Using Camshift and Kalman Algorithm to Trajectory Characteristic Matching of Basketball Players
Because of its unique charm, sports video is widely welcomed by the public in today’s society. Therefore, the analysis and research of sports game video data have high practical significance and commercial value. Taking a basketball game video as an example, this paper studies the tracking feature m...
Saved in:
| Published in | Complexity (New York, N.Y.) Vol. 2021; no. 1 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken
Hindawi
2021
John Wiley & Sons, Inc Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1076-2787 1099-0526 1099-0526 |
| DOI | 10.1155/2021/4728814 |
Cover
| Abstract | Because of its unique charm, sports video is widely welcomed by the public in today’s society. Therefore, the analysis and research of sports game video data have high practical significance and commercial value. Taking a basketball game video as an example, this paper studies the tracking feature matching of basketball players’ detection, recognition, and prediction in the game video. This paper is divided into four parts to improve the application of the interactive multimodel algorithm to track characteristic matching: moving object detection, recognition, basketball track characteristic matching, and player track characteristic matching. The main work and research results of each part are as follows: firstly, the improved K-means clustering algorithm is used to segment the golf field area; then, HSV is combined with the RGB Fujian value method to eliminate the field area; at last, straight field lines were extracted by Hough transform, and elliptical field lines were extracted by curve fitting, and the field lines were eliminated to realize the detection of moving objects. Seven normalized Hu invariant moments are used as the target features to realize the recognition of moving targets. By obtaining the feature distance between the sample and the template, the category of the sample is judged, which has a good robustness. The Kalman filter is used to match the characteristics of the basketball trajectory. Aiming at the occlusion of basketball, the least square method was used to fit the basketball trajectory, and the basketball position was predicted at the occlusion moment, which realized the occlusion trajectory matching. The matching of players’ track characteristics is realized by the CamShift algorithm based on the color model, which makes full use of players’ color information and realizes real-time performance. In order to solve the problem of occlusion between players in the track feature matching, CamShift and Kalman algorithms were used to determine the occlusion factor through the search window and then weighted Kalman and CamShift according to the occlusion degree to get the track feature matching result. The experimental results show that the detection time is greatly shortened, the memory space occupied is small, and the effect is very ideal. |
|---|---|
| AbstractList | Because of its unique charm, sports video is widely welcomed by the public in today’s society. Therefore, the analysis and research of sports game video data have high practical significance and commercial value. Taking a basketball game video as an example, this paper studies the tracking feature matching of basketball players’ detection, recognition, and prediction in the game video. This paper is divided into four parts to improve the application of the interactive multimodel algorithm to track characteristic matching: moving object detection, recognition, basketball track characteristic matching, and player track characteristic matching. The main work and research results of each part are as follows: firstly, the improved K-means clustering algorithm is used to segment the golf field area; then, HSV is combined with the RGB Fujian value method to eliminate the field area; at last, straight field lines were extracted by Hough transform, and elliptical field lines were extracted by curve fitting, and the field lines were eliminated to realize the detection of moving objects. Seven normalized Hu invariant moments are used as the target features to realize the recognition of moving targets. By obtaining the feature distance between the sample and the template, the category of the sample is judged, which has a good robustness. The Kalman filter is used to match the characteristics of the basketball trajectory. Aiming at the occlusion of basketball, the least square method was used to fit the basketball trajectory, and the basketball position was predicted at the occlusion moment, which realized the occlusion trajectory matching. The matching of players’ track characteristics is realized by the CamShift algorithm based on the color model, which makes full use of players’ color information and realizes real-time performance. In order to solve the problem of occlusion between players in the track feature matching, CamShift and Kalman algorithms were used to determine the occlusion factor through the search window and then weighted Kalman and CamShift according to the occlusion degree to get the track feature matching result. The experimental results show that the detection time is greatly shortened, the memory space occupied is small, and the effect is very ideal. Because of its unique charm, sports video is widely welcomed by the public in today’s society. Therefore, the analysis and research of sports game video data have high practical significance and commercial value. Taking a basketball game video as an example, this paper studies the tracking feature matching of basketball players’ detection, recognition, and prediction in the game video. This paper is divided into four parts to improve the application of the interactive multimodel algorithm to track characteristic matching: moving object detection, recognition, basketball track characteristic matching, and player track characteristic matching. The main work and research results of each part are as follows: firstly, the improved K ‐means clustering algorithm is used to segment the golf field area; then, HSV is combined with the RGB Fujian value method to eliminate the field area; at last, straight field lines were extracted by Hough transform, and elliptical field lines were extracted by curve fitting, and the field lines were eliminated to realize the detection of moving objects. Seven normalized Hu invariant moments are used as the target features to realize the recognition of moving targets. By obtaining the feature distance between the sample and the template, the category of the sample is judged, which has a good robustness. The Kalman filter is used to match the characteristics of the basketball trajectory. Aiming at the occlusion of basketball, the least square method was used to fit the basketball trajectory, and the basketball position was predicted at the occlusion moment, which realized the occlusion trajectory matching. The matching of players’ track characteristics is realized by the CamShift algorithm based on the color model, which makes full use of players’ color information and realizes real‐time performance. In order to solve the problem of occlusion between players in the track feature matching, CamShift and Kalman algorithms were used to determine the occlusion factor through the search window and then weighted Kalman and CamShift according to the occlusion degree to get the track feature matching result. The experimental results show that the detection time is greatly shortened, the memory space occupied is small, and the effect is very ideal. |
| Audience | Academic |
| Author | Liang, Shuang Li, Yang |
| Author_xml | – sequence: 1 givenname: Shuang surname: Liang fullname: Liang, Shuang organization: Mechinery and Electrical DepartmentJiangxi Engineering Vocational CollegeJiangxi Open UniversityNanchangJiangxi330046China – sequence: 2 givenname: Yang orcidid: 0000-0003-2186-2913 surname: Li fullname: Li, Yang organization: College of Physical EducationYichun UniversityYichunJiangxi 336000Chinaycu.jx.cn |
| BookMark | eNqFkVtv1DAQhSPUSvTCGz_AEo-Q1nbs2HlcVkArWpWH9tma-LLrJYkX26tq_z3epgKBuMiWbI2-czRz5rQ6msJkq-o1wReEcH5JMSWXTFApCXtRnRDcdTXmtD06_EVbUyHFy-o0pQ3GuGsbcVKph-SnFVrCmNbeZQSTQZ9hGGFCi2EVos_rEeWA7iNsrM4h7tFyDRF0ttGn7DW6hazXB4_g0HtIX23uYRjQlwH2Nqbz6tjBkOyr5_esevj44X55Vd_cfbpeLm5qzQTONbWUd42R3LLGiIY5w8tlLUhMMZEEtDPatb1ptOwMsVTSBrfUggTRcaqbs-p69jUBNmob_QhxrwJ49VQIcaUglnYHqySxuqe6MwIL1vG-x5oKIY0xnHJwrHjVs9du2sL-sUzzw5BgdUhaHZJWz0kX_s3Mb2P4trMpq03YxamMqyhnnFFBOvGTWkFpwk8u5BLj6JNWC9kQIbhocaEu_kCVY-zodVm386X-i4DOAh1DStE6pX2G7MNUhH74W8fvfhP9Z8C3M172bODR_5v-DqwgxLI |
| CitedBy_id | crossref_primary_10_1155_2022_6765954 crossref_primary_10_1109_ACCESS_2023_3332478 crossref_primary_10_1109_TIM_2022_3195258 crossref_primary_10_3934_mbe_2023088 crossref_primary_10_3390_micro3020032 crossref_primary_10_1590_1517_8692202329012022_0600 crossref_primary_10_1016_j_aej_2023_11_077 crossref_primary_10_1155_2023_9784141 crossref_primary_10_1007_s11760_024_03309_8 |
| Cites_doi | 10.1155/2020/2742781 10.1109/TMM.2019.2960586 10.3390/jsan8030044 10.1007/s11269-019-02283-y 10.1109/twc.2020.2978479 10.1080/17538947.2017.1385652 10.1016/j.ins.2020.07.069 10.3390/su10062079 10.1016/j.aei.2020.101200 10.1109/TFUZZ.2020.3012393 10.1109/TCYB.2020.3024627 10.1016/j.aml.2021.107417 10.19799/j.cnki.2095-4239.2019.0207 10.5194/amt-11-6539-2018 10.1080/13658816.2020.1719495 10.5194/acp-20-931-2020 10.5194/tc-14-3033-2020 10.5194/acp-19-12545-2019 10.1109/TSMC.2018.2819191 10.1109/TCSVT.2019.2921655 10.1007/s12652-020-01878-3 10.1007/s10776-019-00434-x 10.1016/j.aej.2020.04.024 10.5194/hess-23-4803-2019 10.1504/ijipt.2020.105053 10.1049/iet-net.2019.0014 10.31058/j.mana.2020.33003 10.1109/mwc.001.1900072 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Shuang Liang and Yang Li. COPYRIGHT 2021 John Wiley & Sons, Inc. Copyright © 2021 Shuang Liang and Yang Li. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| Copyright_xml | – notice: Copyright © 2021 Shuang Liang and Yang Li. – notice: COPYRIGHT 2021 John Wiley & Sons, Inc. – notice: Copyright © 2021 Shuang Liang and Yang Li. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| DBID | RHU RHW RHX AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY DOA |
| DOI | 10.1155/2021/4728814 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Research Library Prep CrossRef |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1099-0526 |
| Editor | Lv, Zhihan |
| Editor_xml | – sequence: 1 givenname: Zhihan surname: Lv fullname: Lv, Zhihan |
| ExternalDocumentID | oai_doaj_org_article_81ecb2c9d707495bb0c2778ddd525af4 10.1155/2021/4728814 A831775760 10_1155_2021_4728814 |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8G5 8UM 930 A03 AAESR AAFWJ AAJEY AAONW ABCQN ABEML ABIJN ABPVW ABUWG ACSCC ADBBV ADIZJ AENEX AFBPY AFKRA AFPKN AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ATUGU AZBYB AZQEC AZVAB BAFTC BCNDV BENPR BGLVJ BHBCM BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 D-E D-F DPXWK DR2 DU5 DWQXO EBD EBS F00 F01 F04 F5P G-S G.N GNP GNUQQ GODZA GROUPED_DOAJ GUQSH H.T H.X HBH HCIFZ HHY HZ~ IAO ITC IX1 J0M JPC K6V K7- KQQ LAW LC2 LC3 LP6 LP7 M2O MK4 N04 N05 N9A NF~ NNB O66 O9- OIG OK1 P2P P2W P2X P4D P62 PQQKQ PROAC Q.N Q11 QB0 QRW R.K RHU RHW RHX RWI RX1 RYL SUPJJ TUS V2E W8V W99 WBKPD WIH WQJ WRC XBAML XG1 XPP XSW XV2 ~IA ~WT .Y3 24P 31~ 3R3 5VS AAEVG AAMMB AANHP AAYXX ACBWZ ACCMX ACRPL ACXQS ACYXJ ADNMO AEFGJ AEIMD AFZJQ AGQPQ AGXDD AIDQK AIDYY AMVHM ASPBG AVWKF AZFZN BDRZF BFHJK CITATION DCZOG EJD FEDTE H13 HF~ HVGLF ICD LH4 LW6 PHGZM PHGZT PQGLB PUEGO ROL WYUIH 7XB 8FK JQ2 MBDVC PKEHL PQEST PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c470t-2e2593d85e43d734fd5fd546a8020181acfdcf6bd3c89d1e2823062ea8a7952c3 |
| IEDL.DBID | UNPAY |
| ISSN | 1076-2787 1099-0526 |
| IngestDate | Fri Oct 03 12:50:45 EDT 2025 Tue Aug 19 18:38:47 EDT 2025 Fri Jul 25 21:06:36 EDT 2025 Mon Oct 20 22:44:25 EDT 2025 Mon Oct 20 16:57:04 EDT 2025 Wed Oct 01 02:50:19 EDT 2025 Thu Apr 24 23:02:56 EDT 2025 Sun Jun 02 19:16:35 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-2e2593d85e43d734fd5fd546a8020181acfdcf6bd3c89d1e2823062ea8a7952c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2186-2913 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://downloads.hindawi.com/journals/complexity/2021/4728814.pdf |
| PQID | 2545427197 |
| PQPubID | 2029978 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_81ecb2c9d707495bb0c2778ddd525af4 unpaywall_primary_10_1155_2021_4728814 proquest_journals_2545427197 gale_infotracmisc_A831775760 gale_infotracacademiconefile_A831775760 crossref_citationtrail_10_1155_2021_4728814 crossref_primary_10_1155_2021_4728814 hindawi_primary_10_1155_2021_4728814 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Complexity (New York, N.Y.) |
| PublicationYear | 2021 |
| Publisher | Hindawi John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
| References | e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_1_2 e_1_2_7_14_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_26_2 Ahmed B. (e_1_2_7_13_2) 2019; 4 e_1_2_7_27_2 e_1_2_7_28_2 e_1_2_7_29_2 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_22_2 e_1_2_7_21_2 e_1_2_7_20_2 Liu Y. (e_1_2_7_3_2) 2018; 36 |
| References_xml | – ident: e_1_2_7_11_2 doi: 10.1155/2020/2742781 – ident: e_1_2_7_15_2 doi: 10.1109/TMM.2019.2960586 – ident: e_1_2_7_21_2 doi: 10.3390/jsan8030044 – ident: e_1_2_7_26_2 doi: 10.1007/s11269-019-02283-y – ident: e_1_2_7_18_2 doi: 10.1109/twc.2020.2978479 – ident: e_1_2_7_24_2 doi: 10.1080/17538947.2017.1385652 – ident: e_1_2_7_28_2 doi: 10.1016/j.ins.2020.07.069 – ident: e_1_2_7_19_2 doi: 10.3390/su10062079 – ident: e_1_2_7_9_2 doi: 10.1016/j.aei.2020.101200 – ident: e_1_2_7_29_2 doi: 10.1109/TFUZZ.2020.3012393 – ident: e_1_2_7_30_2 doi: 10.1109/TCYB.2020.3024627 – ident: e_1_2_7_10_2 doi: 10.1016/j.aml.2021.107417 – ident: e_1_2_7_5_2 doi: 10.19799/j.cnki.2095-4239.2019.0207 – ident: e_1_2_7_4_2 doi: 10.5194/amt-11-6539-2018 – ident: e_1_2_7_1_2 doi: 10.1080/13658816.2020.1719495 – ident: e_1_2_7_14_2 doi: 10.5194/acp-20-931-2020 – ident: e_1_2_7_20_2 doi: 10.5194/tc-14-3033-2020 – ident: e_1_2_7_17_2 doi: 10.5194/acp-19-12545-2019 – ident: e_1_2_7_27_2 doi: 10.1109/TSMC.2018.2819191 – ident: e_1_2_7_2_2 doi: 10.1109/TCSVT.2019.2921655 – ident: e_1_2_7_6_2 doi: 10.1007/s12652-020-01878-3 – ident: e_1_2_7_12_2 doi: 10.1007/s10776-019-00434-x – ident: e_1_2_7_16_2 doi: 10.1016/j.aej.2020.04.024 – ident: e_1_2_7_7_2 doi: 10.5194/hess-23-4803-2019 – volume: 4 start-page: 1 year: 2019 ident: e_1_2_7_13_2 article-title: Services and simulation frameworks for vehicular cloud computing: a contemporary survey publication-title: EURASIP Journal on Wireless Communications and Networking – volume: 36 start-page: 3 year: 2018 ident: e_1_2_7_3_2 article-title: An improved interactive multi model particle filter algorithm publication-title: Machinery& Electronics – ident: e_1_2_7_8_2 doi: 10.1504/ijipt.2020.105053 – ident: e_1_2_7_25_2 doi: 10.1049/iet-net.2019.0014 – ident: e_1_2_7_22_2 doi: 10.31058/j.mana.2020.33003 – ident: e_1_2_7_23_2 doi: 10.1109/mwc.001.1900072 |
| SSID | ssj0009637 |
| Score | 2.285217 |
| SecondaryResourceType | retracted_publication |
| Snippet | Because of its unique charm, sports video is widely welcomed by the public in today’s society. Therefore, the analysis and research of sports game video data... Because of its unique charm, sports video is widely welcomed by the public in today's society. Therefore, the analysis and research of sports game video data... |
| SourceID | doaj unpaywall proquest gale crossref hindawi |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Analysis Athletic recruitment Audiences Basketball Cluster analysis Clustering Color Curve fitting Feature recognition Fuzzy sets Games Hough transformation Kalman filters Matching Moving object recognition Moving targets Occlusion Players Sports Target recognition Vector quantization Video data |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJQQcEC0gQhfkQ3kJRd04dmwftyuqClTEgUq9WX6FXchmqyZV1X_fceJEzQF6QcopGTm255vMjDP-jNCBAOAQqrO0JE6m1ORgcwVlgGWrtbakLLOwG_n0e3FyRr-es_M7R32FmrCeHrifuEOReWuIlY6Ds5PMmLklnAvnHCNMlx0T6FzIIZka6HaLji0TcpsiJYDJoeSdsZDtZ4eUEyEyOnFGHWf_-GV-uAo58fV6Enk-uqov9M21rqo7Tuj4GXoao0e86Hu9ix74eg89OR2pV5s9tButtcEfI6X0p-dIdZUBeKk3zWpdtljXDn_T1UbXeFH92l6u29UGt1sMnut3t4x_g5cTJmcM7-iqLvG2xEe6-eNbA_3DPyodYvYX6Oz4y8_lSRqPVkgt5fM2JR7SntwJ5mnueE5Lx-CihRYQPoLT17Z0tiyMy62QLvMk_I8riNdCc8mIzV-inXpb-1cIc0eZIZnl3gtKnZEmUOi4rPCGCirzBH0e5ljZyDsejr-oVJd_MKaCRlTUSILejdIXPd_GX-SOgrpGmcCS3d0A7KiIHXUfdhL0IShbBVuGLlkdtyTAwAIrlloIiK44ZGTzBM0mkmCDdvL4IMLlnk7PBiyp-KloFGTojBKeSZ6g9yO-_tnO6_8x-H30OLTZLyfN0E57eeXfQIDVmredLd0C9hAbZA priority: 102 providerName: Directory of Open Access Journals – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgEgIeEBsgCgX5YXwJRTSOv_LYVUwVaAghJvXN8ictpOm0ZJr233NO3UBAfEh5SXyxndyd784-_4zQoQTBIVTnWSCuzKgpQOc4ZSDLVmttSQh53I188oHPT-m7BVskkKTm9yV8sHYxPM_fUEGkjAdWX5c8Zm59mi9-YOvyDhoTAhmeERDAXX77L-8OLE8H0N8PwzeWMQC-XA3czJsX9Zm-utRV9ZPFOb6L7iRXEU-3vN1H13x9gG6f9DirzQHaT6rZ4JcJP_rVPaS6NAA80-tmuQot1rXD73W11jWeVl8256t2ucbtBoOZ-trN2V_h2QC2GUMbXYol3gR8pJtvvjXQP_yx0tFBv49Oj99-ns2zdI5CZqmYtBnxEOMUTjJPCycKGhyDi3ItwVcEC69tcDZw4worS5d7EhffOPFaalEyYosHaK_e1P4hwsJRZkhuhfeSUmdKE_FyXM69oZKWxQi93v1jZRPIeDzrolJdsMGYihxRiSMj9KynPtuCa_yB7iiyq6eJkNjdAxATlTRMydxbQ2zpBHhFJTNmYokQ0jnHCNMBKnkRma2i4kKXrE77D-DDIgSWmkpwpQSEX5MRGg8oQeHsoPgwics_Oj3eyZJK40KjIBxnlIi8FCP0vJevv9bz6P-ae4xuxdvt7NAY7bXnF_4J-Eutedppy3ef5Agh priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdGJwQ8IDZAFAryw_gSitY4duw8INRWmybQqgkxaW-Wv7IO0qQsmab995xTJ6MPDClPycmxcx--u5x_h9CeAMEhVMVRTmwWUZ2AzqWUgSwbpZQheR7708jH8_TolH49Y2dbaN6dhfFllZ1NbA21rYzPke9DIMMo4XHGv6x-R75rlP-72rXQUKG1gv3cQozdQ9vEI2MN0Pb0YH7y_RaGN21RNCHmSSMCstqVwjPmswDxPuVEiJhubFItln9vse8vfKx8fbHhkT64Klfq5loVxV-b0-ET9Dh4lXiyFoMdtOXKXfTouIdkrXfRTtDiGn8IUNMfnyLZVgzgmVrWi4u8waq0-JsqlqrEk-Iclt8slripMOxoP9v0_g2ebSA8Y3hHW42JqxxPVf3LNRrmh08K5X35Z-j08ODH7CgKLRciQ_m4iYiDcCixgjmaWJ7Q3DK4aKoEuJXgDCiTW5On2iZGZDZ2xP-nS4lTQvGMEZM8R4OyKt0LhLmlTJPYcOcEpVZn2kPr2Dh1mgqaJUP0qfvG0gQ8ct8Wo5BtXMKY9ByRgSND9LanXq1xOP5BN_Xs6mk8enZ7o7o8l0EZpYid0cRkloMDlTGtx4ZwLqy1jDCVwyDvPbOl13GYklHhqAIszKNlyYkAr4tDpDYeotEGJeim2Xi8F8TlP5MedbIkgwmp5a3AD9G7Xr7uHOfl3eO8Qg899TqBNEKD5vLKvQaXqtFvgp78ASzpGOs priority: 102 providerName: ProQuest |
| Title | Using Camshift and Kalman Algorithm to Trajectory Characteristic Matching of Basketball Players |
| URI | https://dx.doi.org/10.1155/2021/4728814 https://www.proquest.com/docview/2545427197 https://downloads.hindawi.com/journals/complexity/2021/4728814.pdf https://doaj.org/article/81ecb2c9d707495bb0c2778ddd525af4 |
| UnpaywallVersion | publishedVersion |
| Volume | 2021 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1099-0526 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1099-0526 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: AMVHM dateStart: 20120701 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1099-0526 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1099-0526 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: 8FG dateStart: 20120501 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1076-2787 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-0526 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009637 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1099-0526 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: 24P dateStart: 20170101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3vi9MwGA7ehqgf1DsVp3Pkw_kL6W5Nkyb9uI2bQ7kxhoOJSEmT9DbXtWPtOM-_3qTLxlXwBwhjsO4lbdInb543efMEgFOmgYMwd50YycDBkaf7nI-JxrLgnAsUx67ZjXwx8odT_GFGZjf2wkgjEZ9xmbfnJia9WpTe2rZrflbmWavvmqCaqN09wxQx5uL2WsZHoO4TzcdroD4djbufd8mGvoNoeUqeWQFyjLjJPvudkEoRlXGplO8_OOnb9lEqJPTONl3z6yueJDfGo8EDIPY12aWhLNvbImqLH7-IPP5fVR-C-5auwu4OX8fglkpPwL2Lg9ZrfgKOrXvI4RurYf32EVh-maiiVIKWX2GZlgD7fJXPF3EBeSrhR56seAq7yWW2WRTzFSwyqIfNb-UawjXsV2Skob5fmfIJsxj2eL5URaRbBI4TbgKGx2A6OP_UHzr2XAdHYNopHKR0zOVJRhT2JPVwLIn-YJ8zzV014-AiliL2I-kJFkhXIbMY6CPFGacBQcJ7AmpplqqnAFKJSYRcQZViGMsoiIx-j3R9FWGGA68B3u3faiis6Lk5eyMJy-CHkNC0bWjbtgFeHqzXO7GP39j1DEAONkaiu7yQbS5D2-ND5ioRIRFIqllaQKKoIxClTEpJEOGxLuS1gVdoHIl5Idzuh9AVM5JcYZdpakd1ONhpgGbFUjsAUfn71ALoLw_d3KM33IMsRJpAY0TdgDbAqwOi_1jOs381fA7ump-7-aomqBWbrXqhGVwRtcARG7xvgXrvfDSetMp5EP09Gc5atvP-BOOhQ1s |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLbGJjQ4IDZAFAr4sPGhKVrj2LFzmFBbNnV0rSa0SbsFx3bWQZqWJVPVP8dv43XqdPTAOE3qKXUd1-_n44_nRWhHgOIQKn0vJTryaBKAzYWUgS4rKaUiaerb28iDYdg7p18v2MUa-l3fhbHHKmufWDlqPVF2jXwfgAyjhPsR_zz95dmqUXZ3tS6hIV1pBX1QUYy5ix19M58BhCsOjr-AvHcJOTo86_Y8V2XAU5S3So8YQACBFszQQPOApprBh4ZSQCYF8U-qVKs0THSgRKR9Q-zWVEiMFJJHjKgA-n2ANmhAIwB_G53D4em3W9rfsGLtBIwVegRsoz56z5hddfD3KSdC-HQlKFa1A5YR4uHIYvPZ1UoGvHmTT-V8JrPsr2B49BQ9cVksbi_UbgutmXwbPR4sKWCLbbTlvEaBPzpq60_PUFydUMBdOS5GV2mJZa5xX2ZjmeN2dgnTXY7GuJxgiKA_qu2EOe6uMEpjeEd1-hNPUtyRxU9TJjA-fJpJix2eo_N7mfwXaD2f5OYlwlxTlhBfcWMEpTqJEkvlo_3QJFTQKGigvXqOY-X4z20ZjiyucBBjsZVI7CTSQLvL1tMF78c_2nWsuJZtLFt39WByfRk744-Fb1RCVKQ5JGwRS5KWIpwLrTUjTKbQyQcr7Nj6FBiSku5qBPwxy84VtwVkeRyQYauBmistwReola93nLr8Z9DNWpdi57KK-NbAGuj9Ur_u7OfV3f28Q5u9s8FJfHI87L9Gj-wvF4tXTbReXt-YN5DOlclbZzMYfb9vM_0DVyBVsQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLagE4I9ABugFQryw7hpStc4duw8dhXTBNo0ISoNIRT5lrU0Taom1Ri_HjtxogWJi4SUlyRHTux8Pv5OfPwZgH1mgIMw970EqcjDIjB9LsTEYFlyziVKEt-uRj49C0-m-P0FubixFkZZificq2I4szHp1bzy1q5di8Mqz1p_NwTVRu3-IaaIMR8PVyq5DbZCYvh4D2xNz87Hn-tkw9BDtNolz84AeVbcpMl-J6RTRGdcquT7Wyd9x71Kh4Te3WQrfn3F0_TGeHT8AMimJnUaymK4KcVQ_vhF5PH_qvoQ3Hd0FY5rfO2AWzrbBdunrdZrsQt2nHso4BunYf32EVh8-ajLSglafYVVWgKc8GUxmycl5JmCH3i65Bkcp5f5el7OlrDMoRk2v1VzCNdw0pGRhuZ5VconzBN4xIuFLoVpEXiechswPAbT43efJiee29fBk5iOSg9pE3MFihGNA0UDnChiDhxyZrirYRxcJkomoVCBZJHyNbKTgSHSnHEaESSDJ6CX5ZneA5AqTATyJdWaYaxEJKx-j_JDLTDDUdAHB81XjaUTPbd7b6RxFfwQEtu2jV3b9sHL1npVi338xu7IAqS1sRLd1YV8fRm7Hh8zX0uBZKSoYWkREWIkEaVMKUUQ4Ykp5LWFV2wdif0g3K2HMBWzklzxmBlqR004OOqDQcfSOADZub3vAPSXlx406I0bkMXIEGiMqB_RPnjVIvqP5Tz9V8Nn4J49rf9XDUCvXG_0c8PgSvHCddGfUf8-0w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Camshift+and+Kalman+Algorithm+to+Trajectory+Characteristic+Matching+of+Basketball+Players&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Liang%2C+Shuang&rft.au=Li%2C+Yang&rft.date=2021&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1076-2787&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F4728814&rft.externalDocID=A831775760 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon |