Fault diagnosis method of bearing utilizing GLCM and MBASA-based KELM

In this study, fault diagnosis method of bearing utilizing gray level co-occurrence matrix (GLCM) and multi-beetles antennae search algorithm (MBASA)-based kernel extreme learning machine (KELM) is presented. In the proposed method, feature extraction of time–frequency image based on GLCM is propose...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 17368 - 8
Main Authors Fei, Sheng-wei, Liu, Ying-zhe
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.10.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-022-19209-1

Cover

Abstract In this study, fault diagnosis method of bearing utilizing gray level co-occurrence matrix (GLCM) and multi-beetles antennae search algorithm (MBASA)-based kernel extreme learning machine (KELM) is presented. In the proposed method, feature extraction of time–frequency image based on GLCM is proposed to extract the features of the bearing vibration signal, and multi-beetles antennae search algorithm-based KELM (MBASA-KELM) is presented to recognize the states of bearing. KELM employs the kernel-based framework, which has better generalization than traditional extreme learning machine, and it is necessary to look for an excellent optimization algorithm to select appropriate regularization parameter and kernel parameter of the KELM model because these parameters of the KELM model can affect its performance. As traditional beetle antennae search algorithm only employs one beetle, which is difficult to find the optimal parameters when the ranges of the parameters to be optimized are wide, multi-beetles antennae search algorithm (MBASA) employing multi-beetles is presented to select the regularization parameter and kernel parameter of KELM. The experimental results demonstrate that MBASA-KELM has stronger fault diagnosis ability for bearing than LSSVM, and KNN.
AbstractList In this study, fault diagnosis method of bearing utilizing gray level co-occurrence matrix (GLCM) and multi-beetles antennae search algorithm (MBASA)-based kernel extreme learning machine (KELM) is presented. In the proposed method, feature extraction of time–frequency image based on GLCM is proposed to extract the features of the bearing vibration signal, and multi-beetles antennae search algorithm-based KELM (MBASA-KELM) is presented to recognize the states of bearing. KELM employs the kernel-based framework, which has better generalization than traditional extreme learning machine, and it is necessary to look for an excellent optimization algorithm to select appropriate regularization parameter and kernel parameter of the KELM model because these parameters of the KELM model can affect its performance. As traditional beetle antennae search algorithm only employs one beetle, which is difficult to find the optimal parameters when the ranges of the parameters to be optimized are wide, multi-beetles antennae search algorithm (MBASA) employing multi-beetles is presented to select the regularization parameter and kernel parameter of KELM. The experimental results demonstrate that MBASA-KELM has stronger fault diagnosis ability for bearing than LSSVM, and KNN.
In this study, fault diagnosis method of bearing utilizing gray level co-occurrence matrix (GLCM) and multi-beetles antennae search algorithm (MBASA)-based kernel extreme learning machine (KELM) is presented. In the proposed method, feature extraction of time–frequency image based on GLCM is proposed to extract the features of the bearing vibration signal, and multi-beetles antennae search algorithm-based KELM (MBASA-KELM) is presented to recognize the states of bearing. KELM employs the kernel-based framework, which has better generalization than traditional extreme learning machine, and it is necessary to look for an excellent optimization algorithm to select appropriate regularization parameter and kernel parameter of the KELM model because these parameters of the KELM model can affect its performance. As traditional beetle antennae search algorithm only employs one beetle, which is difficult to find the optimal parameters when the ranges of the parameters to be optimized are wide, multi-beetles antennae search algorithm (MBASA) employing multi-beetles is presented to select the regularization parameter and kernel parameter of KELM. The experimental results demonstrate that MBASA-KELM has stronger fault diagnosis ability for bearing than LSSVM, and KNN.
In this study, fault diagnosis method of bearing utilizing gray level co-occurrence matrix (GLCM) and multi-beetles antennae search algorithm (MBASA)-based kernel extreme learning machine (KELM) is presented. In the proposed method, feature extraction of time-frequency image based on GLCM is proposed to extract the features of the bearing vibration signal, and multi-beetles antennae search algorithm-based KELM (MBASA-KELM) is presented to recognize the states of bearing. KELM employs the kernel-based framework, which has better generalization than traditional extreme learning machine, and it is necessary to look for an excellent optimization algorithm to select appropriate regularization parameter and kernel parameter of the KELM model because these parameters of the KELM model can affect its performance. As traditional beetle antennae search algorithm only employs one beetle, which is difficult to find the optimal parameters when the ranges of the parameters to be optimized are wide, multi-beetles antennae search algorithm (MBASA) employing multi-beetles is presented to select the regularization parameter and kernel parameter of KELM. The experimental results demonstrate that MBASA-KELM has stronger fault diagnosis ability for bearing than LSSVM, and KNN.In this study, fault diagnosis method of bearing utilizing gray level co-occurrence matrix (GLCM) and multi-beetles antennae search algorithm (MBASA)-based kernel extreme learning machine (KELM) is presented. In the proposed method, feature extraction of time-frequency image based on GLCM is proposed to extract the features of the bearing vibration signal, and multi-beetles antennae search algorithm-based KELM (MBASA-KELM) is presented to recognize the states of bearing. KELM employs the kernel-based framework, which has better generalization than traditional extreme learning machine, and it is necessary to look for an excellent optimization algorithm to select appropriate regularization parameter and kernel parameter of the KELM model because these parameters of the KELM model can affect its performance. As traditional beetle antennae search algorithm only employs one beetle, which is difficult to find the optimal parameters when the ranges of the parameters to be optimized are wide, multi-beetles antennae search algorithm (MBASA) employing multi-beetles is presented to select the regularization parameter and kernel parameter of KELM. The experimental results demonstrate that MBASA-KELM has stronger fault diagnosis ability for bearing than LSSVM, and KNN.
Abstract In this study, fault diagnosis method of bearing utilizing gray level co-occurrence matrix (GLCM) and multi-beetles antennae search algorithm (MBASA)-based kernel extreme learning machine (KELM) is presented. In the proposed method, feature extraction of time–frequency image based on GLCM is proposed to extract the features of the bearing vibration signal, and multi-beetles antennae search algorithm-based KELM (MBASA-KELM) is presented to recognize the states of bearing. KELM employs the kernel-based framework, which has better generalization than traditional extreme learning machine, and it is necessary to look for an excellent optimization algorithm to select appropriate regularization parameter and kernel parameter of the KELM model because these parameters of the KELM model can affect its performance. As traditional beetle antennae search algorithm only employs one beetle, which is difficult to find the optimal parameters when the ranges of the parameters to be optimized are wide, multi-beetles antennae search algorithm (MBASA) employing multi-beetles is presented to select the regularization parameter and kernel parameter of KELM. The experimental results demonstrate that MBASA-KELM has stronger fault diagnosis ability for bearing than LSSVM, and KNN.
ArticleNumber 17368
Author Liu, Ying-zhe
Fei, Sheng-wei
Author_xml – sequence: 1
  givenname: Sheng-wei
  surname: Fei
  fullname: Fei, Sheng-wei
  email: fsw@dhu.edu.cn
  organization: College of Mechanical Engineering, Donghua University
– sequence: 2
  givenname: Ying-zhe
  surname: Liu
  fullname: Liu, Ying-zhe
  organization: College of Mechanical Engineering, Donghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36253422$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAUjFAR_aB_gAOKxIVLwH624_iCtF1tS8WuOABn68Vxtl5l48VOQOXXN9kspe2hwhc_Pc-M5419mhy1vrVJ8oaSD5Sw4mPkVKgiIwAZVUBURl8kJ0C4yIABHD2oj5PzGDdkWAIUp-pVcsxyEIwDnCSLS-ybLq0crlsfXUy3trvxVerrtLQYXLtO-8417s9YXS3nqxTbKl1dzL7NshKjrdIvi-XqdfKyxiba88N-lvy4XHyff86WX6-u57NlZrgkXcZrVRtR51RWKmfcAkMClRScKEoloFSqMBZoTkUlOZpCGY5K2spYMnRLdpZcT7qVx43eBbfFcKs9Or1v-LDWGDpnGqtVURNjS4NQE15xq1SpjGVCATKJshi02KTVtzu8_Y1Ncy9IiR4z1lPGeshY7zPWdGB9mli7vtyOxtouYPPIyuOT1t3otf-llZC5VDAIvD8IBP-zt7HTWxeNbRpsre-jBgkiF1zAeNe7J9CN70M7BLxHcaEIZwPq7UNH91b-vvEAgAlggo8x2Pr_5iyekIzrsHN-nMo1z1MPwcbd-H9s-Gf7GdYdwtnYbw
CitedBy_id crossref_primary_10_32604_cmes_2023_046025
crossref_primary_10_1016_j_ress_2025_111009
crossref_primary_10_3233_THC_230926
crossref_primary_10_1038_s41598_024_75174_x
crossref_primary_10_1016_j_measurement_2024_114955
Cites_doi 10.1016/j.gltp.2021.01.015
10.1109/TGRS.2018.2812778
10.1016/j.eswa.2018.12.024
10.1016/j.patcog.2021.107869
10.1016/j.matpr.2021.10.152
10.1016/j.neures.2021.03.012
10.1016/j.aej.2021.06.013
10.1016/j.jss.2017.04.016
10.1016/j.precisioneng.2018.12.004
10.5430/ijrc.v1n1p1
10.1016/j.comcom.2021.10.035
10.1109/TR.2022.3180273
10.1016/j.bspc.2020.101875
10.1109/JSEN.2022.3179165
10.1016/j.measurement.2022.110924
10.1016/j.ast.2019.105539
10.1016/j.promfg.2020.07.014
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-022-19209-1
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
Proquest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

Publicly Available Content Database
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 8
ExternalDocumentID oai_doaj_org_article_98f0cebca2f04d4e99b9ce3592a37a78
10.1038/s41598-022-19209-1
PMC9576792
36253422
10_1038_s41598_022_19209_1
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c470t-4f9fc5f617d9634e23a02d754091172a7998ce21615d74ac89c4a97edce0216b3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Fri Oct 03 12:43:29 EDT 2025
Sun Oct 26 04:02:53 EDT 2025
Tue Sep 30 17:18:23 EDT 2025
Fri Sep 05 09:08:23 EDT 2025
Tue Oct 07 07:47:29 EDT 2025
Thu Jan 02 22:53:16 EST 2025
Thu Apr 24 23:12:25 EDT 2025
Wed Oct 01 01:37:47 EDT 2025
Fri Feb 21 02:39:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-4f9fc5f617d9634e23a02d754091172a7998ce21615d74ac89c4a97edce0216b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/s41598-022-19209-1.pdf
PMID 36253422
PQID 2725459043
PQPubID 2041939
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_98f0cebca2f04d4e99b9ce3592a37a78
unpaywall_primary_10_1038_s41598_022_19209_1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9576792
proquest_miscellaneous_2725654521
proquest_journals_2725459043
pubmed_primary_36253422
crossref_primary_10_1038_s41598_022_19209_1
crossref_citationtrail_10_1038_s41598_022_19209_1
springer_journals_10_1038_s41598_022_19209_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-17
PublicationDateYYYYMMDD 2022-10-17
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Nandini, Kumar, C. K. (CR15) 2021; 2
Kumar, Manjunath (CR3) 2022; 52
Al-Salman, Li, Wen (CR9) 2021; 172
Villa-Acevedo, López-Lezama, Colomé, Cepeda (CR11) 2022; 61
Hu, Deng (CR1) 2022; 181
Loparo (CR19) 2003
Kumar, Sripada, Sureka, Rath (CR10) 2018; 137
Jha, Kolekar (CR8) 2020; 59
Lu, Huang, Lu (CR17) 2020; 96
Li, Zhao, Yu, Chen, Deng, Deng (CR5) 2022; 22
Alshammari, Stavrakakis, Takatsuka (CR7) 2021; 114
Liu, Cheng, Wen (CR14) 2020; 49
Zhao, Liu, Chen, Chen, Li, Xu, Deng (CR4) 2022
Chen, Li, Hou, Bu (CR6) 2019; 56
Peng, Wang, Shao (CR2) 2022; 192
Jiang, Li (CR18) 2018; 1
Zheng, Li, Zhou (CR13) 2018; 56
Raghuwanshi, Shukla (CR12) 2019; 121
Li (CR16) 2021; 2
GS Nandini (19209_CR15) 2021; 2
CK Jha (19209_CR8) 2020; 59
BS Raghuwanshi (19209_CR12) 2019; 121
M Alshammari (19209_CR7) 2021; 114
JJ Lu (19209_CR17) 2020; 96
B Li (19209_CR16) 2021; 2
W Al-Salman (19209_CR9) 2021; 172
WM Villa-Acevedo (19209_CR11) 2022; 61
HM Zhao (19209_CR4) 2022
L Kumar (19209_CR10) 2018; 137
XY Jiang (19209_CR18) 2018; 1
XY Li (19209_CR5) 2022; 22
YZ Peng (19209_CR2) 2022; 192
Y Chen (19209_CR6) 2019; 56
J Hu (19209_CR1) 2022; 181
KA Loparo (19209_CR19) 2003
DD Liu (19209_CR14) 2020; 49
HS Kumar (19209_CR3) 2022; 52
G Zheng (19209_CR13) 2018; 56
References_xml – volume: 2
  start-page: 111
  issue: 1
  year: 2021
  end-page: 116
  ident: CR15
  article-title: Dropout technique for image classification based on extreme learning machine
  publication-title: Glob. Trans. Proc.
  doi: 10.1016/j.gltp.2021.01.015
– volume: 56
  start-page: 5244
  issue: 9
  year: 2018
  end-page: 5260
  ident: CR13
  article-title: Development of a gray-level co-occurrence matrix-based texture orientation estimation method and its application in sea surface wind direction retrieval from SAR imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2812778
– volume: 121
  start-page: 244
  year: 2019
  end-page: 255
  ident: CR12
  article-title: Generalized class-specific kernelized extreme learning machine for multiclass imbalanced learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.12.024
– volume: 114
  start-page: 107869
  year: 2021
  ident: CR7
  article-title: Refining a k-nearest neighbor graph for a computationally efficient spectral clustering
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2021.107869
– volume: 52
  start-page: 796
  year: 2022
  end-page: 801
  ident: CR3
  article-title: Use of empirical mode decomposition and K- nearest neighbour classifier for rolling element bearing fault diagnosis
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2021.10.152
– volume: 172
  start-page: 26
  year: 2021
  end-page: 40
  ident: CR9
  article-title: Detection of k-complexes in EEG signals using a multi-domain feature extraction coupled with a least square support vector machine classifier
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2021.03.012
– volume: 61
  start-page: 1353
  issue: 2
  year: 2022
  end-page: 1367
  ident: CR11
  article-title: Long-term voltage stability monitoring of power system areas using a kernel extreme learning machine approach
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.06.013
– volume: 137
  start-page: 686
  year: 2018
  end-page: 712
  ident: CR10
  article-title: Effective fault prediction model developed using Least Square Support Vector Machine (LSSVM)
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2017.04.016
– volume: 56
  start-page: 235
  year: 2019
  end-page: 245
  ident: CR6
  article-title: Feature extraction using dominant frequency bands and time-frequency image analysis for chatter detection in milling
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2018.12.004
– volume: 1
  start-page: 1
  issue: 1
  year: 2018
  end-page: 5
  ident: CR18
  article-title: BAS: Beetle antennae search algorithm for optimization problems
  publication-title: Int. J. Robot. Control
  doi: 10.5430/ijrc.v1n1p1
– volume: 181
  start-page: 404
  year: 2022
  end-page: 411
  ident: CR1
  article-title: Rolling bearing fault diagnosis based on wireless sensor network data fusion
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2021.10.035
– year: 2022
  ident: CR4
  article-title: Intelligent diagnosis using continuous wavelet transform and gauss convolutional deep belief network
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2022.3180273
– volume: 59
  start-page: 101875
  year: 2020
  ident: CR8
  article-title: Cardiac arrhythmia classification using tunable Q-wavelet transform based features and support vector machine classifier
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.101875
– volume: 22
  start-page: 14263
  issue: 14
  year: 2022
  end-page: 14272
  ident: CR5
  article-title: Feature extraction using parameterized multisynchrosqueezing transform
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3179165
– volume: 192
  start-page: 110924
  year: 2022
  ident: CR2
  article-title: A novel bearing imbalance Fault-diagnosis method based on a Wasserstein conditional generative adversarial network
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.110924
– volume: 96
  start-page: 105539
  year: 2020
  ident: CR17
  article-title: Kernel extreme learning machine with iterative picking scheme for failure diagnosis of a turbofan engine
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2019.105539
– year: 2003
  ident: CR19
  publication-title: Bearings Vibration Data Set
– volume: 49
  start-page: 166
  year: 2020
  end-page: 172
  ident: CR14
  article-title: Rolling bearing fault diagnosis via STFT and improved instantaneous frequency estimation method
  publication-title: Proced. Manuf.
  doi: 10.1016/j.promfg.2020.07.014
– volume: 2
  start-page: 144
  year: 2021
  end-page: 153
  ident: CR16
  article-title: Hearing loss classification via AlexNet and extreme learning machine
  publication-title: Int. J. Cogn. Comput. Eng.
– volume: 172
  start-page: 26
  year: 2021
  ident: 19209_CR9
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2021.03.012
– volume: 59
  start-page: 101875
  year: 2020
  ident: 19209_CR8
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.101875
– volume: 61
  start-page: 1353
  issue: 2
  year: 2022
  ident: 19209_CR11
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.06.013
– volume: 181
  start-page: 404
  year: 2022
  ident: 19209_CR1
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2021.10.035
– volume: 56
  start-page: 5244
  issue: 9
  year: 2018
  ident: 19209_CR13
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2812778
– year: 2022
  ident: 19209_CR4
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2022.3180273
– volume: 56
  start-page: 235
  year: 2019
  ident: 19209_CR6
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2018.12.004
– volume: 2
  start-page: 144
  year: 2021
  ident: 19209_CR16
  publication-title: Int. J. Cogn. Comput. Eng.
– volume: 96
  start-page: 105539
  year: 2020
  ident: 19209_CR17
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2019.105539
– volume: 114
  start-page: 107869
  year: 2021
  ident: 19209_CR7
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2021.107869
– volume: 22
  start-page: 14263
  issue: 14
  year: 2022
  ident: 19209_CR5
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3179165
– volume: 2
  start-page: 111
  issue: 1
  year: 2021
  ident: 19209_CR15
  publication-title: Glob. Trans. Proc.
  doi: 10.1016/j.gltp.2021.01.015
– volume: 137
  start-page: 686
  year: 2018
  ident: 19209_CR10
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2017.04.016
– volume: 192
  start-page: 110924
  year: 2022
  ident: 19209_CR2
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.110924
– volume: 121
  start-page: 244
  year: 2019
  ident: 19209_CR12
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.12.024
– volume: 52
  start-page: 796
  year: 2022
  ident: 19209_CR3
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2021.10.152
– volume-title: Bearings Vibration Data Set
  year: 2003
  ident: 19209_CR19
– volume: 1
  start-page: 1
  issue: 1
  year: 2018
  ident: 19209_CR18
  publication-title: Int. J. Robot. Control
  doi: 10.5430/ijrc.v1n1p1
– volume: 49
  start-page: 166
  year: 2020
  ident: 19209_CR14
  publication-title: Proced. Manuf.
  doi: 10.1016/j.promfg.2020.07.014
SSID ssj0000529419
Score 2.4078426
Snippet In this study, fault diagnosis method of bearing utilizing gray level co-occurrence matrix (GLCM) and multi-beetles antennae search algorithm (MBASA)-based...
Abstract In this study, fault diagnosis method of bearing utilizing gray level co-occurrence matrix (GLCM) and multi-beetles antennae search algorithm...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17368
SubjectTerms 639/166
639/705
Algorithms
Animals
Antennae
Coleoptera
Fault diagnosis
Generalization, Psychological
Humanities and Social Sciences
Learning algorithms
Machine Learning
multidisciplinary
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUNoeQpu-3KZBgd4aE71sWcdN2G1Isr20gdyELMl0wXhDd5eQ_vqOJK-7S0vaQy7GWJIZj77xzKB5IPSxNKCmZCVyYS1cRGjzQkuSO0mV9E5xF9PFpl_Ksytxfl1cb7T6CjFhqTxwYtyxqhpiQ8QOa4hwwitVK-t5oZjh0siY5ksqteFMpareTAmq-iwZwqvjBWiqkE0GvhcYNaEHwJYmigX7_2Zl_hksOZyYPkNPVt2Nubs1bbuhlCbP0W5vTeJR-ooX6JHv9tDj1F_y7iUaT8yqXWKXwulmC5z6ReN5g2tAOLweA-7a2c9w9_nydIpN5_D0ZPR1lAf15vDF-HL6Cl1Nxt9Oz_K-b0JuhSTLXDSqsUUDtokD8RKecUOYk2CbwZ9NMiPBxbKeBVvPSWFspawwYWesB41f1vw12unmnX-LsK-lp6xxpC4r4X2hwFwkvHaOe0qtcBmiax5q2xcVD70tWh0Pt3mlE9818F1HvmuaoU_DmptUUuPe2Sdha4aZoRx2fAAg0T1I9L9AkqH99cbqXkYXmklwjgtFBM_Q4TAM0hWOTEzn56s0pwxt2IGONwkHAyWg-gsuGMuQ3ELIFqnbI93se6zgrcDLkwpWHq2x9Jus-1hxNODtPzj37iE49x49ZVFmSE7lPtpZ_lj5D2CGLeuDKHG_ADcoKRw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Proquest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTojxgPheYSAj8caiObYTxw8ItVPLBGuFgEl7ixzbgUpRUtZWaPz1nPM1KlDFSxTFTuSc73w_--z7AbyONbopmYhAGIMX4WlewpgGVoZKOqu4rY-Lzebx2YX4cBld7sG8Owvjt1V2Y2I9UNvK-DXyEyZxKhMpKvi75Y_As0b56GpHoaFbagX7tk4xdgv2mc-MNYD98WT-6XO_6uLjWiJU7ekZypOTFXowf8oM52QIdjw3wJaHqhP5_wt9_r2Jso-k3oU7m3Kpr3_qovjDWU3vw70WZZJRoxYPYM-VD-F2wzt5_QgmU70p1sQ22-wWK9LwSJMqJxlqPn6eoD4Wi1_-7v356Yzo0pLZePRlFHi3Z8nHyfnsMVxMJ19Pz4KWTyEwQtJ1IHKVmyhHzGLR7IRjXFNmJWI2HPEk0xKnXsYxjwGtFNokygjte8w4RAJxxp_AoKxKdwjEZdKFLLc0ixPhXKQQRlKeWctdGBphhxB2MkxNm2zcc14UaR305knayD1Fuae13NNwCG_6d5ZNqo2dtce-a_qaPk12_aC6-pa2VpeqJKfGb_diORVWOKUyZRyPFNNcapkM4ajr2LS13VV6o2lDeNUXo9X5UIouXbVp6sSenh3b8bTRg74lCAkiLhgbgtzSkK2mbpeUi-91Zm-Fsz-p8M3jTpdumrVLFMe9vv2H5J7t_unncMBqa6BBKI9gsL7auBcIvNbZy9aafgMKdiYl
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1di9QwcDj3EPVB_LZ6SgTf3GKapE3z2Dt2PdZbX86DewtpkuJC6R7uLnL-eidtt1pODn0ppcmUYT46M53MDMD7zKCZkrmIhbV4EWHMS5LR2MlESe8Ud2252PJLdnohFpfp5QFM97Uwo_x927p7gyYmlIFh0ITeSGjefwcOcxTMfAKHRbE4Xwz_VELWSiSqr41B8I83gUf2p23T_zff8uYRySFP-gDu7Zorc_3D1PUfpmj-CB72PiQpOqY_hgPfPIG73VTJ66cwm5tdvSWuO0S32pBuSjRZV6REucbXE5S2evUz3H06O1kS0ziyPC7OizgYNUc-z86Wz-BiPvt6chr30xJiKyTdxqJSlU0r9EgcKpXwjBvKnESPDL9nkhmJgZX1LHh4Tgpjc2WFCfywHu18VvLnMGnWjX8JxJfSJ6xytMxy4X2q0EmkvHSO-ySxwkWQ7Gmobd9KPEy0qHWb0ua57uiuke66pbtOIvgwwFx1jTRu3X0cWDPsDE2w2wcoG7rXKa3yitpwmItVVDjhlSqV9TxVzHBpZB7B0Z6xutfMjWYSQ-JUUcEjeDcso06FRIlp_HrX7cnC8HXE40UnBwMmaPBTLhiLQI4kZITqeKVZfWv7diuM7aRCyOleln6jdRsppoO8_QPlXv3f21_DfdZqB40TeQST7fedf4Nu1rZ822vXLwp0GlY
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTojxwPdHYKAg8cbSObYTx4_d1DLBOiFBxXiKHNuBalFarY3Q9tdzzhcUpom9RFF8ls7nu9zv5PMdwNtYoZsSCQ-41vjgrs1LGJPAiFAKayQz9XWx6Ul8NOMfTqPTLYi7uzB10n5d0rL-TXfZYfsrdDTuMhiGTohJXAn_4dLkt2A7jhCDD2B7dvJp9M11kkOMEiBMoO0NGcKSKyZveKG6WP9VCPPfRMn-tPQu3KnKpbr4qYriD4c0uQ9fu6U0eShnw2qdDfXlX1Ueb77WB3Cvxaj-qKF8CFu2fAS3m66VF49hPFFVsfZNk6Q3X_lNF2p_kfsZ2g0y7qM2F_NL9_b--HDqq9L404PR51HgnKbxP46Pp09gNhl_OTwK2m4MgeaCrAOey1xHOSIeg0bLLWWKUCMQ8eH_UlAlMHDTljoEaQRXOpGaK7ff2iKOiDP2FAblorTPwbeZsCHNDcnihFsbSQShhGXGMBuGmhsPwm53Ut2WKncdM4q0PjJnSdqIKEURpbWI0tCDd_2cZVOo41rqA7fpPaUrsl1_WJx_T9uNSGWSE-2SxWhOuOFWykxqyyJJFRNKJB7sdiqTtpa_SqnAkDuShDMP3vTDaLPuIEaVdlE1NLFr7o58PGs0rOcEAUXEOKUeiA3d22B1c6Sc_6jrgkuMHYXEmXudlv5m6zpR7PWa_B-Se3Ez8pewQ2tFJkEodmGwPq_sK4Rx6-x1a7O_AJCAPOI
  priority: 102
  providerName: Unpaywall
Title Fault diagnosis method of bearing utilizing GLCM and MBASA-based KELM
URI https://link.springer.com/article/10.1038/s41598-022-19209-1
https://www.ncbi.nlm.nih.gov/pubmed/36253422
https://www.proquest.com/docview/2725459043
https://www.proquest.com/docview/2725654521
https://pubmed.ncbi.nlm.nih.gov/PMC9576792
https://www.nature.com/articles/s41598-022-19209-1.pdf
https://doaj.org/article/98f0cebca2f04d4e99b9ce3592a37a78
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (PMC)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7tQ8ByQLwJLFWQuLGBxHHi-IBQWrWsyrZasVQqp8ixnd1KUbr0ISi_nnFeUFFWXNIotqORZybzTW3PB_A6FBimWEQdKiVeqKF58ULXUczjTCvuq_K42Ggcnk7ocBpM96ChO6oncLkztTN8UpNF_vbHt80HdPj31ZHx6N0Sg5A5KIZpFeIVU95_Hw4xUnFD5TCq4X5V65tw6vH67MzuoUdwG7_pgU8J2QpVZUX_XTD0792U7ZLqXbizLq7F5rvI8z-i1uA-3Kvhph1X9vEA9nTxEG5VBJSbR9AfiHW-slW13262tCtCaXue2Sm6AL7eRsPMZz_N3cez3sgWhbJH3fgidkz8U_an_tnoMUwG_S-9U6cmVnAkZe7KoRnPZJAheFHof1QTX7hEMQRv-OljRDDMwaQmBgwqRoWMuKTCqE5qhARh6j-Bg2Je6Gdg65Rpj2TKTcOIah1wxJOunyrla8-TVFngNXOYyLrquCG_yJNy9duPkkoFCaogKVWQeBa8acdcVzU3buzdNappe5p62eWD-eIyqd0v4VHmSrPvi2QuVVRznnKp_YAT4TPBIguOG8UmjQ0mhGH2HHCX-ha8apvR_cyaiij0fF31CQ1PO8rxtLKDVpLGjixgWxayJep2SzG7Kkt8c0wDGceRJ40t_Rbrpqk4ae3tP2bu-T8lfgFHpPQJ1_HYMRysFmv9EsHXKu3APpuyDhzG8fBiiL_d_vj8Mz7thb1O-YdGp_Q5bJmMz-OvvwCbMiol
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjR4QHwTGMNI8MSiJbYTxw8TareWjn4IwSbtzTi2A5WqtKytpvLH8bdxzteoQBUve4mi2I6c853vLue7H0JvYgVqiifMZ1rDhTmYlzAOfMNDwa0R1BTpYsNR3DtnHy-iiy30q86Fcccq6z2x2KjNVLt_5IeEgysTiYDR97MfvkONctHVGkJDVdAK5qgoMVYldvTt6gpcuPnR6Qms91tCup2z455foQz4mvFg4bNMZDrKQJMbYEZmCVUBMRwsGdgHOFEcHBJtibOMDGdKJ0Iz5b5DW9CPcUrhvbfQDqNMgPO30-6MPn1u_vK4OBoLRZWtE9DkcA4a02W1gQ8IxpXDIljTiAVwwL-s3b8PbTaR27tod5nP1OpKTSZ_KMfufXSvsmpxq2TDB2jL5g_R7RLncvUIdbpqOVlgUx7rG89xiVuNpxlOgYTwegz8Pxn_dHcfBsdDrHKDh-3Wl5bv1KzB_c5g-Bid3whln6DtfJrbZwjblNuQZCZI44RZGwkwWwOaGkNtGGpmPBTWNJS6Km7uMDYmsgiy00SWdJdAd1nQXYYeeteMmZWlPTb2brulaXq6stzFg-nlN1lJuRRJFmh3vIxkATPMCpEKbWkkiKJc8cRDe_XCymqvmMtrzvbQ66YZpNyFblRup8uyT-zg4GEeT0s-aGYCJkhEGSEe4mscsjbV9ZZ8_L2oJC7A2-QCRh7UvHQ9rU2kOGj47T8o93zzR79Cu72z4UAOTkf9F-gOKSQj8EO-h7YXl0v7Eoy-RbpfSRZGX29amH8DPYZh4Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEAweEN8UBhgJnljUxHbi-AGhbmvZaDshwaS-eY7tjEpRUtZWU_nT-Os452tUoIqXvURR4kTO-Xe-u9zZP4TeRgrMFI-Zx7SGA3M0L0Hke4YHglsjqCmXi41PoqNT9nkSTrbQr2YtjCurbObEcqI2hXb_yLuEQygTCp_RblqXRXw5HHyc_fAcg5TLtDZ0GhVEhnZ1CeHb_MPxIYz1O0IG_W8HR17NMOBpxv2Fx1KR6jAFK24AiMwSqnxiOHgxMAdwojgEI9oS5xUZzpSOhWbKfYO2YBujhMJ7b6CbnFLhygn5hLf_d1wGjQWiXqfj07g7B1vp1rNB9AdulWMhWLOFJWXAv_zcv8s125ztXbSzzGdqdamy7A-zOLiP7tX-LO5VAHyAtmz-EN2qGC5Xj1B_oJbZApuqoG86xxVjNS5SnIAA4fUYkJ9Nf7qzT6ODMVa5weP93tee5wyswcP-aPwYnV6LXJ-g7bzI7TOEbcJtQFLjJ1HMrA0FOKw-TYyhNgg0Mx0UNDKUut7W3LFrZLJMr9NYVnKXIHdZyl0GHfS-fWZWbeqxsfW-G5q2pduQu7xQXJzLWr-liFNfu8IykvrMMCtEIrSloSCKcsXjDtptBlbWs8RcXmG6g960t0G_XdJG5bZYVm0iRwQP_Xha4aDtCTgfIWWEdBBfQ8haV9fv5NPv5R7iAuJMLuDJvQZLV93aJIq9Fm__Ibnnmz_6NboNKixHxyfDF-gOKRXD9wK-i7YXF0v7Ery9RfKqVCuMzq5bj38DcaNfew
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTojxwPdHYKAg8cbSObYTx4_d1DLBOiFBxXiKHNuBalFarY3Q9tdzzhcUpom9RFF8ls7nu9zv5PMdwNtYoZsSCQ-41vjgrs1LGJPAiFAKayQz9XWx6Ul8NOMfTqPTLYi7uzB10n5d0rL-TXfZYfsrdDTuMhiGTohJXAn_4dLkt2A7jhCDD2B7dvJp9M11kkOMEiBMoO0NGcKSKyZveKG6WP9VCPPfRMn-tPQu3KnKpbr4qYriD4c0uQ9fu6U0eShnw2qdDfXlX1Ueb77WB3Cvxaj-qKF8CFu2fAS3m66VF49hPFFVsfZNk6Q3X_lNF2p_kfsZ2g0y7qM2F_NL9_b--HDqq9L404PR51HgnKbxP46Pp09gNhl_OTwK2m4MgeaCrAOey1xHOSIeg0bLLWWKUCMQ8eH_UlAlMHDTljoEaQRXOpGaK7ff2iKOiDP2FAblorTPwbeZsCHNDcnihFsbSQShhGXGMBuGmhsPwm53Ut2WKncdM4q0PjJnSdqIKEURpbWI0tCDd_2cZVOo41rqA7fpPaUrsl1_WJx_T9uNSGWSE-2SxWhOuOFWykxqyyJJFRNKJB7sdiqTtpa_SqnAkDuShDMP3vTDaLPuIEaVdlE1NLFr7o58PGs0rOcEAUXEOKUeiA3d22B1c6Sc_6jrgkuMHYXEmXudlv5m6zpR7PWa_B-Se3Ez8pewQ2tFJkEodmGwPq_sK4Rx6-x1a7O_AJCAPOI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+diagnosis+method+of+bearing+utilizing+GLCM+and+MBASA-based+KELM&rft.jtitle=Scientific+reports&rft.au=Fei%2C+Sheng-Wei&rft.au=Liu%2C+Ying-Zhe&rft.date=2022-10-17&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=17368&rft_id=info:doi/10.1038%2Fs41598-022-19209-1&rft_id=info%3Apmid%2F36253422&rft.externalDocID=36253422
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon