Tango1L but not Tango1S, Tali and cTAGE5 is required for export of type II collagen in medaka fish
Newly synthesized proteins destined for the secretory pathway are folded and assembled in the endoplasmic reticulum (ER) and then transported to the Golgi apparatus via COPII vesicles, which are normally 60–90 nm. COPII vesicles must accordingly be enlarged to accommodate proteins larger than 90 nm,...
Saved in:
Published in | Cell Structure and Function Vol. 50; no. 1; pp. 65 - 76 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
Japan Society for Cell Biology
01.01.2025
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 0386-7196 1347-3700 1347-3700 |
DOI | 10.1247/csf.25001 |
Cover
Abstract | Newly synthesized proteins destined for the secretory pathway are folded and assembled in the endoplasmic reticulum (ER) and then transported to the Golgi apparatus via COPII vesicles, which are normally 60–90 nm. COPII vesicles must accordingly be enlarged to accommodate proteins larger than 90 nm, such as long-chain collagen. Key molecules involved in this enlargement are Tango1 and Tango1-like (Tali), which are transmembrane proteins in the ER encoded by the MIA3 and MIA2 genes, respectively. Interestingly, two splicing variants are expressed from each of these two genes: Tango1L and Tango1S from the MIA3 gene, and Tali and cTAGE5 from the MIA2 gene. Here, we constructed Tango1L-knockout (KO), Tango1S-KO, Tali-KO, and cTAGE5-KO separately in medaka fish, a vertebrate model organism, and characterized them. Results showed that only Tango1L-KO conferred a lethal phenotype to medaka fish. Only Tango1L-KO medaka fish exhibited a shorter tail than wild-type (WT) fish and showed the defects in the export of type II collagen from the ER, contrary to the previous reports analyzing Tango1-KO or Tali-KO mice and the results of knockdown experiments in human cultured cells. Medaka fish may employ a simpler system than mammals for the export of large molecules from the ER.Key words: intracellular transport, COPII vesicles, enlargement, endoplasmic reticulum, Golgi apparatus |
---|---|
AbstractList | Newly synthesized proteins destined for the secretory pathway are folded and assembled in the endoplasmic reticulum (ER) and then transported to the Golgi apparatus via COPII vesicles, which are normally 60–90 nm. COPII vesicles must accordingly be enlarged to accommodate proteins larger than 90 nm, such as long-chain collagen. Key molecules involved in this enlargement are Tango1 and Tango1-like (Tali), which are transmembrane proteins in the ER encoded by the MIA3 and MIA2 genes, respectively. Interestingly, two splicing variants are expressed from each of these two genes: Tango1L and Tango1S from the MIA3 gene, and Tali and cTAGE5 from the MIA2 gene. Here, we constructed Tango1L-knockout (KO), Tango1S-KO, Tali-KO, and cTAGE5-KO separately in medaka fish, a vertebrate model organism, and characterized them. Results showed that only Tango1L-KO conferred a lethal phenotype to medaka fish. Only Tango1L-KO medaka fish exhibited a shorter tail than wild-type (WT) fish and showed the defects in the export of type II collagen from the ER, contrary to the previous reports analyzing Tango1-KO or Tali-KO mice and the results of knockdown experiments in human cultured cells. Medaka fish may employ a simpler system than mammals for the export of large molecules from the ER. Key words: intracellular transport, COPII vesicles, enlargement, endoplasmic reticulum, Golgi apparatus Newly synthesized proteins destined for the secretory pathway are folded and assembled in the endoplasmic reticulum (ER) and then transported to the Golgi apparatus via COPII vesicles, which are normally 60–90 nm. COPII vesicles must accordingly be enlarged to accommodate proteins larger than 90 nm, such as long-chain collagen. Key molecules involved in this enlargement are Tango1 and Tango1-like (Tali), which are transmembrane proteins in the ER encoded by the MIA3 and MIA2 genes, respectively. Interestingly, two splicing variants are expressed from each of these two genes: Tango1L and Tango1S from the MIA3 gene, and Tali and cTAGE5 from the MIA2 gene. Here, we constructed Tango1L-knockout (KO), Tango1S-KO, Tali-KO, and cTAGE5-KO separately in medaka fish, a vertebrate model organism, and characterized them. Results showed that only Tango1L-KO conferred a lethal phenotype to medaka fish. Only Tango1L-KO medaka fish exhibited a shorter tail than wild-type (WT) fish and showed the defects in the export of type II collagen from the ER, contrary to the previous reports analyzing Tango1-KO or Tali-KO mice and the results of knockdown experiments in human cultured cells. Medaka fish may employ a simpler system than mammals for the export of large molecules from the ER. Newly synthesized proteins destined for the secretory pathway are folded and assembled in the endoplasmic reticulum (ER) and then transported to the Golgi apparatus via COPII vesicles, which are normally 60-90 nm. COPII vesicles must accordingly be enlarged to accommodate proteins larger than 90 nm, such as long-chain collagen. Key molecules involved in this enlargement are Tango1 and Tango1-like (Tali), which are transmembrane proteins in the ER encoded by the MIA3 and MIA2 genes, respectively. Interestingly, two splicing variants are expressed from each of these two genes: Tango1L and Tango1S from the MIA3 gene, and Tali and cTAGE5 from the MIA2 gene. Here, we constructed Tango1L-knockout (KO), Tango1S-KO, Tali-KO, and cTAGE5-KO separately in medaka fish, a vertebrate model organism, and characterized them. Results showed that only Tango1L-KO conferred a lethal phenotype to medaka fish. Only Tango1L-KO medaka fish exhibited a shorter tail than wild-type (WT) fish and showed the defects in the export of type II collagen from the ER, contrary to the previous reports analyzing Tango1-KO or Tali-KO mice and the results of knockdown experiments in human cultured cells. Medaka fish may employ a simpler system than mammals for the export of large molecules from the ER.Key words: intracellular transport, COPII vesicles, enlargement, endoplasmic reticulum, Golgi apparatus.Newly synthesized proteins destined for the secretory pathway are folded and assembled in the endoplasmic reticulum (ER) and then transported to the Golgi apparatus via COPII vesicles, which are normally 60-90 nm. COPII vesicles must accordingly be enlarged to accommodate proteins larger than 90 nm, such as long-chain collagen. Key molecules involved in this enlargement are Tango1 and Tango1-like (Tali), which are transmembrane proteins in the ER encoded by the MIA3 and MIA2 genes, respectively. Interestingly, two splicing variants are expressed from each of these two genes: Tango1L and Tango1S from the MIA3 gene, and Tali and cTAGE5 from the MIA2 gene. Here, we constructed Tango1L-knockout (KO), Tango1S-KO, Tali-KO, and cTAGE5-KO separately in medaka fish, a vertebrate model organism, and characterized them. Results showed that only Tango1L-KO conferred a lethal phenotype to medaka fish. Only Tango1L-KO medaka fish exhibited a shorter tail than wild-type (WT) fish and showed the defects in the export of type II collagen from the ER, contrary to the previous reports analyzing Tango1-KO or Tali-KO mice and the results of knockdown experiments in human cultured cells. Medaka fish may employ a simpler system than mammals for the export of large molecules from the ER.Key words: intracellular transport, COPII vesicles, enlargement, endoplasmic reticulum, Golgi apparatus. Newly synthesized proteins destined for the secretory pathway are folded and assembled in the endoplasmic reticulum (ER) and then transported to the Golgi apparatus via COPII vesicles, which are normally 60-90 nm. COPII vesicles must accordingly be enlarged to accommodate proteins larger than 90 nm, such as long-chain collagen. Key molecules involved in this enlargement are Tango1 and Tango1-like (Tali), which are transmembrane proteins in the ER encoded by the MIA3 and MIA2 genes, respectively. Interestingly, two splicing variants are expressed from each of these two genes: Tango1L and Tango1S from the MIA3 gene, and Tali and cTAGE5 from the MIA2 gene. Here, we constructed Tango1L-knockout (KO), Tango1S-KO, Tali-KO, and cTAGE5-KO separately in medaka fish, a vertebrate model organism, and characterized them. Results showed that only Tango1L-KO conferred a lethal phenotype to medaka fish. Only Tango1L-KO medaka fish exhibited a shorter tail than wild-type (WT) fish and showed the defects in the export of type II collagen from the ER, contrary to the previous reports analyzing Tango1-KO or Tali-KO mice and the results of knockdown experiments in human cultured cells. Medaka fish may employ a simpler system than mammals for the export of large molecules from the ER.Key words: intracellular transport, COPII vesicles, enlargement, endoplasmic reticulum, Golgi apparatus. |
ArticleNumber | 25001 |
Author | Yasuda, Yusuke Saito, Shunsuke Yoshida, Tomoka Sengiku, Masaya Mori, Kazutoshi Jin, Byungseok Oue, Mahiro Ishikawa, Tokiro |
Author_xml | – sequence: 1 fullname: Sengiku, Masaya organization: Department of Biophysics, Graduate School of Science, Kyoto University – sequence: 1 fullname: Jin, Byungseok organization: Kyoto University Institute for Advanced Study – sequence: 1 fullname: Ishikawa, Tokiro organization: Department of Biophysics, Graduate School of Science, Kyoto University – sequence: 1 fullname: Mori, Kazutoshi organization: Kyoto University Institute for Advanced Study – sequence: 1 fullname: Oue, Mahiro organization: Department of Biophysics, Graduate School of Science, Kyoto University – sequence: 1 fullname: Yoshida, Tomoka organization: Department of Biophysics, Graduate School of Science, Kyoto University – sequence: 1 fullname: Yasuda, Yusuke organization: Department of Biophysics, Graduate School of Science, Kyoto University – sequence: 1 fullname: Saito, Shunsuke organization: Kyoto University Institute for Advanced Study |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39842788$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUtvEzEUhS1URNPCgj-ALLEBiSl-je1ZVVVVSqRILAhry-NH6jCxU3tGov8eJ9MGiY3ta3_3yOeeC3AWU3QAvMfoChMmvprir0iLEH4FFpgy0VCB0BlYICp5I3DHz8FFKVuEKsTFG3BOO8mIkHIB-rWOm4RXsJ9GGNMI5_rnl3oYAtTRQrO-ub9rYSgwu8cpZGehTxm6P_uUR5g8HJ_2Di6X0KRh0BsXYYhw56z-raEP5eEteO31UNy75_0S_Pp2t7793qx-3C9vb1aNYQKNDTWesV4a0nvdUoooJ7b11DKCe8qw4JJgTIW0ggvNOSNIIMd9J5i1xhtKL8Fy1rVJb9U-h53OTyrpoI4XKW-UzmMwg1M9l4xi04pOa9bzvtMI-artO2-kMbJqfZq19jk9Tq6MaheKcdVfdGkqiuJWipYLdkA__odu05RjdaoooV0rGJNdpT48U1NfZ3P63ksSFfg8AyanUrLzJwQjdUhZ1ZTVMeXKXs_stox14Cfyxd6BbGvXYTl2_Ht50Fm5SP8C5tur1w |
Cites_doi | 10.1083/jcb.201603072 10.1091/mbc.e12-11-0830 10.1242/dev.01812 10.1083/jcb.201007162 10.1101/cshperspect.a041258 10.1091/mbc.e11-02-0143 10.1016/j.cell.2006.04.014 10.1083/jcb.201609100 10.1146/annurev-cellbio-100913-013002 10.1247/csf.11036 10.1091/mbc.E20-11-0745 10.1242/dev.051011 10.1016/j.bbamem.2021.183700 10.1016/j.ceb.2005.06.004 10.1091/mbc.e16-03-0196 10.1016/j.cell.2008.12.025 10.1038/cr.2016.75 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) 2025. This work is published under https://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 The Author(s) – notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7TK 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI 7X8 DOA |
DOI | 10.1247/csf.25001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database (ProQuest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1347-3700 |
EndPage | 76 |
ExternalDocumentID | oai_doaj_org_article_b68431c579aa4b6b9a00f378f9fc8cc8 39842788 10_1247_csf_25001 article_csf_50_1_50_25001_article_char_en |
Genre | Journal Article |
GroupedDBID | --- .55 .GJ 29B 2WC 3O- 53G 5GY 5RE 6J9 7X7 88E 8AO 8FI 8FJ ABUWG ACIWK ACPRK ADBBV AENEX AFKRA AHMBA AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CS3 DIK DU5 E3Z EBS EJD EMOBN F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK JSF JSH KQ8 M1P M7P OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PSQYO PUEGO RJT RNS RPM RZJ TKC TR2 UKHRP VH1 X7M XSB ZXP AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7TK 7XB 8FD 8FE 8FH 8FK AZQEC DWQXO FR3 GNUQQ K9. LK8 P64 PKEHL PQEST PQUKI 7X8 |
ID | FETCH-LOGICAL-c470t-3cf44b8c2bfa5330362d5f3d421b341768211378d767a6642070e6f974ddcfc33 |
IEDL.DBID | DOA |
ISSN | 0386-7196 1347-3700 |
IngestDate | Wed Aug 27 01:29:48 EDT 2025 Thu Sep 04 17:12:21 EDT 2025 Sat Sep 20 14:21:43 EDT 2025 Mon Jul 21 05:43:13 EDT 2025 Sun Jul 06 05:08:37 EDT 2025 Wed Sep 03 06:30:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | COPII vesicles intracellular transport enlargement endoplasmic reticulum Golgi apparatus |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-3cf44b8c2bfa5330362d5f3d421b341768211378d767a6642070e6f974ddcfc33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/b68431c579aa4b6b9a00f378f9fc8cc8 |
PMID | 39842788 |
PQID | 3239574489 |
PQPubID | 1996364 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b68431c579aa4b6b9a00f378f9fc8cc8 proquest_miscellaneous_3158756748 proquest_journals_3239574489 pubmed_primary_39842788 crossref_primary_10_1247_csf_25001 jstage_primary_article_csf_50_1_50_25001_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Saitama |
PublicationTitle | Cell Structure and Function |
PublicationTitleAlternate | Cell Struct. Funct. |
PublicationYear | 2025 |
Publisher | Japan Society for Cell Biology Japan Science and Technology Agency |
Publisher_xml | – name: Japan Society for Cell Biology – name: Japan Science and Technology Agency |
References | Wilson, D.G., Phamluong, K., Li, L., Sun, M., Cao, T.C., Liu, P.S., Modrusan, Z., Sandoval, W.N., Rangell, L., Carano, R.A., Peterson, A.S., and Solloway, M.J. 2011. Global defects in collagen secretion in a Mia3/TANGO1 knockout mouse. J. Cell Biol., 193: 935–951. Stemple, D.L. 2005. Structure and function of the notochord: An essential organ for chordate development. Development, 132: 2503–2512. Bukau, B., Weissman, J., and Horwich, A. 2006. Molecular chaperones and protein quality control. Cell, 125: 443–451. Ishikawa, T., Taniguchi, Y., Okada, T., Takeda, S., and Mori, K. 2011. Vertebrate unfolded protein response: Mammalian signaling pathways are conserved in medaka fish. Cell Struct. Funct., 36: 247–259. Wang, Y., Liu, L., Zhang, H., Fan, J., Zhang, F., Yu, M., Shi, L., Yang, L., Lam, S.M., Wang, H., Chen, X., Wang, Y., Gao, F., Shui, G., and Xu, Z. 2016. Mea6 controls VLDL transport through the coordinated regulation of COPII assembly. Cell Res., 26: 787–804. Ishikawa, T., Toyama, T., Nakamura, Y., Tamada, K., Shimizu, H., Ninagawa, S., Okada, T., Kamei, Y., Ishikawa-Fujiwara, T., Todo, T., Aoyama, E., Takigawa, M., Harada, A., and Mori, K. 2017. UPR transducer BBF2H7 allows export of type II collagen in a cargo- and developmental stage-specific manner. J. Cell Biol., 216: 1761–1774. Saito, K., Chen, M., Bard, F., Chen, S., Zhou, H., Woodley, D., Polischuk, R., Schekman, R., and Malhotra, V. 2009. TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell, 136: 891–902. Clark, E.M. and Link, B.A. 2021. Complementary and divergent functions of zebrafish Tango1 and Ctage5 in tissue development and homeostasis. Mol. Biol. Cell, 32: 391–401. Maeda, M., Saito, K., and Katada, T. 2016. Distinct isoform-specific complexes of TANGO1 cooperatively facilitate collagen secretion from the endoplasmic reticulum. Mol. Biol. Cell, 27: 2688–2696. Fromme, J.C. and Schekman, R. 2005. COPII-coated vesicles: Flexible enough for large cargo? Curr. Opin. Cell Biol., 17: 345–352. Raote, I., Saxena, S., and Malhotra, V. 2023. Sorting and export of proteins at the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol., 15: a041258. Yamamoto, M., Morita, R., Mizoguchi, T., Matsuo, H., Isoda, M., Ishitani, T., Chitnis, A.B., Matsumoto, K., Crump, J.G., Hozumi, K., Yonemura, S., Kawakami, K., and Itoh, M. 2010. Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions. Development, 137: 2527–2537. Saito, K., Yamashiro, K., Ichikawa, Y., Erlmann, P., Kontani, K., Malhotra, V., and Katada, T. 2011. cTAGE5 mediates collagen secretion through interaction with TANGO1 at endoplasmic reticulum exit sites. Mol. Biol. Cell, 22: 2301–2308. Santos, A.J., Nogueira, C., Ortega-Bellido, M., and Malhotra, V. 2016. TANGO1 and Mia2/cTAGE5 (TALI) cooperate to export bulky pre-chylomicrons/VLDLs from the endoplasmic reticulum. J. Cell Biol., 213: 343–354. Ishikawa, T., Okada, T., Ishikawa-Fujiwara, T., Todo, T., Kamei, Y., Shigenobu, S., Tanaka, M., Saito, T.L., Yoshimura, J., Morishita, S., Toyoda, A., Sakaki, Y., Taniguchi, Y., Takeda, S., and Mori, K. 2013. ATF6alpha/beta-mediated adjustment of ER chaperone levels is essential for development of the notochord in medaka fish. Mol. Biol. Cell, 24: 1387–1395. Malhotra, V. and Erlmann, P. 2015. The pathway of collagen secretion. Annu. Rev. Cell. Dev. Biol., 31: 109–124. Raote, I., Saxena, S., Campelo, F., and Malhotra, V. 2021. TANGO1 marshals the early secretory pathway for cargo export. Biochim. Biophys. Acta Biomembr., 1863: 183700. 11 12 13 14 15 16 17 1 2 3 4 5 6 7 8 9 10 |
References_xml | – reference: Wilson, D.G., Phamluong, K., Li, L., Sun, M., Cao, T.C., Liu, P.S., Modrusan, Z., Sandoval, W.N., Rangell, L., Carano, R.A., Peterson, A.S., and Solloway, M.J. 2011. Global defects in collagen secretion in a Mia3/TANGO1 knockout mouse. J. Cell Biol., 193: 935–951. – reference: Stemple, D.L. 2005. Structure and function of the notochord: An essential organ for chordate development. Development, 132: 2503–2512. – reference: Malhotra, V. and Erlmann, P. 2015. The pathway of collagen secretion. Annu. Rev. Cell. Dev. Biol., 31: 109–124. – reference: Santos, A.J., Nogueira, C., Ortega-Bellido, M., and Malhotra, V. 2016. TANGO1 and Mia2/cTAGE5 (TALI) cooperate to export bulky pre-chylomicrons/VLDLs from the endoplasmic reticulum. J. Cell Biol., 213: 343–354. – reference: Raote, I., Saxena, S., and Malhotra, V. 2023. Sorting and export of proteins at the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol., 15: a041258. – reference: Ishikawa, T., Taniguchi, Y., Okada, T., Takeda, S., and Mori, K. 2011. Vertebrate unfolded protein response: Mammalian signaling pathways are conserved in medaka fish. Cell Struct. Funct., 36: 247–259. – reference: Wang, Y., Liu, L., Zhang, H., Fan, J., Zhang, F., Yu, M., Shi, L., Yang, L., Lam, S.M., Wang, H., Chen, X., Wang, Y., Gao, F., Shui, G., and Xu, Z. 2016. Mea6 controls VLDL transport through the coordinated regulation of COPII assembly. Cell Res., 26: 787–804. – reference: Maeda, M., Saito, K., and Katada, T. 2016. Distinct isoform-specific complexes of TANGO1 cooperatively facilitate collagen secretion from the endoplasmic reticulum. Mol. Biol. Cell, 27: 2688–2696. – reference: Saito, K., Yamashiro, K., Ichikawa, Y., Erlmann, P., Kontani, K., Malhotra, V., and Katada, T. 2011. cTAGE5 mediates collagen secretion through interaction with TANGO1 at endoplasmic reticulum exit sites. Mol. Biol. Cell, 22: 2301–2308. – reference: Saito, K., Chen, M., Bard, F., Chen, S., Zhou, H., Woodley, D., Polischuk, R., Schekman, R., and Malhotra, V. 2009. TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell, 136: 891–902. – reference: Ishikawa, T., Okada, T., Ishikawa-Fujiwara, T., Todo, T., Kamei, Y., Shigenobu, S., Tanaka, M., Saito, T.L., Yoshimura, J., Morishita, S., Toyoda, A., Sakaki, Y., Taniguchi, Y., Takeda, S., and Mori, K. 2013. ATF6alpha/beta-mediated adjustment of ER chaperone levels is essential for development of the notochord in medaka fish. Mol. Biol. Cell, 24: 1387–1395. – reference: Ishikawa, T., Toyama, T., Nakamura, Y., Tamada, K., Shimizu, H., Ninagawa, S., Okada, T., Kamei, Y., Ishikawa-Fujiwara, T., Todo, T., Aoyama, E., Takigawa, M., Harada, A., and Mori, K. 2017. UPR transducer BBF2H7 allows export of type II collagen in a cargo- and developmental stage-specific manner. J. Cell Biol., 216: 1761–1774. – reference: Bukau, B., Weissman, J., and Horwich, A. 2006. Molecular chaperones and protein quality control. Cell, 125: 443–451. – reference: Yamamoto, M., Morita, R., Mizoguchi, T., Matsuo, H., Isoda, M., Ishitani, T., Chitnis, A.B., Matsumoto, K., Crump, J.G., Hozumi, K., Yonemura, S., Kawakami, K., and Itoh, M. 2010. Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions. Development, 137: 2527–2537. – reference: Raote, I., Saxena, S., Campelo, F., and Malhotra, V. 2021. TANGO1 marshals the early secretory pathway for cargo export. Biochim. Biophys. Acta Biomembr., 1863: 183700. – reference: Fromme, J.C. and Schekman, R. 2005. COPII-coated vesicles: Flexible enough for large cargo? Curr. Opin. Cell Biol., 17: 345–352. – reference: Clark, E.M. and Link, B.A. 2021. Complementary and divergent functions of zebrafish Tango1 and Ctage5 in tissue development and homeostasis. Mol. Biol. Cell, 32: 391–401. – ident: 13 doi: 10.1083/jcb.201603072 – ident: 4 doi: 10.1091/mbc.e12-11-0830 – ident: 14 doi: 10.1242/dev.01812 – ident: 16 doi: 10.1083/jcb.201007162 – ident: 10 doi: 10.1101/cshperspect.a041258 – ident: 12 doi: 10.1091/mbc.e11-02-0143 – ident: 1 doi: 10.1016/j.cell.2006.04.014 – ident: 6 doi: 10.1083/jcb.201609100 – ident: 8 doi: 10.1146/annurev-cellbio-100913-013002 – ident: 5 doi: 10.1247/csf.11036 – ident: 2 doi: 10.1091/mbc.E20-11-0745 – ident: 17 doi: 10.1242/dev.051011 – ident: 9 doi: 10.1016/j.bbamem.2021.183700 – ident: 3 doi: 10.1016/j.ceb.2005.06.004 – ident: 7 doi: 10.1091/mbc.e16-03-0196 – ident: 11 doi: 10.1016/j.cell.2008.12.025 – ident: 15 doi: 10.1038/cr.2016.75 |
SSID | ssj0025067 |
Score | 2.3985744 |
Snippet | Newly synthesized proteins destined for the secretory pathway are folded and assembled in the endoplasmic reticulum (ER) and then transported to the Golgi... |
SourceID | doaj proquest pubmed crossref jstage |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 65 |
SubjectTerms | Animals Aryl Hydrocarbon Receptor Nuclear Translocator - genetics Aryl Hydrocarbon Receptor Nuclear Translocator - metabolism Collagen Collagen (type II) Collagen Type II - metabolism COPII vesicles Endoplasmic reticulum Endoplasmic Reticulum - metabolism enlargement Fish Proteins - genetics Fish Proteins - metabolism Genome editing Golgi apparatus Humans intracellular transport Membrane Proteins - genetics Membrane Proteins - metabolism Mice Oryzias - genetics Oryzias - metabolism Phenotypes Protein Transport Proteins Vesicles Zebrafish |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4t1AQQZxJDSJ7dg5oYJaWgRc2Ep7i_zcLqCkbLIS_HtmHGf3BJcoiROPNR575rOt-Qh53XBnSiebPODZCu4qkWuYBXPjjS64g4A25u788rU-v-SflmKZFtyGdKxynhPjRO16i2vkx6zCHSUAE8276185skbh7mqi0LhJbpUQiSB1g1zuAZcoIoNswVSdSzC1lFmo4vLYDuEtlCcumNkfxbT94Iu-Q2S28v8OOqPzObtH7qaokZ5M3Xyf3PDdA3J74pH885CYhe5WffmZmu1Iu36k0_O3N3Dzc01156hdnHw8FXQ90I3Hw7_eUQhXqf-N8TftA8W1WHpxQaNhgFXRdUehJfqHpmE9XD0il2eniw_neSJPyC2XxZgzGzg3ylYmaDxBCo7KicAcr0oDngtQBkA_JpWTtdQ1oBAY-74OAC-cs8Ey9pgcdH3nDwmtlIAqLNeBA54wtjEcZDjlLQNorVlGXs0qbK-nHBktYgvQcwt6bqOeM_Ielbv7ANNaxxf9ZtWmUdKaWkFAY4VstOamNo0uigCNDE2wylqVETV1za6a-U-UI0AmXqK8fcmV3sAUkJGjuTPbNEyHdm9UGXm5K4YBhrsmuvP9Fr4pBWA65GTJyJPJCHbSWaOQqkQ9_X_lz8idCmmD48rNETkYN1v_HGKZ0byIBvsXIi3vzQ priority: 102 providerName: ProQuest |
Title | Tango1L but not Tango1S, Tali and cTAGE5 is required for export of type II collagen in medaka fish |
URI | https://www.jstage.jst.go.jp/article/csf/50/1/50_25001/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/39842788 https://www.proquest.com/docview/3239574489 https://www.proquest.com/docview/3158756748 https://doaj.org/article/b68431c579aa4b6b9a00f378f9fc8cc8 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Cell Structure and Function, 2025, Vol.50(1), pp.65-76 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BERKXqrxDy8ogjoRmYzu2jy3a0iKoEGylvUV-tkurpNrNSvDvGTvJwgVx4RIlseNxZsaZ-WxnBuCNYs5MnVB5iHsrmCt5rvErmBtvdMEcOrQpdufn8-r0gn1c8MUfqb7inrA-PHDPuENTSbRxlgulNTOVUbooAhUyqGCltek330IVI5gaoBYvUu7YgsoqF6hkQ0yhkolDuw7vsHzIAjNaohSwH63Qd_TJLv3f3c1kdk72YHfwF8lR38-HcMc3j-B-n0Hy52Mwc91cttNPxGw60rQd6a-_vcWTmyXRjSN2fvRhxslyTVY-bvv1jqCjSvyP6HmTNpA4C0vOzkhSCdQnsmwI9kRfaxKW66sncHEym78_zYe0CbllouhyagNjRtrSBB33jqKJcjxQx8qpQZuF-AJBH3LQiUroCvEHjnpfBQQWztlgKX0KO03b-OdASsmxCct0YIgkjFWGIQ0nvaUIqjXN4PXIwvq2j45RR1SBfK6Rz3XicwbHkbnbCjGgdbqBYq4HMdf_EnMGshfNtpnxyUiHI814SPR-l1zpFQ7-DA5GYdbDAF3XtIwLlIhNVQavtsU4tOJ6iW58u8E6U45oLmZjyeBZrwRb6lTJmKREvvgfL7cPD8qYVjjN7BzATrfa-Jfo63RmAnfFQkzg3vHs_MvXSVLySZqS-gXY_Pxg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQguiDcpBQyCG6HZxEmcA0IFWnbpthe20t5SP7cLVVI2u4L-KX4jM06ye4JbL1ESJ55oPDP-xnb8AbwuuFEDkxeho7UV3MRpKDEKhsoqGXGDgNbv3Xl8kg1P-ddpOt2CP_2_MLSsso-JPlCbWtMY-V4S04wSJhPFh8ufIbFG0exqT6HRmsWRvfqFKVvzfvQZ2_dNHB8eTD4Nw45VINQ8j5Zhoh3nSuhYOUlLKzGCm9QlhscDhSEd4TfmREkuTJ7lMkN4jk5hM4e42xjtNA2AYsi_wWmKEf0nn24SvDTyjLVRIrIwR9PudjKKeb6nG_cOyzvumb7_8zQB2Pd9RyQ4s_8Gub6zO7wLdzqUyvZbs7oHW7a6Dzdb3sqrB6AmsprVgzFTqyWr6iVrr7-9xZOLOZOVYXqy_-UgZfOGLSwtNraGITxm9jfhfVY7RmO_bDRi3hDRitm8Yvgl8odkbt6cP4TTa1HrI9iu6so-ARaLFKvQXDqO-YvSheIowwirE0zlZRLAq16F5WW7J0dJuQzquUQ9l17PAXwk5a4foG20_Y16MSs7ryxVJhBA6TQvpOQqU4WMIocf6QqnhdYiANE2zbqa_k2Sk6JMOnh5m5JzucCQE8Bu35hlFxaacmPEAbxcF6ND0yyNrGy9wmcGKeaQxAETwOPWCNbSk0IQNYrY-X_lL-DWcHI8Lsejk6OncDsmymI_arQL28vFyj5DHLVUz73xMji7bm_5CxZmKv8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VrUBcEG8MBRYEN0wce22vDxVqaUJDS1RBKvXm7jMNILvEjqB_kV_F7HqdnuDWS5R4nR1rdp674_kAXhdUiaHKi9DY2gqq4jTkaAVDoQWPqMKA1vXu_DzNDk7op9P0dAP-9O_C2LLK3iY6Q61qaffIB0lsT5QwmSgGxpdFHO-P31_8DC2ClD1p7eE0uIdZUDuu3Zh_yeNQX_7CdK7Zmezj2r-J4_Fo9uEg9IgDoaR51IaJNJQKJmNhuC27ROuuUpMoGg8FmnsMzTFfSnKm8iznGYbuqDA6MxiTKyWNtJuj6A62cvT6mAhu7Y2mx1_W6V8aOTzbKGFZmKPg-z5HMc0HsjHvcNwj0_Te0YEIoGf8hnHiXP87BHaucHwHbvsYlux2QncXNnR1D250qJaX90HMeDWvh0dErFpS1S3pfn99i19-LAivFJGz3Y-jlCwastS2FFkrgsEz0b9tNkBqQ-zOMJlMiBNTlHGyqAg-Cf_OiVk05w_g5FoY-xA2q7rSj4HELMUpJOWGYnYjZCEo0lBMywQTfZ4E8KpnYXnRdewobaaDfC6Rz6XjcwB7lrnrG2yTbXehXs5Lr7OlyBiGVzLNC86pyETBo8jgQ5rCSCYlC4B1S7Oepv-npZMiTfvh6F2NnPMlGqQAtvvFLL3RaMorEQ_g5XoY1d2e4fBK1yu8Z5hihmkRYgJ41AnBmnpSMAucwp78f_IXcBM1pzyaTA-fwq3Y4hm7LaVt2GyXK_0Mg6xWPPfSS-DsuhXmLwq2Ndo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tango1L+but+not+Tango1S%2C+Tali+and+cTAGE5+is+required+for+export+of+type+II+collagen+in+medaka+fish&rft.jtitle=Cell+structure+and+function&rft.au=Yusuke+Yasuda&rft.au=Tomoka+Yoshida&rft.au=Mahiro+Oue&rft.au=Masaya+Sengiku&rft.date=2025-01-01&rft.pub=Japan+Society+for+Cell+Biology&rft.issn=0386-7196&rft.eissn=1347-3700&rft.volume=50&rft.issue=1&rft.spage=65&rft.epage=76&rft_id=info:doi/10.1247%2Fcsf.25001&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b68431c579aa4b6b9a00f378f9fc8cc8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0386-7196&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0386-7196&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0386-7196&client=summon |