Using Camshift and Kalman Algorithm to Trajectory Characteristic Matching of Basketball Players

Because of its unique charm, sports video is widely welcomed by the public in today’s society. Therefore, the analysis and research of sports game video data have high practical significance and commercial value. Taking a basketball game video as an example, this paper studies the tracking feature m...

Full description

Saved in:
Bibliographic Details
Published inComplexity (New York, N.Y.) Vol. 2021; no. 1
Main Authors Liang, Shuang, Li, Yang
Format Journal Article
LanguageEnglish
Published Hoboken Hindawi 2021
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text
ISSN1076-2787
1099-0526
1099-0526
DOI10.1155/2021/4728814

Cover

Abstract Because of its unique charm, sports video is widely welcomed by the public in today’s society. Therefore, the analysis and research of sports game video data have high practical significance and commercial value. Taking a basketball game video as an example, this paper studies the tracking feature matching of basketball players’ detection, recognition, and prediction in the game video. This paper is divided into four parts to improve the application of the interactive multimodel algorithm to track characteristic matching: moving object detection, recognition, basketball track characteristic matching, and player track characteristic matching. The main work and research results of each part are as follows: firstly, the improved K-means clustering algorithm is used to segment the golf field area; then, HSV is combined with the RGB Fujian value method to eliminate the field area; at last, straight field lines were extracted by Hough transform, and elliptical field lines were extracted by curve fitting, and the field lines were eliminated to realize the detection of moving objects. Seven normalized Hu invariant moments are used as the target features to realize the recognition of moving targets. By obtaining the feature distance between the sample and the template, the category of the sample is judged, which has a good robustness. The Kalman filter is used to match the characteristics of the basketball trajectory. Aiming at the occlusion of basketball, the least square method was used to fit the basketball trajectory, and the basketball position was predicted at the occlusion moment, which realized the occlusion trajectory matching. The matching of players’ track characteristics is realized by the CamShift algorithm based on the color model, which makes full use of players’ color information and realizes real-time performance. In order to solve the problem of occlusion between players in the track feature matching, CamShift and Kalman algorithms were used to determine the occlusion factor through the search window and then weighted Kalman and CamShift according to the occlusion degree to get the track feature matching result. The experimental results show that the detection time is greatly shortened, the memory space occupied is small, and the effect is very ideal.
AbstractList Because of its unique charm, sports video is widely welcomed by the public in today’s society. Therefore, the analysis and research of sports game video data have high practical significance and commercial value. Taking a basketball game video as an example, this paper studies the tracking feature matching of basketball players’ detection, recognition, and prediction in the game video. This paper is divided into four parts to improve the application of the interactive multimodel algorithm to track characteristic matching: moving object detection, recognition, basketball track characteristic matching, and player track characteristic matching. The main work and research results of each part are as follows: firstly, the improved K-means clustering algorithm is used to segment the golf field area; then, HSV is combined with the RGB Fujian value method to eliminate the field area; at last, straight field lines were extracted by Hough transform, and elliptical field lines were extracted by curve fitting, and the field lines were eliminated to realize the detection of moving objects. Seven normalized Hu invariant moments are used as the target features to realize the recognition of moving targets. By obtaining the feature distance between the sample and the template, the category of the sample is judged, which has a good robustness. The Kalman filter is used to match the characteristics of the basketball trajectory. Aiming at the occlusion of basketball, the least square method was used to fit the basketball trajectory, and the basketball position was predicted at the occlusion moment, which realized the occlusion trajectory matching. The matching of players’ track characteristics is realized by the CamShift algorithm based on the color model, which makes full use of players’ color information and realizes real-time performance. In order to solve the problem of occlusion between players in the track feature matching, CamShift and Kalman algorithms were used to determine the occlusion factor through the search window and then weighted Kalman and CamShift according to the occlusion degree to get the track feature matching result. The experimental results show that the detection time is greatly shortened, the memory space occupied is small, and the effect is very ideal.
Because of its unique charm, sports video is widely welcomed by the public in today’s society. Therefore, the analysis and research of sports game video data have high practical significance and commercial value. Taking a basketball game video as an example, this paper studies the tracking feature matching of basketball players’ detection, recognition, and prediction in the game video. This paper is divided into four parts to improve the application of the interactive multimodel algorithm to track characteristic matching: moving object detection, recognition, basketball track characteristic matching, and player track characteristic matching. The main work and research results of each part are as follows: firstly, the improved K ‐means clustering algorithm is used to segment the golf field area; then, HSV is combined with the RGB Fujian value method to eliminate the field area; at last, straight field lines were extracted by Hough transform, and elliptical field lines were extracted by curve fitting, and the field lines were eliminated to realize the detection of moving objects. Seven normalized Hu invariant moments are used as the target features to realize the recognition of moving targets. By obtaining the feature distance between the sample and the template, the category of the sample is judged, which has a good robustness. The Kalman filter is used to match the characteristics of the basketball trajectory. Aiming at the occlusion of basketball, the least square method was used to fit the basketball trajectory, and the basketball position was predicted at the occlusion moment, which realized the occlusion trajectory matching. The matching of players’ track characteristics is realized by the CamShift algorithm based on the color model, which makes full use of players’ color information and realizes real‐time performance. In order to solve the problem of occlusion between players in the track feature matching, CamShift and Kalman algorithms were used to determine the occlusion factor through the search window and then weighted Kalman and CamShift according to the occlusion degree to get the track feature matching result. The experimental results show that the detection time is greatly shortened, the memory space occupied is small, and the effect is very ideal.
Audience Academic
Author Liang, Shuang
Li, Yang
Author_xml – sequence: 1
  givenname: Shuang
  surname: Liang
  fullname: Liang, Shuang
  organization: Mechinery and Electrical DepartmentJiangxi Engineering Vocational CollegeJiangxi Open UniversityNanchangJiangxi330046China
– sequence: 2
  givenname: Yang
  orcidid: 0000-0003-2186-2913
  surname: Li
  fullname: Li, Yang
  organization: College of Physical EducationYichun UniversityYichunJiangxi 336000Chinaycu.jx.cn
BookMark eNqFkVtv1DAQhSPUSvTCGz_AEo-Q1nbs2HlcVkArWpWH9tma-LLrJYkX26tq_z3epgKBuMiWbI2-czRz5rQ6msJkq-o1wReEcH5JMSWXTFApCXtRnRDcdTXmtD06_EVbUyHFy-o0pQ3GuGsbcVKph-SnFVrCmNbeZQSTQZ9hGGFCi2EVos_rEeWA7iNsrM4h7tFyDRF0ttGn7DW6hazXB4_g0HtIX23uYRjQlwH2Nqbz6tjBkOyr5_esevj44X55Vd_cfbpeLm5qzQTONbWUd42R3LLGiIY5w8tlLUhMMZEEtDPatb1ptOwMsVTSBrfUggTRcaqbs-p69jUBNmob_QhxrwJ49VQIcaUglnYHqySxuqe6MwIL1vG-x5oKIY0xnHJwrHjVs9du2sL-sUzzw5BgdUhaHZJWz0kX_s3Mb2P4trMpq03YxamMqyhnnFFBOvGTWkFpwk8u5BLj6JNWC9kQIbhocaEu_kCVY-zodVm386X-i4DOAh1DStE6pX2G7MNUhH74W8fvfhP9Z8C3M172bODR_5v-DqwgxLI
CitedBy_id crossref_primary_10_1155_2022_6765954
crossref_primary_10_1109_ACCESS_2023_3332478
crossref_primary_10_1109_TIM_2022_3195258
crossref_primary_10_3934_mbe_2023088
crossref_primary_10_3390_micro3020032
crossref_primary_10_1590_1517_8692202329012022_0600
crossref_primary_10_1016_j_aej_2023_11_077
crossref_primary_10_1155_2023_9784141
crossref_primary_10_1007_s11760_024_03309_8
Cites_doi 10.1155/2020/2742781
10.1109/TMM.2019.2960586
10.3390/jsan8030044
10.1007/s11269-019-02283-y
10.1109/twc.2020.2978479
10.1080/17538947.2017.1385652
10.1016/j.ins.2020.07.069
10.3390/su10062079
10.1016/j.aei.2020.101200
10.1109/TFUZZ.2020.3012393
10.1109/TCYB.2020.3024627
10.1016/j.aml.2021.107417
10.19799/j.cnki.2095-4239.2019.0207
10.5194/amt-11-6539-2018
10.1080/13658816.2020.1719495
10.5194/acp-20-931-2020
10.5194/tc-14-3033-2020
10.5194/acp-19-12545-2019
10.1109/TSMC.2018.2819191
10.1109/TCSVT.2019.2921655
10.1007/s12652-020-01878-3
10.1007/s10776-019-00434-x
10.1016/j.aej.2020.04.024
10.5194/hess-23-4803-2019
10.1504/ijipt.2020.105053
10.1049/iet-net.2019.0014
10.31058/j.mana.2020.33003
10.1109/mwc.001.1900072
ContentType Journal Article
Copyright Copyright © 2021 Shuang Liang and Yang Li.
COPYRIGHT 2021 John Wiley & Sons, Inc.
Copyright © 2021 Shuang Liang and Yang Li. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2021 Shuang Liang and Yang Li.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: Copyright © 2021 Shuang Liang and Yang Li. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOA
DOI 10.1155/2021/4728814
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep


CrossRef

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-0526
Editor Lv, Zhihan
Editor_xml – sequence: 1
  givenname: Zhihan
  surname: Lv
  fullname: Lv, Zhihan
ExternalDocumentID oai_doaj_org_article_81ecb2c9d707495bb0c2778ddd525af4
10.1155/2021/4728814
A831775760
10_1155_2021_4728814
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8G5
8UM
930
A03
AAESR
AAFWJ
AAJEY
AAONW
ABCQN
ABEML
ABIJN
ABPVW
ABUWG
ACSCC
ADBBV
ADIZJ
AENEX
AFBPY
AFKRA
AFPKN
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ATUGU
AZBYB
AZQEC
AZVAB
BAFTC
BCNDV
BENPR
BGLVJ
BHBCM
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DPXWK
DR2
DU5
DWQXO
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
H.T
H.X
HBH
HCIFZ
HHY
HZ~
IAO
ITC
IX1
J0M
JPC
K6V
K7-
KQQ
LAW
LC2
LC3
LP6
LP7
M2O
MK4
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
Q.N
Q11
QB0
QRW
R.K
RHU
RHW
RHX
RWI
RX1
RYL
SUPJJ
TUS
V2E
W8V
W99
WBKPD
WIH
WQJ
WRC
XBAML
XG1
XPP
XSW
XV2
~IA
~WT
.Y3
24P
31~
3R3
5VS
AAEVG
AAMMB
AANHP
AAYXX
ACBWZ
ACCMX
ACRPL
ACXQS
ACYXJ
ADNMO
AEFGJ
AEIMD
AFZJQ
AGQPQ
AGXDD
AIDQK
AIDYY
AMVHM
ASPBG
AVWKF
AZFZN
BDRZF
BFHJK
CITATION
DCZOG
EJD
FEDTE
H13
HF~
HVGLF
ICD
LH4
LW6
PHGZM
PHGZT
PQGLB
PUEGO
ROL
WYUIH
7XB
8FK
JQ2
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c470t-2e2593d85e43d734fd5fd546a8020181acfdcf6bd3c89d1e2823062ea8a7952c3
IEDL.DBID UNPAY
ISSN 1076-2787
1099-0526
IngestDate Fri Oct 03 12:50:45 EDT 2025
Tue Aug 19 18:38:47 EDT 2025
Fri Jul 25 21:06:36 EDT 2025
Mon Oct 20 22:44:25 EDT 2025
Mon Oct 20 16:57:04 EDT 2025
Wed Oct 01 02:50:19 EDT 2025
Thu Apr 24 23:02:56 EDT 2025
Sun Jun 02 19:16:35 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-2e2593d85e43d734fd5fd546a8020181acfdcf6bd3c89d1e2823062ea8a7952c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2186-2913
OpenAccessLink https://proxy.k.utb.cz/login?url=https://downloads.hindawi.com/journals/complexity/2021/4728814.pdf
PQID 2545427197
PQPubID 2029978
ParticipantIDs doaj_primary_oai_doaj_org_article_81ecb2c9d707495bb0c2778ddd525af4
unpaywall_primary_10_1155_2021_4728814
proquest_journals_2545427197
gale_infotracmisc_A831775760
gale_infotracacademiconefile_A831775760
crossref_citationtrail_10_1155_2021_4728814
crossref_primary_10_1155_2021_4728814
hindawi_primary_10_1155_2021_4728814
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Complexity (New York, N.Y.)
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_1_2
e_1_2_7_14_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
Ahmed B. (e_1_2_7_13_2) 2019; 4
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_22_2
e_1_2_7_21_2
e_1_2_7_20_2
Liu Y. (e_1_2_7_3_2) 2018; 36
References_xml – ident: e_1_2_7_11_2
  doi: 10.1155/2020/2742781
– ident: e_1_2_7_15_2
  doi: 10.1109/TMM.2019.2960586
– ident: e_1_2_7_21_2
  doi: 10.3390/jsan8030044
– ident: e_1_2_7_26_2
  doi: 10.1007/s11269-019-02283-y
– ident: e_1_2_7_18_2
  doi: 10.1109/twc.2020.2978479
– ident: e_1_2_7_24_2
  doi: 10.1080/17538947.2017.1385652
– ident: e_1_2_7_28_2
  doi: 10.1016/j.ins.2020.07.069
– ident: e_1_2_7_19_2
  doi: 10.3390/su10062079
– ident: e_1_2_7_9_2
  doi: 10.1016/j.aei.2020.101200
– ident: e_1_2_7_29_2
  doi: 10.1109/TFUZZ.2020.3012393
– ident: e_1_2_7_30_2
  doi: 10.1109/TCYB.2020.3024627
– ident: e_1_2_7_10_2
  doi: 10.1016/j.aml.2021.107417
– ident: e_1_2_7_5_2
  doi: 10.19799/j.cnki.2095-4239.2019.0207
– ident: e_1_2_7_4_2
  doi: 10.5194/amt-11-6539-2018
– ident: e_1_2_7_1_2
  doi: 10.1080/13658816.2020.1719495
– ident: e_1_2_7_14_2
  doi: 10.5194/acp-20-931-2020
– ident: e_1_2_7_20_2
  doi: 10.5194/tc-14-3033-2020
– ident: e_1_2_7_17_2
  doi: 10.5194/acp-19-12545-2019
– ident: e_1_2_7_27_2
  doi: 10.1109/TSMC.2018.2819191
– ident: e_1_2_7_2_2
  doi: 10.1109/TCSVT.2019.2921655
– ident: e_1_2_7_6_2
  doi: 10.1007/s12652-020-01878-3
– ident: e_1_2_7_12_2
  doi: 10.1007/s10776-019-00434-x
– ident: e_1_2_7_16_2
  doi: 10.1016/j.aej.2020.04.024
– ident: e_1_2_7_7_2
  doi: 10.5194/hess-23-4803-2019
– volume: 4
  start-page: 1
  year: 2019
  ident: e_1_2_7_13_2
  article-title: Services and simulation frameworks for vehicular cloud computing: a contemporary survey
  publication-title: EURASIP Journal on Wireless Communications and Networking
– volume: 36
  start-page: 3
  year: 2018
  ident: e_1_2_7_3_2
  article-title: An improved interactive multi model particle filter algorithm
  publication-title: Machinery& Electronics
– ident: e_1_2_7_8_2
  doi: 10.1504/ijipt.2020.105053
– ident: e_1_2_7_25_2
  doi: 10.1049/iet-net.2019.0014
– ident: e_1_2_7_22_2
  doi: 10.31058/j.mana.2020.33003
– ident: e_1_2_7_23_2
  doi: 10.1109/mwc.001.1900072
SSID ssj0009637
Score 2.285217
SecondaryResourceType retracted_publication
Snippet Because of its unique charm, sports video is widely welcomed by the public in today’s society. Therefore, the analysis and research of sports game video data...
Because of its unique charm, sports video is widely welcomed by the public in today's society. Therefore, the analysis and research of sports game video data...
SourceID doaj
unpaywall
proquest
gale
crossref
hindawi
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Analysis
Athletic recruitment
Audiences
Basketball
Cluster analysis
Clustering
Color
Curve fitting
Feature recognition
Fuzzy sets
Games
Hough transformation
Kalman filters
Matching
Moving object recognition
Moving targets
Occlusion
Players
Sports
Target recognition
Vector quantization
Video data
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJQQcEC0gQhfkQ3kJRd04dmwftyuqClTEgUq9WX6FXchmqyZV1X_fceJEzQF6QcopGTm255vMjDP-jNCBAOAQqrO0JE6m1ORgcwVlgGWrtbakLLOwG_n0e3FyRr-es_M7R32FmrCeHrifuEOReWuIlY6Ds5PMmLklnAvnHCNMlx0T6FzIIZka6HaLji0TcpsiJYDJoeSdsZDtZ4eUEyEyOnFGHWf_-GV-uAo58fV6Enk-uqov9M21rqo7Tuj4GXoao0e86Hu9ix74eg89OR2pV5s9tButtcEfI6X0p-dIdZUBeKk3zWpdtljXDn_T1UbXeFH92l6u29UGt1sMnut3t4x_g5cTJmcM7-iqLvG2xEe6-eNbA_3DPyodYvYX6Oz4y8_lSRqPVkgt5fM2JR7SntwJ5mnueE5Lx-CihRYQPoLT17Z0tiyMy62QLvMk_I8riNdCc8mIzV-inXpb-1cIc0eZIZnl3gtKnZEmUOi4rPCGCirzBH0e5ljZyDsejr-oVJd_MKaCRlTUSILejdIXPd_GX-SOgrpGmcCS3d0A7KiIHXUfdhL0IShbBVuGLlkdtyTAwAIrlloIiK44ZGTzBM0mkmCDdvL4IMLlnk7PBiyp-KloFGTojBKeSZ6g9yO-_tnO6_8x-H30OLTZLyfN0E57eeXfQIDVmredLd0C9hAbZA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgEgIeEBsgCgX5YXwJRTSOv_LYVUwVaAghJvXN8ictpOm0ZJr233NO3UBAfEh5SXyxndyd784-_4zQoQTBIVTnWSCuzKgpQOc4ZSDLVmttSQh53I188oHPT-m7BVskkKTm9yV8sHYxPM_fUEGkjAdWX5c8Zm59mi9-YOvyDhoTAhmeERDAXX77L-8OLE8H0N8PwzeWMQC-XA3czJsX9Zm-utRV9ZPFOb6L7iRXEU-3vN1H13x9gG6f9DirzQHaT6rZ4JcJP_rVPaS6NAA80-tmuQot1rXD73W11jWeVl8256t2ucbtBoOZ-trN2V_h2QC2GUMbXYol3gR8pJtvvjXQP_yx0tFBv49Oj99-ns2zdI5CZqmYtBnxEOMUTjJPCycKGhyDi3ItwVcEC69tcDZw4worS5d7EhffOPFaalEyYosHaK_e1P4hwsJRZkhuhfeSUmdKE_FyXM69oZKWxQi93v1jZRPIeDzrolJdsMGYihxRiSMj9KynPtuCa_yB7iiyq6eJkNjdAxATlTRMydxbQ2zpBHhFJTNmYokQ0jnHCNMBKnkRma2i4kKXrE77D-DDIgSWmkpwpQSEX5MRGg8oQeHsoPgwics_Oj3eyZJK40KjIBxnlIi8FCP0vJevv9bz6P-ae4xuxdvt7NAY7bXnF_4J-Eutedppy3ef5Agh
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdGJwQ8IDZAFAryw_gSitY4duw8INRWmybQqgkxaW-Wv7IO0qQsmab995xTJ6MPDClPycmxcx--u5x_h9CeAMEhVMVRTmwWUZ2AzqWUgSwbpZQheR7708jH8_TolH49Y2dbaN6dhfFllZ1NbA21rYzPke9DIMMo4XHGv6x-R75rlP-72rXQUKG1gv3cQozdQ9vEI2MN0Pb0YH7y_RaGN21RNCHmSSMCstqVwjPmswDxPuVEiJhubFItln9vse8vfKx8fbHhkT64Klfq5loVxV-b0-ET9Dh4lXiyFoMdtOXKXfTouIdkrXfRTtDiGn8IUNMfnyLZVgzgmVrWi4u8waq0-JsqlqrEk-Iclt8slripMOxoP9v0_g2ebSA8Y3hHW42JqxxPVf3LNRrmh08K5X35Z-j08ODH7CgKLRciQ_m4iYiDcCixgjmaWJ7Q3DK4aKoEuJXgDCiTW5On2iZGZDZ2xP-nS4lTQvGMEZM8R4OyKt0LhLmlTJPYcOcEpVZn2kPr2Dh1mgqaJUP0qfvG0gQ8ct8Wo5BtXMKY9ByRgSND9LanXq1xOP5BN_Xs6mk8enZ7o7o8l0EZpYid0cRkloMDlTGtx4ZwLqy1jDCVwyDvPbOl13GYklHhqAIszKNlyYkAr4tDpDYeotEGJeim2Xi8F8TlP5MedbIkgwmp5a3AD9G7Xr7uHOfl3eO8Qg899TqBNEKD5vLKvQaXqtFvgp78ASzpGOs
  priority: 102
  providerName: ProQuest
Title Using Camshift and Kalman Algorithm to Trajectory Characteristic Matching of Basketball Players
URI https://dx.doi.org/10.1155/2021/4728814
https://www.proquest.com/docview/2545427197
https://downloads.hindawi.com/journals/complexity/2021/4728814.pdf
https://doaj.org/article/81ecb2c9d707495bb0c2778ddd525af4
UnpaywallVersion publishedVersion
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: AMVHM
  dateStart: 20120701
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: 8FG
  dateStart: 20120501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1076-2787
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3vi9MwGA7ehqgf1DsVp3Pkw_kL6W5Nkyb9uI2bQ7kxhoOJSEmT9DbXtWPtOM-_3qTLxlXwBwhjsO4lbdInb543efMEgFOmgYMwd50YycDBkaf7nI-JxrLgnAsUx67ZjXwx8odT_GFGZjf2wkgjEZ9xmbfnJia9WpTe2rZrflbmWavvmqCaqN09wxQx5uL2WsZHoO4TzcdroD4djbufd8mGvoNoeUqeWQFyjLjJPvudkEoRlXGplO8_OOnb9lEqJPTONl3z6yueJDfGo8EDIPY12aWhLNvbImqLH7-IPP5fVR-C-5auwu4OX8fglkpPwL2Lg9ZrfgKOrXvI4RurYf32EVh-maiiVIKWX2GZlgD7fJXPF3EBeSrhR56seAq7yWW2WRTzFSwyqIfNb-UawjXsV2Skob5fmfIJsxj2eL5URaRbBI4TbgKGx2A6OP_UHzr2XAdHYNopHKR0zOVJRhT2JPVwLIn-YJ8zzV014-AiliL2I-kJFkhXIbMY6CPFGacBQcJ7AmpplqqnAFKJSYRcQZViGMsoiIx-j3R9FWGGA68B3u3faiis6Lk5eyMJy-CHkNC0bWjbtgFeHqzXO7GP39j1DEAONkaiu7yQbS5D2-ND5ioRIRFIqllaQKKoIxClTEpJEOGxLuS1gVdoHIl5Idzuh9AVM5JcYZdpakd1ONhpgGbFUjsAUfn71ALoLw_d3KM33IMsRJpAY0TdgDbAqwOi_1jOs381fA7ump-7-aomqBWbrXqhGVwRtcARG7xvgXrvfDSetMp5EP09Gc5atvP-BOOhQ1s
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLbGJjQ4IDZAFAr4sPGhKVrj2LFzmFBbNnV0rSa0SbsFx3bWQZqWJVPVP8dv43XqdPTAOE3qKXUd1-_n44_nRWhHgOIQKn0vJTryaBKAzYWUgS4rKaUiaerb28iDYdg7p18v2MUa-l3fhbHHKmufWDlqPVF2jXwfgAyjhPsR_zz95dmqUXZ3tS6hIV1pBX1QUYy5ix19M58BhCsOjr-AvHcJOTo86_Y8V2XAU5S3So8YQACBFszQQPOApprBh4ZSQCYF8U-qVKs0THSgRKR9Q-zWVEiMFJJHjKgA-n2ANmhAIwB_G53D4em3W9rfsGLtBIwVegRsoz56z5hddfD3KSdC-HQlKFa1A5YR4uHIYvPZ1UoGvHmTT-V8JrPsr2B49BQ9cVksbi_UbgutmXwbPR4sKWCLbbTlvEaBPzpq60_PUFydUMBdOS5GV2mJZa5xX2ZjmeN2dgnTXY7GuJxgiKA_qu2EOe6uMEpjeEd1-hNPUtyRxU9TJjA-fJpJix2eo_N7mfwXaD2f5OYlwlxTlhBfcWMEpTqJEkvlo_3QJFTQKGigvXqOY-X4z20ZjiyucBBjsZVI7CTSQLvL1tMF78c_2nWsuJZtLFt39WByfRk744-Fb1RCVKQ5JGwRS5KWIpwLrTUjTKbQyQcr7Nj6FBiSku5qBPwxy84VtwVkeRyQYauBmistwReola93nLr8Z9DNWpdi57KK-NbAGuj9Ur_u7OfV3f28Q5u9s8FJfHI87L9Gj-wvF4tXTbReXt-YN5DOlclbZzMYfb9vM_0DVyBVsQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLagE4I9ABugFQryw7hpStc4duw8dhXTBNo0ISoNIRT5lrU0Taom1Ri_HjtxogWJi4SUlyRHTux8Pv5OfPwZgH1mgIMw970EqcjDIjB9LsTEYFlyziVKEt-uRj49C0-m-P0FubixFkZZificq2I4szHp1bzy1q5di8Mqz1p_NwTVRu3-IaaIMR8PVyq5DbZCYvh4D2xNz87Hn-tkw9BDtNolz84AeVbcpMl-J6RTRGdcquT7Wyd9x71Kh4Te3WQrfn3F0_TGeHT8AMimJnUaymK4KcVQ_vhF5PH_qvoQ3Hd0FY5rfO2AWzrbBdunrdZrsQt2nHso4BunYf32EVh8-ajLSglafYVVWgKc8GUxmycl5JmCH3i65Bkcp5f5el7OlrDMoRk2v1VzCNdw0pGRhuZ5VconzBN4xIuFLoVpEXiechswPAbT43efJiee29fBk5iOSg9pE3MFihGNA0UDnChiDhxyZrirYRxcJkomoVCBZJHyNbKTgSHSnHEaESSDJ6CX5ZneA5AqTATyJdWaYaxEJKx-j_JDLTDDUdAHB81XjaUTPbd7b6RxFfwQEtu2jV3b9sHL1npVi338xu7IAqS1sRLd1YV8fRm7Hh8zX0uBZKSoYWkREWIkEaVMKUUQ4Ykp5LWFV2wdif0g3K2HMBWzklzxmBlqR004OOqDQcfSOADZub3vAPSXlx406I0bkMXIEGiMqB_RPnjVIvqP5Tz9V8Nn4J49rf9XDUCvXG_0c8PgSvHCddGfUf8-0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Camshift+and+Kalman+Algorithm+to+Trajectory+Characteristic+Matching+of+Basketball+Players&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Liang%2C+Shuang&rft.au=Li%2C+Yang&rft.date=2021&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1076-2787&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F4728814&rft.externalDocID=A831775760
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon