In Silico and In Vitro Studies of Alchemilla viridiflora Rothm—Polyphenols’ Potential for Inhibition of SARS-CoV-2 Internalization
Since the outbreak of the COVID-19 pandemic, it has been obvious that virus infection poses a serious threat to human health on a global scale. Certain plants, particularly those rich in polyphenols, have been found to be effective antiviral agents. The effectiveness of Alchemilla viridiflora Rothm....
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 27; no. 16; p. 5174 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
14.08.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1420-3049 1420-3049 |
DOI | 10.3390/molecules27165174 |
Cover
Abstract | Since the outbreak of the COVID-19 pandemic, it has been obvious that virus infection poses a serious threat to human health on a global scale. Certain plants, particularly those rich in polyphenols, have been found to be effective antiviral agents. The effectiveness of Alchemilla viridiflora Rothm. (Rosaceae) methanol extract to prevent contact between virus spike (S)-glycoprotein and angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1) receptors was investigated. In vitro results revealed that the tested samples inhibited 50% of virus-receptor binding interactions in doses of 0.18 and 0.22 mg/mL for NRP1 and ACE2, respectively. Molecular docking studies revealed that the compounds from A. viridiflora ellagitannins class had a higher affinity for binding with S-glycoprotein whilst flavonoid compounds more significantly interacted with the NRP1 receptor. Quercetin 3-(6″-ferulylglucoside) and pentagalloylglucose were two compounds with the highest exhibited interfering potential for selected target receptors, with binding energies of −8.035 (S-glycoprotein) and −7.685 kcal/mol (NRP1), respectively. Furthermore, computational studies on other SARS-CoV-2 strains resulting from mutations in the original wild strain (V483A, N501Y-K417N-E484K, N501Y, N439K, L452R-T478K, K417N, G476S, F456L, E484K) revealed that virus internalization activity was maintained, but with different single compound contributions. |
---|---|
AbstractList | Since the outbreak of the COVID-19 pandemic, it has been obvious that virus infection poses a serious threat to human health on a global scale. Certain plants, particularly those rich in polyphenols, have been found to be effective antiviral agents. The effectiveness of
Alchemilla viridiflora
Rothm. (Rosaceae) methanol extract to prevent contact between virus spike (
S
)-glycoprotein and angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1) receptors was investigated. In vitro results revealed that the tested samples inhibited 50% of virus-receptor binding interactions in doses of 0.18 and 0.22 mg/mL for NRP1 and ACE2, respectively. Molecular docking studies revealed that the compounds from
A. viridiflora
ellagitannins class had a higher affinity for binding with S-glycoprotein whilst flavonoid compounds more significantly interacted with the NRP1 receptor. Quercetin 3-(6″-ferulylglucoside) and pentagalloylglucose were two compounds with the highest exhibited interfering potential for selected target receptors, with binding energies of −8.035 (S-glycoprotein) and −7.685 kcal/mol (NRP1), respectively. Furthermore, computational studies on other SARS-CoV-2 strains resulting from mutations in the original wild strain (V483A, N501Y-K417N-E484K, N501Y, N439K, L452R-T478K, K417N, G476S, F456L, E484K) revealed that virus internalization activity was maintained, but with different single compound contributions. Since the outbreak of the COVID-19 pandemic, it has been obvious that virus infection poses a serious threat to human health on a global scale. Certain plants, particularly those rich in polyphenols, have been found to be effective antiviral agents. The effectiveness of Alchemilla viridiflora Rothm. (Rosaceae) methanol extract to prevent contact between virus spike (S)-glycoprotein and angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1) receptors was investigated. In vitro results revealed that the tested samples inhibited 50% of virus-receptor binding interactions in doses of 0.18 and 0.22 mg/mL for NRP1 and ACE2, respectively. Molecular docking studies revealed that the compounds from A. viridiflora ellagitannins class had a higher affinity for binding with S-glycoprotein whilst flavonoid compounds more significantly interacted with the NRP1 receptor. Quercetin 3-(6″-ferulylglucoside) and pentagalloylglucose were two compounds with the highest exhibited interfering potential for selected target receptors, with binding energies of -8.035 (S-glycoprotein) and -7.685 kcal/mol (NRP1), respectively. Furthermore, computational studies on other SARS-CoV-2 strains resulting from mutations in the original wild strain (V483A, N501Y-K417N-E484K, N501Y, N439K, L452R-T478K, K417N, G476S, F456L, E484K) revealed that virus internalization activity was maintained, but with different single compound contributions.Since the outbreak of the COVID-19 pandemic, it has been obvious that virus infection poses a serious threat to human health on a global scale. Certain plants, particularly those rich in polyphenols, have been found to be effective antiviral agents. The effectiveness of Alchemilla viridiflora Rothm. (Rosaceae) methanol extract to prevent contact between virus spike (S)-glycoprotein and angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1) receptors was investigated. In vitro results revealed that the tested samples inhibited 50% of virus-receptor binding interactions in doses of 0.18 and 0.22 mg/mL for NRP1 and ACE2, respectively. Molecular docking studies revealed that the compounds from A. viridiflora ellagitannins class had a higher affinity for binding with S-glycoprotein whilst flavonoid compounds more significantly interacted with the NRP1 receptor. Quercetin 3-(6″-ferulylglucoside) and pentagalloylglucose were two compounds with the highest exhibited interfering potential for selected target receptors, with binding energies of -8.035 (S-glycoprotein) and -7.685 kcal/mol (NRP1), respectively. Furthermore, computational studies on other SARS-CoV-2 strains resulting from mutations in the original wild strain (V483A, N501Y-K417N-E484K, N501Y, N439K, L452R-T478K, K417N, G476S, F456L, E484K) revealed that virus internalization activity was maintained, but with different single compound contributions. Since the outbreak of the COVID-19 pandemic, it has been obvious that virus infection poses a serious threat to human health on a global scale. Certain plants, particularly those rich in polyphenols, have been found to be effective antiviral agents. The effectiveness of Alchemilla viridiflora Rothm. (Rosaceae) methanol extract to prevent contact between virus spike (S)-glycoprotein and angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1) receptors was investigated. In vitro results revealed that the tested samples inhibited 50% of virus-receptor binding interactions in doses of 0.18 and 0.22 mg/mL for NRP1 and ACE2, respectively. Molecular docking studies revealed that the compounds from A. viridiflora ellagitannins class had a higher affinity for binding with S-glycoprotein whilst flavonoid compounds more significantly interacted with the NRP1 receptor. Quercetin 3-(6″-ferulylglucoside) and pentagalloylglucose were two compounds with the highest exhibited interfering potential for selected target receptors, with binding energies of −8.035 (S-glycoprotein) and −7.685 kcal/mol (NRP1), respectively. Furthermore, computational studies on other SARS-CoV-2 strains resulting from mutations in the original wild strain (V483A, N501Y-K417N-E484K, N501Y, N439K, L452R-T478K, K417N, G476S, F456L, E484K) revealed that virus internalization activity was maintained, but with different single compound contributions. |
Author | Kundaković-Vasović, Tatjana Škrbić, Ranko Travar, Maja Suručić, Relja Radović Selgrad, Jelena Lazović, Biljana Suručić, Ljiljana |
AuthorAffiliation | 3 Internal Medicine Clinic, Division of Pulmonology, University Clinical Hospital Center Zemun, 11080 Belgrade, Serbia 4 Department of Microbiology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina 1 Department of Pharmacognosy, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina 6 Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina 2 Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, VojvodeStepe 450, 11221 Belgrade, Serbia 5 Department of Organic Chemistry, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina |
AuthorAffiliation_xml | – name: 5 Department of Organic Chemistry, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina – name: 1 Department of Pharmacognosy, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina – name: 2 Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, VojvodeStepe 450, 11221 Belgrade, Serbia – name: 4 Department of Microbiology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina – name: 6 Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina – name: 3 Internal Medicine Clinic, Division of Pulmonology, University Clinical Hospital Center Zemun, 11080 Belgrade, Serbia |
Author_xml | – sequence: 1 givenname: Relja surname: Suručić fullname: Suručić, Relja – sequence: 2 givenname: Jelena surname: Radović Selgrad fullname: Radović Selgrad, Jelena – sequence: 3 givenname: Tatjana orcidid: 0000-0001-5777-8612 surname: Kundaković-Vasović fullname: Kundaković-Vasović, Tatjana – sequence: 4 givenname: Biljana surname: Lazović fullname: Lazović, Biljana – sequence: 5 givenname: Maja surname: Travar fullname: Travar, Maja – sequence: 6 givenname: Ljiljana orcidid: 0000-0003-4332-8690 surname: Suručić fullname: Suručić, Ljiljana – sequence: 7 givenname: Ranko orcidid: 0000-0002-6643-1781 surname: Škrbić fullname: Škrbić, Ranko |
BookMark | eNp1ks9u1DAQxiNURP_AA3CLxIVLwI6dOLkgrVZQVqpE1a16tSbOpPHKiRfbqVROPfEEvfB6fRKc3SLRIk4ee775jebzHCcHox0xSd5S8oGxmnwcrEE1GfS5oGVBBX-RHFGek4wRXh_8FR8mx95vCMkpp8Wr5JCVhPIYHiU_V2O61kYrm8LYpvF2pYOz6TpMrUaf2i5dGNXjoI2B9EY73erOWAfphQ398HB3f27N7bbH0Rr_cPcrPbcBx6DBpJ11kdfrRgdtx5m0Xlyss6W9yvKYCOhGMPoHzNnXycsOjMc3j-dJcvnl8-Xya3b27XS1XJxligsSspzUpMCclx0poKqxYZgrBCUEr6ErBPKKFZTVqm5pIVrCFEBDoASOXcs5O0lWe2xrYSO3Tg_gbqUFLXcP1l1LcEErg1K0FHjJm6riHS8YB4A8hhDxVdOUZWR92rO2UzNgq-LUDswT6NPMqHt5bW9kHY0ndAa8fwQ4-31CH-SgvcLo84h28jIXRJQkftUsffdMurHTbN9OVTIhKpZHldirlLPeO-yk0mFnb-yvjaREzmsj_1mbWEmfVf4Z4_81vwEnb8yC |
CitedBy_id | crossref_primary_10_3390_molecules28052294 crossref_primary_10_56782_pps_279 crossref_primary_10_1016_j_aquaculture_2023_739977 crossref_primary_10_3390_nu17020290 crossref_primary_10_1016_j_jep_2023_117439 crossref_primary_10_1016_j_fufo_2024_100303 crossref_primary_10_3389_fcimb_2024_1353971 |
Cites_doi | 10.1080/15287394.2021.2009947 10.1007/s10517-017-3807-x 10.1128/JVI.02232-10 10.31083/j.rcm2302057 10.1007/s11010-022-04410-7 10.1126/science.abd3072 10.1007/978-1-61779-465-0_25 10.1016/j.bmcl.2010.01.084 10.1016/j.foodchem.2010.12.156 10.1038/s41598-021-84700-0 10.3389/fchem.2021.638187 10.1371/journal.pone.0253489 10.1101/2020.09.22.308783 10.1136/heartjnl-2020-317393 10.1038/s41580-021-00418-x 10.2174/1389201022666210322124348 10.1126/science.abd2985 10.1002/ddr.21815 10.14710/jbtr.v6i2.7590 10.1021/acs.jmedchem.0c00502 10.1016/j.molcel.2020.04.022 10.1002/bio.1227 10.1021/acschembio.1c00756 10.3390/biomedicines10051170 10.52305/QQNR6474 10.1021/jm901755g 10.1101/2020.12.21.20248640 10.1021/acs.jafc.0c05064 10.1074/jbc.M111.331140 10.1002/jcc.21334 10.3390/nu13082800 10.1016/j.bioorg.2021.105145 10.1007/s11010-020-03981-7 10.1007/s12539-015-0137-4 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/molecules27165174 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1420-3049 |
ExternalDocumentID | oai_doaj_org_article_7d1a464b884f4534aaa284fa5138bb66 PMC9415016 10_3390_molecules27165174 |
GrantInformation_xml | – fundername: Ministry of Education, Science and Technological Development, Republic of Serbia grantid: 451-03-9/2021-14/200161 |
GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFKRA AFPKN AFRAH AFZYC AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IAO IHR ITC KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM SV3 TR2 TUS UKHRP ~8M 3V. 7XB 8FK AZQEC COVID DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 ESTFP PUEGO 5PM |
ID | FETCH-LOGICAL-c470t-20905e246f05a89eb3e2ceac7749af57e4835139c9d157d03caab0a6a4efd443 |
IEDL.DBID | 7X7 |
ISSN | 1420-3049 |
IngestDate | Wed Aug 27 01:31:34 EDT 2025 Thu Aug 21 18:29:41 EDT 2025 Mon Sep 08 07:39:11 EDT 2025 Fri Jul 25 09:34:07 EDT 2025 Tue Jul 01 01:21:20 EDT 2025 Thu Apr 24 23:05:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-20905e246f05a89eb3e2ceac7749af57e4835139c9d157d03caab0a6a4efd443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6643-1781 0000-0001-5777-8612 0000-0003-4332-8690 |
OpenAccessLink | https://www.proquest.com/docview/2706377832?pq-origsite=%requestingapplication% |
PMID | 36014415 |
PQID | 2706377832 |
PQPubID | 2032355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7d1a464b884f4534aaa284fa5138bb66 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9415016 proquest_miscellaneous_2707603606 proquest_journals_2706377832 crossref_citationtrail_10_3390_molecules27165174 crossref_primary_10_3390_molecules27165174 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220814 |
PublicationDateYYYYMMDD | 2022-08-14 |
PublicationDate_xml | – month: 8 year: 2022 text: 20220814 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Molecules (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Radovic (ref_16) 2022; 477 Liu (ref_31) 2020; 68 Grabez (ref_7) 2022; 23 Silva (ref_18) 2022; 85 Zhan (ref_21) 2021; 82 Filippova (ref_15) 2017; 163 ref_10 Surucic (ref_12) 2021; 476 Tito (ref_11) 2021; 9 Guedes (ref_34) 2021; 11 Xiu (ref_9) 2020; 63 Tian (ref_20) 2011; 26 Krieger (ref_36) 2012; 819 Daly (ref_32) 2020; 370 Makau (ref_14) 2013; 7 Young (ref_17) 2020; 106 Surucic (ref_13) 2021; 114 Shuster (ref_25) 2021; 16 Glowacka (ref_3) 2011; 85 Fischer (ref_30) 2011; 127 Tamura (ref_19) 2010; 20 Yasmin (ref_27) 2017; 9 Harwansh (ref_5) 2022; 23 ref_24 Jackson (ref_1) 2022; 23 Hoffmann (ref_2) 2020; 78 ref_23 Parker (ref_29) 2012; 287 Ojha (ref_4) 2020; 370 Trott (ref_35) 2010; 31 ref_28 ref_26 Fakih (ref_22) 2020; 6 ref_8 Jarvis (ref_33) 2010; 53 ref_6 |
References_xml | – volume: 85 start-page: 353 year: 2022 ident: ref_18 article-title: Pedunculagin isolated from Plinia cauliflora seeds exhibits genotoxic, antigenotoxic and cytotoxic effects in bacteria and human lymphocytes publication-title: J. Toxicol. Environ. Health A doi: 10.1080/15287394.2021.2009947 – volume: 163 start-page: 374 year: 2017 ident: ref_15 article-title: Antiviral Activity of Lady’s Mantle (Alchemilla vulgaris L.) Extracts against Orthopoxviruses publication-title: Bull. Exp. Biol Med. doi: 10.1007/s10517-017-3807-x – volume: 85 start-page: 4122 year: 2011 ident: ref_3 article-title: Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response publication-title: J. Virol. doi: 10.1128/JVI.02232-10 – volume: 23 start-page: 57 year: 2022 ident: ref_7 article-title: A prospective, randomized, double-blind, placebo-controlled trial of polyphenols on the outcomes of inflammatory factors and oxidative stress in patients with type 2 diabetes mellitus publication-title: Rev. Cardiovasc. Med. doi: 10.31083/j.rcm2302057 – volume: 477 start-page: 1893 year: 2022 ident: ref_16 article-title: Alchemilla viridiflora Rothm.: The potent natural inhibitor of angiotensin I-converting enzyme publication-title: Mol. Cell Biochem. doi: 10.1007/s11010-022-04410-7 – ident: ref_24 – volume: 370 start-page: 861 year: 2020 ident: ref_32 article-title: Neuropilin-1 is a host factor for SARS-CoV-2 infection publication-title: Science doi: 10.1126/science.abd3072 – volume: 819 start-page: 405 year: 2012 ident: ref_36 article-title: Assignment of protonation states in proteins and ligands: Combining pKa prediction with hydrogen bonding network optimization publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-465-0_25 – volume: 20 start-page: 1598 year: 2010 ident: ref_19 article-title: Tellimagrandin I, HCV invasion inhibitor from Rosae Rugosae Flos publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2010.01.084 – volume: 127 start-page: 807 year: 2011 ident: ref_30 article-title: Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD-ESI/MS(n) publication-title: Food Chem. doi: 10.1016/j.foodchem.2010.12.156 – volume: 11 start-page: 5543 year: 2021 ident: ref_34 article-title: Drug design and repurposing with DockThor-VS web server focusing on SARS-CoV-2 therapeutic targets and their non-synonym variants publication-title: Sci. Rep. doi: 10.1038/s41598-021-84700-0 – volume: 7 start-page: 189 year: 2013 ident: ref_14 article-title: Anti-influenza activity of Alchemilla mollis extract: Possible virucidal activity against influenza virus particles publication-title: Drug Discov. Ther. – volume: 9 start-page: 638187 year: 2021 ident: ref_11 article-title: Pomegranate Peel Extract as an Inhibitor of SARS-CoV-2 Spike Binding to Human ACE2 Receptor (in vitro): A Promising Source of Novel Antiviral Drugs publication-title: Front. Chem. doi: 10.3389/fchem.2021.638187 – ident: ref_8 doi: 10.1371/journal.pone.0253489 – ident: ref_28 doi: 10.1101/2020.09.22.308783 – volume: 106 start-page: 1503 year: 2020 ident: ref_17 article-title: Risk of severe COVID-19 disease with ACE inhibitors and angiotensin receptor blockers: Cohort study including 8.3 million people publication-title: Heart doi: 10.1136/heartjnl-2020-317393 – volume: 23 start-page: 3 year: 2022 ident: ref_1 article-title: Mechanisms of SARS-CoV-2 entry into cells publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-021-00418-x – volume: 23 start-page: 235 year: 2022 ident: ref_5 article-title: Herbal Medicines to Fight Against COVID-19: New Battle with an Old Weapon publication-title: Curr. Pharm. Biotechnol. doi: 10.2174/1389201022666210322124348 – volume: 370 start-page: 856 year: 2020 ident: ref_4 article-title: Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity publication-title: Science doi: 10.1126/science.abd2985 – volume: 82 start-page: 1124 year: 2021 ident: ref_21 article-title: Potential antiviral activity of isorhamnetin against SARS-CoV-2 spike pseudotyped virus in vitro publication-title: Drug Dev. Res. doi: 10.1002/ddr.21815 – volume: 6 start-page: 48 year: 2020 ident: ref_22 article-title: In silico Identification of Characteristics Spike Glycoprotein of SARS-CoV-2 in the Development Novel Candidates for COVID-19 Infectious Diseases publication-title: J. Biomed. Transl. Res. doi: 10.14710/jbtr.v6i2.7590 – volume: 63 start-page: 12256 year: 2020 ident: ref_9 article-title: Inhibitors of SARS-CoV-2 Entry: Current and Future Opportunities publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.0c00502 – volume: 78 start-page: 779 year: 2020 ident: ref_2 article-title: A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.04.022 – volume: 26 start-page: 296 year: 2011 ident: ref_20 article-title: Spectroscopy characterization of the interaction between brevifolin carboxylic acid and bovine serum albumin publication-title: Luminescence doi: 10.1002/bio.1227 – volume: 16 start-page: 2845 year: 2021 ident: ref_25 article-title: Clinical Antiviral Drug Arbidol Inhibits Infection by SARS-CoV-2 and Variants through Direct Binding to the Spike Protein publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.1c00756 – ident: ref_26 doi: 10.3390/biomedicines10051170 – ident: ref_6 doi: 10.52305/QQNR6474 – volume: 53 start-page: 2215 year: 2010 ident: ref_33 article-title: Small molecule inhibitors of the neuropilin-1 vascular endothelial growth factor A (VEGF-A) interaction publication-title: J. Med. Chem. doi: 10.1021/jm901755g – ident: ref_23 doi: 10.1101/2020.12.21.20248640 – volume: 68 start-page: 13982 year: 2020 ident: ref_31 article-title: Quercetin and Its Metabolites Inhibit Recombinant Human Angiotensin-Converting Enzyme 2 (ACE2) Activity publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.0c05064 – volume: 287 start-page: 11082 year: 2012 ident: ref_29 article-title: Structural basis for selective vascular endothelial growth factor-A (VEGF-A) binding to neuropilin-1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.331140 – volume: 31 start-page: 455 year: 2010 ident: ref_35 article-title: AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading publication-title: J. Comput. Chem. doi: 10.1002/jcc.21334 – ident: ref_10 doi: 10.3390/nu13082800 – volume: 114 start-page: 105145 year: 2021 ident: ref_13 article-title: Pomegranate peel extract polyphenols attenuate the SARS-CoV-2 S-glycoprotein binding ability to ACE2 Receptor: In silico and in vitro studies publication-title: Bioorg. Chem. doi: 10.1016/j.bioorg.2021.105145 – volume: 476 start-page: 1179 year: 2021 ident: ref_12 article-title: Computational study of pomegranate peel extract polyphenols as potential inhibitors of SARS-CoV-2 virus internalization publication-title: Mol. Cell Biochem. doi: 10.1007/s11010-020-03981-7 – volume: 9 start-page: 184 year: 2017 ident: ref_27 article-title: Interaction of Quercetin of Onion with Axon Guidance Protein Receptor, NRP-1 Plays Important Role in Cancer Treatment: An In Silico Approach publication-title: Interdiscip. Sci. doi: 10.1007/s12539-015-0137-4 |
SSID | ssj0021415 |
Score | 2.407769 |
Snippet | Since the outbreak of the COVID-19 pandemic, it has been obvious that virus infection poses a serious threat to human health on a global scale. Certain plants,... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 5174 |
SubjectTerms | Alchemilla viridiflora Rothm Antiviral drugs Coronaviruses COVID-19 Flavonoids Glycoproteins Herbal medicine Hydrogen bonds Infections neuropilin-1 Pandemics Phytochemicals Polyphenols Prevention SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 spike glycoprotein Viral infections Viruses |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL-WCKB9ioSAjcUKK6iROnByXFVWLBKq6peotGie2GilN0G5aiVtP_AIu_L3-Ep4T76oRElw4JnacxDO230vGbxh7B95DQkU60DqUgUxiGRCBrBBWDwBmEnrQLfj8JT36Kj9dJBf3Un25mLBRHnjsuANVhSRTqbNMWtcUEWFGtZSEcaZ1Oohti1xsyJSnWiHWpfEfZgxSf3A1ppo16wj0wGkzT1ahQax_gjCn8ZH3FpzDx-yRR4p8Pj7hHntg2idsd7FJ0PaU_Thu-bJuYEpObcVxdF73q4770EDeWT5vSlcfpuY39aquagt6TvwU5rm6u_150jXfXYxX16zvbn_xk653sUO4KZAs2rus9RDQ5Vpazk-XwaI7DyLuPyI2fgfnM3Z2-PFscRT4tApBKZXoA9ddiYlkakVCWQ42baIS8y-AYE42UUYClQEYlnkVJqoScUmkBaUkja2kjJ-znbZrzQvGrYlNRlFoUC7J6Bwc1wqpDWWOSJUzJja9XJRectxlvmgKUA9nmOIPw8zY--0l30a9jb9V_uBMt63opLKHE3CgwjtQ8S8HmrH9jeELP37XRaQA3ZTCdDdjb7fFsK_7nUKt6a6HOioFABBoQk0cZvJA05K2vhw0vHM4KND2y__xBq_Yw8htynBCvXKf7fSra_MaUKnXb4ZR8RvQsRhU priority: 102 providerName: Directory of Open Access Journals |
Title | In Silico and In Vitro Studies of Alchemilla viridiflora Rothm—Polyphenols’ Potential for Inhibition of SARS-CoV-2 Internalization |
URI | https://www.proquest.com/docview/2706377832 https://www.proquest.com/docview/2707603606 https://pubmed.ncbi.nlm.nih.gov/PMC9415016 https://doaj.org/article/7d1a464b884f4534aaa284fa5138bb66 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZgO8AF8VOUjcpInJCiOYkTJyfUVSsDialqx9Rb9JzYLFIWjzabxG0n_gIu_Hv7S3h23Y4IaZdKrV0n7ffs9332y3uEvEfdA0xEMpAy5AFPYh4AoFgB9B5ImIFJl7fg60l6_I1_WSQLv-G28mGVmzXRLdSVKe0e-UEk0JkKgQb48fJHYKtG2dNVX0LjIdkNkYnY0g1icSe4QvRO65PMGKX9wcW64KxaRSgSbIbmni9yKft7PLMfJfmP25k8JU88X6SjNcDPyAPVPiePxpsybS_Ir88tndcNAkqhrSi-O6u7paE-QJAaTUdNafsj4PS6XtZVrVGkA50hSBe3N7-npvlpI71Ms7q9-UOnprMRRHhR5LM43nktXViXHWk-ms2DsTkLIuq3Ehv_HOdLcjo5Oh0fB764QlBywTqcHTlLVMRTzRLIctTUKipxFUY6mINOhOLIzZAelnkVJqJicQkgGaTAla44j1-Rnda06jWhWsUqgyhU2M5ByRyVrmZcKsisnCoHhG3-5aL0icdt_YumQAFigSn-A2ZAPmy_crnOunFf50ML3bajTZjtPjDL74Wff4WoQuApl1nGtbVIAEDHrAF_YiZlmg7I_gb4ws_iVXFncwPybtuM-NpDFWiVuXJ9RIo0gOEQomcwvRvqt7T1ucvknaOBIud-c__F98jjyD50YRPx8n2y0y2v1FukQp0cOnvH12zyaUh2D49OprOh21b4C6VcE5U |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbK9lAuqPyJhQJGggtSVCdx_g4V2i6tdmm7Wu0uVW_ROHHaSGlcdtOi3nriCbjwMLxMn4Rx1lmIkHrrMbHj_MyXmW_s8Qwh79HvARY4whLC5hb3XG4BoLMCaD2QMAMTdd6Co5E_-Mq_nHgna-R3sxdGh1U2OrFW1KlK9Bz5thOgMQ0CBOCni2-WrhqlV1ebEhpgSiukO3WKMbOx40Bef0cXbrEz_Izy_uA4-3uz_sAyVQashAesQphEzJMO9zPmQRihcymdBNUR8qIIMi-QHEkK8qQkSm0vSJmbAAgGPnCZpZy7OOwDss71_EmHrO_ujcaTlcdno3lcLqW6bsS2z5cVb-XCQS9Fp4huGcO6ZkCL6LbDNP-xe_ub5JEhrLS3RNhjsibLJ2Sj39SJe0p-DEs6zQtEFIUypXh0nFdzRU2EIlUZ7RWJ7o-Io1f5PE_zrEDk0Qmi5Pz25udYFdc61EwVi9ubX3SsKh3ChDdFQo3jneWijivTI017k6nVV8eWQ81cZmE2kj4js_v47s9Jp1SlfEFoJl0ZgmNLbOcgRYSudsa4kBBqfy7pEtZ85Tgxmc91AY4iRg9ICyb-TzBd8nF1ycUy7cddnXe16FYddcbu-oSan8ZGAcRBagP3uQhDnulfAgCQGWSArxgK4ftdstUIPjZqZBH_BX2XvFs1o3z1qg6UUl3WfQIfeQjDIYIWYFoP1G4p87M6lXiEAEXS__Lum78lG4PZ0WF8OBwdvCIPHb0DRGcF5lukU80v5WvkZZV4Y9BPSXzP_9sfyphTTg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkYBLxa-6tICR4IIUreM4cXJAaNmy6lKoVt1S7S0aJw6NlMZldwvqrSeegAuPwuv0SRjnZ0uE1FuPiR3nZ77xfBOPZwh5hX4PMMmVo5QrHOF7wgFAZwXQeiBhBqaqvAWf94PdL-LjzJ-tkT_tXhgbVtnOidVEnZrE_iPvc4nGVEoEYD9rwiImO6N3p98cW0HKrrS25TRqiOzp8x_ovi3ejndQ1q85H304HO46TYUBJxGSLREiEfM1F0HGfAgjdCw1T3AqQk4UQeZLLZCgIEdKotT1Zcq8BEAxCEDoLBXCw2FvkdvSQ6uOqiRnV76ei4axXkT1vIj1T-pat3rB0T-xyaE7ZrCqFtChuN0AzX8s3ug-2WioKh3U2HpA1nT5kNwdthXiHpGf45JO8wKxRKFMKR4d5cu5oU1sIjUZHRSJ7Y9Yo9_zeZ7mWYGYoweIj5PLi18TU5zbIDNTLC4vftOJWdrgJbwpUmkc7zhXVUSZHWk6OJg6Q3PkcNr8xSyaLaSPyeFNfPUnZL00pd4kNNOeDoG7GtsFaBWhk50xoTSE1pNLeoS1XzlOmpzntvRGEaPvYwUT_yeYHnmzuuS0TvhxXef3VnSrjjZXd3XCzL_GjerHMnVBBEKFocisMgAAcoIM8BVDpYKgR7ZbwcfNBLKIr-DeIy9XzShfu54DpTZnVR8ZIANhOITsAKbzQN2WMj-ukohHCFCk-0-vv_kLcge1LP403t_bIve43fph0wGLbbK-nJ_pZ0jIlup5BX1K4htWtb_Kz1Dy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Silico+and+In+Vitro+Studies+of+Alchemilla+viridiflora+Rothm-Polyphenols%27+Potential+for+Inhibition+of+SARS-CoV-2+Internalization&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Suru%C4%8Di%C4%87%2C+Relja&rft.au=Radovi%C4%87+Selgrad%2C+Jelena&rft.au=Kundakovi%C4%87-Vasovi%C4%87%2C+Tatjana&rft.au=Lazovi%C4%87%2C+Biljana&rft.date=2022-08-14&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=27&rft.issue=16&rft_id=info:doi/10.3390%2Fmolecules27165174&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |