Fault diagnosis method of bearing utilizing GLCM and MBASA-based KELM
In this study, fault diagnosis method of bearing utilizing gray level co-occurrence matrix (GLCM) and multi-beetles antennae search algorithm (MBASA)-based kernel extreme learning machine (KELM) is presented. In the proposed method, feature extraction of time–frequency image based on GLCM is propose...
Saved in:
| Published in | Scientific reports Vol. 12; no. 1; pp. 17368 - 8 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
17.10.2022
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-022-19209-1 |
Cover
| Abstract | In this study, fault diagnosis method of bearing utilizing gray level co-occurrence matrix (GLCM) and multi-beetles antennae search algorithm (MBASA)-based kernel extreme learning machine (KELM) is presented. In the proposed method, feature extraction of time–frequency image based on GLCM is proposed to extract the features of the bearing vibration signal, and multi-beetles antennae search algorithm-based KELM (MBASA-KELM) is presented to recognize the states of bearing. KELM employs the kernel-based framework, which has better generalization than traditional extreme learning machine, and it is necessary to look for an excellent optimization algorithm to select appropriate regularization parameter and kernel parameter of the KELM model because these parameters of the KELM model can affect its performance. As traditional beetle antennae search algorithm only employs one beetle, which is difficult to find the optimal parameters when the ranges of the parameters to be optimized are wide, multi-beetles antennae search algorithm (MBASA) employing multi-beetles is presented to select the regularization parameter and kernel parameter of KELM. The experimental results demonstrate that MBASA-KELM has stronger fault diagnosis ability for bearing than LSSVM, and KNN. |
|---|---|
| AbstractList | In this study, fault diagnosis method of bearing utilizing gray level co-occurrence matrix (GLCM) and multi-beetles antennae search algorithm (MBASA)-based kernel extreme learning machine (KELM) is presented. In the proposed method, feature extraction of time–frequency image based on GLCM is proposed to extract the features of the bearing vibration signal, and multi-beetles antennae search algorithm-based KELM (MBASA-KELM) is presented to recognize the states of bearing. KELM employs the kernel-based framework, which has better generalization than traditional extreme learning machine, and it is necessary to look for an excellent optimization algorithm to select appropriate regularization parameter and kernel parameter of the KELM model because these parameters of the KELM model can affect its performance. As traditional beetle antennae search algorithm only employs one beetle, which is difficult to find the optimal parameters when the ranges of the parameters to be optimized are wide, multi-beetles antennae search algorithm (MBASA) employing multi-beetles is presented to select the regularization parameter and kernel parameter of KELM. The experimental results demonstrate that MBASA-KELM has stronger fault diagnosis ability for bearing than LSSVM, and KNN. In this study, fault diagnosis method of bearing utilizing gray level co-occurrence matrix (GLCM) and multi-beetles antennae search algorithm (MBASA)-based kernel extreme learning machine (KELM) is presented. In the proposed method, feature extraction of time–frequency image based on GLCM is proposed to extract the features of the bearing vibration signal, and multi-beetles antennae search algorithm-based KELM (MBASA-KELM) is presented to recognize the states of bearing. KELM employs the kernel-based framework, which has better generalization than traditional extreme learning machine, and it is necessary to look for an excellent optimization algorithm to select appropriate regularization parameter and kernel parameter of the KELM model because these parameters of the KELM model can affect its performance. As traditional beetle antennae search algorithm only employs one beetle, which is difficult to find the optimal parameters when the ranges of the parameters to be optimized are wide, multi-beetles antennae search algorithm (MBASA) employing multi-beetles is presented to select the regularization parameter and kernel parameter of KELM. The experimental results demonstrate that MBASA-KELM has stronger fault diagnosis ability for bearing than LSSVM, and KNN. In this study, fault diagnosis method of bearing utilizing gray level co-occurrence matrix (GLCM) and multi-beetles antennae search algorithm (MBASA)-based kernel extreme learning machine (KELM) is presented. In the proposed method, feature extraction of time-frequency image based on GLCM is proposed to extract the features of the bearing vibration signal, and multi-beetles antennae search algorithm-based KELM (MBASA-KELM) is presented to recognize the states of bearing. KELM employs the kernel-based framework, which has better generalization than traditional extreme learning machine, and it is necessary to look for an excellent optimization algorithm to select appropriate regularization parameter and kernel parameter of the KELM model because these parameters of the KELM model can affect its performance. As traditional beetle antennae search algorithm only employs one beetle, which is difficult to find the optimal parameters when the ranges of the parameters to be optimized are wide, multi-beetles antennae search algorithm (MBASA) employing multi-beetles is presented to select the regularization parameter and kernel parameter of KELM. The experimental results demonstrate that MBASA-KELM has stronger fault diagnosis ability for bearing than LSSVM, and KNN.In this study, fault diagnosis method of bearing utilizing gray level co-occurrence matrix (GLCM) and multi-beetles antennae search algorithm (MBASA)-based kernel extreme learning machine (KELM) is presented. In the proposed method, feature extraction of time-frequency image based on GLCM is proposed to extract the features of the bearing vibration signal, and multi-beetles antennae search algorithm-based KELM (MBASA-KELM) is presented to recognize the states of bearing. KELM employs the kernel-based framework, which has better generalization than traditional extreme learning machine, and it is necessary to look for an excellent optimization algorithm to select appropriate regularization parameter and kernel parameter of the KELM model because these parameters of the KELM model can affect its performance. As traditional beetle antennae search algorithm only employs one beetle, which is difficult to find the optimal parameters when the ranges of the parameters to be optimized are wide, multi-beetles antennae search algorithm (MBASA) employing multi-beetles is presented to select the regularization parameter and kernel parameter of KELM. The experimental results demonstrate that MBASA-KELM has stronger fault diagnosis ability for bearing than LSSVM, and KNN. Abstract In this study, fault diagnosis method of bearing utilizing gray level co-occurrence matrix (GLCM) and multi-beetles antennae search algorithm (MBASA)-based kernel extreme learning machine (KELM) is presented. In the proposed method, feature extraction of time–frequency image based on GLCM is proposed to extract the features of the bearing vibration signal, and multi-beetles antennae search algorithm-based KELM (MBASA-KELM) is presented to recognize the states of bearing. KELM employs the kernel-based framework, which has better generalization than traditional extreme learning machine, and it is necessary to look for an excellent optimization algorithm to select appropriate regularization parameter and kernel parameter of the KELM model because these parameters of the KELM model can affect its performance. As traditional beetle antennae search algorithm only employs one beetle, which is difficult to find the optimal parameters when the ranges of the parameters to be optimized are wide, multi-beetles antennae search algorithm (MBASA) employing multi-beetles is presented to select the regularization parameter and kernel parameter of KELM. The experimental results demonstrate that MBASA-KELM has stronger fault diagnosis ability for bearing than LSSVM, and KNN. |
| ArticleNumber | 17368 |
| Author | Liu, Ying-zhe Fei, Sheng-wei |
| Author_xml | – sequence: 1 givenname: Sheng-wei surname: Fei fullname: Fei, Sheng-wei email: fsw@dhu.edu.cn organization: College of Mechanical Engineering, Donghua University – sequence: 2 givenname: Ying-zhe surname: Liu fullname: Liu, Ying-zhe organization: College of Mechanical Engineering, Donghua University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36253422$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUk1v1DAUjFAR_aB_gAOKxIVLwH624_iCtF1tS8WuOABn68Vxtl5l48VOQOXXN9kspe2hwhc_Pc-M5419mhy1vrVJ8oaSD5Sw4mPkVKgiIwAZVUBURl8kJ0C4yIABHD2oj5PzGDdkWAIUp-pVcsxyEIwDnCSLS-ybLq0crlsfXUy3trvxVerrtLQYXLtO-8417s9YXS3nqxTbKl1dzL7NshKjrdIvi-XqdfKyxiba88N-lvy4XHyff86WX6-u57NlZrgkXcZrVRtR51RWKmfcAkMClRScKEoloFSqMBZoTkUlOZpCGY5K2spYMnRLdpZcT7qVx43eBbfFcKs9Or1v-LDWGDpnGqtVURNjS4NQE15xq1SpjGVCATKJshi02KTVtzu8_Y1Ncy9IiR4z1lPGeshY7zPWdGB9mli7vtyOxtouYPPIyuOT1t3otf-llZC5VDAIvD8IBP-zt7HTWxeNbRpsre-jBgkiF1zAeNe7J9CN70M7BLxHcaEIZwPq7UNH91b-vvEAgAlggo8x2Pr_5iyekIzrsHN-nMo1z1MPwcbd-H9s-Gf7GdYdwtnYbw |
| CitedBy_id | crossref_primary_10_32604_cmes_2023_046025 crossref_primary_10_1016_j_ress_2025_111009 crossref_primary_10_3233_THC_230926 crossref_primary_10_1038_s41598_024_75174_x crossref_primary_10_1016_j_measurement_2024_114955 |
| Cites_doi | 10.1016/j.gltp.2021.01.015 10.1109/TGRS.2018.2812778 10.1016/j.eswa.2018.12.024 10.1016/j.patcog.2021.107869 10.1016/j.matpr.2021.10.152 10.1016/j.neures.2021.03.012 10.1016/j.aej.2021.06.013 10.1016/j.jss.2017.04.016 10.1016/j.precisioneng.2018.12.004 10.5430/ijrc.v1n1p1 10.1016/j.comcom.2021.10.035 10.1109/TR.2022.3180273 10.1016/j.bspc.2020.101875 10.1109/JSEN.2022.3179165 10.1016/j.measurement.2022.110924 10.1016/j.ast.2019.105539 10.1016/j.promfg.2020.07.014 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-022-19209-1 |
| DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection Proquest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 8 |
| ExternalDocumentID | oai_doaj_org_article_98f0cebca2f04d4e99b9ce3592a37a78 10.1038/s41598-022-19209-1 PMC9576792 36253422 10_1038_s41598_022_19209_1 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c470t-4f9fc5f617d9634e23a02d754091172a7998ce21615d74ac89c4a97edce0216b3 |
| IEDL.DBID | M48 |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:43:29 EDT 2025 Sun Oct 26 04:02:53 EDT 2025 Tue Sep 30 17:18:23 EDT 2025 Fri Sep 05 09:08:23 EDT 2025 Tue Oct 07 07:47:29 EDT 2025 Thu Jan 02 22:53:16 EST 2025 Thu Apr 24 23:12:25 EDT 2025 Wed Oct 01 01:37:47 EDT 2025 Fri Feb 21 02:39:06 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-4f9fc5f617d9634e23a02d754091172a7998ce21615d74ac89c4a97edce0216b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/s41598-022-19209-1.pdf |
| PMID | 36253422 |
| PQID | 2725459043 |
| PQPubID | 2041939 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_98f0cebca2f04d4e99b9ce3592a37a78 unpaywall_primary_10_1038_s41598_022_19209_1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9576792 proquest_miscellaneous_2725654521 proquest_journals_2725459043 pubmed_primary_36253422 crossref_primary_10_1038_s41598_022_19209_1 crossref_citationtrail_10_1038_s41598_022_19209_1 springer_journals_10_1038_s41598_022_19209_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-17 |
| PublicationDateYYYYMMDD | 2022-10-17 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Nandini, Kumar, C. K. (CR15) 2021; 2 Kumar, Manjunath (CR3) 2022; 52 Al-Salman, Li, Wen (CR9) 2021; 172 Villa-Acevedo, López-Lezama, Colomé, Cepeda (CR11) 2022; 61 Hu, Deng (CR1) 2022; 181 Loparo (CR19) 2003 Kumar, Sripada, Sureka, Rath (CR10) 2018; 137 Jha, Kolekar (CR8) 2020; 59 Lu, Huang, Lu (CR17) 2020; 96 Li, Zhao, Yu, Chen, Deng, Deng (CR5) 2022; 22 Alshammari, Stavrakakis, Takatsuka (CR7) 2021; 114 Liu, Cheng, Wen (CR14) 2020; 49 Zhao, Liu, Chen, Chen, Li, Xu, Deng (CR4) 2022 Chen, Li, Hou, Bu (CR6) 2019; 56 Peng, Wang, Shao (CR2) 2022; 192 Jiang, Li (CR18) 2018; 1 Zheng, Li, Zhou (CR13) 2018; 56 Raghuwanshi, Shukla (CR12) 2019; 121 Li (CR16) 2021; 2 GS Nandini (19209_CR15) 2021; 2 CK Jha (19209_CR8) 2020; 59 BS Raghuwanshi (19209_CR12) 2019; 121 M Alshammari (19209_CR7) 2021; 114 JJ Lu (19209_CR17) 2020; 96 B Li (19209_CR16) 2021; 2 W Al-Salman (19209_CR9) 2021; 172 WM Villa-Acevedo (19209_CR11) 2022; 61 HM Zhao (19209_CR4) 2022 L Kumar (19209_CR10) 2018; 137 XY Jiang (19209_CR18) 2018; 1 XY Li (19209_CR5) 2022; 22 YZ Peng (19209_CR2) 2022; 192 Y Chen (19209_CR6) 2019; 56 J Hu (19209_CR1) 2022; 181 KA Loparo (19209_CR19) 2003 DD Liu (19209_CR14) 2020; 49 HS Kumar (19209_CR3) 2022; 52 G Zheng (19209_CR13) 2018; 56 |
| References_xml | – volume: 2 start-page: 111 issue: 1 year: 2021 end-page: 116 ident: CR15 article-title: Dropout technique for image classification based on extreme learning machine publication-title: Glob. Trans. Proc. doi: 10.1016/j.gltp.2021.01.015 – volume: 56 start-page: 5244 issue: 9 year: 2018 end-page: 5260 ident: CR13 article-title: Development of a gray-level co-occurrence matrix-based texture orientation estimation method and its application in sea surface wind direction retrieval from SAR imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2812778 – volume: 121 start-page: 244 year: 2019 end-page: 255 ident: CR12 article-title: Generalized class-specific kernelized extreme learning machine for multiclass imbalanced learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.12.024 – volume: 114 start-page: 107869 year: 2021 ident: CR7 article-title: Refining a k-nearest neighbor graph for a computationally efficient spectral clustering publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2021.107869 – volume: 52 start-page: 796 year: 2022 end-page: 801 ident: CR3 article-title: Use of empirical mode decomposition and K- nearest neighbour classifier for rolling element bearing fault diagnosis publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2021.10.152 – volume: 172 start-page: 26 year: 2021 end-page: 40 ident: CR9 article-title: Detection of k-complexes in EEG signals using a multi-domain feature extraction coupled with a least square support vector machine classifier publication-title: Neurosci. Res. doi: 10.1016/j.neures.2021.03.012 – volume: 61 start-page: 1353 issue: 2 year: 2022 end-page: 1367 ident: CR11 article-title: Long-term voltage stability monitoring of power system areas using a kernel extreme learning machine approach publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.06.013 – volume: 137 start-page: 686 year: 2018 end-page: 712 ident: CR10 article-title: Effective fault prediction model developed using Least Square Support Vector Machine (LSSVM) publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2017.04.016 – volume: 56 start-page: 235 year: 2019 end-page: 245 ident: CR6 article-title: Feature extraction using dominant frequency bands and time-frequency image analysis for chatter detection in milling publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2018.12.004 – volume: 1 start-page: 1 issue: 1 year: 2018 end-page: 5 ident: CR18 article-title: BAS: Beetle antennae search algorithm for optimization problems publication-title: Int. J. Robot. Control doi: 10.5430/ijrc.v1n1p1 – volume: 181 start-page: 404 year: 2022 end-page: 411 ident: CR1 article-title: Rolling bearing fault diagnosis based on wireless sensor network data fusion publication-title: Comput. Commun. doi: 10.1016/j.comcom.2021.10.035 – year: 2022 ident: CR4 article-title: Intelligent diagnosis using continuous wavelet transform and gauss convolutional deep belief network publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2022.3180273 – volume: 59 start-page: 101875 year: 2020 ident: CR8 article-title: Cardiac arrhythmia classification using tunable Q-wavelet transform based features and support vector machine classifier publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.101875 – volume: 22 start-page: 14263 issue: 14 year: 2022 end-page: 14272 ident: CR5 article-title: Feature extraction using parameterized multisynchrosqueezing transform publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3179165 – volume: 192 start-page: 110924 year: 2022 ident: CR2 article-title: A novel bearing imbalance Fault-diagnosis method based on a Wasserstein conditional generative adversarial network publication-title: Measurement doi: 10.1016/j.measurement.2022.110924 – volume: 96 start-page: 105539 year: 2020 ident: CR17 article-title: Kernel extreme learning machine with iterative picking scheme for failure diagnosis of a turbofan engine publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2019.105539 – year: 2003 ident: CR19 publication-title: Bearings Vibration Data Set – volume: 49 start-page: 166 year: 2020 end-page: 172 ident: CR14 article-title: Rolling bearing fault diagnosis via STFT and improved instantaneous frequency estimation method publication-title: Proced. Manuf. doi: 10.1016/j.promfg.2020.07.014 – volume: 2 start-page: 144 year: 2021 end-page: 153 ident: CR16 article-title: Hearing loss classification via AlexNet and extreme learning machine publication-title: Int. J. Cogn. Comput. Eng. – volume: 172 start-page: 26 year: 2021 ident: 19209_CR9 publication-title: Neurosci. Res. doi: 10.1016/j.neures.2021.03.012 – volume: 59 start-page: 101875 year: 2020 ident: 19209_CR8 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.101875 – volume: 61 start-page: 1353 issue: 2 year: 2022 ident: 19209_CR11 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.06.013 – volume: 181 start-page: 404 year: 2022 ident: 19209_CR1 publication-title: Comput. Commun. doi: 10.1016/j.comcom.2021.10.035 – volume: 56 start-page: 5244 issue: 9 year: 2018 ident: 19209_CR13 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2812778 – year: 2022 ident: 19209_CR4 publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2022.3180273 – volume: 56 start-page: 235 year: 2019 ident: 19209_CR6 publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2018.12.004 – volume: 2 start-page: 144 year: 2021 ident: 19209_CR16 publication-title: Int. J. Cogn. Comput. Eng. – volume: 96 start-page: 105539 year: 2020 ident: 19209_CR17 publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2019.105539 – volume: 114 start-page: 107869 year: 2021 ident: 19209_CR7 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2021.107869 – volume: 22 start-page: 14263 issue: 14 year: 2022 ident: 19209_CR5 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3179165 – volume: 2 start-page: 111 issue: 1 year: 2021 ident: 19209_CR15 publication-title: Glob. Trans. Proc. doi: 10.1016/j.gltp.2021.01.015 – volume: 137 start-page: 686 year: 2018 ident: 19209_CR10 publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2017.04.016 – volume: 192 start-page: 110924 year: 2022 ident: 19209_CR2 publication-title: Measurement doi: 10.1016/j.measurement.2022.110924 – volume: 121 start-page: 244 year: 2019 ident: 19209_CR12 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.12.024 – volume: 52 start-page: 796 year: 2022 ident: 19209_CR3 publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2021.10.152 – volume-title: Bearings Vibration Data Set year: 2003 ident: 19209_CR19 – volume: 1 start-page: 1 issue: 1 year: 2018 ident: 19209_CR18 publication-title: Int. J. Robot. Control doi: 10.5430/ijrc.v1n1p1 – volume: 49 start-page: 166 year: 2020 ident: 19209_CR14 publication-title: Proced. Manuf. doi: 10.1016/j.promfg.2020.07.014 |
| SSID | ssj0000529419 |
| Score | 2.4078426 |
| Snippet | In this study, fault diagnosis method of bearing utilizing gray level co-occurrence matrix (GLCM) and multi-beetles antennae search algorithm (MBASA)-based... Abstract In this study, fault diagnosis method of bearing utilizing gray level co-occurrence matrix (GLCM) and multi-beetles antennae search algorithm... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 17368 |
| SubjectTerms | 639/166 639/705 Algorithms Animals Antennae Coleoptera Fault diagnosis Generalization, Psychological Humanities and Social Sciences Learning algorithms Machine Learning multidisciplinary Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUNoeQpu-3KZBgd4aE71sWcdN2G1Isr20gdyELMl0wXhDd5eQ_vqOJK-7S0vaQy7GWJIZj77xzKB5IPSxNKCmZCVyYS1cRGjzQkuSO0mV9E5xF9PFpl_Ksytxfl1cb7T6CjFhqTxwYtyxqhpiQ8QOa4hwwitVK-t5oZjh0siY5ksqteFMpareTAmq-iwZwqvjBWiqkE0GvhcYNaEHwJYmigX7_2Zl_hksOZyYPkNPVt2Nubs1bbuhlCbP0W5vTeJR-ooX6JHv9tDj1F_y7iUaT8yqXWKXwulmC5z6ReN5g2tAOLweA-7a2c9w9_nydIpN5_D0ZPR1lAf15vDF-HL6Cl1Nxt9Oz_K-b0JuhSTLXDSqsUUDtokD8RKecUOYk2CbwZ9NMiPBxbKeBVvPSWFspawwYWesB41f1vw12unmnX-LsK-lp6xxpC4r4X2hwFwkvHaOe0qtcBmiax5q2xcVD70tWh0Pt3mlE9818F1HvmuaoU_DmptUUuPe2Sdha4aZoRx2fAAg0T1I9L9AkqH99cbqXkYXmklwjgtFBM_Q4TAM0hWOTEzn56s0pwxt2IGONwkHAyWg-gsuGMuQ3ELIFqnbI93se6zgrcDLkwpWHq2x9Jus-1hxNODtPzj37iE49x49ZVFmSE7lPtpZ_lj5D2CGLeuDKHG_ADcoKRw priority: 102 providerName: Directory of Open Access Journals – databaseName: Proquest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTojxgPheYSAj8caiObYTxw8ItVPLBGuFgEl7ixzbgUpRUtZWaPz1nPM1KlDFSxTFTuSc73w_--z7AbyONbopmYhAGIMX4WlewpgGVoZKOqu4rY-Lzebx2YX4cBld7sG8Owvjt1V2Y2I9UNvK-DXyEyZxKhMpKvi75Y_As0b56GpHoaFbagX7tk4xdgv2mc-MNYD98WT-6XO_6uLjWiJU7ekZypOTFXowf8oM52QIdjw3wJaHqhP5_wt9_r2Jso-k3oU7m3Kpr3_qovjDWU3vw70WZZJRoxYPYM-VD-F2wzt5_QgmU70p1sQ22-wWK9LwSJMqJxlqPn6eoD4Wi1_-7v356Yzo0pLZePRlFHi3Z8nHyfnsMVxMJ19Pz4KWTyEwQtJ1IHKVmyhHzGLR7IRjXFNmJWI2HPEk0xKnXsYxjwGtFNokygjte8w4RAJxxp_AoKxKdwjEZdKFLLc0ixPhXKQQRlKeWctdGBphhxB2MkxNm2zcc14UaR305knayD1Fuae13NNwCG_6d5ZNqo2dtce-a_qaPk12_aC6-pa2VpeqJKfGb_diORVWOKUyZRyPFNNcapkM4ajr2LS13VV6o2lDeNUXo9X5UIouXbVp6sSenh3b8bTRg74lCAkiLhgbgtzSkK2mbpeUi-91Zm-Fsz-p8M3jTpdumrVLFMe9vv2H5J7t_unncMBqa6BBKI9gsL7auBcIvNbZy9aafgMKdiYl priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1di9QwcDj3EPVB_LZ6SgTf3GKapE3z2Dt2PdZbX86DewtpkuJC6R7uLnL-eidtt1pODn0ppcmUYT46M53MDMD7zKCZkrmIhbV4EWHMS5LR2MlESe8Ud2252PJLdnohFpfp5QFM97Uwo_x927p7gyYmlIFh0ITeSGjefwcOcxTMfAKHRbE4Xwz_VELWSiSqr41B8I83gUf2p23T_zff8uYRySFP-gDu7Zorc_3D1PUfpmj-CB72PiQpOqY_hgPfPIG73VTJ66cwm5tdvSWuO0S32pBuSjRZV6REucbXE5S2evUz3H06O1kS0ziyPC7OizgYNUc-z86Wz-BiPvt6chr30xJiKyTdxqJSlU0r9EgcKpXwjBvKnESPDL9nkhmJgZX1LHh4Tgpjc2WFCfywHu18VvLnMGnWjX8JxJfSJ6xytMxy4X2q0EmkvHSO-ySxwkWQ7Gmobd9KPEy0qHWb0ua57uiuke66pbtOIvgwwFx1jTRu3X0cWDPsDE2w2wcoG7rXKa3yitpwmItVVDjhlSqV9TxVzHBpZB7B0Z6xutfMjWYSQ-JUUcEjeDcso06FRIlp_HrX7cnC8HXE40UnBwMmaPBTLhiLQI4kZITqeKVZfWv7diuM7aRCyOleln6jdRsppoO8_QPlXv3f21_DfdZqB40TeQST7fedf4Nu1rZ822vXLwp0GlY priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTojxwPdHYKAg8cbSObYTx4_d1DLBOiFBxXiKHNuBalFarY3Q9tdzzhcUpom9RFF8ls7nu9zv5PMdwNtYoZsSCQ-41vjgrs1LGJPAiFAKayQz9XWx6Ul8NOMfTqPTLYi7uzB10n5d0rL-TXfZYfsrdDTuMhiGTohJXAn_4dLkt2A7jhCDD2B7dvJp9M11kkOMEiBMoO0NGcKSKyZveKG6WP9VCPPfRMn-tPQu3KnKpbr4qYriD4c0uQ9fu6U0eShnw2qdDfXlX1Ueb77WB3Cvxaj-qKF8CFu2fAS3m66VF49hPFFVsfZNk6Q3X_lNF2p_kfsZ2g0y7qM2F_NL9_b--HDqq9L404PR51HgnKbxP46Pp09gNhl_OTwK2m4MgeaCrAOey1xHOSIeg0bLLWWKUCMQ8eH_UlAlMHDTljoEaQRXOpGaK7ff2iKOiDP2FAblorTPwbeZsCHNDcnihFsbSQShhGXGMBuGmhsPwm53Ut2WKncdM4q0PjJnSdqIKEURpbWI0tCDd_2cZVOo41rqA7fpPaUrsl1_WJx_T9uNSGWSE-2SxWhOuOFWykxqyyJJFRNKJB7sdiqTtpa_SqnAkDuShDMP3vTDaLPuIEaVdlE1NLFr7o58PGs0rOcEAUXEOKUeiA3d22B1c6Sc_6jrgkuMHYXEmXudlv5m6zpR7PWa_B-Se3Ez8pewQ2tFJkEodmGwPq_sK4Rx6-x1a7O_AJCAPOI priority: 102 providerName: Unpaywall |
| Title | Fault diagnosis method of bearing utilizing GLCM and MBASA-based KELM |
| URI | https://link.springer.com/article/10.1038/s41598-022-19209-1 https://www.ncbi.nlm.nih.gov/pubmed/36253422 https://www.proquest.com/docview/2725459043 https://www.proquest.com/docview/2725654521 https://pubmed.ncbi.nlm.nih.gov/PMC9576792 https://www.nature.com/articles/s41598-022-19209-1.pdf https://doaj.org/article/98f0cebca2f04d4e99b9ce3592a37a78 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (PMC) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7tQ8ByQLwJLFWQuLGBxHHi-IBQWrWsyrZasVQqp8ixnd1KUbr0ISi_nnFeUFFWXNIotqORZybzTW3PB_A6FBimWEQdKiVeqKF58ULXUczjTCvuq_K42Ggcnk7ocBpM96ChO6oncLkztTN8UpNF_vbHt80HdPj31ZHx6N0Sg5A5KIZpFeIVU95_Hw4xUnFD5TCq4X5V65tw6vH67MzuoUdwG7_pgU8J2QpVZUX_XTD0792U7ZLqXbizLq7F5rvI8z-i1uA-3Kvhph1X9vEA9nTxEG5VBJSbR9AfiHW-slW13262tCtCaXue2Sm6AL7eRsPMZz_N3cez3sgWhbJH3fgidkz8U_an_tnoMUwG_S-9U6cmVnAkZe7KoRnPZJAheFHof1QTX7hEMQRv-OljRDDMwaQmBgwqRoWMuKTCqE5qhARh6j-Bg2Je6Gdg65Rpj2TKTcOIah1wxJOunyrla8-TVFngNXOYyLrquCG_yJNy9duPkkoFCaogKVWQeBa8acdcVzU3buzdNappe5p62eWD-eIyqd0v4VHmSrPvi2QuVVRznnKp_YAT4TPBIguOG8UmjQ0mhGH2HHCX-ha8apvR_cyaiij0fF31CQ1PO8rxtLKDVpLGjixgWxayJep2SzG7Kkt8c0wDGceRJ40t_Rbrpqk4ae3tP2bu-T8lfgFHpPQJ1_HYMRysFmv9EsHXKu3APpuyDhzG8fBiiL_d_vj8Mz7thb1O-YdGp_Q5bJmMz-OvvwCbMiol |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjR4QHwTGMNI8MSiJbYTxw8TareWjn4IwSbtzTi2A5WqtKytpvLH8bdxzteoQBUve4mi2I6c853vLue7H0JvYgVqiifMZ1rDhTmYlzAOfMNDwa0R1BTpYsNR3DtnHy-iiy30q86Fcccq6z2x2KjNVLt_5IeEgysTiYDR97MfvkONctHVGkJDVdAK5qgoMVYldvTt6gpcuPnR6Qms91tCup2z455foQz4mvFg4bNMZDrKQJMbYEZmCVUBMRwsGdgHOFEcHBJtibOMDGdKJ0Iz5b5DW9CPcUrhvbfQDqNMgPO30-6MPn1u_vK4OBoLRZWtE9DkcA4a02W1gQ8IxpXDIljTiAVwwL-s3b8PbTaR27tod5nP1OpKTSZ_KMfufXSvsmpxq2TDB2jL5g_R7RLncvUIdbpqOVlgUx7rG89xiVuNpxlOgYTwegz8Pxn_dHcfBsdDrHKDh-3Wl5bv1KzB_c5g-Bid3whln6DtfJrbZwjblNuQZCZI44RZGwkwWwOaGkNtGGpmPBTWNJS6Km7uMDYmsgiy00SWdJdAd1nQXYYeeteMmZWlPTb2brulaXq6stzFg-nlN1lJuRRJFmh3vIxkATPMCpEKbWkkiKJc8cRDe_XCymqvmMtrzvbQ66YZpNyFblRup8uyT-zg4GEeT0s-aGYCJkhEGSEe4mscsjbV9ZZ8_L2oJC7A2-QCRh7UvHQ9rU2kOGj47T8o93zzR79Cu72z4UAOTkf9F-gOKSQj8EO-h7YXl0v7Eoy-RbpfSRZGX29amH8DPYZh4Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEAweEN8UBhgJnljUxHbi-AGhbmvZaDshwaS-eY7tjEpRUtZWU_nT-Os452tUoIqXvURR4kTO-Xe-u9zZP4TeRgrMFI-Zx7SGA3M0L0Hke4YHglsjqCmXi41PoqNT9nkSTrbQr2YtjCurbObEcqI2hXb_yLuEQygTCp_RblqXRXw5HHyc_fAcg5TLtDZ0GhVEhnZ1CeHb_MPxIYz1O0IG_W8HR17NMOBpxv2Fx1KR6jAFK24AiMwSqnxiOHgxMAdwojgEI9oS5xUZzpSOhWbKfYO2YBujhMJ7b6CbnFLhygn5hLf_d1wGjQWiXqfj07g7B1vp1rNB9AdulWMhWLOFJWXAv_zcv8s125ztXbSzzGdqdamy7A-zOLiP7tX-LO5VAHyAtmz-EN2qGC5Xj1B_oJbZApuqoG86xxVjNS5SnIAA4fUYkJ9Nf7qzT6ODMVa5weP93tee5wyswcP-aPwYnV6LXJ-g7bzI7TOEbcJtQFLjJ1HMrA0FOKw-TYyhNgg0Mx0UNDKUut7W3LFrZLJMr9NYVnKXIHdZyl0GHfS-fWZWbeqxsfW-G5q2pduQu7xQXJzLWr-liFNfu8IykvrMMCtEIrSloSCKcsXjDtptBlbWs8RcXmG6g960t0G_XdJG5bZYVm0iRwQP_Xha4aDtCTgfIWWEdBBfQ8haV9fv5NPv5R7iAuJMLuDJvQZLV93aJIq9Fm__Ibnnmz_6NboNKixHxyfDF-gOKRXD9wK-i7YXF0v7Ery9RfKqVCuMzq5bj38DcaNfew |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTojxwPdHYKAg8cbSObYTx4_d1DLBOiFBxXiKHNuBalFarY3Q9tdzzhcUpom9RFF8ls7nu9zv5PMdwNtYoZsSCQ-41vjgrs1LGJPAiFAKayQz9XWx6Ul8NOMfTqPTLYi7uzB10n5d0rL-TXfZYfsrdDTuMhiGTohJXAn_4dLkt2A7jhCDD2B7dvJp9M11kkOMEiBMoO0NGcKSKyZveKG6WP9VCPPfRMn-tPQu3KnKpbr4qYriD4c0uQ9fu6U0eShnw2qdDfXlX1Ueb77WB3Cvxaj-qKF8CFu2fAS3m66VF49hPFFVsfZNk6Q3X_lNF2p_kfsZ2g0y7qM2F_NL9_b--HDqq9L404PR51HgnKbxP46Pp09gNhl_OTwK2m4MgeaCrAOey1xHOSIeg0bLLWWKUCMQ8eH_UlAlMHDTljoEaQRXOpGaK7ff2iKOiDP2FAblorTPwbeZsCHNDcnihFsbSQShhGXGMBuGmhsPwm53Ut2WKncdM4q0PjJnSdqIKEURpbWI0tCDd_2cZVOo41rqA7fpPaUrsl1_WJx_T9uNSGWSE-2SxWhOuOFWykxqyyJJFRNKJB7sdiqTtpa_SqnAkDuShDMP3vTDaLPuIEaVdlE1NLFr7o58PGs0rOcEAUXEOKUeiA3d22B1c6Sc_6jrgkuMHYXEmXudlv5m6zpR7PWa_B-Se3Ez8pewQ2tFJkEodmGwPq_sK4Rx6-x1a7O_AJCAPOI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+diagnosis+method+of+bearing+utilizing+GLCM+and+MBASA-based+KELM&rft.jtitle=Scientific+reports&rft.au=Fei%2C+Sheng-Wei&rft.au=Liu%2C+Ying-Zhe&rft.date=2022-10-17&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=17368&rft_id=info:doi/10.1038%2Fs41598-022-19209-1&rft_id=info%3Apmid%2F36253422&rft.externalDocID=36253422 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |