Tango1L but not Tango1S, Tali and cTAGE5 is required for export of type II collagen in medaka fish

Newly synthesized proteins destined for the secretory pathway are folded and assembled in the endoplasmic reticulum (ER) and then transported to the Golgi apparatus via COPII vesicles, which are normally 60–90 nm. COPII vesicles must accordingly be enlarged to accommodate proteins larger than 90 nm,...

Full description

Saved in:
Bibliographic Details
Published inCell Structure and Function Vol. 50; no. 1; pp. 65 - 76
Main Authors Sengiku, Masaya, Jin, Byungseok, Ishikawa, Tokiro, Mori, Kazutoshi, Oue, Mahiro, Yoshida, Tomoka, Yasuda, Yusuke, Saito, Shunsuke
Format Journal Article
LanguageEnglish
Published Japan Japan Society for Cell Biology 01.01.2025
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0386-7196
1347-3700
1347-3700
DOI10.1247/csf.25001

Cover

Abstract Newly synthesized proteins destined for the secretory pathway are folded and assembled in the endoplasmic reticulum (ER) and then transported to the Golgi apparatus via COPII vesicles, which are normally 60–90 nm. COPII vesicles must accordingly be enlarged to accommodate proteins larger than 90 nm, such as long-chain collagen. Key molecules involved in this enlargement are Tango1 and Tango1-like (Tali), which are transmembrane proteins in the ER encoded by the MIA3 and MIA2 genes, respectively. Interestingly, two splicing variants are expressed from each of these two genes: Tango1L and Tango1S from the MIA3 gene, and Tali and cTAGE5 from the MIA2 gene. Here, we constructed Tango1L-knockout (KO), Tango1S-KO, Tali-KO, and cTAGE5-KO separately in medaka fish, a vertebrate model organism, and characterized them. Results showed that only Tango1L-KO conferred a lethal phenotype to medaka fish. Only Tango1L-KO medaka fish exhibited a shorter tail than wild-type (WT) fish and showed the defects in the export of type II collagen from the ER, contrary to the previous reports analyzing Tango1-KO or Tali-KO mice and the results of knockdown experiments in human cultured cells. Medaka fish may employ a simpler system than mammals for the export of large molecules from the ER.Key words: intracellular transport, COPII vesicles, enlargement, endoplasmic reticulum, Golgi apparatus
AbstractList Newly synthesized proteins destined for the secretory pathway are folded and assembled in the endoplasmic reticulum (ER) and then transported to the Golgi apparatus via COPII vesicles, which are normally 60–90 nm. COPII vesicles must accordingly be enlarged to accommodate proteins larger than 90 nm, such as long-chain collagen. Key molecules involved in this enlargement are Tango1 and Tango1-like (Tali), which are transmembrane proteins in the ER encoded by the MIA3 and MIA2 genes, respectively. Interestingly, two splicing variants are expressed from each of these two genes: Tango1L and Tango1S from the MIA3 gene, and Tali and cTAGE5 from the MIA2 gene. Here, we constructed Tango1L-knockout (KO), Tango1S-KO, Tali-KO, and cTAGE5-KO separately in medaka fish, a vertebrate model organism, and characterized them. Results showed that only Tango1L-KO conferred a lethal phenotype to medaka fish. Only Tango1L-KO medaka fish exhibited a shorter tail than wild-type (WT) fish and showed the defects in the export of type II collagen from the ER, contrary to the previous reports analyzing Tango1-KO or Tali-KO mice and the results of knockdown experiments in human cultured cells. Medaka fish may employ a simpler system than mammals for the export of large molecules from the ER. Key words: intracellular transport, COPII vesicles, enlargement, endoplasmic reticulum, Golgi apparatus
Newly synthesized proteins destined for the secretory pathway are folded and assembled in the endoplasmic reticulum (ER) and then transported to the Golgi apparatus via COPII vesicles, which are normally 60–90 nm. COPII vesicles must accordingly be enlarged to accommodate proteins larger than 90 nm, such as long-chain collagen. Key molecules involved in this enlargement are Tango1 and Tango1-like (Tali), which are transmembrane proteins in the ER encoded by the MIA3 and MIA2 genes, respectively. Interestingly, two splicing variants are expressed from each of these two genes: Tango1L and Tango1S from the MIA3 gene, and Tali and cTAGE5 from the MIA2 gene. Here, we constructed Tango1L-knockout (KO), Tango1S-KO, Tali-KO, and cTAGE5-KO separately in medaka fish, a vertebrate model organism, and characterized them. Results showed that only Tango1L-KO conferred a lethal phenotype to medaka fish. Only Tango1L-KO medaka fish exhibited a shorter tail than wild-type (WT) fish and showed the defects in the export of type II collagen from the ER, contrary to the previous reports analyzing Tango1-KO or Tali-KO mice and the results of knockdown experiments in human cultured cells. Medaka fish may employ a simpler system than mammals for the export of large molecules from the ER.
Newly synthesized proteins destined for the secretory pathway are folded and assembled in the endoplasmic reticulum (ER) and then transported to the Golgi apparatus via COPII vesicles, which are normally 60-90 nm. COPII vesicles must accordingly be enlarged to accommodate proteins larger than 90 nm, such as long-chain collagen. Key molecules involved in this enlargement are Tango1 and Tango1-like (Tali), which are transmembrane proteins in the ER encoded by the MIA3 and MIA2 genes, respectively. Interestingly, two splicing variants are expressed from each of these two genes: Tango1L and Tango1S from the MIA3 gene, and Tali and cTAGE5 from the MIA2 gene. Here, we constructed Tango1L-knockout (KO), Tango1S-KO, Tali-KO, and cTAGE5-KO separately in medaka fish, a vertebrate model organism, and characterized them. Results showed that only Tango1L-KO conferred a lethal phenotype to medaka fish. Only Tango1L-KO medaka fish exhibited a shorter tail than wild-type (WT) fish and showed the defects in the export of type II collagen from the ER, contrary to the previous reports analyzing Tango1-KO or Tali-KO mice and the results of knockdown experiments in human cultured cells. Medaka fish may employ a simpler system than mammals for the export of large molecules from the ER.Key words: intracellular transport, COPII vesicles, enlargement, endoplasmic reticulum, Golgi apparatus.Newly synthesized proteins destined for the secretory pathway are folded and assembled in the endoplasmic reticulum (ER) and then transported to the Golgi apparatus via COPII vesicles, which are normally 60-90 nm. COPII vesicles must accordingly be enlarged to accommodate proteins larger than 90 nm, such as long-chain collagen. Key molecules involved in this enlargement are Tango1 and Tango1-like (Tali), which are transmembrane proteins in the ER encoded by the MIA3 and MIA2 genes, respectively. Interestingly, two splicing variants are expressed from each of these two genes: Tango1L and Tango1S from the MIA3 gene, and Tali and cTAGE5 from the MIA2 gene. Here, we constructed Tango1L-knockout (KO), Tango1S-KO, Tali-KO, and cTAGE5-KO separately in medaka fish, a vertebrate model organism, and characterized them. Results showed that only Tango1L-KO conferred a lethal phenotype to medaka fish. Only Tango1L-KO medaka fish exhibited a shorter tail than wild-type (WT) fish and showed the defects in the export of type II collagen from the ER, contrary to the previous reports analyzing Tango1-KO or Tali-KO mice and the results of knockdown experiments in human cultured cells. Medaka fish may employ a simpler system than mammals for the export of large molecules from the ER.Key words: intracellular transport, COPII vesicles, enlargement, endoplasmic reticulum, Golgi apparatus.
Newly synthesized proteins destined for the secretory pathway are folded and assembled in the endoplasmic reticulum (ER) and then transported to the Golgi apparatus via COPII vesicles, which are normally 60-90 nm. COPII vesicles must accordingly be enlarged to accommodate proteins larger than 90 nm, such as long-chain collagen. Key molecules involved in this enlargement are Tango1 and Tango1-like (Tali), which are transmembrane proteins in the ER encoded by the MIA3 and MIA2 genes, respectively. Interestingly, two splicing variants are expressed from each of these two genes: Tango1L and Tango1S from the MIA3 gene, and Tali and cTAGE5 from the MIA2 gene. Here, we constructed Tango1L-knockout (KO), Tango1S-KO, Tali-KO, and cTAGE5-KO separately in medaka fish, a vertebrate model organism, and characterized them. Results showed that only Tango1L-KO conferred a lethal phenotype to medaka fish. Only Tango1L-KO medaka fish exhibited a shorter tail than wild-type (WT) fish and showed the defects in the export of type II collagen from the ER, contrary to the previous reports analyzing Tango1-KO or Tali-KO mice and the results of knockdown experiments in human cultured cells. Medaka fish may employ a simpler system than mammals for the export of large molecules from the ER.Key words: intracellular transport, COPII vesicles, enlargement, endoplasmic reticulum, Golgi apparatus.
ArticleNumber 25001
Author Yasuda, Yusuke
Saito, Shunsuke
Yoshida, Tomoka
Sengiku, Masaya
Mori, Kazutoshi
Jin, Byungseok
Oue, Mahiro
Ishikawa, Tokiro
Author_xml – sequence: 1
  fullname: Sengiku, Masaya
  organization: Department of Biophysics, Graduate School of Science, Kyoto University
– sequence: 1
  fullname: Jin, Byungseok
  organization: Kyoto University Institute for Advanced Study
– sequence: 1
  fullname: Ishikawa, Tokiro
  organization: Department of Biophysics, Graduate School of Science, Kyoto University
– sequence: 1
  fullname: Mori, Kazutoshi
  organization: Kyoto University Institute for Advanced Study
– sequence: 1
  fullname: Oue, Mahiro
  organization: Department of Biophysics, Graduate School of Science, Kyoto University
– sequence: 1
  fullname: Yoshida, Tomoka
  organization: Department of Biophysics, Graduate School of Science, Kyoto University
– sequence: 1
  fullname: Yasuda, Yusuke
  organization: Department of Biophysics, Graduate School of Science, Kyoto University
– sequence: 1
  fullname: Saito, Shunsuke
  organization: Kyoto University Institute for Advanced Study
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39842788$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtvEzEUhS1URNPCgj-ALLEBiSl-je1ZVVVVSqRILAhry-NH6jCxU3tGov8eJ9MGiY3ta3_3yOeeC3AWU3QAvMfoChMmvprir0iLEH4FFpgy0VCB0BlYICp5I3DHz8FFKVuEKsTFG3BOO8mIkHIB-rWOm4RXsJ9GGNMI5_rnl3oYAtTRQrO-ub9rYSgwu8cpZGehTxm6P_uUR5g8HJ_2Di6X0KRh0BsXYYhw56z-raEP5eEteO31UNy75_0S_Pp2t7793qx-3C9vb1aNYQKNDTWesV4a0nvdUoooJ7b11DKCe8qw4JJgTIW0ggvNOSNIIMd9J5i1xhtKL8Fy1rVJb9U-h53OTyrpoI4XKW-UzmMwg1M9l4xi04pOa9bzvtMI-artO2-kMbJqfZq19jk9Tq6MaheKcdVfdGkqiuJWipYLdkA__odu05RjdaoooV0rGJNdpT48U1NfZ3P63ksSFfg8AyanUrLzJwQjdUhZ1ZTVMeXKXs_stox14Cfyxd6BbGvXYTl2_Ht50Fm5SP8C5tur1w
Cites_doi 10.1083/jcb.201603072
10.1091/mbc.e12-11-0830
10.1242/dev.01812
10.1083/jcb.201007162
10.1101/cshperspect.a041258
10.1091/mbc.e11-02-0143
10.1016/j.cell.2006.04.014
10.1083/jcb.201609100
10.1146/annurev-cellbio-100913-013002
10.1247/csf.11036
10.1091/mbc.E20-11-0745
10.1242/dev.051011
10.1016/j.bbamem.2021.183700
10.1016/j.ceb.2005.06.004
10.1091/mbc.e16-03-0196
10.1016/j.cell.2008.12.025
10.1038/cr.2016.75
ContentType Journal Article
Copyright 2025 The Author(s)
2025. This work is published under https://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s)
– notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7TK
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
7X8
DOA
DOI 10.1247/csf.25001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database (ProQuest)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1347-3700
EndPage 76
ExternalDocumentID oai_doaj_org_article_b68431c579aa4b6b9a00f378f9fc8cc8
39842788
10_1247_csf_25001
article_csf_50_1_50_25001_article_char_en
Genre Journal Article
GroupedDBID ---
.55
.GJ
29B
2WC
3O-
53G
5GY
5RE
6J9
7X7
88E
8AO
8FI
8FJ
ABUWG
ACIWK
ACPRK
ADBBV
AENEX
AFKRA
AHMBA
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
JSF
JSH
KQ8
M1P
M7P
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PSQYO
PUEGO
RJT
RNS
RPM
RZJ
TKC
TR2
UKHRP
VH1
X7M
XSB
ZXP
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7TK
7XB
8FD
8FE
8FH
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
LK8
P64
PKEHL
PQEST
PQUKI
7X8
ID FETCH-LOGICAL-c470t-3cf44b8c2bfa5330362d5f3d421b341768211378d767a6642070e6f974ddcfc33
IEDL.DBID DOA
ISSN 0386-7196
1347-3700
IngestDate Wed Aug 27 01:29:48 EDT 2025
Thu Sep 04 17:12:21 EDT 2025
Sat Sep 20 14:21:43 EDT 2025
Mon Jul 21 05:43:13 EDT 2025
Sun Jul 06 05:08:37 EDT 2025
Wed Sep 03 06:30:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords COPII vesicles
intracellular transport
enlargement
endoplasmic reticulum
Golgi apparatus
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-3cf44b8c2bfa5330362d5f3d421b341768211378d767a6642070e6f974ddcfc33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/b68431c579aa4b6b9a00f378f9fc8cc8
PMID 39842788
PQID 3239574489
PQPubID 1996364
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_b68431c579aa4b6b9a00f378f9fc8cc8
proquest_miscellaneous_3158756748
proquest_journals_3239574489
pubmed_primary_39842788
crossref_primary_10_1247_csf_25001
jstage_primary_article_csf_50_1_50_25001_article_char_en
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Saitama
PublicationTitle Cell Structure and Function
PublicationTitleAlternate Cell Struct. Funct.
PublicationYear 2025
Publisher Japan Society for Cell Biology
Japan Science and Technology Agency
Publisher_xml – name: Japan Society for Cell Biology
– name: Japan Science and Technology Agency
References Wilson, D.G., Phamluong, K., Li, L., Sun, M., Cao, T.C., Liu, P.S., Modrusan, Z., Sandoval, W.N., Rangell, L., Carano, R.A., Peterson, A.S., and Solloway, M.J. 2011. Global defects in collagen secretion in a Mia3/TANGO1 knockout mouse. J. Cell Biol., 193: 935–951.
Stemple, D.L. 2005. Structure and function of the notochord: An essential organ for chordate development. Development, 132: 2503–2512.
Bukau, B., Weissman, J., and Horwich, A. 2006. Molecular chaperones and protein quality control. Cell, 125: 443–451.
Ishikawa, T., Taniguchi, Y., Okada, T., Takeda, S., and Mori, K. 2011. Vertebrate unfolded protein response: Mammalian signaling pathways are conserved in medaka fish. Cell Struct. Funct., 36: 247–259.
Wang, Y., Liu, L., Zhang, H., Fan, J., Zhang, F., Yu, M., Shi, L., Yang, L., Lam, S.M., Wang, H., Chen, X., Wang, Y., Gao, F., Shui, G., and Xu, Z. 2016. Mea6 controls VLDL transport through the coordinated regulation of COPII assembly. Cell Res., 26: 787–804.
Ishikawa, T., Toyama, T., Nakamura, Y., Tamada, K., Shimizu, H., Ninagawa, S., Okada, T., Kamei, Y., Ishikawa-Fujiwara, T., Todo, T., Aoyama, E., Takigawa, M., Harada, A., and Mori, K. 2017. UPR transducer BBF2H7 allows export of type II collagen in a cargo- and developmental stage-specific manner. J. Cell Biol., 216: 1761–1774.
Saito, K., Chen, M., Bard, F., Chen, S., Zhou, H., Woodley, D., Polischuk, R., Schekman, R., and Malhotra, V. 2009. TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell, 136: 891–902.
Clark, E.M. and Link, B.A. 2021. Complementary and divergent functions of zebrafish Tango1 and Ctage5 in tissue development and homeostasis. Mol. Biol. Cell, 32: 391–401.
Maeda, M., Saito, K., and Katada, T. 2016. Distinct isoform-specific complexes of TANGO1 cooperatively facilitate collagen secretion from the endoplasmic reticulum. Mol. Biol. Cell, 27: 2688–2696.
Fromme, J.C. and Schekman, R. 2005. COPII-coated vesicles: Flexible enough for large cargo? Curr. Opin. Cell Biol., 17: 345–352.
Raote, I., Saxena, S., and Malhotra, V. 2023. Sorting and export of proteins at the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol., 15: a041258.
Yamamoto, M., Morita, R., Mizoguchi, T., Matsuo, H., Isoda, M., Ishitani, T., Chitnis, A.B., Matsumoto, K., Crump, J.G., Hozumi, K., Yonemura, S., Kawakami, K., and Itoh, M. 2010. Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions. Development, 137: 2527–2537.
Saito, K., Yamashiro, K., Ichikawa, Y., Erlmann, P., Kontani, K., Malhotra, V., and Katada, T. 2011. cTAGE5 mediates collagen secretion through interaction with TANGO1 at endoplasmic reticulum exit sites. Mol. Biol. Cell, 22: 2301–2308.
Santos, A.J., Nogueira, C., Ortega-Bellido, M., and Malhotra, V. 2016. TANGO1 and Mia2/cTAGE5 (TALI) cooperate to export bulky pre-chylomicrons/VLDLs from the endoplasmic reticulum. J. Cell Biol., 213: 343–354.
Ishikawa, T., Okada, T., Ishikawa-Fujiwara, T., Todo, T., Kamei, Y., Shigenobu, S., Tanaka, M., Saito, T.L., Yoshimura, J., Morishita, S., Toyoda, A., Sakaki, Y., Taniguchi, Y., Takeda, S., and Mori, K. 2013. ATF6alpha/beta-mediated adjustment of ER chaperone levels is essential for development of the notochord in medaka fish. Mol. Biol. Cell, 24: 1387–1395.
Malhotra, V. and Erlmann, P. 2015. The pathway of collagen secretion. Annu. Rev. Cell. Dev. Biol., 31: 109–124.
Raote, I., Saxena, S., Campelo, F., and Malhotra, V. 2021. TANGO1 marshals the early secretory pathway for cargo export. Biochim. Biophys. Acta Biomembr., 1863: 183700.
11
12
13
14
15
16
17
1
2
3
4
5
6
7
8
9
10
References_xml – reference: Wilson, D.G., Phamluong, K., Li, L., Sun, M., Cao, T.C., Liu, P.S., Modrusan, Z., Sandoval, W.N., Rangell, L., Carano, R.A., Peterson, A.S., and Solloway, M.J. 2011. Global defects in collagen secretion in a Mia3/TANGO1 knockout mouse. J. Cell Biol., 193: 935–951.
– reference: Stemple, D.L. 2005. Structure and function of the notochord: An essential organ for chordate development. Development, 132: 2503–2512.
– reference: Malhotra, V. and Erlmann, P. 2015. The pathway of collagen secretion. Annu. Rev. Cell. Dev. Biol., 31: 109–124.
– reference: Santos, A.J., Nogueira, C., Ortega-Bellido, M., and Malhotra, V. 2016. TANGO1 and Mia2/cTAGE5 (TALI) cooperate to export bulky pre-chylomicrons/VLDLs from the endoplasmic reticulum. J. Cell Biol., 213: 343–354.
– reference: Raote, I., Saxena, S., and Malhotra, V. 2023. Sorting and export of proteins at the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol., 15: a041258.
– reference: Ishikawa, T., Taniguchi, Y., Okada, T., Takeda, S., and Mori, K. 2011. Vertebrate unfolded protein response: Mammalian signaling pathways are conserved in medaka fish. Cell Struct. Funct., 36: 247–259.
– reference: Wang, Y., Liu, L., Zhang, H., Fan, J., Zhang, F., Yu, M., Shi, L., Yang, L., Lam, S.M., Wang, H., Chen, X., Wang, Y., Gao, F., Shui, G., and Xu, Z. 2016. Mea6 controls VLDL transport through the coordinated regulation of COPII assembly. Cell Res., 26: 787–804.
– reference: Maeda, M., Saito, K., and Katada, T. 2016. Distinct isoform-specific complexes of TANGO1 cooperatively facilitate collagen secretion from the endoplasmic reticulum. Mol. Biol. Cell, 27: 2688–2696.
– reference: Saito, K., Yamashiro, K., Ichikawa, Y., Erlmann, P., Kontani, K., Malhotra, V., and Katada, T. 2011. cTAGE5 mediates collagen secretion through interaction with TANGO1 at endoplasmic reticulum exit sites. Mol. Biol. Cell, 22: 2301–2308.
– reference: Saito, K., Chen, M., Bard, F., Chen, S., Zhou, H., Woodley, D., Polischuk, R., Schekman, R., and Malhotra, V. 2009. TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell, 136: 891–902.
– reference: Ishikawa, T., Okada, T., Ishikawa-Fujiwara, T., Todo, T., Kamei, Y., Shigenobu, S., Tanaka, M., Saito, T.L., Yoshimura, J., Morishita, S., Toyoda, A., Sakaki, Y., Taniguchi, Y., Takeda, S., and Mori, K. 2013. ATF6alpha/beta-mediated adjustment of ER chaperone levels is essential for development of the notochord in medaka fish. Mol. Biol. Cell, 24: 1387–1395.
– reference: Ishikawa, T., Toyama, T., Nakamura, Y., Tamada, K., Shimizu, H., Ninagawa, S., Okada, T., Kamei, Y., Ishikawa-Fujiwara, T., Todo, T., Aoyama, E., Takigawa, M., Harada, A., and Mori, K. 2017. UPR transducer BBF2H7 allows export of type II collagen in a cargo- and developmental stage-specific manner. J. Cell Biol., 216: 1761–1774.
– reference: Bukau, B., Weissman, J., and Horwich, A. 2006. Molecular chaperones and protein quality control. Cell, 125: 443–451.
– reference: Yamamoto, M., Morita, R., Mizoguchi, T., Matsuo, H., Isoda, M., Ishitani, T., Chitnis, A.B., Matsumoto, K., Crump, J.G., Hozumi, K., Yonemura, S., Kawakami, K., and Itoh, M. 2010. Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions. Development, 137: 2527–2537.
– reference: Raote, I., Saxena, S., Campelo, F., and Malhotra, V. 2021. TANGO1 marshals the early secretory pathway for cargo export. Biochim. Biophys. Acta Biomembr., 1863: 183700.
– reference: Fromme, J.C. and Schekman, R. 2005. COPII-coated vesicles: Flexible enough for large cargo? Curr. Opin. Cell Biol., 17: 345–352.
– reference: Clark, E.M. and Link, B.A. 2021. Complementary and divergent functions of zebrafish Tango1 and Ctage5 in tissue development and homeostasis. Mol. Biol. Cell, 32: 391–401.
– ident: 13
  doi: 10.1083/jcb.201603072
– ident: 4
  doi: 10.1091/mbc.e12-11-0830
– ident: 14
  doi: 10.1242/dev.01812
– ident: 16
  doi: 10.1083/jcb.201007162
– ident: 10
  doi: 10.1101/cshperspect.a041258
– ident: 12
  doi: 10.1091/mbc.e11-02-0143
– ident: 1
  doi: 10.1016/j.cell.2006.04.014
– ident: 6
  doi: 10.1083/jcb.201609100
– ident: 8
  doi: 10.1146/annurev-cellbio-100913-013002
– ident: 5
  doi: 10.1247/csf.11036
– ident: 2
  doi: 10.1091/mbc.E20-11-0745
– ident: 17
  doi: 10.1242/dev.051011
– ident: 9
  doi: 10.1016/j.bbamem.2021.183700
– ident: 3
  doi: 10.1016/j.ceb.2005.06.004
– ident: 7
  doi: 10.1091/mbc.e16-03-0196
– ident: 11
  doi: 10.1016/j.cell.2008.12.025
– ident: 15
  doi: 10.1038/cr.2016.75
SSID ssj0025067
Score 2.3985744
Snippet Newly synthesized proteins destined for the secretory pathway are folded and assembled in the endoplasmic reticulum (ER) and then transported to the Golgi...
SourceID doaj
proquest
pubmed
crossref
jstage
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 65
SubjectTerms Animals
Aryl Hydrocarbon Receptor Nuclear Translocator - genetics
Aryl Hydrocarbon Receptor Nuclear Translocator - metabolism
Collagen
Collagen (type II)
Collagen Type II - metabolism
COPII vesicles
Endoplasmic reticulum
Endoplasmic Reticulum - metabolism
enlargement
Fish Proteins - genetics
Fish Proteins - metabolism
Genome editing
Golgi apparatus
Humans
intracellular transport
Membrane Proteins - genetics
Membrane Proteins - metabolism
Mice
Oryzias - genetics
Oryzias - metabolism
Phenotypes
Protein Transport
Proteins
Vesicles
Zebrafish
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4t1AQQZxJDSJ7dg5oYJaWgRc2Ep7i_zcLqCkbLIS_HtmHGf3BJcoiROPNR575rOt-Qh53XBnSiebPODZCu4qkWuYBXPjjS64g4A25u788rU-v-SflmKZFtyGdKxynhPjRO16i2vkx6zCHSUAE8276185skbh7mqi0LhJbpUQiSB1g1zuAZcoIoNswVSdSzC1lFmo4vLYDuEtlCcumNkfxbT94Iu-Q2S28v8OOqPzObtH7qaokZ5M3Xyf3PDdA3J74pH885CYhe5WffmZmu1Iu36k0_O3N3Dzc01156hdnHw8FXQ90I3Hw7_eUQhXqf-N8TftA8W1WHpxQaNhgFXRdUehJfqHpmE9XD0il2eniw_neSJPyC2XxZgzGzg3ylYmaDxBCo7KicAcr0oDngtQBkA_JpWTtdQ1oBAY-74OAC-cs8Ey9pgcdH3nDwmtlIAqLNeBA54wtjEcZDjlLQNorVlGXs0qbK-nHBktYgvQcwt6bqOeM_Ielbv7ANNaxxf9ZtWmUdKaWkFAY4VstOamNo0uigCNDE2wylqVETV1za6a-U-UI0AmXqK8fcmV3sAUkJGjuTPbNEyHdm9UGXm5K4YBhrsmuvP9Fr4pBWA65GTJyJPJCHbSWaOQqkQ9_X_lz8idCmmD48rNETkYN1v_HGKZ0byIBvsXIi3vzQ
  priority: 102
  providerName: ProQuest
Title Tango1L but not Tango1S, Tali and cTAGE5 is required for export of type II collagen in medaka fish
URI https://www.jstage.jst.go.jp/article/csf/50/1/50_25001/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/39842788
https://www.proquest.com/docview/3239574489
https://www.proquest.com/docview/3158756748
https://doaj.org/article/b68431c579aa4b6b9a00f378f9fc8cc8
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Cell Structure and Function, 2025, Vol.50(1), pp.65-76
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BERKXqrxDy8ogjoRmYzu2jy3a0iKoEGylvUV-tkurpNrNSvDvGTvJwgVx4RIlseNxZsaZ-WxnBuCNYs5MnVB5iHsrmCt5rvErmBtvdMEcOrQpdufn8-r0gn1c8MUfqb7inrA-PHDPuENTSbRxlgulNTOVUbooAhUyqGCltek330IVI5gaoBYvUu7YgsoqF6hkQ0yhkolDuw7vsHzIAjNaohSwH63Qd_TJLv3f3c1kdk72YHfwF8lR38-HcMc3j-B-n0Hy52Mwc91cttNPxGw60rQd6a-_vcWTmyXRjSN2fvRhxslyTVY-bvv1jqCjSvyP6HmTNpA4C0vOzkhSCdQnsmwI9kRfaxKW66sncHEym78_zYe0CbllouhyagNjRtrSBB33jqKJcjxQx8qpQZuF-AJBH3LQiUroCvEHjnpfBQQWztlgKX0KO03b-OdASsmxCct0YIgkjFWGIQ0nvaUIqjXN4PXIwvq2j45RR1SBfK6Rz3XicwbHkbnbCjGgdbqBYq4HMdf_EnMGshfNtpnxyUiHI814SPR-l1zpFQ7-DA5GYdbDAF3XtIwLlIhNVQavtsU4tOJ6iW58u8E6U45oLmZjyeBZrwRb6lTJmKREvvgfL7cPD8qYVjjN7BzATrfa-Jfo63RmAnfFQkzg3vHs_MvXSVLySZqS-gXY_Pxg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQguiDcpBQyCG6HZxEmcA0IFWnbpthe20t5SP7cLVVI2u4L-KX4jM06ye4JbL1ESJ55oPDP-xnb8AbwuuFEDkxeho7UV3MRpKDEKhsoqGXGDgNbv3Xl8kg1P-ddpOt2CP_2_MLSsso-JPlCbWtMY-V4S04wSJhPFh8ufIbFG0exqT6HRmsWRvfqFKVvzfvQZ2_dNHB8eTD4Nw45VINQ8j5Zhoh3nSuhYOUlLKzGCm9QlhscDhSEd4TfmREkuTJ7lMkN4jk5hM4e42xjtNA2AYsi_wWmKEf0nn24SvDTyjLVRIrIwR9PudjKKeb6nG_cOyzvumb7_8zQB2Pd9RyQ4s_8Gub6zO7wLdzqUyvZbs7oHW7a6Dzdb3sqrB6AmsprVgzFTqyWr6iVrr7-9xZOLOZOVYXqy_-UgZfOGLSwtNraGITxm9jfhfVY7RmO_bDRi3hDRitm8Yvgl8odkbt6cP4TTa1HrI9iu6so-ARaLFKvQXDqO-YvSheIowwirE0zlZRLAq16F5WW7J0dJuQzquUQ9l17PAXwk5a4foG20_Y16MSs7ryxVJhBA6TQvpOQqU4WMIocf6QqnhdYiANE2zbqa_k2Sk6JMOnh5m5JzucCQE8Bu35hlFxaacmPEAbxcF6ND0yyNrGy9wmcGKeaQxAETwOPWCNbSk0IQNYrY-X_lL-DWcHI8Lsejk6OncDsmymI_arQL28vFyj5DHLVUz73xMji7bm_5CxZmKv8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VrUBcEG8MBRYEN0wce22vDxVqaUJDS1RBKvXm7jMNILvEjqB_kV_F7HqdnuDWS5R4nR1rdp674_kAXhdUiaHKi9DY2gqq4jTkaAVDoQWPqMKA1vXu_DzNDk7op9P0dAP-9O_C2LLK3iY6Q61qaffIB0lsT5QwmSgGxpdFHO-P31_8DC2ClD1p7eE0uIdZUDuu3Zh_yeNQX_7CdK7Zmezj2r-J4_Fo9uEg9IgDoaR51IaJNJQKJmNhuC27ROuuUpMoGg8FmnsMzTFfSnKm8iznGYbuqDA6MxiTKyWNtJuj6A62cvT6mAhu7Y2mx1_W6V8aOTzbKGFZmKPg-z5HMc0HsjHvcNwj0_Te0YEIoGf8hnHiXP87BHaucHwHbvsYlux2QncXNnR1D250qJaX90HMeDWvh0dErFpS1S3pfn99i19-LAivFJGz3Y-jlCwastS2FFkrgsEz0b9tNkBqQ-zOMJlMiBNTlHGyqAg-Cf_OiVk05w_g5FoY-xA2q7rSj4HELMUpJOWGYnYjZCEo0lBMywQTfZ4E8KpnYXnRdewobaaDfC6Rz6XjcwB7lrnrG2yTbXehXs5Lr7OlyBiGVzLNC86pyETBo8jgQ5rCSCYlC4B1S7Oepv-npZMiTfvh6F2NnPMlGqQAtvvFLL3RaMorEQ_g5XoY1d2e4fBK1yu8Z5hihmkRYgJ41AnBmnpSMAucwp78f_IXcBM1pzyaTA-fwq3Y4hm7LaVt2GyXK_0Mg6xWPPfSS-DsuhXmLwq2Ndo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tango1L+but+not+Tango1S%2C+Tali+and+cTAGE5+is+required+for+export+of+type+II+collagen+in+medaka+fish&rft.jtitle=Cell+structure+and+function&rft.au=Yusuke+Yasuda&rft.au=Tomoka+Yoshida&rft.au=Mahiro+Oue&rft.au=Masaya+Sengiku&rft.date=2025-01-01&rft.pub=Japan+Society+for+Cell+Biology&rft.issn=0386-7196&rft.eissn=1347-3700&rft.volume=50&rft.issue=1&rft.spage=65&rft.epage=76&rft_id=info:doi/10.1247%2Fcsf.25001&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b68431c579aa4b6b9a00f378f9fc8cc8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0386-7196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0386-7196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0386-7196&client=summon