Influences of different iron forms activated peroxydisulfate on volatile fatty acids production during waste activated sludge anaerobic fermentation

The treatments of peroxydisulfate (PDS) activated with different iron forms (zero-valent iron (ZVI), ferrous iron (Fe2+) and nano zero-valent iron (NZVI)) all contributed to the generation of volatile fatty acids (VFAs) during waste activated sludge (WAS) anaerobic fermentation. The maximal VFAs gen...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 705; p. 135878
Main Authors Luo, Jingyang, Huang, Wenxuan, Zhu, Ying, Guo, Wen, Yibing, Li, Wu, Lijuan, Zhang, Qin, Wu, Yang, Fang, Fang, Cao, Jiashun
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 25.02.2020
Subjects
Online AccessGet full text
ISSN0048-9697
1879-1026
1879-1026
DOI10.1016/j.scitotenv.2019.135878

Cover

Abstract The treatments of peroxydisulfate (PDS) activated with different iron forms (zero-valent iron (ZVI), ferrous iron (Fe2+) and nano zero-valent iron (NZVI)) all contributed to the generation of volatile fatty acids (VFAs) during waste activated sludge (WAS) anaerobic fermentation. The maximal VFAs generation was 3036, 5537 and 3533 mg COD/L in the PDS/ZVI, PDS/Fe2+ and PDS/NZVI reactors, respectively, while it was only 702 mg COD/L in the control. The enhancing effects followed the order of PDS/Fe2+ > PDS/NZVI > PDS/ZVI. ZVI and NZVI showed no dual promoting effects with PDS on the VFAs production. Mechanisms exploration indicated that the simultaneous improvement of WAS solubilization and hydrolysis (high concentrations of soluble proteins and carbohydrates) and enrichment of fermentative bacteria (i.e. Bacteroides, Clostridium, Fonticella, and etc.) involved in VFAs generation were the main causes of VFAs promotion in the PDS treated systems. However, the reductive ZVI and NZVI partially consumed the generated free radicals (i.e. SO4− and/or OH), which possess strong oxidative potentials and are the main contributors to extracellular polymeric substances disintegration in WAS. This consumption of free radicals accounted for the lower efficiency of solubilization and hydrolysis and consequently reduced VFAs production in the PDS/NZVI and PDS/ZVI reactors compared with that in PDS/Fe2+ reactor. Moreover, the treatment of PDS activated by different forms of iron improved the VSS reduction extent and dewaterability of fermented sludge compared with that of the control, which is advantageous to the ultimate disposal of WAS. [Display omitted] •PDS activated by different iron forms treatment promoted VFAs production.•The enhancing effects for VFAs were in the order of PDS/Fe2+ > PDS/NZVI > PDS/ZVI.•WAS solubilization and hydrolysis were improved by radicals-based EPS disruption.•The anaerobes responsible for VFAs yields were enriched in PDS-treated reactors.•The PDS treatments improved the VSS reduction and dewaterability of fermented WAS.
AbstractList The treatments of peroxydisulfate (PDS) activated with different iron forms (zero-valent iron (ZVI), ferrous iron (Fe2+) and nano zero-valent iron (NZVI)) all contributed to the generation of volatile fatty acids (VFAs) during waste activated sludge (WAS) anaerobic fermentation. The maximal VFAs generation was 3036, 5537 and 3533 mg COD/L in the PDS/ZVI, PDS/Fe2+ and PDS/NZVI reactors, respectively, while it was only 702 mg COD/L in the control. The enhancing effects followed the order of PDS/Fe2+ > PDS/NZVI > PDS/ZVI. ZVI and NZVI showed no dual promoting effects with PDS on the VFAs production. Mechanisms exploration indicated that the simultaneous improvement of WAS solubilization and hydrolysis (high concentrations of soluble proteins and carbohydrates) and enrichment of fermentative bacteria (i.e. Bacteroides, Clostridium, Fonticella, and etc.) involved in VFAs generation were the main causes of VFAs promotion in the PDS treated systems. However, the reductive ZVI and NZVI partially consumed the generated free radicals (i.e. SO4- and/or OH), which possess strong oxidative potentials and are the main contributors to extracellular polymeric substances disintegration in WAS. This consumption of free radicals accounted for the lower efficiency of solubilization and hydrolysis and consequently reduced VFAs production in the PDS/NZVI and PDS/ZVI reactors compared with that in PDS/Fe2+ reactor. Moreover, the treatment of PDS activated by different forms of iron improved the VSS reduction extent and dewaterability of fermented sludge compared with that of the control, which is advantageous to the ultimate disposal of WAS.The treatments of peroxydisulfate (PDS) activated with different iron forms (zero-valent iron (ZVI), ferrous iron (Fe2+) and nano zero-valent iron (NZVI)) all contributed to the generation of volatile fatty acids (VFAs) during waste activated sludge (WAS) anaerobic fermentation. The maximal VFAs generation was 3036, 5537 and 3533 mg COD/L in the PDS/ZVI, PDS/Fe2+ and PDS/NZVI reactors, respectively, while it was only 702 mg COD/L in the control. The enhancing effects followed the order of PDS/Fe2+ > PDS/NZVI > PDS/ZVI. ZVI and NZVI showed no dual promoting effects with PDS on the VFAs production. Mechanisms exploration indicated that the simultaneous improvement of WAS solubilization and hydrolysis (high concentrations of soluble proteins and carbohydrates) and enrichment of fermentative bacteria (i.e. Bacteroides, Clostridium, Fonticella, and etc.) involved in VFAs generation were the main causes of VFAs promotion in the PDS treated systems. However, the reductive ZVI and NZVI partially consumed the generated free radicals (i.e. SO4- and/or OH), which possess strong oxidative potentials and are the main contributors to extracellular polymeric substances disintegration in WAS. This consumption of free radicals accounted for the lower efficiency of solubilization and hydrolysis and consequently reduced VFAs production in the PDS/NZVI and PDS/ZVI reactors compared with that in PDS/Fe2+ reactor. Moreover, the treatment of PDS activated by different forms of iron improved the VSS reduction extent and dewaterability of fermented sludge compared with that of the control, which is advantageous to the ultimate disposal of WAS.
The treatments of peroxydisulfate (PDS) activated with different iron forms (zero-valent iron (ZVI), ferrous iron (Fe ) and nano zero-valent iron (NZVI)) all contributed to the generation of volatile fatty acids (VFAs) during waste activated sludge (WAS) anaerobic fermentation. The maximal VFAs generation was 3036, 5537 and 3533 mg COD/L in the PDS/ZVI, PDS/Fe and PDS/NZVI reactors, respectively, while it was only 702 mg COD/L in the control. The enhancing effects followed the order of PDS/Fe  > PDS/NZVI > PDS/ZVI. ZVI and NZVI showed no dual promoting effects with PDS on the VFAs production. Mechanisms exploration indicated that the simultaneous improvement of WAS solubilization and hydrolysis (high concentrations of soluble proteins and carbohydrates) and enrichment of fermentative bacteria (i.e. Bacteroides, Clostridium, Fonticella, and etc.) involved in VFAs generation were the main causes of VFAs promotion in the PDS treated systems. However, the reductive ZVI and NZVI partially consumed the generated free radicals (i.e. SO and/or OH), which possess strong oxidative potentials and are the main contributors to extracellular polymeric substances disintegration in WAS. This consumption of free radicals accounted for the lower efficiency of solubilization and hydrolysis and consequently reduced VFAs production in the PDS/NZVI and PDS/ZVI reactors compared with that in PDS/Fe reactor. Moreover, the treatment of PDS activated by different forms of iron improved the VSS reduction extent and dewaterability of fermented sludge compared with that of the control, which is advantageous to the ultimate disposal of WAS.
The treatments of peroxydisulfate (PDS) activated with different iron forms (zero-valent iron (ZVI), ferrous iron (Fe²⁺) and nano zero-valent iron (NZVI)) all contributed to the generation of volatile fatty acids (VFAs) during waste activated sludge (WAS) anaerobic fermentation. The maximal VFAs generation was 3036, 5537 and 3533 mg COD/L in the PDS/ZVI, PDS/Fe²⁺ and PDS/NZVI reactors, respectively, while it was only 702 mg COD/L in the control. The enhancing effects followed the order of PDS/Fe²⁺ > PDS/NZVI > PDS/ZVI. ZVI and NZVI showed no dual promoting effects with PDS on the VFAs production. Mechanisms exploration indicated that the simultaneous improvement of WAS solubilization and hydrolysis (high concentrations of soluble proteins and carbohydrates) and enrichment of fermentative bacteria (i.e. Bacteroides, Clostridium, Fonticella, and etc.) involved in VFAs generation were the main causes of VFAs promotion in the PDS treated systems. However, the reductive ZVI and NZVI partially consumed the generated free radicals (i.e. SO₄⁻ and/or OH), which possess strong oxidative potentials and are the main contributors to extracellular polymeric substances disintegration in WAS. This consumption of free radicals accounted for the lower efficiency of solubilization and hydrolysis and consequently reduced VFAs production in the PDS/NZVI and PDS/ZVI reactors compared with that in PDS/Fe²⁺ reactor. Moreover, the treatment of PDS activated by different forms of iron improved the VSS reduction extent and dewaterability of fermented sludge compared with that of the control, which is advantageous to the ultimate disposal of WAS.
The treatments of peroxydisulfate (PDS) activated with different iron forms (zero-valent iron (ZVI), ferrous iron (Fe2+) and nano zero-valent iron (NZVI)) all contributed to the generation of volatile fatty acids (VFAs) during waste activated sludge (WAS) anaerobic fermentation. The maximal VFAs generation was 3036, 5537 and 3533 mg COD/L in the PDS/ZVI, PDS/Fe2+ and PDS/NZVI reactors, respectively, while it was only 702 mg COD/L in the control. The enhancing effects followed the order of PDS/Fe2+ > PDS/NZVI > PDS/ZVI. ZVI and NZVI showed no dual promoting effects with PDS on the VFAs production. Mechanisms exploration indicated that the simultaneous improvement of WAS solubilization and hydrolysis (high concentrations of soluble proteins and carbohydrates) and enrichment of fermentative bacteria (i.e. Bacteroides, Clostridium, Fonticella, and etc.) involved in VFAs generation were the main causes of VFAs promotion in the PDS treated systems. However, the reductive ZVI and NZVI partially consumed the generated free radicals (i.e. SO4− and/or OH), which possess strong oxidative potentials and are the main contributors to extracellular polymeric substances disintegration in WAS. This consumption of free radicals accounted for the lower efficiency of solubilization and hydrolysis and consequently reduced VFAs production in the PDS/NZVI and PDS/ZVI reactors compared with that in PDS/Fe2+ reactor. Moreover, the treatment of PDS activated by different forms of iron improved the VSS reduction extent and dewaterability of fermented sludge compared with that of the control, which is advantageous to the ultimate disposal of WAS. [Display omitted] •PDS activated by different iron forms treatment promoted VFAs production.•The enhancing effects for VFAs were in the order of PDS/Fe2+ > PDS/NZVI > PDS/ZVI.•WAS solubilization and hydrolysis were improved by radicals-based EPS disruption.•The anaerobes responsible for VFAs yields were enriched in PDS-treated reactors.•The PDS treatments improved the VSS reduction and dewaterability of fermented WAS.
ArticleNumber 135878
Author Zhu, Ying
Yibing, Li
Wu, Yang
Huang, Wenxuan
Fang, Fang
Wu, Lijuan
Cao, Jiashun
Luo, Jingyang
Guo, Wen
Zhang, Qin
Author_xml – sequence: 1
  givenname: Jingyang
  orcidid: 0000-0002-9660-9691
  surname: Luo
  fullname: Luo, Jingyang
  email: luojy2016@hhu.edu.cn
  organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China
– sequence: 2
  givenname: Wenxuan
  surname: Huang
  fullname: Huang, Wenxuan
  organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China
– sequence: 3
  givenname: Ying
  surname: Zhu
  fullname: Zhu, Ying
  organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China
– sequence: 4
  givenname: Wen
  surname: Guo
  fullname: Guo, Wen
  organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China
– sequence: 5
  givenname: Li
  surname: Yibing
  fullname: Yibing, Li
  organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China
– sequence: 6
  givenname: Lijuan
  surname: Wu
  fullname: Wu, Lijuan
  organization: Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
– sequence: 7
  givenname: Qin
  orcidid: 0000-0002-2823-2263
  surname: Zhang
  fullname: Zhang, Qin
  organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China
– sequence: 8
  givenname: Yang
  surname: Wu
  fullname: Wu, Yang
  organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China
– sequence: 9
  givenname: Fang
  surname: Fang
  fullname: Fang, Fang
  organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China
– sequence: 10
  givenname: Jiashun
  surname: Cao
  fullname: Cao, Jiashun
  organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31972926$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1URKeFVwAv2WSwnUxsL1hUFT-VKrGBteXE15VHGXuwnYF5jz4wN0wLEpvijaWb75zj3HNBzmKKQMgbztac8f7ddl3GUFOFeFgLxvWatxsl1TOy4krqhjPRn5EVY51qdK_lObkoZcvwSMVfkPOWaym06Ffk_ib6aYY4QqHJUxe8hwyx0pBTpD7lXaF2rOFgKzi6h5x-Hl0o8-RxQBE5pMnWMAHFQT0iG1yh-5zcjCr87uYc4h39YQvyf53KNLs7HESLlkMYKcbuMNcuopfkubdTgVcP9yX59vHD1-vPze2XTzfXV7fN2ElWm24YuLet6AdmW6Vbr5kUYjMoxrgXbCNk73nHnWWjdBsN0KpeKct1K1olvWgvyduTL773-wylml0oI0yTjZDmYhDDpXIu9H-gXSckRi6urx_QediBM_scdjYfzePSEXh_AsacSsngDXb5-8drtmEynJmlZLM1f0o2S8nmVDLq5T_6x4inlVcnJeBWDwHywi3lu5BhrMal8KTHL1Klyf0
CitedBy_id crossref_primary_10_1007_s13762_023_04850_8
crossref_primary_10_1016_j_biortech_2023_129233
crossref_primary_10_1016_j_scitotenv_2021_150085
crossref_primary_10_1016_j_scitotenv_2023_169025
crossref_primary_10_1016_j_watres_2024_121772
crossref_primary_10_1016_j_jece_2023_110376
crossref_primary_10_1016_j_scitotenv_2022_160128
crossref_primary_10_1016_j_watres_2020_116381
crossref_primary_10_3390_su13105499
crossref_primary_10_1016_j_biortech_2023_129776
crossref_primary_10_1016_j_biortech_2021_125823
crossref_primary_10_3390_molecules29194692
crossref_primary_10_1016_j_cej_2021_132893
crossref_primary_10_1016_j_chemosphere_2023_140007
crossref_primary_10_1016_j_scitotenv_2021_149394
crossref_primary_10_1016_j_cej_2024_152928
crossref_primary_10_1016_j_envres_2023_116444
crossref_primary_10_1016_j_biortech_2021_126051
crossref_primary_10_1016_j_biortech_2023_130275
crossref_primary_10_1016_j_jhazmat_2022_128922
crossref_primary_10_1016_j_jenvman_2023_118079
crossref_primary_10_1016_j_scitotenv_2021_151064
crossref_primary_10_1016_j_watres_2022_119488
crossref_primary_10_1016_j_biortech_2022_127143
crossref_primary_10_1016_j_biortech_2023_129122
crossref_primary_10_1016_j_jclepro_2020_122921
crossref_primary_10_1016_j_chemosphere_2023_140148
crossref_primary_10_1016_j_jece_2023_111652
crossref_primary_10_1021_acssuschemeng_2c06686
crossref_primary_10_1016_j_biortech_2020_123436
crossref_primary_10_1016_j_biortech_2022_127703
crossref_primary_10_1016_j_biortech_2023_129128
crossref_primary_10_1016_j_biortech_2020_124622
crossref_primary_10_1016_j_jclepro_2024_141584
crossref_primary_10_1016_j_jes_2021_07_024
crossref_primary_10_1080_09593330_2020_1849407
crossref_primary_10_1016_j_envres_2025_121034
crossref_primary_10_1016_j_jece_2022_108862
crossref_primary_10_1016_j_jpowsour_2023_232707
crossref_primary_10_1016_j_cej_2025_161880
Cites_doi 10.1016/j.cej.2014.08.066
10.1016/j.cej.2017.09.103
10.1128/JB.00640-12
10.1021/acs.est.5b00644
10.1016/j.watres.2013.10.072
10.1016/j.cej.2017.10.162
10.1016/j.biortech.2015.06.017
10.1016/j.apenergy.2013.07.006
10.1016/j.watres.2018.10.060
10.1111/j.1574-6941.2008.00559.x
10.1016/j.biortech.2015.08.025
10.1128/AEM.70.4.2414-2419.2004
10.1016/j.watres.2018.01.051
10.1016/j.jbiotec.2014.07.444
10.1016/S0168-6496(00)00107-0
10.1021/acs.est.5b01455
10.1099/ijs.0.041947-0
10.1016/j.biortech.2012.01.170
10.1016/j.biortech.2019.121642
10.1016/j.watres.2019.114912
10.1016/j.biortech.2018.06.080
10.1021/es034354c
10.1016/j.seppur.2009.12.010
10.1016/j.scitotenv.2019.03.136
10.1016/j.bej.2018.10.010
10.1016/j.biotechadv.2019.06.013
10.1021/acssuschemeng.8b05420
10.1016/j.seppur.2014.05.015
10.1016/j.bej.2005.10.004
10.1021/es400210v
10.1021/acs.est.6b05931
10.1016/j.watres.2018.10.033
10.1371/journal.pone.0102548
10.1016/j.watres.2017.09.062
10.1016/j.biortech.2012.05.126
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2019.135878
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 31972926
10_1016_j_scitotenv_2019_135878
S0048969719358735
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c470t-4bb1fa326b0a3893f907225b8001f205276f141da0c7d59ee38688a1932387f23
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Sat Sep 27 17:46:56 EDT 2025
Sun Sep 28 13:16:19 EDT 2025
Wed Feb 19 02:29:51 EST 2025
Thu Apr 24 22:58:44 EDT 2025
Tue Jul 01 03:35:23 EDT 2025
Fri Feb 23 02:48:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Peroxydisulfate (PDS)
Iron forms
Volatile fatty acids (VFAs)
Dewaterability
Anaerobic fermentation
Waste activated sludge (WAS)
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-4bb1fa326b0a3893f907225b8001f205276f141da0c7d59ee38688a1932387f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2823-2263
0000-0002-9660-9691
PMID 31972926
PQID 2344275272
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2388781129
proquest_miscellaneous_2344275272
pubmed_primary_31972926
crossref_citationtrail_10_1016_j_scitotenv_2019_135878
crossref_primary_10_1016_j_scitotenv_2019_135878
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2019_135878
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-25
PublicationDateYYYYMMDD 2020-02-25
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-25
  day: 25
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Feng, Zhang, Quan, Chen (bb0040) 2014; 52
Li, Guo, Yang, Lan (bb0065) 2014; 132
Luo, Wu, Feng, Fang, Cao, Zhang, Su (bb0100) 2019; 141
He, Tang, Liu, Ren, Guo, Zhou, Wang (bb0055) 2019
Liu, Wu, Chen (bb0080) 2018; 335
Chen, Westerhoff, Leenheer, Booksh (bb0025) 2003; 37
Delbès, Moletta, Godon (bb0030) 2001; 35
Xiong, Chen, Wang, Shi (bb0140) 2012; 119
Yang, Liu, Wang, Xu, Yang, Zerig, Li, Liu, Gong, Ye, Li (bb0145) 2019; 148
Zhao, Zhang, Quan, Chen (bb0165) 2010; 71
Zheng, Su, Li, Xiao, Wang, Chen (bb0175) 2013; 47
Ma, Liu (bb0115) 2019; 37
Bilgin Oncu, Mercan, Akmehmet Balcioglu (bb0005) 2015; 259
Yu, Wen, Yang, Xiao, Zhu, Tao, Lv, Liang, Fan, Zhu, Liu, Hou, Hu (bb0155) 2019; 148
Luo, Zhang, Wu, Feng, Fang, Xue, Li, Cao (bb0095) 2018; 268
Burrell, O’Sullivan, Song, Clarke, Blackall (bb0010) 2004; 70
Fraj, Ben, Postec, Hamdi, Ollivier, Fardeau (bb0050) 2013; 63
Zhou, Liu, Varrone, Wang, Wang, Yue (bb0180) 2015; 192
Zhen, Lu, Zhao, Chai, Niu (bb0170) 2012; 116
Luo, Feng, Chen, Li, Chen, Xiao, Wang (bb0085) 2014; 187
Elefsiniotis, Li (bb0035) 2006; 28
Xia, Kong, Nielsen (bb0135) 2008; 66
Chatterjee, Boyd, O’Toole, Sondermann (bb0020) 2012; 194
Feng, Luo, Chen (bb0045) 2015; 49
Luo, Zhu, Zhang, Cao, Guo, Li, Cao (bb0110) 2019
Li, He, Xin, Wang, Xu, Zhang (bb0070) 2018; 332
Li, Pan, Zhu, Yu, Wang, Yang, Yuan, Liu, Li, Zhang (bb0075) 2019; 163
Luo, Wu, Zhang, Fang, Feng, Xue, Cao (bb0105) 2019; 7
Yi, Dong, Jin, Dai (bb0150) 2014; 9
Yuan, Wang, Liu, Li, Wang, Peng (bb0160) 2015; 197
Cao, Zhang, Wu, Luo, Wu, Zhang, Feng, Fang, Xue (bb0015) 2019; 669
Huang, Chen, Yang, Zheng (bb0060) 2019; 6
Tou, Yang, Feng, Niu, Pan, Qin, Guo, Meng, Liu, Hochella (bb2005) 2017; 51
APHA (bb2010) 1998
Wang, Wang, Liu, Wang, Chen, Yang, Li, Zeng, Li (bb0125) 2017; 127
Mei-Ting, Qing-Bin, Jian (bb0120) 2015; 49
Luo, Feng, Zhang, Li, Chen, Wang, Chen (bb0090) 2014; 113
Wang, Duan, Yang, Liu, Ni, Wang, Zeng, Li, Yuan (bb0130) 2018; 133
He (10.1016/j.scitotenv.2019.135878_bb0055) 2019
Cao (10.1016/j.scitotenv.2019.135878_bb0015) 2019; 669
Huang (10.1016/j.scitotenv.2019.135878_bb0060) 2019; 6
Yang (10.1016/j.scitotenv.2019.135878_bb0145) 2019; 148
Chen (10.1016/j.scitotenv.2019.135878_bb0025) 2003; 37
Wang (10.1016/j.scitotenv.2019.135878_bb0130) 2018; 133
Luo (10.1016/j.scitotenv.2019.135878_bb0110) 2019
Li (10.1016/j.scitotenv.2019.135878_bb0075) 2019; 163
Luo (10.1016/j.scitotenv.2019.135878_bb0100) 2019; 141
Zhen (10.1016/j.scitotenv.2019.135878_bb0170) 2012; 116
Bilgin Oncu (10.1016/j.scitotenv.2019.135878_bb0005) 2015; 259
Zhao (10.1016/j.scitotenv.2019.135878_bb0165) 2010; 71
Mei-Ting (10.1016/j.scitotenv.2019.135878_bb0120) 2015; 49
Elefsiniotis (10.1016/j.scitotenv.2019.135878_bb0035) 2006; 28
Li (10.1016/j.scitotenv.2019.135878_bb0070) 2018; 332
Liu (10.1016/j.scitotenv.2019.135878_bb0080) 2018; 335
Feng (10.1016/j.scitotenv.2019.135878_bb0045) 2015; 49
Zhou (10.1016/j.scitotenv.2019.135878_bb0180) 2015; 192
Fraj (10.1016/j.scitotenv.2019.135878_bb0050) 2013; 63
Chatterjee (10.1016/j.scitotenv.2019.135878_bb0020) 2012; 194
Li (10.1016/j.scitotenv.2019.135878_bb0065) 2014; 132
Burrell (10.1016/j.scitotenv.2019.135878_bb0010) 2004; 70
Xiong (10.1016/j.scitotenv.2019.135878_bb0140) 2012; 119
Luo (10.1016/j.scitotenv.2019.135878_bb0095) 2018; 268
Luo (10.1016/j.scitotenv.2019.135878_bb0105) 2019; 7
Wang (10.1016/j.scitotenv.2019.135878_bb0125) 2017; 127
Feng (10.1016/j.scitotenv.2019.135878_bb0040) 2014; 52
Ma (10.1016/j.scitotenv.2019.135878_bb0115) 2019; 37
Luo (10.1016/j.scitotenv.2019.135878_bb0090) 2014; 113
Yuan (10.1016/j.scitotenv.2019.135878_bb0160) 2015; 197
Luo (10.1016/j.scitotenv.2019.135878_bb0085) 2014; 187
APHA (10.1016/j.scitotenv.2019.135878_bb2010) 1998
Tou (10.1016/j.scitotenv.2019.135878_bb2005) 2017; 51
Delbès (10.1016/j.scitotenv.2019.135878_bb0030) 2001; 35
Xia (10.1016/j.scitotenv.2019.135878_bb0135) 2008; 66
Yi (10.1016/j.scitotenv.2019.135878_bb0150) 2014; 9
Yu (10.1016/j.scitotenv.2019.135878_bb0155) 2019; 148
Zheng (10.1016/j.scitotenv.2019.135878_bb0175) 2013; 47
References_xml – volume: 35
  start-page: 19
  year: 2001
  end-page: 26
  ident: bb0030
  article-title: Bacterial and archaeal 16S rDNA and 16S rRNA dynamics during an acetate crisis in an anaerobic digestor ecosystem
  publication-title: FEMS Microbiol. Ecol.
– volume: 194
  start-page: 4415
  year: 2012
  end-page: 4425
  ident: bb0020
  article-title: Structural characterization of a conserved, calcium-dependent periplasmic protease from legionella pneumophila
  publication-title: J. Bacteriol.
– volume: 7
  start-page: 1648
  year: 2019
  end-page: 1657
  ident: bb0105
  article-title: How do biocides that occur in waste activated sludge affect the resource recovery for short-chain fatty acids production
  publication-title: ACS Sustain. Chem. Eng.
– volume: 141
  start-page: 71
  year: 2019
  end-page: 79
  ident: bb0100
  article-title: Synergistic effects of iron and persulfate on the efficient production of volatile fatty acids from waste activated sludge: understanding the roles of bioavailable substrates, microbial community & activities, and environmental factors
  publication-title: Biochem. Eng. J.
– volume: 52
  start-page: 242
  year: 2014
  end-page: 250
  ident: bb0040
  article-title: Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron
  publication-title: Water Res.
– volume: 148
  start-page: 60
  year: 2019
  end-page: 69
  ident: bb0155
  article-title: Unraveling oxidation behaviors for intracellular and extracellular from different oxidants (HOCl vs. H
  publication-title: Water Res.
– volume: 66
  start-page: 462
  year: 2008
  end-page: 471
  ident: bb0135
  article-title: In situ detection of starch-hydrolyzing microorganisms in activated sludge
  publication-title: FEMS Microbiol. Ecol.
– volume: 335
  start-page: 865
  year: 2018
  end-page: 875
  ident: bb0080
  article-title: Sulfate radical-based oxidation for sludge treatment: a review
  publication-title: Chem. Eng. J.
– volume: 37
  start-page: 107414
  year: 2019
  ident: bb0115
  article-title: Turning food waste to energy and resources towards a great environmental and economic sustainability: an innovative integrated biological approach
  publication-title: Biotechnol. Adv.
– volume: 9
  start-page: e102548
  year: 2014
  ident: bb0150
  article-title: Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis
  publication-title: PLoS One
– volume: 148
  start-page: 239
  year: 2019
  end-page: 249
  ident: bb0145
  article-title: Mechanisms of peroxymonosulfate pretreatment enhancing production of short-chain fatty acids from waste activated sludge
  publication-title: Water Res.
– volume: 192
  start-page: 835
  year: 2015
  end-page: 840
  ident: bb0180
  article-title: Evaluation of surfactants on waste activated sludge fermentation by pyrosequencing analysis
  publication-title: Bioresour. Technol.
– volume: 132
  start-page: 168
  year: 2014
  end-page: 173
  ident: bb0065
  article-title: Degradation of methyl orange by sodium persulfate activated with zero-valent zinc
  publication-title: Sep. Purif. Technol.
– start-page: 122278
  year: 2019
  ident: bb0110
  article-title: Promotion of short-chain fatty acids production and fermented sludge properties via persulfate treatments with different activators: performance and mechanisms
  publication-title: Bioresour. Technol.
– volume: 49
  start-page: 5771
  year: 2015
  end-page: 5778
  ident: bb0120
  article-title: Distinguishing effects of ultraviolet exposure and chlorination on the horizontal transfer of antibiotic resistance genes in municipal wastewater
  publication-title: Environmental Science & Technology
– volume: 28
  start-page: 148
  year: 2006
  end-page: 155
  ident: bb0035
  article-title: The effect of temperature and carbon source on denitrification using volatile fatty acids
  publication-title: Biochem. Eng. J.
– volume: 119
  start-page: 285
  year: 2012
  end-page: 292
  ident: bb0140
  article-title: Influences of volatile solid concentration, temperature and solid retention time for the hydrolysis of waste activated sludge to recover volatile fatty acids
  publication-title: Bioresour. Technol.
– volume: 37
  start-page: 5701
  year: 2003
  end-page: 5710
  ident: bb0025
  article-title: Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter
  publication-title: Environmental Science & Technology
– volume: 133
  start-page: 272
  year: 2018
  end-page: 281
  ident: bb0130
  article-title: Free ammonia enhances dark fermentative hydrogen production from waste activated sludge
  publication-title: Water Res.
– volume: 51
  start-page: 4831
  year: 2017
  end-page: 4840
  ident: bb2005
  article-title: Environmental risk implications of metals in sludges from waste water treatment plants: The discovery of vast stores of metal containing nanoparticles
  publication-title: Environ. Sci. Techn.
– start-page: 121642
  year: 2019
  ident: bb0055
  article-title: Enhanced short-chain fatty acids production from waste activated sludge with alkaline followed by potassium ferrate treatment
  publication-title: Bioresour. Technol.
– volume: 332
  start-page: 456
  year: 2018
  end-page: 463
  ident: bb0070
  article-title: Enhanced bioproduction of short-chain fatty acids from waste activated sludge by potassium ferrate pretreatment
  publication-title: Chem. Eng. J.
– volume: 49
  start-page: 4781
  year: 2015
  end-page: 4782
  ident: bb0045
  article-title: Dilemma of sewage sludge treatment and disposal in China
  publication-title: Environmental Science & Technology
– year: 1998
  ident: bb2010
  article-title: Standard methods for the examination of water and wastewater
– volume: 259
  start-page: 972
  year: 2015
  end-page: 980
  ident: bb0005
  article-title: The impact of ferrous iron/heat-activated persulfate treatment on waste sewage sludge constituents and sorbed antimicrobial micropollutants
  publication-title: Chem. Eng. J.
– volume: 163
  start-page: 114912
  year: 2019
  ident: bb0075
  article-title: How does zero valent iron activating peroxydisulfate improve the dewatering of anaerobically digested sludge?
  publication-title: Water Res.
– volume: 268
  start-page: 68
  year: 2018
  end-page: 76
  ident: bb0095
  article-title: Improving anaerobic fermentation of waste activated sludge using iron activated persulfate treatment
  publication-title: Bioresour. Technol.
– volume: 127
  start-page: 150
  year: 2017
  ident: bb0125
  article-title: Triclocarban enhances short-chain fatty acids production from anaerobic fermentation of waste activated sludge
  publication-title: Water Res.
– volume: 113
  start-page: 51
  year: 2014
  end-page: 58
  ident: bb0090
  article-title: Improved production of short-chain fatty acids from waste activated sludge driven by carbohydrate addition in continuous-flow reactors: influence of SRT and temperature
  publication-title: Appl. Energy
– volume: 669
  start-page: 540
  year: 2019
  end-page: 546
  ident: bb0015
  article-title: Enhancing the anaerobic bioconversion of complex organics in food wastes for volatile fatty acids production by zero-valent iron and persulfate stimulation
  publication-title: Sci. Total Environ.
– volume: 187
  start-page: 98
  year: 2014
  end-page: 105
  ident: bb0085
  article-title: Stimulating short-chain fatty acids production from waste activated sludge by nano zero-valent iron
  publication-title: J. Biotechnol.
– volume: 71
  start-page: 302
  year: 2010
  end-page: 307
  ident: bb0165
  article-title: Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature
  publication-title: Sep. Purif. Technol.
– volume: 6
  year: 2019
  ident: bb0060
  article-title: Cuo and zno nanoparticles drive the propagation of antibiotic resistance genes during sludge anaerobic digestion: possible role of stimulated signal transduction
  publication-title: Environmental Science: Nano
– volume: 197
  start-page: 56
  year: 2015
  end-page: 63
  ident: bb0160
  article-title: Long-term effect of pH on short-chain fatty acids accumulation and microbial community in sludge fermentation systems
  publication-title: Bioresour. Technol.
– volume: 47
  start-page: 4262
  year: 2013
  end-page: 4268
  ident: bb0175
  article-title: Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production
  publication-title: Environmental Science & Technology
– volume: 63
  start-page: 1947
  year: 2013
  end-page: 1950
  ident: bb0050
  article-title: Fonticella tunisiensis gen. Nov., sp. nov., isolated from a hot spring
  publication-title: International Journal of Systematic & Evolutionary Microbiology
– volume: 70
  start-page: 2414
  year: 2004
  end-page: 2419
  ident: bb0010
  article-title: Identification, detection, and spatial resolution of Clostridium populations responsible for cellulose degradation in a methanogenic landfill leachate bioreactor
  publication-title: Appl. Environ. Microbiol.
– volume: 116
  start-page: 259
  year: 2012
  end-page: 265
  ident: bb0170
  article-title: Enhanced dewaterability of sewage sludge in the presence of Fe(II)-activated persulfate oxidation
  publication-title: Bioresour. Technol.
– volume: 259
  start-page: 972
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135878_bb0005
  article-title: The impact of ferrous iron/heat-activated persulfate treatment on waste sewage sludge constituents and sorbed antimicrobial micropollutants
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.08.066
– volume: 332
  start-page: 456
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135878_bb0070
  article-title: Enhanced bioproduction of short-chain fatty acids from waste activated sludge by potassium ferrate pretreatment
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.103
– volume: 194
  start-page: 4415
  issue: 16
  year: 2012
  ident: 10.1016/j.scitotenv.2019.135878_bb0020
  article-title: Structural characterization of a conserved, calcium-dependent periplasmic protease from legionella pneumophila
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00640-12
– volume: 49
  start-page: 5771
  issue: 9
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135878_bb0120
  article-title: Distinguishing effects of ultraviolet exposure and chlorination on the horizontal transfer of antibiotic resistance genes in municipal wastewater
  publication-title: Environmental Science & Technology
  doi: 10.1021/acs.est.5b00644
– volume: 52
  start-page: 242
  year: 2014
  ident: 10.1016/j.scitotenv.2019.135878_bb0040
  article-title: Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.10.072
– volume: 335
  start-page: 865
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135878_bb0080
  article-title: Sulfate radical-based oxidation for sludge treatment: a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.10.162
– volume: 192
  start-page: 835
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135878_bb0180
  article-title: Evaluation of surfactants on waste activated sludge fermentation by pyrosequencing analysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.06.017
– volume: 113
  start-page: 51
  year: 2014
  ident: 10.1016/j.scitotenv.2019.135878_bb0090
  article-title: Improved production of short-chain fatty acids from waste activated sludge driven by carbohydrate addition in continuous-flow reactors: influence of SRT and temperature
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.07.006
– volume: 148
  start-page: 239
  year: 2019
  ident: 10.1016/j.scitotenv.2019.135878_bb0145
  article-title: Mechanisms of peroxymonosulfate pretreatment enhancing production of short-chain fatty acids from waste activated sludge
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.10.060
– volume: 66
  start-page: 462
  issue: 2
  year: 2008
  ident: 10.1016/j.scitotenv.2019.135878_bb0135
  article-title: In situ detection of starch-hydrolyzing microorganisms in activated sludge
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2008.00559.x
– volume: 197
  start-page: 56
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135878_bb0160
  article-title: Long-term effect of pH on short-chain fatty acids accumulation and microbial community in sludge fermentation systems
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.08.025
– volume: 70
  start-page: 2414
  issue: 4
  year: 2004
  ident: 10.1016/j.scitotenv.2019.135878_bb0010
  article-title: Identification, detection, and spatial resolution of Clostridium populations responsible for cellulose degradation in a methanogenic landfill leachate bioreactor
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.70.4.2414-2419.2004
– volume: 133
  start-page: 272
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135878_bb0130
  article-title: Free ammonia enhances dark fermentative hydrogen production from waste activated sludge
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.01.051
– volume: 187
  start-page: 98
  year: 2014
  ident: 10.1016/j.scitotenv.2019.135878_bb0085
  article-title: Stimulating short-chain fatty acids production from waste activated sludge by nano zero-valent iron
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2014.07.444
– volume: 35
  start-page: 19
  issue: 1
  year: 2001
  ident: 10.1016/j.scitotenv.2019.135878_bb0030
  article-title: Bacterial and archaeal 16S rDNA and 16S rRNA dynamics during an acetate crisis in an anaerobic digestor ecosystem
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1016/S0168-6496(00)00107-0
– volume: 49
  start-page: 4781
  issue: 8
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135878_bb0045
  article-title: Dilemma of sewage sludge treatment and disposal in China
  publication-title: Environmental Science & Technology
  doi: 10.1021/acs.est.5b01455
– volume: 63
  start-page: 1947
  issue: 6
  year: 2013
  ident: 10.1016/j.scitotenv.2019.135878_bb0050
  article-title: Fonticella tunisiensis gen. Nov., sp. nov., isolated from a hot spring
  publication-title: International Journal of Systematic & Evolutionary Microbiology
  doi: 10.1099/ijs.0.041947-0
– volume: 116
  start-page: 259
  year: 2012
  ident: 10.1016/j.scitotenv.2019.135878_bb0170
  article-title: Enhanced dewaterability of sewage sludge in the presence of Fe(II)-activated persulfate oxidation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.01.170
– start-page: 121642
  year: 2019
  ident: 10.1016/j.scitotenv.2019.135878_bb0055
  article-title: Enhanced short-chain fatty acids production from waste activated sludge with alkaline followed by potassium ferrate treatment
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.121642
– volume: 163
  start-page: 114912
  year: 2019
  ident: 10.1016/j.scitotenv.2019.135878_bb0075
  article-title: How does zero valent iron activating peroxydisulfate improve the dewatering of anaerobically digested sludge?
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.114912
– volume: 268
  start-page: 68
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135878_bb0095
  article-title: Improving anaerobic fermentation of waste activated sludge using iron activated persulfate treatment
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.06.080
– volume: 37
  start-page: 5701
  issue: 24
  year: 2003
  ident: 10.1016/j.scitotenv.2019.135878_bb0025
  article-title: Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter
  publication-title: Environmental Science & Technology
  doi: 10.1021/es034354c
– volume: 71
  start-page: 302
  issue: 3
  year: 2010
  ident: 10.1016/j.scitotenv.2019.135878_bb0165
  article-title: Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2009.12.010
– volume: 669
  start-page: 540
  year: 2019
  ident: 10.1016/j.scitotenv.2019.135878_bb0015
  article-title: Enhancing the anaerobic bioconversion of complex organics in food wastes for volatile fatty acids production by zero-valent iron and persulfate stimulation
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.03.136
– volume: 141
  start-page: 71
  year: 2019
  ident: 10.1016/j.scitotenv.2019.135878_bb0100
  article-title: Synergistic effects of iron and persulfate on the efficient production of volatile fatty acids from waste activated sludge: understanding the roles of bioavailable substrates, microbial community & activities, and environmental factors
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2018.10.010
– volume: 6
  year: 2019
  ident: 10.1016/j.scitotenv.2019.135878_bb0060
  article-title: Cuo and zno nanoparticles drive the propagation of antibiotic resistance genes during sludge anaerobic digestion: possible role of stimulated signal transduction
  publication-title: Environmental Science: Nano
– volume: 37
  start-page: 107414
  year: 2019
  ident: 10.1016/j.scitotenv.2019.135878_bb0115
  article-title: Turning food waste to energy and resources towards a great environmental and economic sustainability: an innovative integrated biological approach
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2019.06.013
– volume: 7
  start-page: 1648
  issue: 1
  year: 2019
  ident: 10.1016/j.scitotenv.2019.135878_bb0105
  article-title: How do biocides that occur in waste activated sludge affect the resource recovery for short-chain fatty acids production
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05420
– volume: 132
  start-page: 168
  year: 2014
  ident: 10.1016/j.scitotenv.2019.135878_bb0065
  article-title: Degradation of methyl orange by sodium persulfate activated with zero-valent zinc
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2014.05.015
– volume: 28
  start-page: 148
  issue: 2
  year: 2006
  ident: 10.1016/j.scitotenv.2019.135878_bb0035
  article-title: The effect of temperature and carbon source on denitrification using volatile fatty acids
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2005.10.004
– volume: 47
  start-page: 4262
  issue: 9
  year: 2013
  ident: 10.1016/j.scitotenv.2019.135878_bb0175
  article-title: Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production
  publication-title: Environmental Science & Technology
  doi: 10.1021/es400210v
– volume: 51
  start-page: 4831
  issue: 9
  year: 2017
  ident: 10.1016/j.scitotenv.2019.135878_bb2005
  article-title: Environmental risk implications of metals in sludges from waste water treatment plants: The discovery of vast stores of metal containing nanoparticles
  publication-title: Environ. Sci. Techn.
  doi: 10.1021/acs.est.6b05931
– volume: 148
  start-page: 60
  year: 2019
  ident: 10.1016/j.scitotenv.2019.135878_bb0155
  article-title: Unraveling oxidation behaviors for intracellular and extracellular from different oxidants (HOCl vs. H2O2) catalyzed by ferrous iron in waste activated sludge dewatering
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.10.033
– start-page: 122278
  year: 2019
  ident: 10.1016/j.scitotenv.2019.135878_bb0110
  article-title: Promotion of short-chain fatty acids production and fermented sludge properties via persulfate treatments with different activators: performance and mechanisms
  publication-title: Bioresour. Technol.
– volume: 9
  start-page: e102548
  issue: 7
  year: 2014
  ident: 10.1016/j.scitotenv.2019.135878_bb0150
  article-title: Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0102548
– year: 1998
  ident: 10.1016/j.scitotenv.2019.135878_bb2010
– volume: 127
  start-page: 150
  issue: 10
  year: 2017
  ident: 10.1016/j.scitotenv.2019.135878_bb0125
  article-title: Triclocarban enhances short-chain fatty acids production from anaerobic fermentation of waste activated sludge
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.09.062
– volume: 119
  start-page: 285
  year: 2012
  ident: 10.1016/j.scitotenv.2019.135878_bb0140
  article-title: Influences of volatile solid concentration, temperature and solid retention time for the hydrolysis of waste activated sludge to recover volatile fatty acids
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.05.126
SSID ssj0000781
Score 2.5086422
Snippet The treatments of peroxydisulfate (PDS) activated with different iron forms (zero-valent iron (ZVI), ferrous iron (Fe2+) and nano zero-valent iron (NZVI)) all...
The treatments of peroxydisulfate (PDS) activated with different iron forms (zero-valent iron (ZVI), ferrous iron (Fe ) and nano zero-valent iron (NZVI)) all...
The treatments of peroxydisulfate (PDS) activated with different iron forms (zero-valent iron (ZVI), ferrous iron (Fe²⁺) and nano zero-valent iron (NZVI)) all...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 135878
SubjectTerms activated sludge
Anaerobic fermentation
Anaerobiosis
bacteria
Bacteroides
carbohydrates
chemical oxygen demand
Clostridium
Dewaterability
Fatty Acids, Volatile
Fermentation
free radicals
hydrolysis
Iron
Iron forms
Peroxydisulfate (PDS)
polymers
proteins
Sewage
solubilization
volatile fatty acids
Volatile fatty acids (VFAs)
Waste activated sludge (WAS)
Title Influences of different iron forms activated peroxydisulfate on volatile fatty acids production during waste activated sludge anaerobic fermentation
URI https://dx.doi.org/10.1016/j.scitotenv.2019.135878
https://www.ncbi.nlm.nih.gov/pubmed/31972926
https://www.proquest.com/docview/2344275272
https://www.proquest.com/docview/2388781129
Volume 705
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AIKHN
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: ACRLP
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AKRWK
  dateStart: 19930115
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1VRUhICMFCYfmojMQ1NHGc2OZWVa22rNQDoqK3yI5ttGibXZFsYS_8Cn4wM-tkSyWgB06RrHFiecbjF3veDMAb73OlvHKJLZRPREhDYrgIidU8SGM9JVWnaIuzcnIu3l8UFztwNHBhKKyy9_3Rp2-8dd9y0M_mwXI2I46vULrUMqOrPJkT0Zyyf6FNv_1xHeZByWziLTMubJS-EeOF7-0WiE2vKMZLUw0IRfXW_rxD_Q2Bbnaik4fwoIeQ7DCO8hHs-GYEd2NRyfUI9o6vuWso1i_edgT34xEdi8yjx_DzdChQ0rJFYEOplI5Rb0ZgtmVEe7hCOOoYJRT_vnazdjUP2MBQBD0b6nXuGTZ0a5SduZYtYwpZVDeLFEj2zaAl_famdr5yn7GhMZ6SQNUMP3vZU6CaJ3B-cvzxaJL0RRqSWsi0S4S1WTAIAm1qCPwE_NtGH2ERiGaBpwWXZchE5kxaS1doso1SKUO4MVcy8HwPdptF458BUwj0lShk5iWCNOW1K7VVda1Tb0qXqzGUg2Kqus9gToU05tUQqval2mq0Io1WUaNjSLcdlzGJx-1d3g2ar27YY4Vbze2dXw-2UuFqpSsY0_jFqq14LgSXOCn8XzLo-BXh4DE8jYa2HXVOVeI0L5__z_BewD1OpwZEzC9ewm73deVfIbTq7P5m7ezDncPT6eSMntMPn6a_AK8JKao
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NTggkhKCwUX4aiddoiePEzt6maVPLRp82aW-WE9uoqKTVkg76f_AH725OOiYBe-DV8jmW73z-Yt_dB_DJuVQpp2xUZspFwsc-Mlz4qCy4l6Z0VFSdoi2m-fhcfL7ILrbgsM-FobDKzvcHn37jrbuWvW4195azGeX4ClXkhUzoKU-m2QPYFhn65AFsH0xOxtNbhyxVIM4TuLdR4E6YFw7dLhCeXlGYV0E0EIoo1_58SP0NhN4cRsfP4GmHItlBmOhz2HL1EB4GXsn1EHaObtPXsFu3f5shPAm3dCwkH72AX5Oeo6RhC896tpSWkTQjPNswyny4QkRqGdUU_7m2s2Y199jAsAs6N1Tt3DFsaNfYd2YbtgxVZFHjLGRBsh8Gjem3kZr5yn7Fhto4qgNVMfzs9y4Lqn4J58dHZ4fjqONpiCoh4zYSZZl4gziwjA3hH48_3OgmSsSiiedxxmXuE5FYE1fSZgWZR66UIeiYKul5ugODelG7V8AUYn0lMpk4iThNucLmRamqqoidyW2qRpD3itFVV8ScuDTmuo9W-6Y3GtWkUR00OoJ4I7gMdTzuF9nvNa_vmKTG0-Z-4Y-9rWjcsPQKY2q3WDWap0JwiYvC_9UHfb8iKDyC3WBom1mnRBRX8Pz1_0zvAzwan3051aeT6ckbeMzpEoHy9LO3MGgvV-4dIq22fN_tpGtZTSqy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influences+of+different+iron+forms+activated+peroxydisulfate+on+volatile+fatty+acids+production+during+waste+activated+sludge+anaerobic+fermentation&rft.jtitle=The+Science+of+the+total+environment&rft.au=Luo%2C+Jingyang&rft.au=Huang%2C+Wenxuan&rft.au=Zhu%2C+Ying&rft.au=Guo%2C+Wen&rft.date=2020-02-25&rft.issn=0048-9697&rft.volume=705&rft.spage=135878&rft_id=info:doi/10.1016%2Fj.scitotenv.2019.135878&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2019_135878
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon