Early adolescent brain markers of late adolescent academic functioning
Academic performance in adolescence strongly influences adult prospects. Intelligence quotient (IQ) has historically been considered a strong predictor of academic performance. Less objectively explored have been morphometric features. We analyzed brain MRI morphometry metrics in early adolescence (...
        Saved in:
      
    
          | Published in | Brain imaging and behavior Vol. 13; no. 4; pp. 945 - 952 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.08.2019
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1931-7557 1931-7565 1931-7565  | 
| DOI | 10.1007/s11682-018-9912-2 | 
Cover
| Abstract | Academic performance in adolescence strongly influences adult prospects. Intelligence quotient (IQ) has historically been considered a strong predictor of academic performance. Less objectively explored have been morphometric features. We analyzed brain MRI morphometry metrics in early adolescence (age 12–14 years) as quantitative predictors of academic performance over high school using a naïve Bayesian classifier approach with
n
 = 170 subjects. Based on the mean GPA, subjects were divided into high (GPA ≥3.54;
n
 = 87) and low (GPA <3.54;
n
 = 83) academic performers. Covariance analysis was performed to look at the influence of subject demographics. We examined predictive features from the 343 available regions (surface areas, cortical thickness, and subcortical volumes) and applied 4 algorithms for selection and reduction of attributes using Weka. Cortical thickness measures performed better than surface areas or subcortical volumes as predictors of academic performance. We identified 15 cortical thickness regions most predictive of academic performance, three of which have not been described in the literature predictive of academic performance. These were in the left hemisphere fusiform, bilateral insula, and left hemisphere paracentral regions. Prediction had a sensitivity of 0.65 and specificity of 0.73 with independent validation. Follow-up independent t-test analyses between high and low academic achievers on 10 of 15 regions showed between-group significance at the
p
 < 0.05 level. High achievers demonstrated thicker cortices than low achievers. These newly identified regions may help pinpoint new targets for further study in understanding the developing adolescent brain in the classroom setting. | 
    
|---|---|
| AbstractList | Academic performance in adolescence strongly influences adult prospects. Intelligence quotient (IQ) has historically been considered a strong predictor of academic performance. Less objectively explored have been morphometric features. We analyzed brain MRI morphometry metrics in early adolescence (age 12-14 years) as quantitative predictors of academic performance over high school using a naïve Bayesian classifier approach with n = 170 subjects. Based on the mean GPA, subjects were divided into high (GPA ≥3.54; n = 87) and low (GPA <3.54; n = 83) academic performers. Covariance analysis was performed to look at the influence of subject demographics. We examined predictive features from the 343 available regions (surface areas, cortical thickness, and subcortical volumes) and applied 4 algorithms for selection and reduction of attributes using Weka. Cortical thickness measures performed better than surface areas or subcortical volumes as predictors of academic performance. We identified 15 cortical thickness regions most predictive of academic performance, three of which have not been described in the literature predictive of academic performance. These were in the left hemisphere fusiform, bilateral insula, and left hemisphere paracentral regions. Prediction had a sensitivity of 0.65 and specificity of 0.73 with independent validation. Follow-up independent t-test analyses between high and low academic achievers on 10 of 15 regions showed between-group significance at the p < 0.05 level. High achievers demonstrated thicker cortices than low achievers. These newly identified regions may help pinpoint new targets for further study in understanding the developing adolescent brain in the classroom setting.Academic performance in adolescence strongly influences adult prospects. Intelligence quotient (IQ) has historically been considered a strong predictor of academic performance. Less objectively explored have been morphometric features. We analyzed brain MRI morphometry metrics in early adolescence (age 12-14 years) as quantitative predictors of academic performance over high school using a naïve Bayesian classifier approach with n = 170 subjects. Based on the mean GPA, subjects were divided into high (GPA ≥3.54; n = 87) and low (GPA <3.54; n = 83) academic performers. Covariance analysis was performed to look at the influence of subject demographics. We examined predictive features from the 343 available regions (surface areas, cortical thickness, and subcortical volumes) and applied 4 algorithms for selection and reduction of attributes using Weka. Cortical thickness measures performed better than surface areas or subcortical volumes as predictors of academic performance. We identified 15 cortical thickness regions most predictive of academic performance, three of which have not been described in the literature predictive of academic performance. These were in the left hemisphere fusiform, bilateral insula, and left hemisphere paracentral regions. Prediction had a sensitivity of 0.65 and specificity of 0.73 with independent validation. Follow-up independent t-test analyses between high and low academic achievers on 10 of 15 regions showed between-group significance at the p < 0.05 level. High achievers demonstrated thicker cortices than low achievers. These newly identified regions may help pinpoint new targets for further study in understanding the developing adolescent brain in the classroom setting. Academic performance in adolescence strongly influences adult prospects. Intelligence quotient (IQ) has historically been considered a strong predictor of academic performance. Less objectively explored have been morphometric features. We analyzed brain MRI morphometry metrics in early adolescence (age 12–14 years) as quantitative predictors of academic performance over high school using a naïve Bayesian classifier approach with n = 170 subjects. Based on the mean GPA, subjects were divided into high (GPA ≥ 3.54; n=87) and low (GPA <3.54; n=83) academic performers. Covariance analysis was performed to look at the influence of subject demographics. We examined predictive features from the 343 available regions (surface areas, cortical thickness, and subcortical volumes) and applied 4 algorithms for selection and reduction of attributes using Weka. Cortical thickness measures performed better than surface areas or subcortical volumes as predictors of academic performance. We identified 15 cortical thickness regions most predictive of academic performance, three of which have not been described in the literature predictive of academic performance. These were in the left hemisphere fusiform, bilateral insula, and left hemisphere paracentral regions. Prediction had a sensitivity of 0.65 and specificity of 0.73 with independent validation. Follow-up independent t-test analyses between high and low academic achievers on 10 of 15 regions showed between-group significance at the p < 0.05 level. High achievers demonstrated thicker cortices than low achievers. These newly identified regions may help pinpoint new targets for further study in understanding the developing adolescent brain in the classroom setting. Academic performance in adolescence strongly influences adult prospects. Intelligence quotient (IQ) has historically been considered a strong predictor of academic performance. Less objectively explored have been morphometric features. We analyzed brain MRI morphometry metrics in early adolescence (age 12–14 years) as quantitative predictors of academic performance over high school using a naïve Bayesian classifier approach with n = 170 subjects. Based on the mean GPA, subjects were divided into high (GPA ≥3.54; n = 87) and low (GPA <3.54; n = 83) academic performers. Covariance analysis was performed to look at the influence of subject demographics. We examined predictive features from the 343 available regions (surface areas, cortical thickness, and subcortical volumes) and applied 4 algorithms for selection and reduction of attributes using Weka. Cortical thickness measures performed better than surface areas or subcortical volumes as predictors of academic performance. We identified 15 cortical thickness regions most predictive of academic performance, three of which have not been described in the literature predictive of academic performance. These were in the left hemisphere fusiform, bilateral insula, and left hemisphere paracentral regions. Prediction had a sensitivity of 0.65 and specificity of 0.73 with independent validation. Follow-up independent t-test analyses between high and low academic achievers on 10 of 15 regions showed between-group significance at the p < 0.05 level. High achievers demonstrated thicker cortices than low achievers. These newly identified regions may help pinpoint new targets for further study in understanding the developing adolescent brain in the classroom setting. Academic performance in adolescence strongly influences adult prospects. Intelligence quotient (IQ) has historically been considered a strong predictor of academic performance. Less objectively explored have been morphometric features. We analyzed brain MRI morphometry metrics in early adolescence (age 12-14 years) as quantitative predictors of academic performance over high school using a naïve Bayesian classifier approach with n = 170 subjects. Based on the mean GPA, subjects were divided into high (GPA ≥3.54; n = 87) and low (GPA <3.54; n = 83) academic performers. Covariance analysis was performed to look at the influence of subject demographics. We examined predictive features from the 343 available regions (surface areas, cortical thickness, and subcortical volumes) and applied 4 algorithms for selection and reduction of attributes using Weka. Cortical thickness measures performed better than surface areas or subcortical volumes as predictors of academic performance. We identified 15 cortical thickness regions most predictive of academic performance, three of which have not been described in the literature predictive of academic performance. These were in the left hemisphere fusiform, bilateral insula, and left hemisphere paracentral regions. Prediction had a sensitivity of 0.65 and specificity of 0.73 with independent validation. Follow-up independent t-test analyses between high and low academic achievers on 10 of 15 regions showed between-group significance at the p < 0.05 level. High achievers demonstrated thicker cortices than low achievers. These newly identified regions may help pinpoint new targets for further study in understanding the developing adolescent brain in the classroom setting. Academic performance in adolescence strongly influences adult prospects. Intelligence quotient (IQ) has historically been considered a strong predictor of academic performance. Less objectively explored have been morphometric features. We analyzed brain MRI morphometry metrics in early adolescence (age 12–14 years) as quantitative predictors of academic performance over high school using a naïve Bayesian classifier approach with n = 170 subjects. Based on the mean GPA, subjects were divided into high (GPA ≥3.54; n = 87) and low (GPA <3.54; n = 83) academic performers. Covariance analysis was performed to look at the influence of subject demographics. We examined predictive features from the 343 available regions (surface areas, cortical thickness, and subcortical volumes) and applied 4 algorithms for selection and reduction of attributes using Weka. Cortical thickness measures performed better than surface areas or subcortical volumes as predictors of academic performance. We identified 15 cortical thickness regions most predictive of academic performance, three of which have not been described in the literature predictive of academic performance. These were in the left hemisphere fusiform, bilateral insula, and left hemisphere paracentral regions. Prediction had a sensitivity of 0.65 and specificity of 0.73 with independent validation. Follow-up independent t-test analyses between high and low academic achievers on 10 of 15 regions showed between-group significance at the p < 0.05 level. High achievers demonstrated thicker cortices than low achievers. These newly identified regions may help pinpoint new targets for further study in understanding the developing adolescent brain in the classroom setting.  | 
    
| Author | Jacobus, Joanna Brown, Gregory Meruelo, Alejandro Daniel Idy, Erick Nguyen-Louie, Tam Tapert, Susan Frances  | 
    
| AuthorAffiliation | 2 VA San Diego Healthcare System, La Jolla, CA, USA 3 San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California 1 Department of Psychiatry, University of California San Diego, La Jolla, CA, USA  | 
    
| AuthorAffiliation_xml | – name: 1 Department of Psychiatry, University of California San Diego, La Jolla, CA, USA – name: 2 VA San Diego Healthcare System, La Jolla, CA, USA – name: 3 San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California  | 
    
| Author_xml | – sequence: 1 givenname: Alejandro Daniel orcidid: 0000-0001-6087-1818 surname: Meruelo fullname: Meruelo, Alejandro Daniel email: ameruelo@ucsd.edu organization: Department of Psychiatry, University of California San Diego – sequence: 2 givenname: Joanna surname: Jacobus fullname: Jacobus, Joanna organization: Department of Psychiatry, University of California San Diego – sequence: 3 givenname: Erick surname: Idy fullname: Idy, Erick organization: Department of Psychiatry, University of California San Diego – sequence: 4 givenname: Tam surname: Nguyen-Louie fullname: Nguyen-Louie, Tam organization: San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology – sequence: 5 givenname: Gregory surname: Brown fullname: Brown, Gregory organization: Department of Psychiatry, University of California San Diego, VA San Diego Healthcare System – sequence: 6 givenname: Susan Frances surname: Tapert fullname: Tapert, Susan Frances organization: Department of Psychiatry, University of California San Diego  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29911279$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkUtv3CAUhVGVqHm0PyCbyFI23bi9YANmEyka5VEpUjftGmGMJyQMTMBONP8-uDN5SomyAsF37j333D205YM3CB1g-IkB-K-EMWtICbgphcCkJF_QLhYVLjlldOvpTvkO2kvpGoDWjcBf0Q7JOCZc7KKzUxXdqlBdcCZp44eijcr6YqHijYmpCH3h1GBeAkqrziysLvrR68EGb_38G9rulUvm--bcR__OTv_OLsrLP-e_ZyeXpa45DGVdQWdMNlebvtW4q5WgFPMWdKcbzA3PT72uWQs9URQIZkx0hGTjbR4UWLWPyLru6Jdqda-ck8tos9mVxCCnUOQ6FJlDkVMokmTR8Vq0HNuF6aYhonoWBmXl6x9vr-Q83ElGRNPQqeuPTYEYbkeTBrmwOQvnlDdhTJIAZZwR4FVGj96g12GMPmfynyICKpiow5eOnqw87iUDeA3oGFKKpv_UmPyNRttBTQvKQ1n3oXKTaspd_NzEZ9Pvix4AmWnAXQ | 
    
| CitedBy_id | crossref_primary_10_1038_s41380_020_0757_x crossref_primary_10_1016_j_drugalcdep_2022_109761 crossref_primary_10_1038_s41598_022_24958_0 crossref_primary_10_1093_sleep_zsab120  | 
    
| Cites_doi | 10.3102/00346543075001063 10.1098/rstb.2006.1934 10.1111/tpj.13180 10.1016/j.neubiorev.2007.07.008 10.1214/14-AOAS798 10.1016/j.neuroimage.2011.05.053 10.1097/00004583-199607000-00012 10.1007/s00787-005-0503-6 10.1016/j.neubiorev.2007.06.004 10.5603/FM.2013.0002 10.1097/00004583-200104000-00013 10.1006/nimg.1998.0396 10.1016/j.pneurobio.2007.06.004 10.1038/nature04513 10.1016/j.neubiorev.2007.07.003 10.1002/pro.653 10.1016/j.tics.2007.09.007 10.1017/CBO9780511790942 10.1111/j.0956-7976.2004.00687.x 10.1155/2015/978193 10.15288/jsad.2014.75.729 10.1176/appi.books.9780890425596 10.3233/BME-151495 10.1016/j.neuroimage.2011.01.016 10.1073/pnas.96.16.9379 10.1126/science.1110449 10.1016/j.dcn.2015.04.006 10.1523/JNEUROSCI.5309-07.2008 10.1177/8755123315576212 10.1006/nimg.1998.0395 10.1093/cercor/bht357 10.1162/jocn.2006.18.6.911 10.15288/jsa.1998.59.427 10.1152/jn.00513.2004 10.1023/A:1007413511361 10.1007/s00213-012-2674-4 10.1016/j.tics.2007.08.013 10.1142/S0218001405003983 10.1017/S0140525X07001185 10.1038/nrn2335 10.3758/CABN.7.4.391 10.1145/1656274.1656278 10.1155/2007/78970 10.1007/s12021-014-9229-2 10.1016/j.paid.2010.11.009 10.1111/j.1530-0277.1995.tb00983.x 10.1073/pnas.200033797 10.1002/hbm.22856 10.1002/bies.20641 10.1016/0272-7358(88)90050-5 10.1007/s00429-010-0262-0  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Brain Imaging and Behavior is a copyright of Springer, (2018). All Rights Reserved.  | 
    
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Brain Imaging and Behavior is a copyright of Springer, (2018). All Rights Reserved.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7TK 7X7 7XB 88E 88G 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M2M M7P NAPCQ P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1007/s11682-018-9912-2 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Technology Collection (ProQuest) Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database ProQuest Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Psychology  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1931-7565 | 
    
| EndPage | 952 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:6298856 PMC6298856 29911279 10_1007_s11682_018_9912_2  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: National Institute on Alcohol Abuse and Alcoholism grantid: AA013419-14S1; AA13419 funderid: http://dx.doi.org/10.13039/100000027 – fundername: National Institute of Mental Health grantid: MH101072 funderid: http://dx.doi.org/10.13039/100000025 – fundername: NIAAA NIH HHS grantid: AA013419-14S1 – fundername: NIAAA NIH HHS grantid: K23 AA026869 – fundername: NCATS NIH HHS grantid: KL2 TR001444 – fundername: NIMH NIH HHS grantid: MH101072 – fundername: NIAAA NIH HHS grantid: AA13419 – fundername: NIMH NIH HHS grantid: R25 MH101072 – fundername: NIAAA NIH HHS grantid: R01 AA013419  | 
    
| GroupedDBID | --- -55 -5G -BR -EM -~C .86 .VR 04C 06D 0R~ 0VY 1N0 203 23N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6J9 6NX 7RV 7X7 875 88E 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ AXYYD AZQEC B-. BA0 BBNVY BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BVXVI CCPQU CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIHBH EIOEI EJD EMOBN ESBYG EX3 F5P FERAY FFXSO FIGPU FNLPD FRRFC FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LK8 LLZTM M1P M2M M4Y M7P MA- NAPCQ NPVJJ NQJWS NU0 O93 O9J OAM P62 P9L PF0 PQQKQ PROAC PSQYO PSYQQ PT4 QOR QOS R89 R9I ROL RPX RSV S16 S27 S3B SAP SBS SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW YLTOR Z45 Z82 Z83 ZMTXR ZOVNA ~A9 ~KM -Y2 2VQ AANXM AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABRTQ ABULA ACSTC AEBTG AEKMD AEZWR AFDZB AFGCZ AFHIU AFOHR AHPBZ AHSBF AHWEU AIXLP AJBLW ATHPR AYFIA BDATZ BSONS CAG CITATION COF FINBP FSGXE H13 HZ~ O9- PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO S1Z CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c470t-430dee5654efbc1d4a95517b0cdc817e71d4fc46b0f2a5021669d22005b682063 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1931-7557 1931-7565  | 
    
| IngestDate | Sun Oct 26 02:57:19 EDT 2025 Tue Sep 30 16:41:50 EDT 2025 Thu Sep 04 16:59:06 EDT 2025 Tue Oct 07 06:48:26 EDT 2025 Thu Apr 03 07:07:15 EDT 2025 Thu Apr 24 23:02:01 EDT 2025 Wed Oct 01 04:43:22 EDT 2025 Fri Feb 21 02:37:09 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | Adolescence Cortical thickness naïve Bayesian classifier Magnetic resonance imaging Academic performance  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c470t-430dee5654efbc1d4a95517b0cdc817e71d4fc46b0f2a5021669d22005b682063 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ORCID: 0000-0001-6087-1818  | 
    
| ORCID | 0000-0001-6087-1818 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6298856 | 
    
| PMID | 29911279 | 
    
| PQID | 2056290303 | 
    
| PQPubID | 1486349 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s11682_018_9912_2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6298856 proquest_miscellaneous_2056762073 proquest_journals_2056290303 pubmed_primary_29911279 crossref_primary_10_1007_s11682_018_9912_2 crossref_citationtrail_10_1007_s11682_018_9912_2 springer_journals_10_1007_s11682_018_9912_2  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-08-01 | 
    
| PublicationDateYYYYMMDD | 2019-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: United States – name: Indianapolis  | 
    
| PublicationTitle | Brain imaging and behavior | 
    
| PublicationTitleAbbrev | Brain Imaging and Behavior | 
    
| PublicationTitleAlternate | Brain Imaging Behav | 
    
| PublicationYear | 2019 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | IshaiAUngerleiderLGMartinASchoutenJLHaxbyJVDistributed representation of objects in the human ventral visual pathwayProceedings of the National Academy of Sciences of the United States of America199996169379938410.1073/pnas.96.16.93791:CAS:528:DyaK1MXltVCjs70%3D1043095117791 JacobusJGoldenbergDWierengaCETolentinoNJLiuTTTapertSFAltered cerebral blood flow and neurocognitive correlates in adolescent Cannabis usersPsychopharmacology2012222467568410.1007/s00213-012-2674-41:CAS:528:DC%2BC38XjtlSgsb8%3D223954303510003 MenonVUddinLQSaliency, switching, attention and control: A network model of insula functionBrain Structure & Function20102145–665566710.1007/s00429-010-0262-0 TrippaLWaldronLHuttenhowerCParmigianiGBayesian nonparametric cross-study validation of prediction methodsAnn. Appl. Stat.20159140242810.1214/14-AOAS798 KanwisherNYovelGThe fusiform face area: A cortical region specialized for the perception of facesPhilosophical Transactions of the Royal Society B: Biological Sciences200636114762109212810.1098/rstb.2006.1934 JungREHaierRJThe Parieto-frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidenceThe Behavioral and Brain Sciences2007302135154-18710.1017/S0140525X0700118517655784 BergerAKofmanOLivnehUHenikAMultidisciplinary perspectives on attention and the development of self-regulationProgress in Neurobiology200782525628610.1016/j.pneurobio.2007.06.00417651888 SpielbergerCDGorsuchRLLusheneRVaggPRJacobsGAManual for the state-trait anxiety inventory1983Palo AltoConsulting Psychologists Press KériSInteractive memory systems and category learning in schizophreniaNeuroscience and Biobehavioral Reviews200832220621810.1016/j.neubiorev.2007.07.00317854895 TanjiJShimaKMushiakeHConcept-based behavioral planning and the lateral prefrontal cortexTrends in Cognitive Sciences2007111252853410.1016/j.tics.2007.09.00718024183 PosnerMIRothbartMKSheeseBETangYThe anterior cingulate gyrus and the mechanism of self-regulationCognitive, Affective & Behavioral Neuroscience20077439139510.3758/CABN.7.4.391 HallMFrankEHolmesGPfahringerBReutemannPWittenIHThe WEKA data mining software: An updateSIGKDD Explor. Newsl.2009111101810.1145/1656274.1656278 RiceJPReichTBucholzKKNeumanRJFishmanRRochbergNHesselbrockVMNurnbergerJISchuckitMABegleiterHComparison of direct interview and family history diagnoses of alcohol dependenceAlcoholism, Clinical and Experimental Research19951941018102310.1111/j.1530-0277.1995.tb00983.x1:STN:280:DyaK28%2Fis1KhsA%3D%3D7485811 TianXWLimJSInteractive naive Bayesian network: A new approach of constructing gene-gene interaction network for Cancer classificationBio-medical Materials and Engineering201526Suppl 1S1929S193610.3233/BME-1514951:CAS:528:DC%2BC2MXhtlOqu7nL26405966 KaramaSColomRJohnsonWDearyIJHaierRWaberDPLepageCGanjaviHJungREvansACCortical thickness correlates of specific cognitive performance accounted for by the general factor of intelligence in healthy children aged 6 to 18NeuroImage20115541443145310.1016/j.neuroimage.2011.01.016212418093070152 ShawPGreensteinDLerchJClasenLLenrootRGogtayNEvansARapoportJGieddJIntellectual ability and cortical development in children and adolescentsNature2006440708467667910.1038/nature045131:CAS:528:DC%2BD28XivFWgtb4%3D16572172 BeckATSteerRACarbinMGPsychometric properties of the Beck depression inventory: Twenty-five years of evaluationClinical Psychology Review1988817710010.1016/0272-7358(88)90050-5 American Psychiatric AssociationDiagnostic and statistical manual of mental disorders20135Washington, DCAmerican Psychiatric Publishing10.1176/appi.books.9780890425596 LucasCPZhangHFisherPWShafferDRegierDANarrowWEBourdonKThe DISC predictive scales (DPS): Efficiently screening for diagnosesJournal of the American Academy of Child & Adolescent Psychiatry200140444344910.1097/00004583-200104000-000131:STN:280:DC%2BD3M3itV2hug%3D%3D MerueloADSamishIBowieJUTMKink: A method to predict transmembrane Helix kinksProtein Science: A Publication of the Protein Society20112071256126410.1002/pro.6531:CAS:528:DC%2BC3MXns1SgsLg%3D FreyMCDettermanDKScholastic assessment or g? The relationship between the scholastic assessment test and general cognitive abilityPsychological Science201615637337810.1111/j.0956-7976.2004.00687.x FischlBSerenoMIDaleAMCortical surface-based analysis: II: Inflation, flattening, and a surface-based coordinate systemNeuroImage19999219520710.1006/nimg.1998.03961:STN:280:DyaK1M7jt1Gisw%3D%3D9931269 DomingosPPazzaniMOn the optimality of the simple Bayesian classifier under zero-one lossMachine Learning1997292–310313010.1023/A:1007413511361 ZhangHExploring conditions for the optimality of Naïve BayesInternational Journal of Pattern Recognition and Artificial Intelligence200519218319810.1142/S0218001405003983 LeungPWLLucasCPHungS-fKwongS-lTangC-pLeeC-cHoT-pLieh-MakFShafferDThe test-retest reliability and screening efficiency of DISC predictive scales-version 4.32 (DPS-4.32) with Chinese children/youthsEuropean Child & Adolescent Psychiatry200514846146510.1007/s00787-005-0503-6 BrownSAMyersMGLippkeLTapertSFStewartDGVikPWPsychometric evaluation of the customary drinking and drug use record (CDDR): A measure of adolescent alcohol and drug involvementJournal of Studies on Alcohol199859442743810.15288/jsa.1998.59.4271:STN:280:DyaK1czgvFKnsg%3D%3D ShawPIntelligence and the developing human brainBioEssays: News and Reviews in Molecular, Cellular and Developmental Biology2007291096297310.1002/bies.20641 KuncelNRCredéMThomasLLThe validity of self-reported grade point averages, class ranks, and test scores: a meta-analysis and review of the literatureReview of Educational Research2016751638210.3102/00346543075001063 MurrayEAThe amygdala, reward and emotionTrends in Cognitive Sciences2007111148949710.1016/j.tics.2007.08.01317988930 KruseAJCultural bias in testing: a review of literature and implications for music educationUpdate: Applications of Research in Music Education2016351233110.1177/8755123315576212 IscanZaferJinTony B.KendrickAlexandriaSzeglinBryanLuHanzhangTrivediMadhukarTest-retest reliability of freesurfer measurements within and between sites: effects of visual approval processHuman Brain Mapping20153693472348510.1002/hbm.22856260331684545736 GelmanAHillJData analysis using regression and multilevel/hierarchical models. 1 edition2006CambridgeCambridge University Press10.1017/CBO9780511790942 SchnackHGvan HarenNEMBrouwerRMEvansADurstonSBoomsmaDIKahnRSPolHEHChanges in thickness and surface area of the human cortex and their relationship with intelligenceCerebral Cortex (New York, N.Y.: 1991)20152561608161710.1093/cercor/bht357 ShohamyDMyersCEKalanithiJGluckMABasal ganglia and dopamine contributions to probabilistic category learningNeuroscience and Biobehavioral Reviews200832221923610.1016/j.neubiorev.2007.07.0081:STN:280:DC%2BD1c%2FmvFCgug%3D%3D18061261 RedcayEThe superior temporal sulcus performs a common function for social and speech perception: Implications for the emergence of autismNeuroscience and Biobehavioral Reviews200832112314210.1016/j.neubiorev.2007.06.00417706781 Kohavi, Ron. 1995. “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection.” In Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2, 1137–1143. IJCAI’95. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. http://dl.acm.org/citation.cfm?id=1643031.1643047. DevlinJTJamisonHLGonnermanLMMatthewsPMThe role of the posterior fusiform gyrus in readingJournal of Cognitive Neuroscience200618691192210.1162/jocn.2006.18.6.911168392991524880 SpasojevićGMalobabicSPilipović-SpasojevićODjukić-MacutNMalikovićAMorphology and digitally aided morphometry of the human paracentral lobuleFolia Morphologica2013721101610.5603/FM.2013.000223749705 PeelenMVDowningPESelectivity for the human body in the fusiform gyrusJournal of Neurophysiology200593160360810.1152/jn.00513.200415295012 ClarksonMJCardosoMJRidgwayGRModatMLeungKKRohrerJDA comparison of voxel and surface based cortical thickness estimation methodsNeuroImage201157385686510.1016/j.neuroimage.2011.05.05321640841 JacobusJSquegliaLMSorgSFNguyen-LouieTTTapertSFCortical thickness and Neurocognition in adolescent marijuana and alcohol users following 28 days of monitored abstinenceJournal of Studies on Alcohol and Drugs201475572974310.15288/jsad.2014.75.729252081904161693 Coyle, T., Snyder A., Pillow D., Kochunov P. (2011) SAT Predicts GPA Better for High Ability Subjects: Implications for Spearman’s Law of Diminishing Returns. Personality and Individual Differences, 50(4), 470–74. https://doi.org/10.1016/j.paid.2010.11.009. DouglassSHsuS-WCokusSGoldbergRBHaradaJJPellegriniMA Naïve Bayesian classifier for identifying plant microRNAsThe Plant Journal: For Cell and Molecular Biology201686648149210.1111/tpj.131801:CAS:528:DC%2BC28XhtVSgt7jL BirdCMBurgessNThe Hippocampus and memory: Insights from spatial processingNature Reviews. Neuroscience20089318219410.1038/nrn23351:CAS:528:DC%2BD1cXitFKntbc%3D18270514 Fischl, B., & Dale, A. M. (2000) Measuring the Thickness of the Human Cerebral Cortex from Magnetic Resonance Images. Proceedings of the National Academy of Sciences of the United States of America 97(20), 11050–55. https://doi.org/10.1073/pnas.200033797. SandiCPinelo-NavaMTStress and memory: Behavioral effects and neurobiological mechanismsNeural Plasticity200720077897010.1155/2007/78970180600121950232 ShawPKabaniNJLerchJPEckstrandKLenrootRGogtayNGreensteinDNeurodevelopmental trajectories of the human cerebral cortexThe Journal of Neuroscience: The Official Journal of the Society for Neuroscience200828143586359410.1523/JNEUROSCI.5309-07.20081:CAS:528:DC%2BD1cXkslSjt7c%3D ShafferDFisherPDulcanMKDaviesMPiacentiniJSchwab-StoneMELaheyBBThe NIMH diagnostic interview schedule for children version 2.3 (DISC-2.3): Description, acceptability, prevalence rates, and performance in the MECA studyJournal of the American Academy of Child & Adolescent Psychiatry199635786587710.1097/00004583-199607000-000121:STN:280:DyaK28zgtVylt G Spasojević (9912_CR48) 2013; 72 SA Brown (9912_CR5) 1998; 59 S Kéri (9912_CR28) 2008; 32 N Kanwisher (9912_CR26) 2006; 361 AT Beck (9912_CR2) 1988; 8 9912_CR13 P Shaw (9912_CR46) 2008; 28 E Redcay (9912_CR39) 2008; 32 A Berger (9912_CR3) 2007; 82 Zafer Iscan (9912_CR21) 2015; 36 AJ Kruse (9912_CR30) 2016; 35 9912_CR29 AM Dale (9912_CR9) 1999; 9 CP Lucas (9912_CR33) 2001; 40 A Gelman (9912_CR16) 2006 American Psychiatric Association (9912_CR1) 2013 L Trippa (9912_CR52) 2015; 9 M Hall (9912_CR18) 2009; 11 D Shohamy (9912_CR47) 2008; 32 HG Schnack (9912_CR42) 2015; 25 J Tanji (9912_CR50) 2007; 11 EA Murray (9912_CR36) 2007; 11 J Jacobus (9912_CR24) 2015; 16 RE Jung (9912_CR25) 2007; 30 F Cardinale (9912_CR6) 2014; 12 P Shaw (9912_CR45) 2006; 440 C Sandi (9912_CR41) 2007; 2007 NR Kuncel (9912_CR31) 2016; 75 CD Spielberger (9912_CR49) 1983 P Domingos (9912_CR11) 1997; 29 CM Bird (9912_CR4) 2008; 9 JP Rice (9912_CR40) 1995; 19 9912_CR8 MI Posner (9912_CR38) 2007; 7 XW Tian (9912_CR51) 2015; 26 EL Hargreaves (9912_CR19) 2005; 308 PWL Leung (9912_CR32) 2005; 14 S Karama (9912_CR27) 2011; 55 JT Devlin (9912_CR10) 2006; 18 H Geng (9912_CR17) 2015; 2015 B Fischl (9912_CR14) 1999; 9 MV Peelen (9912_CR37) 2005; 93 MJ Clarkson (9912_CR7) 2011; 57 A Ishai (9912_CR20) 1999; 96 S Douglass (9912_CR12) 2016; 86 J Jacobus (9912_CR23) 2014; 75 MC Frey (9912_CR15) 2016; 15 D Shaffer (9912_CR43) 1996; 35 V Menon (9912_CR34) 2010; 214 AD Meruelo (9912_CR35) 2011; 20 J Jacobus (9912_CR22) 2012; 222 P Shaw (9912_CR44) 2007; 29 H Zhang (9912_CR53) 2005; 19  | 
    
| References_xml | – reference: Kohavi, Ron. 1995. “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection.” In Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2, 1137–1143. IJCAI’95. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. http://dl.acm.org/citation.cfm?id=1643031.1643047. – reference: ClarksonMJCardosoMJRidgwayGRModatMLeungKKRohrerJDA comparison of voxel and surface based cortical thickness estimation methodsNeuroImage201157385686510.1016/j.neuroimage.2011.05.05321640841 – reference: SchnackHGvan HarenNEMBrouwerRMEvansADurstonSBoomsmaDIKahnRSPolHEHChanges in thickness and surface area of the human cortex and their relationship with intelligenceCerebral Cortex (New York, N.Y.: 1991)20152561608161710.1093/cercor/bht357 – reference: IscanZaferJinTony B.KendrickAlexandriaSzeglinBryanLuHanzhangTrivediMadhukarTest-retest reliability of freesurfer measurements within and between sites: effects of visual approval processHuman Brain Mapping20153693472348510.1002/hbm.22856260331684545736 – reference: TianXWLimJSInteractive naive Bayesian network: A new approach of constructing gene-gene interaction network for Cancer classificationBio-medical Materials and Engineering201526Suppl 1S1929S193610.3233/BME-1514951:CAS:528:DC%2BC2MXhtlOqu7nL26405966 – reference: ShohamyDMyersCEKalanithiJGluckMABasal ganglia and dopamine contributions to probabilistic category learningNeuroscience and Biobehavioral Reviews200832221923610.1016/j.neubiorev.2007.07.0081:STN:280:DC%2BD1c%2FmvFCgug%3D%3D18061261 – reference: KanwisherNYovelGThe fusiform face area: A cortical region specialized for the perception of facesPhilosophical Transactions of the Royal Society B: Biological Sciences200636114762109212810.1098/rstb.2006.1934 – reference: GelmanAHillJData analysis using regression and multilevel/hierarchical models. 1 edition2006CambridgeCambridge University Press10.1017/CBO9780511790942 – reference: DaleAMFischlBSerenoMICortical surface-based analysis: I. Segmentation and surface reconstructionNeuroImage19999217919410.1006/nimg.1998.03951:STN:280:DyaK1M7jt1Gisg%3D%3D9931268 – reference: FreyMCDettermanDKScholastic assessment or g? The relationship between the scholastic assessment test and general cognitive abilityPsychological Science201615637337810.1111/j.0956-7976.2004.00687.x – reference: FischlBSerenoMIDaleAMCortical surface-based analysis: II: Inflation, flattening, and a surface-based coordinate systemNeuroImage19999219520710.1006/nimg.1998.03961:STN:280:DyaK1M7jt1Gisw%3D%3D9931269 – reference: KériSInteractive memory systems and category learning in schizophreniaNeuroscience and Biobehavioral Reviews200832220621810.1016/j.neubiorev.2007.07.00317854895 – reference: Coyle, T., Snyder A., Pillow D., Kochunov P. (2011) SAT Predicts GPA Better for High Ability Subjects: Implications for Spearman’s Law of Diminishing Returns. Personality and Individual Differences, 50(4), 470–74. https://doi.org/10.1016/j.paid.2010.11.009. – reference: ShawPGreensteinDLerchJClasenLLenrootRGogtayNEvansARapoportJGieddJIntellectual ability and cortical development in children and adolescentsNature2006440708467667910.1038/nature045131:CAS:528:DC%2BD28XivFWgtb4%3D16572172 – reference: BergerAKofmanOLivnehUHenikAMultidisciplinary perspectives on attention and the development of self-regulationProgress in Neurobiology200782525628610.1016/j.pneurobio.2007.06.00417651888 – reference: PeelenMVDowningPESelectivity for the human body in the fusiform gyrusJournal of Neurophysiology200593160360810.1152/jn.00513.200415295012 – reference: KuncelNRCredéMThomasLLThe validity of self-reported grade point averages, class ranks, and test scores: a meta-analysis and review of the literatureReview of Educational Research2016751638210.3102/00346543075001063 – reference: DevlinJTJamisonHLGonnermanLMMatthewsPMThe role of the posterior fusiform gyrus in readingJournal of Cognitive Neuroscience200618691192210.1162/jocn.2006.18.6.911168392991524880 – reference: HargreavesELRaoGLeeIKnierimJJMajor dissociation between medial and lateral entorhinal input to dorsal HippocampusScience (New York, N.Y.)200530857291792179410.1126/science.11104491:CAS:528:DC%2BD2MXltFemtro%3D – reference: BirdCMBurgessNThe Hippocampus and memory: Insights from spatial processingNature Reviews. Neuroscience20089318219410.1038/nrn23351:CAS:528:DC%2BD1cXitFKntbc%3D18270514 – reference: MenonVUddinLQSaliency, switching, attention and control: A network model of insula functionBrain Structure & Function20102145–665566710.1007/s00429-010-0262-0 – reference: LeungPWLLucasCPHungS-fKwongS-lTangC-pLeeC-cHoT-pLieh-MakFShafferDThe test-retest reliability and screening efficiency of DISC predictive scales-version 4.32 (DPS-4.32) with Chinese children/youthsEuropean Child & Adolescent Psychiatry200514846146510.1007/s00787-005-0503-6 – reference: MurrayEAThe amygdala, reward and emotionTrends in Cognitive Sciences2007111148949710.1016/j.tics.2007.08.01317988930 – reference: GengHTaoLLinXLiuYYanFPrediction of protein-protein interaction sites based on naive Bayes classifierBiochemistry Research International2015201597819310.1155/2015/978193266972204677168 – reference: LucasCPZhangHFisherPWShafferDRegierDANarrowWEBourdonKThe DISC predictive scales (DPS): Efficiently screening for diagnosesJournal of the American Academy of Child & Adolescent Psychiatry200140444344910.1097/00004583-200104000-000131:STN:280:DC%2BD3M3itV2hug%3D%3D – reference: TanjiJShimaKMushiakeHConcept-based behavioral planning and the lateral prefrontal cortexTrends in Cognitive Sciences2007111252853410.1016/j.tics.2007.09.00718024183 – reference: JungREHaierRJThe Parieto-frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidenceThe Behavioral and Brain Sciences2007302135154-18710.1017/S0140525X0700118517655784 – reference: JacobusJSquegliaLMMerueloADCastroNBrumbackTGieddJNTapertSFCortical thickness in adolescent marijuana and alcohol users: A three-year prospective study from adolescence to young adulthoodDevelopmental Cognitive Neuroscience, Substance Use and the Adolescent Brain: Developmental Impacts, Interventions, and Longitudinal Outcomes201516December10110910.1016/j.dcn.2015.04.006 – reference: KaramaSColomRJohnsonWDearyIJHaierRWaberDPLepageCGanjaviHJungREvansACCortical thickness correlates of specific cognitive performance accounted for by the general factor of intelligence in healthy children aged 6 to 18NeuroImage20115541443145310.1016/j.neuroimage.2011.01.016212418093070152 – reference: TrippaLWaldronLHuttenhowerCParmigianiGBayesian nonparametric cross-study validation of prediction methodsAnn. Appl. Stat.20159140242810.1214/14-AOAS798 – reference: American Psychiatric AssociationDiagnostic and statistical manual of mental disorders20135Washington, DCAmerican Psychiatric Publishing10.1176/appi.books.9780890425596 – reference: BeckATSteerRACarbinMGPsychometric properties of the Beck depression inventory: Twenty-five years of evaluationClinical Psychology Review1988817710010.1016/0272-7358(88)90050-5 – reference: MerueloADSamishIBowieJUTMKink: A method to predict transmembrane Helix kinksProtein Science: A Publication of the Protein Society20112071256126410.1002/pro.6531:CAS:528:DC%2BC3MXns1SgsLg%3D – reference: RiceJPReichTBucholzKKNeumanRJFishmanRRochbergNHesselbrockVMNurnbergerJISchuckitMABegleiterHComparison of direct interview and family history diagnoses of alcohol dependenceAlcoholism, Clinical and Experimental Research19951941018102310.1111/j.1530-0277.1995.tb00983.x1:STN:280:DyaK28%2Fis1KhsA%3D%3D7485811 – reference: ZhangHExploring conditions for the optimality of Naïve BayesInternational Journal of Pattern Recognition and Artificial Intelligence200519218319810.1142/S0218001405003983 – reference: IshaiAUngerleiderLGMartinASchoutenJLHaxbyJVDistributed representation of objects in the human ventral visual pathwayProceedings of the National Academy of Sciences of the United States of America199996169379938410.1073/pnas.96.16.93791:CAS:528:DyaK1MXltVCjs70%3D1043095117791 – reference: JacobusJGoldenbergDWierengaCETolentinoNJLiuTTTapertSFAltered cerebral blood flow and neurocognitive correlates in adolescent Cannabis usersPsychopharmacology2012222467568410.1007/s00213-012-2674-41:CAS:528:DC%2BC38XjtlSgsb8%3D223954303510003 – reference: DomingosPPazzaniMOn the optimality of the simple Bayesian classifier under zero-one lossMachine Learning1997292–310313010.1023/A:1007413511361 – reference: SandiCPinelo-NavaMTStress and memory: Behavioral effects and neurobiological mechanismsNeural Plasticity200720077897010.1155/2007/78970180600121950232 – reference: CardinaleFChinniciGBramerioMMaiRSartoriICossuMValidation of freesurfer-estimated brain cortical thickness: comparison with histologic measurementsNeuroinformatics201412453554210.1007/s12021-014-9229-224789776 – reference: KruseAJCultural bias in testing: a review of literature and implications for music educationUpdate: Applications of Research in Music Education2016351233110.1177/8755123315576212 – reference: DouglassSHsuS-WCokusSGoldbergRBHaradaJJPellegriniMA Naïve Bayesian classifier for identifying plant microRNAsThe Plant Journal: For Cell and Molecular Biology201686648149210.1111/tpj.131801:CAS:528:DC%2BC28XhtVSgt7jL – reference: SpasojevićGMalobabicSPilipović-SpasojevićODjukić-MacutNMalikovićAMorphology and digitally aided morphometry of the human paracentral lobuleFolia Morphologica2013721101610.5603/FM.2013.000223749705 – reference: ShafferDFisherPDulcanMKDaviesMPiacentiniJSchwab-StoneMELaheyBBThe NIMH diagnostic interview schedule for children version 2.3 (DISC-2.3): Description, acceptability, prevalence rates, and performance in the MECA studyJournal of the American Academy of Child & Adolescent Psychiatry199635786587710.1097/00004583-199607000-000121:STN:280:DyaK28zgtVyltQ%3D%3D – reference: PosnerMIRothbartMKSheeseBETangYThe anterior cingulate gyrus and the mechanism of self-regulationCognitive, Affective & Behavioral Neuroscience20077439139510.3758/CABN.7.4.391 – reference: HallMFrankEHolmesGPfahringerBReutemannPWittenIHThe WEKA data mining software: An updateSIGKDD Explor. Newsl.2009111101810.1145/1656274.1656278 – reference: SpielbergerCDGorsuchRLLusheneRVaggPRJacobsGAManual for the state-trait anxiety inventory1983Palo AltoConsulting Psychologists Press – reference: Fischl, B., & Dale, A. M. (2000) Measuring the Thickness of the Human Cerebral Cortex from Magnetic Resonance Images. Proceedings of the National Academy of Sciences of the United States of America 97(20), 11050–55. https://doi.org/10.1073/pnas.200033797. – reference: JacobusJSquegliaLMSorgSFNguyen-LouieTTTapertSFCortical thickness and Neurocognition in adolescent marijuana and alcohol users following 28 days of monitored abstinenceJournal of Studies on Alcohol and Drugs201475572974310.15288/jsad.2014.75.729252081904161693 – reference: BrownSAMyersMGLippkeLTapertSFStewartDGVikPWPsychometric evaluation of the customary drinking and drug use record (CDDR): A measure of adolescent alcohol and drug involvementJournal of Studies on Alcohol199859442743810.15288/jsa.1998.59.4271:STN:280:DyaK1czgvFKnsg%3D%3D – reference: ShawPIntelligence and the developing human brainBioEssays: News and Reviews in Molecular, Cellular and Developmental Biology2007291096297310.1002/bies.20641 – reference: ShawPKabaniNJLerchJPEckstrandKLenrootRGogtayNGreensteinDNeurodevelopmental trajectories of the human cerebral cortexThe Journal of Neuroscience: The Official Journal of the Society for Neuroscience200828143586359410.1523/JNEUROSCI.5309-07.20081:CAS:528:DC%2BD1cXkslSjt7c%3D – reference: RedcayEThe superior temporal sulcus performs a common function for social and speech perception: Implications for the emergence of autismNeuroscience and Biobehavioral Reviews200832112314210.1016/j.neubiorev.2007.06.00417706781 – volume: 75 start-page: 63 issue: 1 year: 2016 ident: 9912_CR31 publication-title: Review of Educational Research doi: 10.3102/00346543075001063 – volume: 361 start-page: 2109 issue: 1476 year: 2006 ident: 9912_CR26 publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences doi: 10.1098/rstb.2006.1934 – volume: 86 start-page: 481 issue: 6 year: 2016 ident: 9912_CR12 publication-title: The Plant Journal: For Cell and Molecular Biology doi: 10.1111/tpj.13180 – volume: 32 start-page: 219 issue: 2 year: 2008 ident: 9912_CR47 publication-title: Neuroscience and Biobehavioral Reviews doi: 10.1016/j.neubiorev.2007.07.008 – volume: 9 start-page: 402 issue: 1 year: 2015 ident: 9912_CR52 publication-title: Ann. Appl. Stat. doi: 10.1214/14-AOAS798 – volume: 57 start-page: 856 issue: 3 year: 2011 ident: 9912_CR7 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.05.053 – volume: 35 start-page: 865 issue: 7 year: 1996 ident: 9912_CR43 publication-title: Journal of the American Academy of Child & Adolescent Psychiatry doi: 10.1097/00004583-199607000-00012 – volume: 14 start-page: 461 issue: 8 year: 2005 ident: 9912_CR32 publication-title: European Child & Adolescent Psychiatry doi: 10.1007/s00787-005-0503-6 – volume: 32 start-page: 123 issue: 1 year: 2008 ident: 9912_CR39 publication-title: Neuroscience and Biobehavioral Reviews doi: 10.1016/j.neubiorev.2007.06.004 – volume: 72 start-page: 10 issue: 1 year: 2013 ident: 9912_CR48 publication-title: Folia Morphologica doi: 10.5603/FM.2013.0002 – volume: 40 start-page: 443 issue: 4 year: 2001 ident: 9912_CR33 publication-title: Journal of the American Academy of Child & Adolescent Psychiatry doi: 10.1097/00004583-200104000-00013 – volume: 9 start-page: 195 issue: 2 year: 1999 ident: 9912_CR14 publication-title: NeuroImage doi: 10.1006/nimg.1998.0396 – volume-title: Manual for the state-trait anxiety inventory year: 1983 ident: 9912_CR49 – volume: 82 start-page: 256 issue: 5 year: 2007 ident: 9912_CR3 publication-title: Progress in Neurobiology doi: 10.1016/j.pneurobio.2007.06.004 – volume: 440 start-page: 676 issue: 7084 year: 2006 ident: 9912_CR45 publication-title: Nature doi: 10.1038/nature04513 – volume: 32 start-page: 206 issue: 2 year: 2008 ident: 9912_CR28 publication-title: Neuroscience and Biobehavioral Reviews doi: 10.1016/j.neubiorev.2007.07.003 – volume: 20 start-page: 1256 issue: 7 year: 2011 ident: 9912_CR35 publication-title: Protein Science: A Publication of the Protein Society doi: 10.1002/pro.653 – volume: 11 start-page: 528 issue: 12 year: 2007 ident: 9912_CR50 publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2007.09.007 – volume-title: Data analysis using regression and multilevel/hierarchical models. 1 edition year: 2006 ident: 9912_CR16 doi: 10.1017/CBO9780511790942 – volume: 15 start-page: 373 issue: 6 year: 2016 ident: 9912_CR15 publication-title: Psychological Science doi: 10.1111/j.0956-7976.2004.00687.x – volume: 2015 start-page: 978193 year: 2015 ident: 9912_CR17 publication-title: Biochemistry Research International doi: 10.1155/2015/978193 – volume: 75 start-page: 729 issue: 5 year: 2014 ident: 9912_CR23 publication-title: Journal of Studies on Alcohol and Drugs doi: 10.15288/jsad.2014.75.729 – volume-title: Diagnostic and statistical manual of mental disorders year: 2013 ident: 9912_CR1 doi: 10.1176/appi.books.9780890425596 – volume: 26 start-page: S1929 issue: Suppl 1 year: 2015 ident: 9912_CR51 publication-title: Bio-medical Materials and Engineering doi: 10.3233/BME-151495 – ident: 9912_CR29 – volume: 55 start-page: 1443 issue: 4 year: 2011 ident: 9912_CR27 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.016 – volume: 96 start-page: 9379 issue: 16 year: 1999 ident: 9912_CR20 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.96.16.9379 – volume: 308 start-page: 1792 issue: 5729 year: 2005 ident: 9912_CR19 publication-title: Science (New York, N.Y.) doi: 10.1126/science.1110449 – volume: 16 start-page: 101 issue: December year: 2015 ident: 9912_CR24 publication-title: Developmental Cognitive Neuroscience, Substance Use and the Adolescent Brain: Developmental Impacts, Interventions, and Longitudinal Outcomes doi: 10.1016/j.dcn.2015.04.006 – volume: 28 start-page: 3586 issue: 14 year: 2008 ident: 9912_CR46 publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience doi: 10.1523/JNEUROSCI.5309-07.2008 – volume: 35 start-page: 23 issue: 1 year: 2016 ident: 9912_CR30 publication-title: Update: Applications of Research in Music Education doi: 10.1177/8755123315576212 – volume: 9 start-page: 179 issue: 2 year: 1999 ident: 9912_CR9 publication-title: NeuroImage doi: 10.1006/nimg.1998.0395 – volume: 25 start-page: 1608 issue: 6 year: 2015 ident: 9912_CR42 publication-title: Cerebral Cortex (New York, N.Y.: 1991) doi: 10.1093/cercor/bht357 – volume: 18 start-page: 911 issue: 6 year: 2006 ident: 9912_CR10 publication-title: Journal of Cognitive Neuroscience doi: 10.1162/jocn.2006.18.6.911 – volume: 59 start-page: 427 issue: 4 year: 1998 ident: 9912_CR5 publication-title: Journal of Studies on Alcohol doi: 10.15288/jsa.1998.59.427 – volume: 93 start-page: 603 issue: 1 year: 2005 ident: 9912_CR37 publication-title: Journal of Neurophysiology doi: 10.1152/jn.00513.2004 – volume: 29 start-page: 103 issue: 2–3 year: 1997 ident: 9912_CR11 publication-title: Machine Learning doi: 10.1023/A:1007413511361 – volume: 222 start-page: 675 issue: 4 year: 2012 ident: 9912_CR22 publication-title: Psychopharmacology doi: 10.1007/s00213-012-2674-4 – volume: 11 start-page: 489 issue: 11 year: 2007 ident: 9912_CR36 publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2007.08.013 – volume: 19 start-page: 183 issue: 2 year: 2005 ident: 9912_CR53 publication-title: International Journal of Pattern Recognition and Artificial Intelligence doi: 10.1142/S0218001405003983 – volume: 30 start-page: 135 issue: 2 year: 2007 ident: 9912_CR25 publication-title: The Behavioral and Brain Sciences doi: 10.1017/S0140525X07001185 – volume: 9 start-page: 182 issue: 3 year: 2008 ident: 9912_CR4 publication-title: Nature Reviews. Neuroscience doi: 10.1038/nrn2335 – volume: 7 start-page: 391 issue: 4 year: 2007 ident: 9912_CR38 publication-title: Cognitive, Affective & Behavioral Neuroscience doi: 10.3758/CABN.7.4.391 – volume: 11 start-page: 10 issue: 1 year: 2009 ident: 9912_CR18 publication-title: SIGKDD Explor. Newsl. doi: 10.1145/1656274.1656278 – volume: 2007 start-page: 78970 year: 2007 ident: 9912_CR41 publication-title: Neural Plasticity doi: 10.1155/2007/78970 – volume: 12 start-page: 535 issue: 4 year: 2014 ident: 9912_CR6 publication-title: Neuroinformatics doi: 10.1007/s12021-014-9229-2 – ident: 9912_CR8 doi: 10.1016/j.paid.2010.11.009 – volume: 19 start-page: 1018 issue: 4 year: 1995 ident: 9912_CR40 publication-title: Alcoholism, Clinical and Experimental Research doi: 10.1111/j.1530-0277.1995.tb00983.x – ident: 9912_CR13 doi: 10.1073/pnas.200033797 – volume: 36 start-page: 3472 issue: 9 year: 2015 ident: 9912_CR21 publication-title: Human Brain Mapping doi: 10.1002/hbm.22856 – volume: 29 start-page: 962 issue: 10 year: 2007 ident: 9912_CR44 publication-title: BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology doi: 10.1002/bies.20641 – volume: 8 start-page: 77 issue: 1 year: 1988 ident: 9912_CR2 publication-title: Clinical Psychology Review doi: 10.1016/0272-7358(88)90050-5 – volume: 214 start-page: 655 issue: 5–6 year: 2010 ident: 9912_CR34 publication-title: Brain Structure & Function doi: 10.1007/s00429-010-0262-0  | 
    
| SSID | ssj0054891 | 
    
| Score | 2.2054918 | 
    
| Snippet | Academic performance in adolescence strongly influences adult prospects. Intelligence quotient (IQ) has historically been considered a strong predictor of... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 945 | 
    
| SubjectTerms | Academic Success Adolescence Adolescent Adolescents Analysis of covariance Bayes Theorem Bayesian analysis Biomarkers Biomedical and Life Sciences Biomedicine Brain Brain - diagnostic imaging Brain - growth & development Brain Mapping - methods Cerebral Cortex - diagnostic imaging Child Child development Cognition - physiology Cortex Covariance Demographics Demography Female Forecasting - methods Hemispheric laterality Humans Intelligence Intelligence Tests Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Morphometry Neuropsychology Neuroradiology Neurosciences Original Research Performance prediction Psychiatry Sensitivity and Specificity Teenagers  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fa9swED66FLruYWxt13rrhgd9ahHYiixZD2Nso6EMGkpZoW9GliVayJw0TRj773dny05DIXu15R86ne4-6U7fAZzwxIvc6pJplQgmvPfMiEywnKssq3wuM0Nnhy_H8uJG_LzNbrdg3J2FobTKziY2hrqaWtojx0U6emqNKjn8OntgVDWKoqtdCQ0TSitUXxqKsRewzYkZawDb38_HV9edbUZ43tTQQ9SSMvwZ1cU5m8N0qcwpTQENgE454-ue6hn8fJ5F2YdSX8HLZT0zf_-YyeSJtxq9gdcBZsbfWr14C1uu3oOdyxBI34dRQ2wcr_ic4pJqRcS_KVtn_hhPfTxBFPq0gQmZ9DG5wrCNewA3o_NfPy5YKKnArFDJgolhUjmHIE44X9q0EkajvFSZ2MrmqXIKL3krZJl4bjL0_1LqitPOUymJ6X34Dgb1tHZHECOu8Pgyqz2iAO5kKblCuCdkpS2uAW0ESSe-wga-cSp7MSlWTMkk8QIlXpDECx7Baf_IrCXb2NT4uBuTIsy7x2KlJRF87m_jjKEwiKnddNm2QReAti2Cw3YI-6-hc0YAqnQEam1w-wbExr1-p76_a1i58bt5nskIzjo1WP3Whk6c9Zry_y6_39zlD7CLcE636YnHMFjMl-4jQqZF-SnMg3_PJA_3 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD50Kezy0O7Sbd7a4cGeVpTaii7WYykLpdAyxgLdk7FkiZY6TmgTxvbrd2TLTrNCS9-MdXyRj6TzWefTJ4AvNHEsM0oTJRNGmHOOFIwzklHJeekywQu_dvj0TBxP2Mk5P9-AtFsL05D2jb4c1tV0WF9eNNzK-dQcdDyxA0FVlnHxBDYFR_g9gM3J2ffDX232OCX4CLk6FrzLZDbL5VKReSICdnGVUkLXY9EdgHmXJ9knS1_As2U9L_78LqrqVjwab8OPriYtDeVquFzoofn7n8jjo6r6ErYCOo0P26JXsGHr1_D0NOTf38C40UOOVzJQsfZbTMRTT_K5volnLq4QvN42KAIBP_YRNMz-7sBk_O3n0TEJOzEQw2SyIGyUlNbi12TWaZOWrFCItKROTGmyVFqJp5xhQieOFhxhgxCqpH7CSgsvED96C4N6Vtv3ECMccXgzoxyCB2qFFlQiSmSiVAZ_HU0ESeeT3ASZcr9bRpWvBJa9G3N0Y-7dmNMIvvaXzFuNjvuMdztH56G73uTUw0CF490ogs99MXY0nz0pajtbtjYYOXBIjOBd2y76p2FMR9wqVQRyrcX0Bl7Ee70EHd6IeQcfR7Dfta3Va91Tif2--T1c5Q-Psv4IzxEUqpbkuAuDxfXS7iHwWuhPoav9A_2dJo8 priority: 102 providerName: Unpaywall  | 
    
| Title | Early adolescent brain markers of late adolescent academic functioning | 
    
| URI | https://link.springer.com/article/10.1007/s11682-018-9912-2 https://www.ncbi.nlm.nih.gov/pubmed/29911279 https://www.proquest.com/docview/2056290303 https://www.proquest.com/docview/2056762073 https://pubmed.ncbi.nlm.nih.gov/PMC6298856 https://www.ncbi.nlm.nih.gov/pmc/articles/6298856  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 13 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1931-7565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054891 issn: 1931-7565 databaseCode: AFBBN dateStart: 20070601 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1931-7565 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0054891 issn: 1931-7565 databaseCode: 8FG dateStart: 20070601 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1931-7565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054891 issn: 1931-7565 databaseCode: AGYKE dateStart: 20070101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1931-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0054891 issn: 1931-7565 databaseCode: U2A dateStart: 20070601 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54AS8P4t16GRV8UgJtlibN45RNURwiDuZTadMEhdmJ2xD_vSe9zaEovrS0SZP2JDnna87JF4AT6hkWKpkQKTxGmDGGxCxgJKQiCFIT8iC2a4dvu_yqx677Qb9cxz2qot0rl2SuqaeL3Xwe2jACHKDSpwT17mJg2bywE_doq1K_iMDzbfIQmPgE6xOVK_OnImaN0TeE-T1QsvaWrsLyJHuNP97jweCLQeqsw1qJJN1W0fQbMKezTVi6LX3lW9DJuYvdKWWTm9jtINwXG5DzNnKHxh0g0PyaIS6D5V1r7cqZ2m3oddoPF1ek3DWBKCa8MWFNL9UacRrTJlF-ymKJqEgknkpV6Ast8JZRjCeeoXGAJp5zmVI7uZRwS-be3IGFbJjpPXAROhgsTEmDhp5qnnAqENExnkqFv3nKAa8SX6RKSnG7s8UgmpIhW4lHKPHISjyiDpzWj7wWfBq_ZT6s2iQqh9YoohaySdRNTQeO62QcFNbTEWd6OCnyoJZH9eXAbtGEdW1ofxFjCumAmGncOoMl3J5NyZ6fcuJtrDcMA-7AWdUNpq_1y0ec1T3l70_e_1fZB7CCAE4WAYmHsDB-m-gjBEnjpAHzoi_wGHYuG7DYuny8aeP5vN29u2_kAwavet271uMnZV0Mxg | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTWLjAfFNYICR4IXJUuI6dvwwIT5WdWytENqkvQXHscWkkpa11bR_jr-Nc-KkqyaVp702jlOfz77f-c6_A3jHYsczowqqZMwpd85RzVNOMybTtHSZSLW_OzwcicEp_3aWnm3A3_YujE-rbPfEeqMuJ8afkaOTjpZaoUr2Pk7_UF81ykdX2xIaOpRWKPdrirFwsePIXl2iCzfbP_yK8_2esf7ByZcBDVUGqOEynlPei0trEddw6wqTlFwr7EIWsSlNlkgr8SdnuChix3SKJlEIVTJ_GFMIT37ew37vwBbvcYXO39bng9H3H60tQHegrtmHKCmhOHjZxlXry3sJvo-uPG44KmGUrVrGG3D3ZtZmF7q9B9uLaqqvLvV4fM069h_A_QBryadGDx_Chq0ewd1hCNw_hn5NpEyW_FGk8LUpyG-fHXQxIxNHxoh6rzfQIXOfeNMbjo2fwOmtCPcpbFaTyj4HgjjGYWdGOUQdzIpCMInwkotSGfQ5TQRxK77cBH5zX2ZjnC-Zmb3Ec5R47iWeswg-dK9MG3KPdY132znJwzqf5UutjOBt9xhXqA-76MpOFk0bNDm4l0bwrJnC7msIBhDwShWBXJncroFn_159Up3_qlnA8btZlooI9lo1WP6tNYPY6zTl_0N-sX7Ib2B7cDI8zo8PR0cvYQehpGpSI3dhc36xsK8Qrs2L12FNEPh528vwH20TS8c | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT9swED8xJjH2gLbBIKMDTxovIIvEcez4YZoQrIIx0B6G1LeQOLaGVNJCW6F-tX26nfOvVEjlidfYiePzne93vvMdwFfmWx5rlVElfU65tZamPOI0ZjKKchuLKHV3hy8uxekV_9mLekvwr7kL48Iqmz2x3KjzgXZn5Giko6ZWyJLhoa3DIn6fdL8P76irIOU8rU05jYpFzs30Ac230bezE1zrPca6P_4cn9K6wgDVXPpjykM_NwYxDTc200HOU4UIQma-znUcSCPxkdVcZL5laYTqUAiVM3cQkwmX-DzE776C1zIMlQsnlL3W2ENDoKzWh_gooDht2XhUy2t7Ab6NRjxuNSpglM3rxCdA92m8Zuu0fQtvJsUwnT6k_f4jvdh9B2s1oCVHFQe-hyVTfICVi9plvw7dMoUymWWOIpmrSkFuXVzQ_YgMLOkj3n3cIa1j9olTuvWB8QZcvQhpP8JyMSjMFhBEMBY_ppVFvMGMyASTCCy5yJVGa1N74DfkS3Sd2dwV2Ogns5zMjuIJUjxxFE-YB_vtK8Mqrceizp1mTZJawkfJjB89-NI2o2w6h0tamMGk6oPKBndRDzarJWxHQxiAUFcqD-Tc4rYdXN7v-Zbi5m-Z_xvHjeNIeHDQsMHstxZM4qDllOen_GnxlHdhBYUv-XV2eb4Nq4ghVRUT2YHl8f3EfEacNs52SoEgcP3SEvgfPelJYQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD50Kezy0O7Sbd7a4cGeVpTaii7WYykLpdAyxgLdk7FkiZY6TmgTxvbrd2TLTrNCS9-MdXyRj6TzWefTJ4AvNHEsM0oTJRNGmHOOFIwzklHJeekywQu_dvj0TBxP2Mk5P9-AtFsL05D2jb4c1tV0WF9eNNzK-dQcdDyxA0FVlnHxBDYFR_g9gM3J2ffDX232OCX4CLk6FrzLZDbL5VKReSICdnGVUkLXY9EdgHmXJ9knS1_As2U9L_78LqrqVjwab8OPriYtDeVquFzoofn7n8jjo6r6ErYCOo0P26JXsGHr1_D0NOTf38C40UOOVzJQsfZbTMRTT_K5volnLq4QvN42KAIBP_YRNMz-7sBk_O3n0TEJOzEQw2SyIGyUlNbi12TWaZOWrFCItKROTGmyVFqJp5xhQieOFhxhgxCqpH7CSgsvED96C4N6Vtv3ECMccXgzoxyCB2qFFlQiSmSiVAZ_HU0ESeeT3ASZcr9bRpWvBJa9G3N0Y-7dmNMIvvaXzFuNjvuMdztH56G73uTUw0CF490ogs99MXY0nz0pajtbtjYYOXBIjOBd2y76p2FMR9wqVQRyrcX0Bl7Ee70EHd6IeQcfR7Dfta3Va91Tif2--T1c5Q-Psv4IzxEUqpbkuAuDxfXS7iHwWuhPoav9A_2dJo8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+adolescent+brain+markers+of+late+adolescent+academic+functioning&rft.jtitle=Brain+imaging+and+behavior&rft.au=Meruelo%2C+Alejandro+Daniel&rft.au=Jacobus%2C+Joanna&rft.au=Idy%2C+Erick&rft.au=Nguyen-Louie%2C+Tam&rft.date=2019-08-01&rft.pub=Springer+US&rft.issn=1931-7557&rft.eissn=1931-7565&rft.volume=13&rft.issue=4&rft.spage=945&rft.epage=952&rft_id=info:doi/10.1007%2Fs11682-018-9912-2&rft.externalDocID=10_1007_s11682_018_9912_2 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-7557&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-7557&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-7557&client=summon |