Early adolescent brain markers of late adolescent academic functioning

Academic performance in adolescence strongly influences adult prospects. Intelligence quotient (IQ) has historically been considered a strong predictor of academic performance. Less objectively explored have been morphometric features. We analyzed brain MRI morphometry metrics in early adolescence (...

Full description

Saved in:
Bibliographic Details
Published inBrain imaging and behavior Vol. 13; no. 4; pp. 945 - 952
Main Authors Meruelo, Alejandro Daniel, Jacobus, Joanna, Idy, Erick, Nguyen-Louie, Tam, Brown, Gregory, Tapert, Susan Frances
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1931-7557
1931-7565
1931-7565
DOI10.1007/s11682-018-9912-2

Cover

Abstract Academic performance in adolescence strongly influences adult prospects. Intelligence quotient (IQ) has historically been considered a strong predictor of academic performance. Less objectively explored have been morphometric features. We analyzed brain MRI morphometry metrics in early adolescence (age 12–14 years) as quantitative predictors of academic performance over high school using a naïve Bayesian classifier approach with n  = 170 subjects. Based on the mean GPA, subjects were divided into high (GPA ≥3.54; n  = 87) and low (GPA <3.54; n  = 83) academic performers. Covariance analysis was performed to look at the influence of subject demographics. We examined predictive features from the 343 available regions (surface areas, cortical thickness, and subcortical volumes) and applied 4 algorithms for selection and reduction of attributes using Weka. Cortical thickness measures performed better than surface areas or subcortical volumes as predictors of academic performance. We identified 15 cortical thickness regions most predictive of academic performance, three of which have not been described in the literature predictive of academic performance. These were in the left hemisphere fusiform, bilateral insula, and left hemisphere paracentral regions. Prediction had a sensitivity of 0.65 and specificity of 0.73 with independent validation. Follow-up independent t-test analyses between high and low academic achievers on 10 of 15 regions showed between-group significance at the p  < 0.05 level. High achievers demonstrated thicker cortices than low achievers. These newly identified regions may help pinpoint new targets for further study in understanding the developing adolescent brain in the classroom setting.
AbstractList Academic performance in adolescence strongly influences adult prospects. Intelligence quotient (IQ) has historically been considered a strong predictor of academic performance. Less objectively explored have been morphometric features. We analyzed brain MRI morphometry metrics in early adolescence (age 12-14 years) as quantitative predictors of academic performance over high school using a naïve Bayesian classifier approach with n = 170 subjects. Based on the mean GPA, subjects were divided into high (GPA ≥3.54; n = 87) and low (GPA <3.54; n = 83) academic performers. Covariance analysis was performed to look at the influence of subject demographics. We examined predictive features from the 343 available regions (surface areas, cortical thickness, and subcortical volumes) and applied 4 algorithms for selection and reduction of attributes using Weka. Cortical thickness measures performed better than surface areas or subcortical volumes as predictors of academic performance. We identified 15 cortical thickness regions most predictive of academic performance, three of which have not been described in the literature predictive of academic performance. These were in the left hemisphere fusiform, bilateral insula, and left hemisphere paracentral regions. Prediction had a sensitivity of 0.65 and specificity of 0.73 with independent validation. Follow-up independent t-test analyses between high and low academic achievers on 10 of 15 regions showed between-group significance at the p < 0.05 level. High achievers demonstrated thicker cortices than low achievers. These newly identified regions may help pinpoint new targets for further study in understanding the developing adolescent brain in the classroom setting.Academic performance in adolescence strongly influences adult prospects. Intelligence quotient (IQ) has historically been considered a strong predictor of academic performance. Less objectively explored have been morphometric features. We analyzed brain MRI morphometry metrics in early adolescence (age 12-14 years) as quantitative predictors of academic performance over high school using a naïve Bayesian classifier approach with n = 170 subjects. Based on the mean GPA, subjects were divided into high (GPA ≥3.54; n = 87) and low (GPA <3.54; n = 83) academic performers. Covariance analysis was performed to look at the influence of subject demographics. We examined predictive features from the 343 available regions (surface areas, cortical thickness, and subcortical volumes) and applied 4 algorithms for selection and reduction of attributes using Weka. Cortical thickness measures performed better than surface areas or subcortical volumes as predictors of academic performance. We identified 15 cortical thickness regions most predictive of academic performance, three of which have not been described in the literature predictive of academic performance. These were in the left hemisphere fusiform, bilateral insula, and left hemisphere paracentral regions. Prediction had a sensitivity of 0.65 and specificity of 0.73 with independent validation. Follow-up independent t-test analyses between high and low academic achievers on 10 of 15 regions showed between-group significance at the p < 0.05 level. High achievers demonstrated thicker cortices than low achievers. These newly identified regions may help pinpoint new targets for further study in understanding the developing adolescent brain in the classroom setting.
Academic performance in adolescence strongly influences adult prospects. Intelligence quotient (IQ) has historically been considered a strong predictor of academic performance. Less objectively explored have been morphometric features. We analyzed brain MRI morphometry metrics in early adolescence (age 12–14 years) as quantitative predictors of academic performance over high school using a naïve Bayesian classifier approach with n = 170 subjects. Based on the mean GPA, subjects were divided into high (GPA ≥ 3.54; n=87) and low (GPA <3.54; n=83) academic performers. Covariance analysis was performed to look at the influence of subject demographics. We examined predictive features from the 343 available regions (surface areas, cortical thickness, and subcortical volumes) and applied 4 algorithms for selection and reduction of attributes using Weka. Cortical thickness measures performed better than surface areas or subcortical volumes as predictors of academic performance. We identified 15 cortical thickness regions most predictive of academic performance, three of which have not been described in the literature predictive of academic performance. These were in the left hemisphere fusiform, bilateral insula, and left hemisphere paracentral regions. Prediction had a sensitivity of 0.65 and specificity of 0.73 with independent validation. Follow-up independent t-test analyses between high and low academic achievers on 10 of 15 regions showed between-group significance at the p < 0.05 level. High achievers demonstrated thicker cortices than low achievers. These newly identified regions may help pinpoint new targets for further study in understanding the developing adolescent brain in the classroom setting.
Academic performance in adolescence strongly influences adult prospects. Intelligence quotient (IQ) has historically been considered a strong predictor of academic performance. Less objectively explored have been morphometric features. We analyzed brain MRI morphometry metrics in early adolescence (age 12–14 years) as quantitative predictors of academic performance over high school using a naïve Bayesian classifier approach with n  = 170 subjects. Based on the mean GPA, subjects were divided into high (GPA ≥3.54; n  = 87) and low (GPA <3.54; n  = 83) academic performers. Covariance analysis was performed to look at the influence of subject demographics. We examined predictive features from the 343 available regions (surface areas, cortical thickness, and subcortical volumes) and applied 4 algorithms for selection and reduction of attributes using Weka. Cortical thickness measures performed better than surface areas or subcortical volumes as predictors of academic performance. We identified 15 cortical thickness regions most predictive of academic performance, three of which have not been described in the literature predictive of academic performance. These were in the left hemisphere fusiform, bilateral insula, and left hemisphere paracentral regions. Prediction had a sensitivity of 0.65 and specificity of 0.73 with independent validation. Follow-up independent t-test analyses between high and low academic achievers on 10 of 15 regions showed between-group significance at the p  < 0.05 level. High achievers demonstrated thicker cortices than low achievers. These newly identified regions may help pinpoint new targets for further study in understanding the developing adolescent brain in the classroom setting.
Academic performance in adolescence strongly influences adult prospects. Intelligence quotient (IQ) has historically been considered a strong predictor of academic performance. Less objectively explored have been morphometric features. We analyzed brain MRI morphometry metrics in early adolescence (age 12-14 years) as quantitative predictors of academic performance over high school using a naïve Bayesian classifier approach with n = 170 subjects. Based on the mean GPA, subjects were divided into high (GPA ≥3.54; n = 87) and low (GPA <3.54; n = 83) academic performers. Covariance analysis was performed to look at the influence of subject demographics. We examined predictive features from the 343 available regions (surface areas, cortical thickness, and subcortical volumes) and applied 4 algorithms for selection and reduction of attributes using Weka. Cortical thickness measures performed better than surface areas or subcortical volumes as predictors of academic performance. We identified 15 cortical thickness regions most predictive of academic performance, three of which have not been described in the literature predictive of academic performance. These were in the left hemisphere fusiform, bilateral insula, and left hemisphere paracentral regions. Prediction had a sensitivity of 0.65 and specificity of 0.73 with independent validation. Follow-up independent t-test analyses between high and low academic achievers on 10 of 15 regions showed between-group significance at the p < 0.05 level. High achievers demonstrated thicker cortices than low achievers. These newly identified regions may help pinpoint new targets for further study in understanding the developing adolescent brain in the classroom setting.
Academic performance in adolescence strongly influences adult prospects. Intelligence quotient (IQ) has historically been considered a strong predictor of academic performance. Less objectively explored have been morphometric features. We analyzed brain MRI morphometry metrics in early adolescence (age 12–14 years) as quantitative predictors of academic performance over high school using a naïve Bayesian classifier approach with n = 170 subjects. Based on the mean GPA, subjects were divided into high (GPA ≥3.54; n = 87) and low (GPA <3.54; n = 83) academic performers. Covariance analysis was performed to look at the influence of subject demographics. We examined predictive features from the 343 available regions (surface areas, cortical thickness, and subcortical volumes) and applied 4 algorithms for selection and reduction of attributes using Weka. Cortical thickness measures performed better than surface areas or subcortical volumes as predictors of academic performance. We identified 15 cortical thickness regions most predictive of academic performance, three of which have not been described in the literature predictive of academic performance. These were in the left hemisphere fusiform, bilateral insula, and left hemisphere paracentral regions. Prediction had a sensitivity of 0.65 and specificity of 0.73 with independent validation. Follow-up independent t-test analyses between high and low academic achievers on 10 of 15 regions showed between-group significance at the p < 0.05 level. High achievers demonstrated thicker cortices than low achievers. These newly identified regions may help pinpoint new targets for further study in understanding the developing adolescent brain in the classroom setting.
Author Jacobus, Joanna
Brown, Gregory
Meruelo, Alejandro Daniel
Idy, Erick
Nguyen-Louie, Tam
Tapert, Susan Frances
AuthorAffiliation 2 VA San Diego Healthcare System, La Jolla, CA, USA
3 San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
1 Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
AuthorAffiliation_xml – name: 1 Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
– name: 2 VA San Diego Healthcare System, La Jolla, CA, USA
– name: 3 San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
Author_xml – sequence: 1
  givenname: Alejandro Daniel
  orcidid: 0000-0001-6087-1818
  surname: Meruelo
  fullname: Meruelo, Alejandro Daniel
  email: ameruelo@ucsd.edu
  organization: Department of Psychiatry, University of California San Diego
– sequence: 2
  givenname: Joanna
  surname: Jacobus
  fullname: Jacobus, Joanna
  organization: Department of Psychiatry, University of California San Diego
– sequence: 3
  givenname: Erick
  surname: Idy
  fullname: Idy, Erick
  organization: Department of Psychiatry, University of California San Diego
– sequence: 4
  givenname: Tam
  surname: Nguyen-Louie
  fullname: Nguyen-Louie, Tam
  organization: San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology
– sequence: 5
  givenname: Gregory
  surname: Brown
  fullname: Brown, Gregory
  organization: Department of Psychiatry, University of California San Diego, VA San Diego Healthcare System
– sequence: 6
  givenname: Susan Frances
  surname: Tapert
  fullname: Tapert, Susan Frances
  organization: Department of Psychiatry, University of California San Diego
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29911279$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv3CAUhVGVqHm0PyCbyFI23bi9YANmEyka5VEpUjftGmGMJyQMTMBONP8-uDN5SomyAsF37j333D205YM3CB1g-IkB-K-EMWtICbgphcCkJF_QLhYVLjlldOvpTvkO2kvpGoDWjcBf0Q7JOCZc7KKzUxXdqlBdcCZp44eijcr6YqHijYmpCH3h1GBeAkqrziysLvrR68EGb_38G9rulUvm--bcR__OTv_OLsrLP-e_ZyeXpa45DGVdQWdMNlebvtW4q5WgFPMWdKcbzA3PT72uWQs9URQIZkx0hGTjbR4UWLWPyLru6Jdqda-ck8tos9mVxCCnUOQ6FJlDkVMokmTR8Vq0HNuF6aYhonoWBmXl6x9vr-Q83ElGRNPQqeuPTYEYbkeTBrmwOQvnlDdhTJIAZZwR4FVGj96g12GMPmfynyICKpiow5eOnqw87iUDeA3oGFKKpv_UmPyNRttBTQvKQ1n3oXKTaspd_NzEZ9Pvix4AmWnAXQ
CitedBy_id crossref_primary_10_1038_s41380_020_0757_x
crossref_primary_10_1016_j_drugalcdep_2022_109761
crossref_primary_10_1038_s41598_022_24958_0
crossref_primary_10_1093_sleep_zsab120
Cites_doi 10.3102/00346543075001063
10.1098/rstb.2006.1934
10.1111/tpj.13180
10.1016/j.neubiorev.2007.07.008
10.1214/14-AOAS798
10.1016/j.neuroimage.2011.05.053
10.1097/00004583-199607000-00012
10.1007/s00787-005-0503-6
10.1016/j.neubiorev.2007.06.004
10.5603/FM.2013.0002
10.1097/00004583-200104000-00013
10.1006/nimg.1998.0396
10.1016/j.pneurobio.2007.06.004
10.1038/nature04513
10.1016/j.neubiorev.2007.07.003
10.1002/pro.653
10.1016/j.tics.2007.09.007
10.1017/CBO9780511790942
10.1111/j.0956-7976.2004.00687.x
10.1155/2015/978193
10.15288/jsad.2014.75.729
10.1176/appi.books.9780890425596
10.3233/BME-151495
10.1016/j.neuroimage.2011.01.016
10.1073/pnas.96.16.9379
10.1126/science.1110449
10.1016/j.dcn.2015.04.006
10.1523/JNEUROSCI.5309-07.2008
10.1177/8755123315576212
10.1006/nimg.1998.0395
10.1093/cercor/bht357
10.1162/jocn.2006.18.6.911
10.15288/jsa.1998.59.427
10.1152/jn.00513.2004
10.1023/A:1007413511361
10.1007/s00213-012-2674-4
10.1016/j.tics.2007.08.013
10.1142/S0218001405003983
10.1017/S0140525X07001185
10.1038/nrn2335
10.3758/CABN.7.4.391
10.1145/1656274.1656278
10.1155/2007/78970
10.1007/s12021-014-9229-2
10.1016/j.paid.2010.11.009
10.1111/j.1530-0277.1995.tb00983.x
10.1073/pnas.200033797
10.1002/hbm.22856
10.1002/bies.20641
10.1016/0272-7358(88)90050-5
10.1007/s00429-010-0262-0
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Brain Imaging and Behavior is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Brain Imaging and Behavior is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7TK
7X7
7XB
88E
88G
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M2M
M7P
NAPCQ
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s11682-018-9912-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Technology Collection (ProQuest)
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
ProQuest Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1931-7565
EndPage 952
ExternalDocumentID oai:pubmedcentral.nih.gov:6298856
PMC6298856
29911279
10_1007_s11682_018_9912_2
Genre Journal Article
GrantInformation_xml – fundername: National Institute on Alcohol Abuse and Alcoholism
  grantid: AA013419-14S1; AA13419
  funderid: http://dx.doi.org/10.13039/100000027
– fundername: National Institute of Mental Health
  grantid: MH101072
  funderid: http://dx.doi.org/10.13039/100000025
– fundername: NIAAA NIH HHS
  grantid: AA013419-14S1
– fundername: NIAAA NIH HHS
  grantid: K23 AA026869
– fundername: NCATS NIH HHS
  grantid: KL2 TR001444
– fundername: NIMH NIH HHS
  grantid: MH101072
– fundername: NIAAA NIH HHS
  grantid: AA13419
– fundername: NIMH NIH HHS
  grantid: R25 MH101072
– fundername: NIAAA NIH HHS
  grantid: R01 AA013419
GroupedDBID ---
-55
-5G
-BR
-EM
-~C
.86
.VR
04C
06D
0R~
0VY
1N0
203
23N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6J9
6NX
7RV
7X7
875
88E
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
AXYYD
AZQEC
B-.
BA0
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BVXVI
CCPQU
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMOBN
ESBYG
EX3
F5P
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LK8
LLZTM
M1P
M2M
M4Y
M7P
MA-
NAPCQ
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P62
P9L
PF0
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S27
S3B
SAP
SBS
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
YLTOR
Z45
Z82
Z83
ZMTXR
ZOVNA
~A9
~KM
-Y2
2VQ
AANXM
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABULA
ACSTC
AEBTG
AEKMD
AEZWR
AFDZB
AFGCZ
AFHIU
AFOHR
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BDATZ
BSONS
CAG
CITATION
COF
FINBP
FSGXE
H13
HZ~
O9-
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
S1Z
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c470t-430dee5654efbc1d4a95517b0cdc817e71d4fc46b0f2a5021669d22005b682063
IEDL.DBID U2A
ISSN 1931-7557
1931-7565
IngestDate Sun Oct 26 02:57:19 EDT 2025
Tue Sep 30 16:41:50 EDT 2025
Thu Sep 04 16:59:06 EDT 2025
Tue Oct 07 06:48:26 EDT 2025
Thu Apr 03 07:07:15 EDT 2025
Thu Apr 24 23:02:01 EDT 2025
Wed Oct 01 04:43:22 EDT 2025
Fri Feb 21 02:37:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Adolescence
Cortical thickness
naïve Bayesian classifier
Magnetic resonance imaging
Academic performance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-430dee5654efbc1d4a95517b0cdc817e71d4fc46b0f2a5021669d22005b682063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID: 0000-0001-6087-1818
ORCID 0000-0001-6087-1818
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6298856
PMID 29911279
PQID 2056290303
PQPubID 1486349
PageCount 8
ParticipantIDs unpaywall_primary_10_1007_s11682_018_9912_2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6298856
proquest_miscellaneous_2056762073
proquest_journals_2056290303
pubmed_primary_29911279
crossref_primary_10_1007_s11682_018_9912_2
crossref_citationtrail_10_1007_s11682_018_9912_2
springer_journals_10_1007_s11682_018_9912_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Indianapolis
PublicationTitle Brain imaging and behavior
PublicationTitleAbbrev Brain Imaging and Behavior
PublicationTitleAlternate Brain Imaging Behav
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References IshaiAUngerleiderLGMartinASchoutenJLHaxbyJVDistributed representation of objects in the human ventral visual pathwayProceedings of the National Academy of Sciences of the United States of America199996169379938410.1073/pnas.96.16.93791:CAS:528:DyaK1MXltVCjs70%3D1043095117791
JacobusJGoldenbergDWierengaCETolentinoNJLiuTTTapertSFAltered cerebral blood flow and neurocognitive correlates in adolescent Cannabis usersPsychopharmacology2012222467568410.1007/s00213-012-2674-41:CAS:528:DC%2BC38XjtlSgsb8%3D223954303510003
MenonVUddinLQSaliency, switching, attention and control: A network model of insula functionBrain Structure & Function20102145–665566710.1007/s00429-010-0262-0
TrippaLWaldronLHuttenhowerCParmigianiGBayesian nonparametric cross-study validation of prediction methodsAnn. Appl. Stat.20159140242810.1214/14-AOAS798
KanwisherNYovelGThe fusiform face area: A cortical region specialized for the perception of facesPhilosophical Transactions of the Royal Society B: Biological Sciences200636114762109212810.1098/rstb.2006.1934
JungREHaierRJThe Parieto-frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidenceThe Behavioral and Brain Sciences2007302135154-18710.1017/S0140525X0700118517655784
BergerAKofmanOLivnehUHenikAMultidisciplinary perspectives on attention and the development of self-regulationProgress in Neurobiology200782525628610.1016/j.pneurobio.2007.06.00417651888
SpielbergerCDGorsuchRLLusheneRVaggPRJacobsGAManual for the state-trait anxiety inventory1983Palo AltoConsulting Psychologists Press
KériSInteractive memory systems and category learning in schizophreniaNeuroscience and Biobehavioral Reviews200832220621810.1016/j.neubiorev.2007.07.00317854895
TanjiJShimaKMushiakeHConcept-based behavioral planning and the lateral prefrontal cortexTrends in Cognitive Sciences2007111252853410.1016/j.tics.2007.09.00718024183
PosnerMIRothbartMKSheeseBETangYThe anterior cingulate gyrus and the mechanism of self-regulationCognitive, Affective & Behavioral Neuroscience20077439139510.3758/CABN.7.4.391
HallMFrankEHolmesGPfahringerBReutemannPWittenIHThe WEKA data mining software: An updateSIGKDD Explor. Newsl.2009111101810.1145/1656274.1656278
RiceJPReichTBucholzKKNeumanRJFishmanRRochbergNHesselbrockVMNurnbergerJISchuckitMABegleiterHComparison of direct interview and family history diagnoses of alcohol dependenceAlcoholism, Clinical and Experimental Research19951941018102310.1111/j.1530-0277.1995.tb00983.x1:STN:280:DyaK28%2Fis1KhsA%3D%3D7485811
TianXWLimJSInteractive naive Bayesian network: A new approach of constructing gene-gene interaction network for Cancer classificationBio-medical Materials and Engineering201526Suppl 1S1929S193610.3233/BME-1514951:CAS:528:DC%2BC2MXhtlOqu7nL26405966
KaramaSColomRJohnsonWDearyIJHaierRWaberDPLepageCGanjaviHJungREvansACCortical thickness correlates of specific cognitive performance accounted for by the general factor of intelligence in healthy children aged 6 to 18NeuroImage20115541443145310.1016/j.neuroimage.2011.01.016212418093070152
ShawPGreensteinDLerchJClasenLLenrootRGogtayNEvansARapoportJGieddJIntellectual ability and cortical development in children and adolescentsNature2006440708467667910.1038/nature045131:CAS:528:DC%2BD28XivFWgtb4%3D16572172
BeckATSteerRACarbinMGPsychometric properties of the Beck depression inventory: Twenty-five years of evaluationClinical Psychology Review1988817710010.1016/0272-7358(88)90050-5
American Psychiatric AssociationDiagnostic and statistical manual of mental disorders20135Washington, DCAmerican Psychiatric Publishing10.1176/appi.books.9780890425596
LucasCPZhangHFisherPWShafferDRegierDANarrowWEBourdonKThe DISC predictive scales (DPS): Efficiently screening for diagnosesJournal of the American Academy of Child & Adolescent Psychiatry200140444344910.1097/00004583-200104000-000131:STN:280:DC%2BD3M3itV2hug%3D%3D
MerueloADSamishIBowieJUTMKink: A method to predict transmembrane Helix kinksProtein Science: A Publication of the Protein Society20112071256126410.1002/pro.6531:CAS:528:DC%2BC3MXns1SgsLg%3D
FreyMCDettermanDKScholastic assessment or g? The relationship between the scholastic assessment test and general cognitive abilityPsychological Science201615637337810.1111/j.0956-7976.2004.00687.x
FischlBSerenoMIDaleAMCortical surface-based analysis: II: Inflation, flattening, and a surface-based coordinate systemNeuroImage19999219520710.1006/nimg.1998.03961:STN:280:DyaK1M7jt1Gisw%3D%3D9931269
DomingosPPazzaniMOn the optimality of the simple Bayesian classifier under zero-one lossMachine Learning1997292–310313010.1023/A:1007413511361
ZhangHExploring conditions for the optimality of Naïve BayesInternational Journal of Pattern Recognition and Artificial Intelligence200519218319810.1142/S0218001405003983
LeungPWLLucasCPHungS-fKwongS-lTangC-pLeeC-cHoT-pLieh-MakFShafferDThe test-retest reliability and screening efficiency of DISC predictive scales-version 4.32 (DPS-4.32) with Chinese children/youthsEuropean Child & Adolescent Psychiatry200514846146510.1007/s00787-005-0503-6
BrownSAMyersMGLippkeLTapertSFStewartDGVikPWPsychometric evaluation of the customary drinking and drug use record (CDDR): A measure of adolescent alcohol and drug involvementJournal of Studies on Alcohol199859442743810.15288/jsa.1998.59.4271:STN:280:DyaK1czgvFKnsg%3D%3D
ShawPIntelligence and the developing human brainBioEssays: News and Reviews in Molecular, Cellular and Developmental Biology2007291096297310.1002/bies.20641
KuncelNRCredéMThomasLLThe validity of self-reported grade point averages, class ranks, and test scores: a meta-analysis and review of the literatureReview of Educational Research2016751638210.3102/00346543075001063
MurrayEAThe amygdala, reward and emotionTrends in Cognitive Sciences2007111148949710.1016/j.tics.2007.08.01317988930
KruseAJCultural bias in testing: a review of literature and implications for music educationUpdate: Applications of Research in Music Education2016351233110.1177/8755123315576212
IscanZaferJinTony B.KendrickAlexandriaSzeglinBryanLuHanzhangTrivediMadhukarTest-retest reliability of freesurfer measurements within and between sites: effects of visual approval processHuman Brain Mapping20153693472348510.1002/hbm.22856260331684545736
GelmanAHillJData analysis using regression and multilevel/hierarchical models. 1 edition2006CambridgeCambridge University Press10.1017/CBO9780511790942
SchnackHGvan HarenNEMBrouwerRMEvansADurstonSBoomsmaDIKahnRSPolHEHChanges in thickness and surface area of the human cortex and their relationship with intelligenceCerebral Cortex (New York, N.Y.: 1991)20152561608161710.1093/cercor/bht357
ShohamyDMyersCEKalanithiJGluckMABasal ganglia and dopamine contributions to probabilistic category learningNeuroscience and Biobehavioral Reviews200832221923610.1016/j.neubiorev.2007.07.0081:STN:280:DC%2BD1c%2FmvFCgug%3D%3D18061261
RedcayEThe superior temporal sulcus performs a common function for social and speech perception: Implications for the emergence of autismNeuroscience and Biobehavioral Reviews200832112314210.1016/j.neubiorev.2007.06.00417706781
Kohavi, Ron. 1995. “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection.” In Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2, 1137–1143. IJCAI’95. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. http://dl.acm.org/citation.cfm?id=1643031.1643047.
DevlinJTJamisonHLGonnermanLMMatthewsPMThe role of the posterior fusiform gyrus in readingJournal of Cognitive Neuroscience200618691192210.1162/jocn.2006.18.6.911168392991524880
SpasojevićGMalobabicSPilipović-SpasojevićODjukić-MacutNMalikovićAMorphology and digitally aided morphometry of the human paracentral lobuleFolia Morphologica2013721101610.5603/FM.2013.000223749705
PeelenMVDowningPESelectivity for the human body in the fusiform gyrusJournal of Neurophysiology200593160360810.1152/jn.00513.200415295012
ClarksonMJCardosoMJRidgwayGRModatMLeungKKRohrerJDA comparison of voxel and surface based cortical thickness estimation methodsNeuroImage201157385686510.1016/j.neuroimage.2011.05.05321640841
JacobusJSquegliaLMSorgSFNguyen-LouieTTTapertSFCortical thickness and Neurocognition in adolescent marijuana and alcohol users following 28 days of monitored abstinenceJournal of Studies on Alcohol and Drugs201475572974310.15288/jsad.2014.75.729252081904161693
Coyle, T., Snyder A., Pillow D., Kochunov P. (2011) SAT Predicts GPA Better for High Ability Subjects: Implications for Spearman’s Law of Diminishing Returns. Personality and Individual Differences, 50(4), 470–74. https://doi.org/10.1016/j.paid.2010.11.009.
DouglassSHsuS-WCokusSGoldbergRBHaradaJJPellegriniMA Naïve Bayesian classifier for identifying plant microRNAsThe Plant Journal: For Cell and Molecular Biology201686648149210.1111/tpj.131801:CAS:528:DC%2BC28XhtVSgt7jL
BirdCMBurgessNThe Hippocampus and memory: Insights from spatial processingNature Reviews. Neuroscience20089318219410.1038/nrn23351:CAS:528:DC%2BD1cXitFKntbc%3D18270514
Fischl, B., & Dale, A. M. (2000) Measuring the Thickness of the Human Cerebral Cortex from Magnetic Resonance Images. Proceedings of the National Academy of Sciences of the United States of America 97(20), 11050–55. https://doi.org/10.1073/pnas.200033797.
SandiCPinelo-NavaMTStress and memory: Behavioral effects and neurobiological mechanismsNeural Plasticity200720077897010.1155/2007/78970180600121950232
ShawPKabaniNJLerchJPEckstrandKLenrootRGogtayNGreensteinDNeurodevelopmental trajectories of the human cerebral cortexThe Journal of Neuroscience: The Official Journal of the Society for Neuroscience200828143586359410.1523/JNEUROSCI.5309-07.20081:CAS:528:DC%2BD1cXkslSjt7c%3D
ShafferDFisherPDulcanMKDaviesMPiacentiniJSchwab-StoneMELaheyBBThe NIMH diagnostic interview schedule for children version 2.3 (DISC-2.3): Description, acceptability, prevalence rates, and performance in the MECA studyJournal of the American Academy of Child & Adolescent Psychiatry199635786587710.1097/00004583-199607000-000121:STN:280:DyaK28zgtVylt
G Spasojević (9912_CR48) 2013; 72
SA Brown (9912_CR5) 1998; 59
S Kéri (9912_CR28) 2008; 32
N Kanwisher (9912_CR26) 2006; 361
AT Beck (9912_CR2) 1988; 8
9912_CR13
P Shaw (9912_CR46) 2008; 28
E Redcay (9912_CR39) 2008; 32
A Berger (9912_CR3) 2007; 82
Zafer Iscan (9912_CR21) 2015; 36
AJ Kruse (9912_CR30) 2016; 35
9912_CR29
AM Dale (9912_CR9) 1999; 9
CP Lucas (9912_CR33) 2001; 40
A Gelman (9912_CR16) 2006
American Psychiatric Association (9912_CR1) 2013
L Trippa (9912_CR52) 2015; 9
M Hall (9912_CR18) 2009; 11
D Shohamy (9912_CR47) 2008; 32
HG Schnack (9912_CR42) 2015; 25
J Tanji (9912_CR50) 2007; 11
EA Murray (9912_CR36) 2007; 11
J Jacobus (9912_CR24) 2015; 16
RE Jung (9912_CR25) 2007; 30
F Cardinale (9912_CR6) 2014; 12
P Shaw (9912_CR45) 2006; 440
C Sandi (9912_CR41) 2007; 2007
NR Kuncel (9912_CR31) 2016; 75
CD Spielberger (9912_CR49) 1983
P Domingos (9912_CR11) 1997; 29
CM Bird (9912_CR4) 2008; 9
JP Rice (9912_CR40) 1995; 19
9912_CR8
MI Posner (9912_CR38) 2007; 7
XW Tian (9912_CR51) 2015; 26
EL Hargreaves (9912_CR19) 2005; 308
PWL Leung (9912_CR32) 2005; 14
S Karama (9912_CR27) 2011; 55
JT Devlin (9912_CR10) 2006; 18
H Geng (9912_CR17) 2015; 2015
B Fischl (9912_CR14) 1999; 9
MV Peelen (9912_CR37) 2005; 93
MJ Clarkson (9912_CR7) 2011; 57
A Ishai (9912_CR20) 1999; 96
S Douglass (9912_CR12) 2016; 86
J Jacobus (9912_CR23) 2014; 75
MC Frey (9912_CR15) 2016; 15
D Shaffer (9912_CR43) 1996; 35
V Menon (9912_CR34) 2010; 214
AD Meruelo (9912_CR35) 2011; 20
J Jacobus (9912_CR22) 2012; 222
P Shaw (9912_CR44) 2007; 29
H Zhang (9912_CR53) 2005; 19
References_xml – reference: Kohavi, Ron. 1995. “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection.” In Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2, 1137–1143. IJCAI’95. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. http://dl.acm.org/citation.cfm?id=1643031.1643047.
– reference: ClarksonMJCardosoMJRidgwayGRModatMLeungKKRohrerJDA comparison of voxel and surface based cortical thickness estimation methodsNeuroImage201157385686510.1016/j.neuroimage.2011.05.05321640841
– reference: SchnackHGvan HarenNEMBrouwerRMEvansADurstonSBoomsmaDIKahnRSPolHEHChanges in thickness and surface area of the human cortex and their relationship with intelligenceCerebral Cortex (New York, N.Y.: 1991)20152561608161710.1093/cercor/bht357
– reference: IscanZaferJinTony B.KendrickAlexandriaSzeglinBryanLuHanzhangTrivediMadhukarTest-retest reliability of freesurfer measurements within and between sites: effects of visual approval processHuman Brain Mapping20153693472348510.1002/hbm.22856260331684545736
– reference: TianXWLimJSInteractive naive Bayesian network: A new approach of constructing gene-gene interaction network for Cancer classificationBio-medical Materials and Engineering201526Suppl 1S1929S193610.3233/BME-1514951:CAS:528:DC%2BC2MXhtlOqu7nL26405966
– reference: ShohamyDMyersCEKalanithiJGluckMABasal ganglia and dopamine contributions to probabilistic category learningNeuroscience and Biobehavioral Reviews200832221923610.1016/j.neubiorev.2007.07.0081:STN:280:DC%2BD1c%2FmvFCgug%3D%3D18061261
– reference: KanwisherNYovelGThe fusiform face area: A cortical region specialized for the perception of facesPhilosophical Transactions of the Royal Society B: Biological Sciences200636114762109212810.1098/rstb.2006.1934
– reference: GelmanAHillJData analysis using regression and multilevel/hierarchical models. 1 edition2006CambridgeCambridge University Press10.1017/CBO9780511790942
– reference: DaleAMFischlBSerenoMICortical surface-based analysis: I. Segmentation and surface reconstructionNeuroImage19999217919410.1006/nimg.1998.03951:STN:280:DyaK1M7jt1Gisg%3D%3D9931268
– reference: FreyMCDettermanDKScholastic assessment or g? The relationship between the scholastic assessment test and general cognitive abilityPsychological Science201615637337810.1111/j.0956-7976.2004.00687.x
– reference: FischlBSerenoMIDaleAMCortical surface-based analysis: II: Inflation, flattening, and a surface-based coordinate systemNeuroImage19999219520710.1006/nimg.1998.03961:STN:280:DyaK1M7jt1Gisw%3D%3D9931269
– reference: KériSInteractive memory systems and category learning in schizophreniaNeuroscience and Biobehavioral Reviews200832220621810.1016/j.neubiorev.2007.07.00317854895
– reference: Coyle, T., Snyder A., Pillow D., Kochunov P. (2011) SAT Predicts GPA Better for High Ability Subjects: Implications for Spearman’s Law of Diminishing Returns. Personality and Individual Differences, 50(4), 470–74. https://doi.org/10.1016/j.paid.2010.11.009.
– reference: ShawPGreensteinDLerchJClasenLLenrootRGogtayNEvansARapoportJGieddJIntellectual ability and cortical development in children and adolescentsNature2006440708467667910.1038/nature045131:CAS:528:DC%2BD28XivFWgtb4%3D16572172
– reference: BergerAKofmanOLivnehUHenikAMultidisciplinary perspectives on attention and the development of self-regulationProgress in Neurobiology200782525628610.1016/j.pneurobio.2007.06.00417651888
– reference: PeelenMVDowningPESelectivity for the human body in the fusiform gyrusJournal of Neurophysiology200593160360810.1152/jn.00513.200415295012
– reference: KuncelNRCredéMThomasLLThe validity of self-reported grade point averages, class ranks, and test scores: a meta-analysis and review of the literatureReview of Educational Research2016751638210.3102/00346543075001063
– reference: DevlinJTJamisonHLGonnermanLMMatthewsPMThe role of the posterior fusiform gyrus in readingJournal of Cognitive Neuroscience200618691192210.1162/jocn.2006.18.6.911168392991524880
– reference: HargreavesELRaoGLeeIKnierimJJMajor dissociation between medial and lateral entorhinal input to dorsal HippocampusScience (New York, N.Y.)200530857291792179410.1126/science.11104491:CAS:528:DC%2BD2MXltFemtro%3D
– reference: BirdCMBurgessNThe Hippocampus and memory: Insights from spatial processingNature Reviews. Neuroscience20089318219410.1038/nrn23351:CAS:528:DC%2BD1cXitFKntbc%3D18270514
– reference: MenonVUddinLQSaliency, switching, attention and control: A network model of insula functionBrain Structure & Function20102145–665566710.1007/s00429-010-0262-0
– reference: LeungPWLLucasCPHungS-fKwongS-lTangC-pLeeC-cHoT-pLieh-MakFShafferDThe test-retest reliability and screening efficiency of DISC predictive scales-version 4.32 (DPS-4.32) with Chinese children/youthsEuropean Child & Adolescent Psychiatry200514846146510.1007/s00787-005-0503-6
– reference: MurrayEAThe amygdala, reward and emotionTrends in Cognitive Sciences2007111148949710.1016/j.tics.2007.08.01317988930
– reference: GengHTaoLLinXLiuYYanFPrediction of protein-protein interaction sites based on naive Bayes classifierBiochemistry Research International2015201597819310.1155/2015/978193266972204677168
– reference: LucasCPZhangHFisherPWShafferDRegierDANarrowWEBourdonKThe DISC predictive scales (DPS): Efficiently screening for diagnosesJournal of the American Academy of Child & Adolescent Psychiatry200140444344910.1097/00004583-200104000-000131:STN:280:DC%2BD3M3itV2hug%3D%3D
– reference: TanjiJShimaKMushiakeHConcept-based behavioral planning and the lateral prefrontal cortexTrends in Cognitive Sciences2007111252853410.1016/j.tics.2007.09.00718024183
– reference: JungREHaierRJThe Parieto-frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidenceThe Behavioral and Brain Sciences2007302135154-18710.1017/S0140525X0700118517655784
– reference: JacobusJSquegliaLMMerueloADCastroNBrumbackTGieddJNTapertSFCortical thickness in adolescent marijuana and alcohol users: A three-year prospective study from adolescence to young adulthoodDevelopmental Cognitive Neuroscience, Substance Use and the Adolescent Brain: Developmental Impacts, Interventions, and Longitudinal Outcomes201516December10110910.1016/j.dcn.2015.04.006
– reference: KaramaSColomRJohnsonWDearyIJHaierRWaberDPLepageCGanjaviHJungREvansACCortical thickness correlates of specific cognitive performance accounted for by the general factor of intelligence in healthy children aged 6 to 18NeuroImage20115541443145310.1016/j.neuroimage.2011.01.016212418093070152
– reference: TrippaLWaldronLHuttenhowerCParmigianiGBayesian nonparametric cross-study validation of prediction methodsAnn. Appl. Stat.20159140242810.1214/14-AOAS798
– reference: American Psychiatric AssociationDiagnostic and statistical manual of mental disorders20135Washington, DCAmerican Psychiatric Publishing10.1176/appi.books.9780890425596
– reference: BeckATSteerRACarbinMGPsychometric properties of the Beck depression inventory: Twenty-five years of evaluationClinical Psychology Review1988817710010.1016/0272-7358(88)90050-5
– reference: MerueloADSamishIBowieJUTMKink: A method to predict transmembrane Helix kinksProtein Science: A Publication of the Protein Society20112071256126410.1002/pro.6531:CAS:528:DC%2BC3MXns1SgsLg%3D
– reference: RiceJPReichTBucholzKKNeumanRJFishmanRRochbergNHesselbrockVMNurnbergerJISchuckitMABegleiterHComparison of direct interview and family history diagnoses of alcohol dependenceAlcoholism, Clinical and Experimental Research19951941018102310.1111/j.1530-0277.1995.tb00983.x1:STN:280:DyaK28%2Fis1KhsA%3D%3D7485811
– reference: ZhangHExploring conditions for the optimality of Naïve BayesInternational Journal of Pattern Recognition and Artificial Intelligence200519218319810.1142/S0218001405003983
– reference: IshaiAUngerleiderLGMartinASchoutenJLHaxbyJVDistributed representation of objects in the human ventral visual pathwayProceedings of the National Academy of Sciences of the United States of America199996169379938410.1073/pnas.96.16.93791:CAS:528:DyaK1MXltVCjs70%3D1043095117791
– reference: JacobusJGoldenbergDWierengaCETolentinoNJLiuTTTapertSFAltered cerebral blood flow and neurocognitive correlates in adolescent Cannabis usersPsychopharmacology2012222467568410.1007/s00213-012-2674-41:CAS:528:DC%2BC38XjtlSgsb8%3D223954303510003
– reference: DomingosPPazzaniMOn the optimality of the simple Bayesian classifier under zero-one lossMachine Learning1997292–310313010.1023/A:1007413511361
– reference: SandiCPinelo-NavaMTStress and memory: Behavioral effects and neurobiological mechanismsNeural Plasticity200720077897010.1155/2007/78970180600121950232
– reference: CardinaleFChinniciGBramerioMMaiRSartoriICossuMValidation of freesurfer-estimated brain cortical thickness: comparison with histologic measurementsNeuroinformatics201412453554210.1007/s12021-014-9229-224789776
– reference: KruseAJCultural bias in testing: a review of literature and implications for music educationUpdate: Applications of Research in Music Education2016351233110.1177/8755123315576212
– reference: DouglassSHsuS-WCokusSGoldbergRBHaradaJJPellegriniMA Naïve Bayesian classifier for identifying plant microRNAsThe Plant Journal: For Cell and Molecular Biology201686648149210.1111/tpj.131801:CAS:528:DC%2BC28XhtVSgt7jL
– reference: SpasojevićGMalobabicSPilipović-SpasojevićODjukić-MacutNMalikovićAMorphology and digitally aided morphometry of the human paracentral lobuleFolia Morphologica2013721101610.5603/FM.2013.000223749705
– reference: ShafferDFisherPDulcanMKDaviesMPiacentiniJSchwab-StoneMELaheyBBThe NIMH diagnostic interview schedule for children version 2.3 (DISC-2.3): Description, acceptability, prevalence rates, and performance in the MECA studyJournal of the American Academy of Child & Adolescent Psychiatry199635786587710.1097/00004583-199607000-000121:STN:280:DyaK28zgtVyltQ%3D%3D
– reference: PosnerMIRothbartMKSheeseBETangYThe anterior cingulate gyrus and the mechanism of self-regulationCognitive, Affective & Behavioral Neuroscience20077439139510.3758/CABN.7.4.391
– reference: HallMFrankEHolmesGPfahringerBReutemannPWittenIHThe WEKA data mining software: An updateSIGKDD Explor. Newsl.2009111101810.1145/1656274.1656278
– reference: SpielbergerCDGorsuchRLLusheneRVaggPRJacobsGAManual for the state-trait anxiety inventory1983Palo AltoConsulting Psychologists Press
– reference: Fischl, B., & Dale, A. M. (2000) Measuring the Thickness of the Human Cerebral Cortex from Magnetic Resonance Images. Proceedings of the National Academy of Sciences of the United States of America 97(20), 11050–55. https://doi.org/10.1073/pnas.200033797.
– reference: JacobusJSquegliaLMSorgSFNguyen-LouieTTTapertSFCortical thickness and Neurocognition in adolescent marijuana and alcohol users following 28 days of monitored abstinenceJournal of Studies on Alcohol and Drugs201475572974310.15288/jsad.2014.75.729252081904161693
– reference: BrownSAMyersMGLippkeLTapertSFStewartDGVikPWPsychometric evaluation of the customary drinking and drug use record (CDDR): A measure of adolescent alcohol and drug involvementJournal of Studies on Alcohol199859442743810.15288/jsa.1998.59.4271:STN:280:DyaK1czgvFKnsg%3D%3D
– reference: ShawPIntelligence and the developing human brainBioEssays: News and Reviews in Molecular, Cellular and Developmental Biology2007291096297310.1002/bies.20641
– reference: ShawPKabaniNJLerchJPEckstrandKLenrootRGogtayNGreensteinDNeurodevelopmental trajectories of the human cerebral cortexThe Journal of Neuroscience: The Official Journal of the Society for Neuroscience200828143586359410.1523/JNEUROSCI.5309-07.20081:CAS:528:DC%2BD1cXkslSjt7c%3D
– reference: RedcayEThe superior temporal sulcus performs a common function for social and speech perception: Implications for the emergence of autismNeuroscience and Biobehavioral Reviews200832112314210.1016/j.neubiorev.2007.06.00417706781
– volume: 75
  start-page: 63
  issue: 1
  year: 2016
  ident: 9912_CR31
  publication-title: Review of Educational Research
  doi: 10.3102/00346543075001063
– volume: 361
  start-page: 2109
  issue: 1476
  year: 2006
  ident: 9912_CR26
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
  doi: 10.1098/rstb.2006.1934
– volume: 86
  start-page: 481
  issue: 6
  year: 2016
  ident: 9912_CR12
  publication-title: The Plant Journal: For Cell and Molecular Biology
  doi: 10.1111/tpj.13180
– volume: 32
  start-page: 219
  issue: 2
  year: 2008
  ident: 9912_CR47
  publication-title: Neuroscience and Biobehavioral Reviews
  doi: 10.1016/j.neubiorev.2007.07.008
– volume: 9
  start-page: 402
  issue: 1
  year: 2015
  ident: 9912_CR52
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/14-AOAS798
– volume: 57
  start-page: 856
  issue: 3
  year: 2011
  ident: 9912_CR7
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.05.053
– volume: 35
  start-page: 865
  issue: 7
  year: 1996
  ident: 9912_CR43
  publication-title: Journal of the American Academy of Child & Adolescent Psychiatry
  doi: 10.1097/00004583-199607000-00012
– volume: 14
  start-page: 461
  issue: 8
  year: 2005
  ident: 9912_CR32
  publication-title: European Child & Adolescent Psychiatry
  doi: 10.1007/s00787-005-0503-6
– volume: 32
  start-page: 123
  issue: 1
  year: 2008
  ident: 9912_CR39
  publication-title: Neuroscience and Biobehavioral Reviews
  doi: 10.1016/j.neubiorev.2007.06.004
– volume: 72
  start-page: 10
  issue: 1
  year: 2013
  ident: 9912_CR48
  publication-title: Folia Morphologica
  doi: 10.5603/FM.2013.0002
– volume: 40
  start-page: 443
  issue: 4
  year: 2001
  ident: 9912_CR33
  publication-title: Journal of the American Academy of Child & Adolescent Psychiatry
  doi: 10.1097/00004583-200104000-00013
– volume: 9
  start-page: 195
  issue: 2
  year: 1999
  ident: 9912_CR14
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0396
– volume-title: Manual for the state-trait anxiety inventory
  year: 1983
  ident: 9912_CR49
– volume: 82
  start-page: 256
  issue: 5
  year: 2007
  ident: 9912_CR3
  publication-title: Progress in Neurobiology
  doi: 10.1016/j.pneurobio.2007.06.004
– volume: 440
  start-page: 676
  issue: 7084
  year: 2006
  ident: 9912_CR45
  publication-title: Nature
  doi: 10.1038/nature04513
– volume: 32
  start-page: 206
  issue: 2
  year: 2008
  ident: 9912_CR28
  publication-title: Neuroscience and Biobehavioral Reviews
  doi: 10.1016/j.neubiorev.2007.07.003
– volume: 20
  start-page: 1256
  issue: 7
  year: 2011
  ident: 9912_CR35
  publication-title: Protein Science: A Publication of the Protein Society
  doi: 10.1002/pro.653
– volume: 11
  start-page: 528
  issue: 12
  year: 2007
  ident: 9912_CR50
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2007.09.007
– volume-title: Data analysis using regression and multilevel/hierarchical models. 1 edition
  year: 2006
  ident: 9912_CR16
  doi: 10.1017/CBO9780511790942
– volume: 15
  start-page: 373
  issue: 6
  year: 2016
  ident: 9912_CR15
  publication-title: Psychological Science
  doi: 10.1111/j.0956-7976.2004.00687.x
– volume: 2015
  start-page: 978193
  year: 2015
  ident: 9912_CR17
  publication-title: Biochemistry Research International
  doi: 10.1155/2015/978193
– volume: 75
  start-page: 729
  issue: 5
  year: 2014
  ident: 9912_CR23
  publication-title: Journal of Studies on Alcohol and Drugs
  doi: 10.15288/jsad.2014.75.729
– volume-title: Diagnostic and statistical manual of mental disorders
  year: 2013
  ident: 9912_CR1
  doi: 10.1176/appi.books.9780890425596
– volume: 26
  start-page: S1929
  issue: Suppl 1
  year: 2015
  ident: 9912_CR51
  publication-title: Bio-medical Materials and Engineering
  doi: 10.3233/BME-151495
– ident: 9912_CR29
– volume: 55
  start-page: 1443
  issue: 4
  year: 2011
  ident: 9912_CR27
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.01.016
– volume: 96
  start-page: 9379
  issue: 16
  year: 1999
  ident: 9912_CR20
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.96.16.9379
– volume: 308
  start-page: 1792
  issue: 5729
  year: 2005
  ident: 9912_CR19
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.1110449
– volume: 16
  start-page: 101
  issue: December
  year: 2015
  ident: 9912_CR24
  publication-title: Developmental Cognitive Neuroscience, Substance Use and the Adolescent Brain: Developmental Impacts, Interventions, and Longitudinal Outcomes
  doi: 10.1016/j.dcn.2015.04.006
– volume: 28
  start-page: 3586
  issue: 14
  year: 2008
  ident: 9912_CR46
  publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience
  doi: 10.1523/JNEUROSCI.5309-07.2008
– volume: 35
  start-page: 23
  issue: 1
  year: 2016
  ident: 9912_CR30
  publication-title: Update: Applications of Research in Music Education
  doi: 10.1177/8755123315576212
– volume: 9
  start-page: 179
  issue: 2
  year: 1999
  ident: 9912_CR9
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0395
– volume: 25
  start-page: 1608
  issue: 6
  year: 2015
  ident: 9912_CR42
  publication-title: Cerebral Cortex (New York, N.Y.: 1991)
  doi: 10.1093/cercor/bht357
– volume: 18
  start-page: 911
  issue: 6
  year: 2006
  ident: 9912_CR10
  publication-title: Journal of Cognitive Neuroscience
  doi: 10.1162/jocn.2006.18.6.911
– volume: 59
  start-page: 427
  issue: 4
  year: 1998
  ident: 9912_CR5
  publication-title: Journal of Studies on Alcohol
  doi: 10.15288/jsa.1998.59.427
– volume: 93
  start-page: 603
  issue: 1
  year: 2005
  ident: 9912_CR37
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00513.2004
– volume: 29
  start-page: 103
  issue: 2–3
  year: 1997
  ident: 9912_CR11
  publication-title: Machine Learning
  doi: 10.1023/A:1007413511361
– volume: 222
  start-page: 675
  issue: 4
  year: 2012
  ident: 9912_CR22
  publication-title: Psychopharmacology
  doi: 10.1007/s00213-012-2674-4
– volume: 11
  start-page: 489
  issue: 11
  year: 2007
  ident: 9912_CR36
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2007.08.013
– volume: 19
  start-page: 183
  issue: 2
  year: 2005
  ident: 9912_CR53
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
  doi: 10.1142/S0218001405003983
– volume: 30
  start-page: 135
  issue: 2
  year: 2007
  ident: 9912_CR25
  publication-title: The Behavioral and Brain Sciences
  doi: 10.1017/S0140525X07001185
– volume: 9
  start-page: 182
  issue: 3
  year: 2008
  ident: 9912_CR4
  publication-title: Nature Reviews. Neuroscience
  doi: 10.1038/nrn2335
– volume: 7
  start-page: 391
  issue: 4
  year: 2007
  ident: 9912_CR38
  publication-title: Cognitive, Affective & Behavioral Neuroscience
  doi: 10.3758/CABN.7.4.391
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 9912_CR18
  publication-title: SIGKDD Explor. Newsl.
  doi: 10.1145/1656274.1656278
– volume: 2007
  start-page: 78970
  year: 2007
  ident: 9912_CR41
  publication-title: Neural Plasticity
  doi: 10.1155/2007/78970
– volume: 12
  start-page: 535
  issue: 4
  year: 2014
  ident: 9912_CR6
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-014-9229-2
– ident: 9912_CR8
  doi: 10.1016/j.paid.2010.11.009
– volume: 19
  start-page: 1018
  issue: 4
  year: 1995
  ident: 9912_CR40
  publication-title: Alcoholism, Clinical and Experimental Research
  doi: 10.1111/j.1530-0277.1995.tb00983.x
– ident: 9912_CR13
  doi: 10.1073/pnas.200033797
– volume: 36
  start-page: 3472
  issue: 9
  year: 2015
  ident: 9912_CR21
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.22856
– volume: 29
  start-page: 962
  issue: 10
  year: 2007
  ident: 9912_CR44
  publication-title: BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology
  doi: 10.1002/bies.20641
– volume: 8
  start-page: 77
  issue: 1
  year: 1988
  ident: 9912_CR2
  publication-title: Clinical Psychology Review
  doi: 10.1016/0272-7358(88)90050-5
– volume: 214
  start-page: 655
  issue: 5–6
  year: 2010
  ident: 9912_CR34
  publication-title: Brain Structure & Function
  doi: 10.1007/s00429-010-0262-0
SSID ssj0054891
Score 2.2054918
Snippet Academic performance in adolescence strongly influences adult prospects. Intelligence quotient (IQ) has historically been considered a strong predictor of...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 945
SubjectTerms Academic Success
Adolescence
Adolescent
Adolescents
Analysis of covariance
Bayes Theorem
Bayesian analysis
Biomarkers
Biomedical and Life Sciences
Biomedicine
Brain
Brain - diagnostic imaging
Brain - growth & development
Brain Mapping - methods
Cerebral Cortex - diagnostic imaging
Child
Child development
Cognition - physiology
Cortex
Covariance
Demographics
Demography
Female
Forecasting - methods
Hemispheric laterality
Humans
Intelligence
Intelligence Tests
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Morphometry
Neuropsychology
Neuroradiology
Neurosciences
Original Research
Performance prediction
Psychiatry
Sensitivity and Specificity
Teenagers
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fa9swED66FLruYWxt13rrhgd9ahHYiixZD2Nso6EMGkpZoW9GliVayJw0TRj773dny05DIXu15R86ne4-6U7fAZzwxIvc6pJplQgmvPfMiEywnKssq3wuM0Nnhy_H8uJG_LzNbrdg3J2FobTKziY2hrqaWtojx0U6emqNKjn8OntgVDWKoqtdCQ0TSitUXxqKsRewzYkZawDb38_HV9edbUZ43tTQQ9SSMvwZ1cU5m8N0qcwpTQENgE454-ue6hn8fJ5F2YdSX8HLZT0zf_-YyeSJtxq9gdcBZsbfWr14C1uu3oOdyxBI34dRQ2wcr_ic4pJqRcS_KVtn_hhPfTxBFPq0gQmZ9DG5wrCNewA3o_NfPy5YKKnArFDJgolhUjmHIE44X9q0EkajvFSZ2MrmqXIKL3krZJl4bjL0_1LqitPOUymJ6X34Dgb1tHZHECOu8Pgyqz2iAO5kKblCuCdkpS2uAW0ESSe-wga-cSp7MSlWTMkk8QIlXpDECx7Baf_IrCXb2NT4uBuTIsy7x2KlJRF87m_jjKEwiKnddNm2QReAti2Cw3YI-6-hc0YAqnQEam1w-wbExr1-p76_a1i58bt5nskIzjo1WP3Whk6c9Zry_y6_39zlD7CLcE636YnHMFjMl-4jQqZF-SnMg3_PJA_3
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD50Kezy0O7Sbd7a4cGeVpTaii7WYykLpdAyxgLdk7FkiZY6TmgTxvbrd2TLTrNCS9-MdXyRj6TzWefTJ4AvNHEsM0oTJRNGmHOOFIwzklHJeekywQu_dvj0TBxP2Mk5P9-AtFsL05D2jb4c1tV0WF9eNNzK-dQcdDyxA0FVlnHxBDYFR_g9gM3J2ffDX232OCX4CLk6FrzLZDbL5VKReSICdnGVUkLXY9EdgHmXJ9knS1_As2U9L_78LqrqVjwab8OPriYtDeVquFzoofn7n8jjo6r6ErYCOo0P26JXsGHr1_D0NOTf38C40UOOVzJQsfZbTMRTT_K5volnLq4QvN42KAIBP_YRNMz-7sBk_O3n0TEJOzEQw2SyIGyUlNbi12TWaZOWrFCItKROTGmyVFqJp5xhQieOFhxhgxCqpH7CSgsvED96C4N6Vtv3ECMccXgzoxyCB2qFFlQiSmSiVAZ_HU0ESeeT3ASZcr9bRpWvBJa9G3N0Y-7dmNMIvvaXzFuNjvuMdztH56G73uTUw0CF490ogs99MXY0nz0pajtbtjYYOXBIjOBd2y76p2FMR9wqVQRyrcX0Bl7Ee70EHd6IeQcfR7Dfta3Va91Tif2--T1c5Q-Psv4IzxEUqpbkuAuDxfXS7iHwWuhPoav9A_2dJo8
  priority: 102
  providerName: Unpaywall
Title Early adolescent brain markers of late adolescent academic functioning
URI https://link.springer.com/article/10.1007/s11682-018-9912-2
https://www.ncbi.nlm.nih.gov/pubmed/29911279
https://www.proquest.com/docview/2056290303
https://www.proquest.com/docview/2056762073
https://pubmed.ncbi.nlm.nih.gov/PMC6298856
https://www.ncbi.nlm.nih.gov/pmc/articles/6298856
UnpaywallVersion submittedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1931-7565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054891
  issn: 1931-7565
  databaseCode: AFBBN
  dateStart: 20070601
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1931-7565
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0054891
  issn: 1931-7565
  databaseCode: 8FG
  dateStart: 20070601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1931-7565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054891
  issn: 1931-7565
  databaseCode: AGYKE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1931-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0054891
  issn: 1931-7565
  databaseCode: U2A
  dateStart: 20070601
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54AS8P4t16GRV8UgJtlibN45RNURwiDuZTadMEhdmJ2xD_vSe9zaEovrS0SZP2JDnna87JF4AT6hkWKpkQKTxGmDGGxCxgJKQiCFIT8iC2a4dvu_yqx677Qb9cxz2qot0rl2SuqaeL3Xwe2jACHKDSpwT17mJg2bywE_doq1K_iMDzbfIQmPgE6xOVK_OnImaN0TeE-T1QsvaWrsLyJHuNP97jweCLQeqsw1qJJN1W0fQbMKezTVi6LX3lW9DJuYvdKWWTm9jtINwXG5DzNnKHxh0g0PyaIS6D5V1r7cqZ2m3oddoPF1ek3DWBKCa8MWFNL9UacRrTJlF-ymKJqEgknkpV6Ast8JZRjCeeoXGAJp5zmVI7uZRwS-be3IGFbJjpPXAROhgsTEmDhp5qnnAqENExnkqFv3nKAa8SX6RKSnG7s8UgmpIhW4lHKPHISjyiDpzWj7wWfBq_ZT6s2iQqh9YoohaySdRNTQeO62QcFNbTEWd6OCnyoJZH9eXAbtGEdW1ofxFjCumAmGncOoMl3J5NyZ6fcuJtrDcMA-7AWdUNpq_1y0ec1T3l70_e_1fZB7CCAE4WAYmHsDB-m-gjBEnjpAHzoi_wGHYuG7DYuny8aeP5vN29u2_kAwavet271uMnZV0Mxg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTWLjAfFNYICR4IXJUuI6dvwwIT5WdWytENqkvQXHscWkkpa11bR_jr-Nc-KkqyaVp702jlOfz77f-c6_A3jHYsczowqqZMwpd85RzVNOMybTtHSZSLW_OzwcicEp_3aWnm3A3_YujE-rbPfEeqMuJ8afkaOTjpZaoUr2Pk7_UF81ykdX2xIaOpRWKPdrirFwsePIXl2iCzfbP_yK8_2esf7ByZcBDVUGqOEynlPei0trEddw6wqTlFwr7EIWsSlNlkgr8SdnuChix3SKJlEIVTJ_GFMIT37ew37vwBbvcYXO39bng9H3H60tQHegrtmHKCmhOHjZxlXry3sJvo-uPG44KmGUrVrGG3D3ZtZmF7q9B9uLaqqvLvV4fM069h_A_QBryadGDx_Chq0ewd1hCNw_hn5NpEyW_FGk8LUpyG-fHXQxIxNHxoh6rzfQIXOfeNMbjo2fwOmtCPcpbFaTyj4HgjjGYWdGOUQdzIpCMInwkotSGfQ5TQRxK77cBH5zX2ZjnC-Zmb3Ec5R47iWeswg-dK9MG3KPdY132znJwzqf5UutjOBt9xhXqA-76MpOFk0bNDm4l0bwrJnC7msIBhDwShWBXJncroFn_159Up3_qlnA8btZlooI9lo1WP6tNYPY6zTl_0N-sX7Ib2B7cDI8zo8PR0cvYQehpGpSI3dhc36xsK8Qrs2L12FNEPh528vwH20TS8c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT9swED8xJjH2gLbBIKMDTxovIIvEcez4YZoQrIIx0B6G1LeQOLaGVNJCW6F-tX26nfOvVEjlidfYiePzne93vvMdwFfmWx5rlVElfU65tZamPOI0ZjKKchuLKHV3hy8uxekV_9mLekvwr7kL48Iqmz2x3KjzgXZn5Giko6ZWyJLhoa3DIn6fdL8P76irIOU8rU05jYpFzs30Ac230bezE1zrPca6P_4cn9K6wgDVXPpjykM_NwYxDTc200HOU4UIQma-znUcSCPxkdVcZL5laYTqUAiVM3cQkwmX-DzE776C1zIMlQsnlL3W2ENDoKzWh_gooDht2XhUy2t7Ab6NRjxuNSpglM3rxCdA92m8Zuu0fQtvJsUwnT6k_f4jvdh9B2s1oCVHFQe-hyVTfICVi9plvw7dMoUymWWOIpmrSkFuXVzQ_YgMLOkj3n3cIa1j9olTuvWB8QZcvQhpP8JyMSjMFhBEMBY_ppVFvMGMyASTCCy5yJVGa1N74DfkS3Sd2dwV2Ogns5zMjuIJUjxxFE-YB_vtK8Mqrceizp1mTZJawkfJjB89-NI2o2w6h0tamMGk6oPKBndRDzarJWxHQxiAUFcqD-Tc4rYdXN7v-Zbi5m-Z_xvHjeNIeHDQsMHstxZM4qDllOen_GnxlHdhBYUv-XV2eb4Nq4ghVRUT2YHl8f3EfEacNs52SoEgcP3SEvgfPelJYQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD50Kezy0O7Sbd7a4cGeVpTaii7WYykLpdAyxgLdk7FkiZY6TmgTxvbrd2TLTrNCS9-MdXyRj6TzWefTJ4AvNHEsM0oTJRNGmHOOFIwzklHJeekywQu_dvj0TBxP2Mk5P9-AtFsL05D2jb4c1tV0WF9eNNzK-dQcdDyxA0FVlnHxBDYFR_g9gM3J2ffDX232OCX4CLk6FrzLZDbL5VKReSICdnGVUkLXY9EdgHmXJ9knS1_As2U9L_78LqrqVjwab8OPriYtDeVquFzoofn7n8jjo6r6ErYCOo0P26JXsGHr1_D0NOTf38C40UOOVzJQsfZbTMRTT_K5volnLq4QvN42KAIBP_YRNMz-7sBk_O3n0TEJOzEQw2SyIGyUlNbi12TWaZOWrFCItKROTGmyVFqJp5xhQieOFhxhgxCqpH7CSgsvED96C4N6Vtv3ECMccXgzoxyCB2qFFlQiSmSiVAZ_HU0ESeeT3ASZcr9bRpWvBJa9G3N0Y-7dmNMIvvaXzFuNjvuMdztH56G73uTUw0CF490ogs99MXY0nz0pajtbtjYYOXBIjOBd2y76p2FMR9wqVQRyrcX0Bl7Ee70EHd6IeQcfR7Dfta3Va91Tif2--T1c5Q-Psv4IzxEUqpbkuAuDxfXS7iHwWuhPoav9A_2dJo8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+adolescent+brain+markers+of+late+adolescent+academic+functioning&rft.jtitle=Brain+imaging+and+behavior&rft.au=Meruelo%2C+Alejandro+Daniel&rft.au=Jacobus%2C+Joanna&rft.au=Idy%2C+Erick&rft.au=Nguyen-Louie%2C+Tam&rft.date=2019-08-01&rft.pub=Springer+US&rft.issn=1931-7557&rft.eissn=1931-7565&rft.volume=13&rft.issue=4&rft.spage=945&rft.epage=952&rft_id=info:doi/10.1007%2Fs11682-018-9912-2&rft.externalDocID=10_1007_s11682_018_9912_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-7557&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-7557&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-7557&client=summon