  surname: Yulei Jiang
  fullname: Yulei Jiang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15754987$$D View this record in MEDLINE/PubMed
BookMark eNqFksFLHTEQh0Ox1KftuYdCCR562-ckm7wkRxFtBaUXBW9LNpnVyG7WJtmC_32jz1bwUE9h4PtmyMxvj-zEOSIhnxmsGQNzeHlxtuYAYq0FF1K9IysmpW64FNc7ZAVc6QZgw3fJXs53AExIMB_ILpNKCqPVipQjmsviH-gcacbfmOxIL6y7DRGbEW2KId7QCcvt7DMd5kTdaHMOQ3C2hOrMQ8XHcBNtLNRGT3uMtarYkgsm9HQKLs3Oju6flD-S94MdM356fvfJ1enJ5fGP5vzn97Pjo_PGCQWlkc6j8MoMEtAI7ZTVChzWwiETKK0AP7RKIHe27532WvYcBttz5rV1st0n37Z979P8a8Fcuilkh-NoI85L7jZKGLUB9SbINUhjGLwJMiW5amVbwYNX4N28pFh_22ndinajwFTo6zO09BP67j6FyaaH7u95KnC4BeoKc044vCDQPQagqwHoHgPQbQNQDfnKcKE8bb0kG8b_eF-2XkDElymtUZqL9g8SnL5w
CODEN ITMID4
CitedBy_id crossref_primary_10_25259_IJMIO_21_2022
crossref_primary_10_1016_j_isatra_2020_03_018
crossref_primary_10_1109_JSTSP_2008_2011159
crossref_primary_10_1590_S0100_39842012000100011
crossref_primary_10_4103_ija_ija_549_24
crossref_primary_10_1016_j_ejrad_2020_109309
crossref_primary_10_1109_TBME_2016_2605627
crossref_primary_10_2174_1573405614666181012103750
crossref_primary_10_1007_s11042_020_09105_z
crossref_primary_10_1007_s13534_015_0191_1
crossref_primary_10_25046_aj020332
crossref_primary_10_1016_j_cmpb_2008_10_008
crossref_primary_10_1259_bjr_30415751
crossref_primary_10_1111_jmi_13062
crossref_primary_10_1016_j_artmed_2010_04_007
crossref_primary_10_1111_exsy_12281
crossref_primary_10_1007_s12046_018_0805_2
crossref_primary_10_1038_s41746_019_0135_8
crossref_primary_10_1038_s41598_017_03780_z
crossref_primary_10_1097_RLI_0000000000000518
crossref_primary_10_1080_0952813X_2017_1280088
crossref_primary_10_1109_TIM_2013_2278562
crossref_primary_10_1007_s10803_014_2268_6
crossref_primary_10_1088_1757_899X_1115_1_012018
crossref_primary_10_1016_j_cmpb_2019_05_019
crossref_primary_10_3745_KIPSTB_2009_16_B_2_165
crossref_primary_10_1109_ACCESS_2020_2964050
crossref_primary_10_1118_1_4870959
crossref_primary_10_1364_BOE_405502
crossref_primary_10_1155_2012_145926
crossref_primary_10_1118_1_2432409
crossref_primary_10_1118_1_3002311
crossref_primary_10_1118_1_3121511
crossref_primary_10_1155_2021_5543101
crossref_primary_10_1016_j_media_2012_02_005
crossref_primary_10_1109_TUFFC_2019_2925592
crossref_primary_10_1016_j_crad_2023_02_012
crossref_primary_10_1117_1_JMI_6_4_044501
crossref_primary_10_1016_j_patrec_2017_05_002
crossref_primary_10_1371_journal_pone_0104049
crossref_primary_10_1109_TMI_2017_2751523
crossref_primary_10_3390_s19030612
crossref_primary_10_1186_1471_2342_14_23
crossref_primary_10_1016_j_patcog_2008_08_028
crossref_primary_10_1186_s12880_019_0308_6
crossref_primary_10_1007_s11517_019_02038_2
crossref_primary_10_1016_j_cmpb_2021_105939
crossref_primary_10_1136_amiajnl_2012_001332
crossref_primary_10_1016_j_jfranklin_2006_09_005
crossref_primary_10_1016_j_knosys_2011_07_016
crossref_primary_10_1016_j_patrec_2009_06_012
crossref_primary_10_1109_RBME_2012_2232289
crossref_primary_10_1109_MSP_2010_936730
crossref_primary_10_1016_j_eswa_2008_07_040
crossref_primary_10_1016_j_ejrad_2019_108711
crossref_primary_10_1016_j_patcog_2018_01_009
crossref_primary_10_1016_j_bspc_2022_103924
crossref_primary_10_1109_TMI_2017_2654799
crossref_primary_10_1007_s11767_007_0211_0
crossref_primary_10_1186_1472_6947_9_S1_S1
crossref_primary_10_1155_2020_9162464
crossref_primary_10_1007_s10278_012_9465_7
crossref_primary_10_1007_s10278_022_00678_9
crossref_primary_10_1109_TMTT_2016_2637909
crossref_primary_10_1016_j_engappai_2011_02_011
crossref_primary_10_3233_THC_170851
crossref_primary_10_1007_s00138_020_01094_1
crossref_primary_10_1021_acsomega_4c03640
crossref_primary_10_1146_annurev_bioeng_8_061505_095802
crossref_primary_10_1093_bfgp_elae015
crossref_primary_10_1002_bdr2_1767
crossref_primary_10_1109_ACCESS_2018_2817593
crossref_primary_10_1177_10732748221095946
crossref_primary_10_1002_mp_14216
crossref_primary_10_2139_ssrn_4162288
crossref_primary_10_1002_mp_12152
crossref_primary_10_1007_s10462_012_9335_1
crossref_primary_10_1007_s12046_014_0278_x
crossref_primary_10_1016_j_acra_2006_09_053
crossref_primary_10_1016_j_compbiomed_2019_103422
crossref_primary_10_3923_jai_2014_113_122
crossref_primary_10_1007_s10278_008_9147_7
crossref_primary_10_1166_jbt_2022_3091
crossref_primary_10_1016_j_patcog_2016_09_027
crossref_primary_10_1016_j_compbiomed_2022_105458
crossref_primary_10_1016_j_acra_2008_08_012
crossref_primary_10_14407_jrpr_2019_44_4_149
crossref_primary_10_1016_j_neucom_2013_04_005
crossref_primary_10_1142_S021812662050156X
crossref_primary_10_2463_mrms_mp_2017_0178
crossref_primary_10_1007_s11042_018_6560_x
crossref_primary_10_7785_tcrtexpress_2013_600262
crossref_primary_10_1007_s10044_017_0653_4
crossref_primary_10_1101_cshperspect_a039537
crossref_primary_10_1109_ACCESS_2020_2975135
crossref_primary_10_1117_1_3099710
crossref_primary_10_1177_147323000903700603
crossref_primary_10_1088_0031_9155_57_16_5295
crossref_primary_10_1108_17563780910959929
crossref_primary_10_3923_jas_2009_3531_3538
crossref_primary_10_7763_IJMLC_2014_V4_390
crossref_primary_10_1002_lary_27850
crossref_primary_10_1117_1_JMI_4_1_014502
crossref_primary_10_1016_j_media_2010_02_004
crossref_primary_10_3390_s130404855
crossref_primary_10_1039_C7LC00955K
crossref_primary_10_9746_jcmsi_13_183
crossref_primary_10_3390_cancers14205055
crossref_primary_10_1080_15325000802046496
crossref_primary_10_1109_JBHI_2019_2902298
crossref_primary_10_1016_j_jksuci_2022_03_023
crossref_primary_10_1117_1_JMI_4_2_024501
crossref_primary_10_1155_2014_970287
crossref_primary_10_1118_1_3675600
crossref_primary_10_1007_s10278_019_00289_x
crossref_primary_10_1177_0954411913480669
crossref_primary_10_1109_TFUZZ_2005_864083
crossref_primary_10_1109_TPDS_2021_3090328
crossref_primary_10_1016_j_bspc_2010_10_003
crossref_primary_10_1002_mp_12316
crossref_primary_10_1016_j_artmed_2023_102629
crossref_primary_10_1007_s10396_010_0278_3
crossref_primary_10_1007_s10916_019_1494_z
crossref_primary_10_1016_j_jfoodeng_2014_08_024
crossref_primary_10_1016_j_cie_2008_09_018
crossref_primary_10_1097_01_gco_0000192965_29449_da
crossref_primary_10_1118_1_2938517
crossref_primary_10_1371_journal_pone_0229226
crossref_primary_10_1016_j_ejco_2022_100046
crossref_primary_10_1049_iet_cvi_2016_0163
Cites_doi 10.1118/1.599017
10.1017/CBO9780511812651
10.1148/radiology.212.3.r99au47817
10.1109/NNSP.1999.788121
10.1111/j.1469-1809.1936.tb02137.x
10.1109/34.683777
10.1109/IEMBS.1995.575237
10.1023/A:1009715923555
10.1118/1.598805
10.1148/radiology.203.1.9122385
10.2214/ajr.158.3.1310825
10.1016/s1076-6332(99)80058-0
10.1006/jcss.1997.1504
10.1034/j.1600-0455.2003.00008.x
10.1109/TMI.2002.806569
10.1007/978-0-387-21606-5
10.1148/radiology.184.3.1509042
10.1097/00004424-199209000-00015
10.1118/1.598389
10.1148/radiology.198.1.8539365
10.1148/radiology.198.3.8628853
10.1109/NNSP.2000.890157
10.1007/978-1-4757-2711-1
10.1002/(SICI)1097-0258(19980515)17:9<1033::AID-SIM784>3.0.CO;2-Z
10.1148/radiology.187.1.8451441
10.1118/1.1318221
10.1007/bfb0020278
10.1016/s0025-6196(12)60194-3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2004.842457
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
Technology Research Database
MEDLINE - Academic

Materials Research Database
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 380
ExternalDocumentID 2425570021
15754987
10_1109_TMI_2004_842457
1397824
Genre orig-research
Validation Studies
Research Support, U.S. Gov't, P.H.S
Comparative Study
Evaluation Studies
Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: CA89668
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c470t-5cde4d79f50e948c7a870ce0e9ce14e5a40df374e2cabbc8d85b20fab21d8ac53
IEDL.DBID RIE
ISSN 0278-0062
IngestDate Thu Oct 02 19:00:33 EDT 2025
Wed Oct 01 13:20:25 EDT 2025
Mon Oct 06 18:06:47 EDT 2025
Mon Jun 30 06:37:46 EDT 2025
Thu Apr 03 06:54:47 EDT 2025
Thu Apr 24 23:09:08 EDT 2025
Wed Oct 01 06:37:11 EDT 2025
Tue Aug 26 16:40:09 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-5cde4d79f50e948c7a870ce0e9ce14e5a40df374e2cabbc8d85b20fab21d8ac53
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Undefined-3
PMID 15754987
PQID 883436709
PQPubID 85460
PageCount 10
ParticipantIDs ieee_primary_1397824
pubmed_primary_15754987
crossref_primary_10_1109_TMI_2004_842457
proquest_miscellaneous_67497607
proquest_miscellaneous_17527353
proquest_journals_883436709
proquest_miscellaneous_28059910
crossref_citationtrail_10_1109_TMI_2004_842457
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-March
2005-03-00
2005-Mar
20050301
PublicationDateYYYYMMDD 2005-03-01
PublicationDate_xml – month: 03
  year: 2005
  text: 2005-March
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2005
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref37
ref14
Metz (ref39) 1998; 17
ref11
ref10
Ferrari (ref15) 1998
Fukunaga (ref32) 1990
ref2
ref1
Joachims (ref26)
ref16
Haykin (ref21) 1999
ref19
Viola (ref35)
Osuna (ref25)
ref24
Giger (ref3) 1998
ref42
Huo (ref7) 2000; 7
Ripley (ref30) 1996
ref41
ref22
Pontil (ref23) 1998; 20
Fisher (ref31) 1936; 7
ref28
ref29
ref8
ref9
ref4
Tipping (ref20) 2001
Burges (ref27) 1998; 2
ref6
Vapnik (ref18) 1998
ref5
(ref36) 1998
Zaiane (ref17)
ref40
Kapkowicz (ref38) 2000
Scholkopf (ref33) 2002
References_xml – start-page: 10
  volume-title: “Learning from imbalanced data sets: a comparison of various strategies,” Proceedings of Learning From Imbalanced Data Sets, AAAI Workshop
  year: 2000
  ident: ref38
– ident: ref42
  doi: 10.1118/1.599017
– volume-title: Pattern Recognition and Neural Networks
  year: 1996
  ident: ref30
  doi: 10.1017/CBO9780511812651
– volume: 7
  start-page: 1077
  year: 2000
  ident: ref7
  article-title: Effectiveness of CAD in the diagnosis of breast cancer: an observer study on an independent database of mammograms
  publication-title: Radiology
– ident: ref10
  doi: 10.1148/radiology.212.3.r99au47817
– ident: ref19
  doi: 10.1109/NNSP.1999.788121
– volume: 7
  start-page: 179
  year: 1936
  ident: ref31
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugenics
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 20
  start-page: 637
  issue: 6
  year: 1998
  ident: ref23
  article-title: Support vector machines for 3-D object recognition
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
  doi: 10.1109/34.683777
– start-page: 167
  volume-title: Comput.-Aided Diagnosis in Medical Imaging
  year: 1998
  ident: ref3
  article-title: Overview of computer-aided diagnosis in breast imaging
– volume-title: Statistical Learning Theory
  year: 1998
  ident: ref18
– ident: ref13
  doi: 10.1109/IEMBS.1995.575237
– volume: 2
  start-page: 121
  year: 1998
  ident: ref27
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Mining Knowledge Discovery
  doi: 10.1023/A:1009715923555
– start-page: 281
  volume-title: Computer-Aided Diagnosis in Medical Imaging
  year: 1998
  ident: ref15
  article-title: Characterization of breast cancer using statistical approaches
– volume-title: Introduction to Statistical Pattern Recognition
  year: 1990
  ident: ref32
– ident: ref41
  doi: 10.1118/1.598805
– ident: ref11
  doi: 10.1148/radiology.203.1.9122385
– ident: ref2
  doi: 10.2214/ajr.158.3.1310825
– ident: ref5
  doi: 10.1016/s1076-6332(99)80058-0
– start-page: 130
  volume-title: Proc. Computer Vision and Pattern Recognition
  ident: ref25
  article-title: Training support vector machines: application to face detection
– ident: ref22
  doi: 10.1006/jcss.1997.1504
– start-page: 200
  volume-title: Proc. 16th Int. Conf. Machine Learning
  ident: ref26
  article-title: Transductive inference for text classification using support vector machines
– ident: ref14
  doi: 10.1034/j.1600-0455.2003.00008.x
– volume-title: Neural Network—A Comprehensive Foundation
  year: 1999
  ident: ref21
– ident: ref28
  doi: 10.1109/TMI.2002.806569
– ident: ref37
  doi: 10.1007/978-0-387-21606-5
– ident: ref8
  doi: 10.1148/radiology.184.3.1509042
– ident: ref40
  doi: 10.1097/00004424-199209000-00015
– ident: ref12
  doi: 10.1118/1.598389
– volume-title: American College of Radiology Breast Imaging-Reporting and Data Systems (BI-RADS)
  year: 1998
  ident: ref36
– start-page: 511
  volume-title: Int. Conf. Computer Vision and Pattern Recognition
  ident: ref35
  article-title: Rapid object detection using a boosted cascade of simple features
– ident: ref9
  doi: 10.1148/radiology.198.1.8539365
– start-page: 62
  volume-title: Proc. MDK/KDD 2002: Int. Workshop Multimedia Data Mining
  ident: ref17
  article-title: Mammography classification by an association rule-based classifier
– ident: ref4
  doi: 10.1148/radiology.198.3.8628853
– volume-title: Learning With Kernels—Support Vector Machines, Regularization, Optimization and Beyond
  year: 2002
  ident: ref33
– ident: ref24
  doi: 10.1109/NNSP.2000.890157
– ident: ref29
  doi: 10.1007/978-1-4757-2711-1
– volume: 17
  start-page: 1033
  year: 1998
  ident: ref39
  article-title: Maximum-likelihood estimation of receiver operating (ROC) curves from continuously-distributed data
  publication-title: Statist. Med.
  doi: 10.1002/(SICI)1097-0258(19980515)17:9<1033::AID-SIM784>3.0.CO;2-Z
– ident: ref6
  doi: 10.1148/radiology.187.1.8451441
– ident: ref16
  doi: 10.1118/1.1318221
– start-page: 211
  issue: 1
  year: 2001
  ident: ref20
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J. Machine Learn. Res.
– ident: ref34
  doi: 10.1007/bfb0020278
– ident: ref1
  doi: 10.1016/s0025-6196(12)60194-3
SSID ssj0014509
Score 2.3148954
Snippet In this paper, we investigate several state-of-the-art machine-learning methods for automated classification of clustered microcalcifications (MCs). The...
The methods we considered were: support vector machine (SVM), kernel Fisher discriminant (KFD), relevance vector machine (RVM), and committee machines...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 371
SubjectTerms Algorithms
Artificial Intelligence
Breast cancer
Breast Neoplasms - classification
Breast Neoplasms - diagnostic imaging
Calcinosis - classification
Calcinosis - diagnostic imaging
Clustered microcalcifications
Computer aided diagnosis
Female
Humans
Image databases
Kernel
kernel methods
Learning systems
Mammography
Neural networks
Pattern Recognition, Automated - methods
Precancerous Conditions - classification
Precancerous Conditions - diagnostic imaging
Radiographic Image Enhancement - methods
Radiographic Image Interpretation, Computer-Assisted - methods
relevance vector machine
Reproducibility of Results
Sensitivity and Specificity
Severity of Illness Index
Spatial databases
Statistical learning
Studies
Supervised learning
support vector machine
Support vector machine classification
Support vector machines
Title A study on several Machine-learning methods for classification of Malignant and benign clustered microcalcifications
URI https://ieeexplore.ieee.org/document/1397824
https://www.ncbi.nlm.nih.gov/pubmed/15754987
https://www.proquest.com/docview/883436709
https://www.proquest.com/docview/17527353
https://www.proquest.com/docview/28059910
https://www.proquest.com/docview/67497607
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA48Gh5LOXhAwcOJHW8dmIfK0RVkMKplXqL_EqFKAlikwu_nhknm1aIlbjFyjhyNGP5s-fzNwDvSH_EiFZnUQvcoIhKZMaaMhO2VIRwlUvVGuqv5fml_HKlrvbgw3IXJsaYyGcxp8eUyw-9H-mo7ITQihZyH_YrXU53tZaMgVQTnUOQYiwvxSzjU3BzclF_ThvBXFOaL5XdQ5AiDdHo7ixGqbrKbqCZFpyzR1BvhzrxTL7n4-By__svFcf__ZfH8HBGnux0CpUnsBe7Q3hwR4_wEO7Vc6b9CIZTlpRnWd8xXDzp5IrViXgZs7nSxDWbyk9vGAJf5gmGE-8ouZr1LZrffLsmng2zXWAudthCs5GkGWJgP4gKiBHil06bp3B59uni43k2V2jIvKz4kCkfogyVaRWPRmpfWZz-PmLDx0JGZSUP7bqSUXjrnNdBKyd4a50ogrZerZ_BQdd38QWwUOJSKrVzxnLpo7HCFbaQLmj8TqXXK8i3rmr8LF9OVTRumrSN4aZBN1NRTdlMbl7B-6XDz0m5Y7fpETno1mzyzQqOt7HQzDN702i9lkn0bgVvl7c4JSnPYrvYj5sGERmCQrXebSE0yeIUfLdFWUkEihyH9nwKwtvBzbH78t-DPob7SV020eRewcHwa4yvETcN7k2aMH8AJVQToQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIvE48Gh5LAXqAwcOJHUcO7GPFaLaQtPTVuot8itVRUkQm1z49XicbFohVuIWK5PI0Yzjz57P3wB8QP0RxRqZeMnCAoWVLFFaFQnThUCEK0ys1lCdF8sL_vVSXO7Ap_ksjPc-ks98ipcxl-86O-BW2RGiFcn4PbgvOOdiPK015wy4GAkdDDVjacEmIZ-MqqNVdRqXgqnERF8svBdgCldIpLszHcX6KtuhZpxyTp5CtensyDT5ng69Se3vv3Qc__drnsGTCXuS4zFYnsOOb_fg8R1Fwj14UE259n3oj0nUniVdS8L0iXtXpIrUS59MtSauyFiAek0C9CUWgTgyj6KzSdcE85vrK2TaEN06YnwbWsFsQHEG78gPJAOGGLHzQ-sXcHHyZfV5mUw1GhLLS9onwjrPXakaQb3i0pY6_ACsDw3rM-6F5tQ1eck9s9oYK50UhtFGG5Y5qa3IX8Ju27X-NRBXhMmUS2OUptx6pZnJdMaNk-E9pcwXkG5cVdtJwBzraNzUcSFDVR3cjGU1eT26eQEf5wd-jtod20330UG3ZqNvFnCwiYV6GtvrWsqcR9m7BRzOd8OgxEyLbn03rOuAyQIsFPl2CyZRGCej2y2KkgeoSEPXXo1BeNu5KXbf_LvTh_BwuarO6rPT828H8ChqzUbS3FvY7X8N_l1AUb15HwfPH6w2Fu4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+on+several+Machine-learning+methods+for+classification+of+Malignant+and+benign+clustered+microcalcifications&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Liyang+Wei&rft.au=Yongyi+Yang&rft.au=Nishikawa%2C+R.M.&rft.au=Yulei+Jiang&rft.date=2005-03-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=24&rft.issue=3&rft.spage=371&rft.epage=380&rft_id=info:doi/10.1109%2FTMI.2004.842457&rft_id=info%3Apmid%2F15754987&rft.externalDocID=1397824
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon