In Silico and In Vitro Studies of Alchemilla viridiflora Rothm—Polyphenols’ Potential for Inhibition of SARS-CoV-2 Internalization

Since the outbreak of the COVID-19 pandemic, it has been obvious that virus infection poses a serious threat to human health on a global scale. Certain plants, particularly those rich in polyphenols, have been found to be effective antiviral agents. The effectiveness of Alchemilla viridiflora Rothm....

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 27; no. 16; p. 5174
Main Authors Suručić, Relja, Radović Selgrad, Jelena, Kundaković-Vasović, Tatjana, Lazović, Biljana, Travar, Maja, Suručić, Ljiljana, Škrbić, Ranko
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 14.08.2022
MDPI
Subjects
Online AccessGet full text
ISSN1420-3049
1420-3049
DOI10.3390/molecules27165174

Cover

Abstract Since the outbreak of the COVID-19 pandemic, it has been obvious that virus infection poses a serious threat to human health on a global scale. Certain plants, particularly those rich in polyphenols, have been found to be effective antiviral agents. The effectiveness of Alchemilla viridiflora Rothm. (Rosaceae) methanol extract to prevent contact between virus spike (S)-glycoprotein and angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1) receptors was investigated. In vitro results revealed that the tested samples inhibited 50% of virus-receptor binding interactions in doses of 0.18 and 0.22 mg/mL for NRP1 and ACE2, respectively. Molecular docking studies revealed that the compounds from A. viridiflora ellagitannins class had a higher affinity for binding with S-glycoprotein whilst flavonoid compounds more significantly interacted with the NRP1 receptor. Quercetin 3-(6″-ferulylglucoside) and pentagalloylglucose were two compounds with the highest exhibited interfering potential for selected target receptors, with binding energies of −8.035 (S-glycoprotein) and −7.685 kcal/mol (NRP1), respectively. Furthermore, computational studies on other SARS-CoV-2 strains resulting from mutations in the original wild strain (V483A, N501Y-K417N-E484K, N501Y, N439K, L452R-T478K, K417N, G476S, F456L, E484K) revealed that virus internalization activity was maintained, but with different single compound contributions.
AbstractList Since the outbreak of the COVID-19 pandemic, it has been obvious that virus infection poses a serious threat to human health on a global scale. Certain plants, particularly those rich in polyphenols, have been found to be effective antiviral agents. The effectiveness of Alchemilla viridiflora Rothm. (Rosaceae) methanol extract to prevent contact between virus spike ( S )-glycoprotein and angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1) receptors was investigated. In vitro results revealed that the tested samples inhibited 50% of virus-receptor binding interactions in doses of 0.18 and 0.22 mg/mL for NRP1 and ACE2, respectively. Molecular docking studies revealed that the compounds from A. viridiflora ellagitannins class had a higher affinity for binding with S-glycoprotein whilst flavonoid compounds more significantly interacted with the NRP1 receptor. Quercetin 3-(6″-ferulylglucoside) and pentagalloylglucose were two compounds with the highest exhibited interfering potential for selected target receptors, with binding energies of −8.035 (S-glycoprotein) and −7.685 kcal/mol (NRP1), respectively. Furthermore, computational studies on other SARS-CoV-2 strains resulting from mutations in the original wild strain (V483A, N501Y-K417N-E484K, N501Y, N439K, L452R-T478K, K417N, G476S, F456L, E484K) revealed that virus internalization activity was maintained, but with different single compound contributions.
Since the outbreak of the COVID-19 pandemic, it has been obvious that virus infection poses a serious threat to human health on a global scale. Certain plants, particularly those rich in polyphenols, have been found to be effective antiviral agents. The effectiveness of Alchemilla viridiflora Rothm. (Rosaceae) methanol extract to prevent contact between virus spike (S)-glycoprotein and angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1) receptors was investigated. In vitro results revealed that the tested samples inhibited 50% of virus-receptor binding interactions in doses of 0.18 and 0.22 mg/mL for NRP1 and ACE2, respectively. Molecular docking studies revealed that the compounds from A. viridiflora ellagitannins class had a higher affinity for binding with S-glycoprotein whilst flavonoid compounds more significantly interacted with the NRP1 receptor. Quercetin 3-(6″-ferulylglucoside) and pentagalloylglucose were two compounds with the highest exhibited interfering potential for selected target receptors, with binding energies of -8.035 (S-glycoprotein) and -7.685 kcal/mol (NRP1), respectively. Furthermore, computational studies on other SARS-CoV-2 strains resulting from mutations in the original wild strain (V483A, N501Y-K417N-E484K, N501Y, N439K, L452R-T478K, K417N, G476S, F456L, E484K) revealed that virus internalization activity was maintained, but with different single compound contributions.Since the outbreak of the COVID-19 pandemic, it has been obvious that virus infection poses a serious threat to human health on a global scale. Certain plants, particularly those rich in polyphenols, have been found to be effective antiviral agents. The effectiveness of Alchemilla viridiflora Rothm. (Rosaceae) methanol extract to prevent contact between virus spike (S)-glycoprotein and angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1) receptors was investigated. In vitro results revealed that the tested samples inhibited 50% of virus-receptor binding interactions in doses of 0.18 and 0.22 mg/mL for NRP1 and ACE2, respectively. Molecular docking studies revealed that the compounds from A. viridiflora ellagitannins class had a higher affinity for binding with S-glycoprotein whilst flavonoid compounds more significantly interacted with the NRP1 receptor. Quercetin 3-(6″-ferulylglucoside) and pentagalloylglucose were two compounds with the highest exhibited interfering potential for selected target receptors, with binding energies of -8.035 (S-glycoprotein) and -7.685 kcal/mol (NRP1), respectively. Furthermore, computational studies on other SARS-CoV-2 strains resulting from mutations in the original wild strain (V483A, N501Y-K417N-E484K, N501Y, N439K, L452R-T478K, K417N, G476S, F456L, E484K) revealed that virus internalization activity was maintained, but with different single compound contributions.
Since the outbreak of the COVID-19 pandemic, it has been obvious that virus infection poses a serious threat to human health on a global scale. Certain plants, particularly those rich in polyphenols, have been found to be effective antiviral agents. The effectiveness of Alchemilla viridiflora Rothm. (Rosaceae) methanol extract to prevent contact between virus spike (S)-glycoprotein and angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1) receptors was investigated. In vitro results revealed that the tested samples inhibited 50% of virus-receptor binding interactions in doses of 0.18 and 0.22 mg/mL for NRP1 and ACE2, respectively. Molecular docking studies revealed that the compounds from A. viridiflora ellagitannins class had a higher affinity for binding with S-glycoprotein whilst flavonoid compounds more significantly interacted with the NRP1 receptor. Quercetin 3-(6″-ferulylglucoside) and pentagalloylglucose were two compounds with the highest exhibited interfering potential for selected target receptors, with binding energies of −8.035 (S-glycoprotein) and −7.685 kcal/mol (NRP1), respectively. Furthermore, computational studies on other SARS-CoV-2 strains resulting from mutations in the original wild strain (V483A, N501Y-K417N-E484K, N501Y, N439K, L452R-T478K, K417N, G476S, F456L, E484K) revealed that virus internalization activity was maintained, but with different single compound contributions.
Author Kundaković-Vasović, Tatjana
Škrbić, Ranko
Travar, Maja
Suručić, Relja
Radović Selgrad, Jelena
Lazović, Biljana
Suručić, Ljiljana
AuthorAffiliation 3 Internal Medicine Clinic, Division of Pulmonology, University Clinical Hospital Center Zemun, 11080 Belgrade, Serbia
4 Department of Microbiology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
1 Department of Pharmacognosy, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
6 Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
2 Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, VojvodeStepe 450, 11221 Belgrade, Serbia
5 Department of Organic Chemistry, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
AuthorAffiliation_xml – name: 5 Department of Organic Chemistry, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
– name: 1 Department of Pharmacognosy, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
– name: 2 Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, VojvodeStepe 450, 11221 Belgrade, Serbia
– name: 4 Department of Microbiology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
– name: 6 Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
– name: 3 Internal Medicine Clinic, Division of Pulmonology, University Clinical Hospital Center Zemun, 11080 Belgrade, Serbia
Author_xml – sequence: 1
  givenname: Relja
  surname: Suručić
  fullname: Suručić, Relja
– sequence: 2
  givenname: Jelena
  surname: Radović Selgrad
  fullname: Radović Selgrad, Jelena
– sequence: 3
  givenname: Tatjana
  orcidid: 0000-0001-5777-8612
  surname: Kundaković-Vasović
  fullname: Kundaković-Vasović, Tatjana
– sequence: 4
  givenname: Biljana
  surname: Lazović
  fullname: Lazović, Biljana
– sequence: 5
  givenname: Maja
  surname: Travar
  fullname: Travar, Maja
– sequence: 6
  givenname: Ljiljana
  orcidid: 0000-0003-4332-8690
  surname: Suručić
  fullname: Suručić, Ljiljana
– sequence: 7
  givenname: Ranko
  orcidid: 0000-0002-6643-1781
  surname: Škrbić
  fullname: Škrbić, Ranko
BookMark eNp1ks9u1DAQxiNURP_AA3CLxIVLwI6dOLkgrVZQVqpE1a16tSbOpPHKiRfbqVROPfEEvfB6fRKc3SLRIk4ee775jebzHCcHox0xSd5S8oGxmnwcrEE1GfS5oGVBBX-RHFGek4wRXh_8FR8mx95vCMkpp8Wr5JCVhPIYHiU_V2O61kYrm8LYpvF2pYOz6TpMrUaf2i5dGNXjoI2B9EY73erOWAfphQ398HB3f27N7bbH0Rr_cPcrPbcBx6DBpJ11kdfrRgdtx5m0Xlyss6W9yvKYCOhGMPoHzNnXycsOjMc3j-dJcvnl8-Xya3b27XS1XJxligsSspzUpMCclx0poKqxYZgrBCUEr6ErBPKKFZTVqm5pIVrCFEBDoASOXcs5O0lWe2xrYSO3Tg_gbqUFLXcP1l1LcEErg1K0FHjJm6riHS8YB4A8hhDxVdOUZWR92rO2UzNgq-LUDswT6NPMqHt5bW9kHY0ndAa8fwQ4-31CH-SgvcLo84h28jIXRJQkftUsffdMurHTbN9OVTIhKpZHldirlLPeO-yk0mFnb-yvjaREzmsj_1mbWEmfVf4Z4_81vwEnb8yC
CitedBy_id crossref_primary_10_3390_molecules28052294
crossref_primary_10_56782_pps_279
crossref_primary_10_1016_j_aquaculture_2023_739977
crossref_primary_10_3390_nu17020290
crossref_primary_10_1016_j_jep_2023_117439
crossref_primary_10_1016_j_fufo_2024_100303
crossref_primary_10_3389_fcimb_2024_1353971
Cites_doi 10.1080/15287394.2021.2009947
10.1007/s10517-017-3807-x
10.1128/JVI.02232-10
10.31083/j.rcm2302057
10.1007/s11010-022-04410-7
10.1126/science.abd3072
10.1007/978-1-61779-465-0_25
10.1016/j.bmcl.2010.01.084
10.1016/j.foodchem.2010.12.156
10.1038/s41598-021-84700-0
10.3389/fchem.2021.638187
10.1371/journal.pone.0253489
10.1101/2020.09.22.308783
10.1136/heartjnl-2020-317393
10.1038/s41580-021-00418-x
10.2174/1389201022666210322124348
10.1126/science.abd2985
10.1002/ddr.21815
10.14710/jbtr.v6i2.7590
10.1021/acs.jmedchem.0c00502
10.1016/j.molcel.2020.04.022
10.1002/bio.1227
10.1021/acschembio.1c00756
10.3390/biomedicines10051170
10.52305/QQNR6474
10.1021/jm901755g
10.1101/2020.12.21.20248640
10.1021/acs.jafc.0c05064
10.1074/jbc.M111.331140
10.1002/jcc.21334
10.3390/nu13082800
10.1016/j.bioorg.2021.105145
10.1007/s11010-020-03981-7
10.1007/s12539-015-0137-4
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/molecules27165174
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database ProQuest
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_7d1a464b884f4534aaa284fa5138bb66
PMC9415016
10_3390_molecules27165174
GrantInformation_xml – fundername: Ministry of Education, Science and Technological Development, Republic of Serbia
  grantid: 451-03-9/2021-14/200161
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
ESTFP
PUEGO
5PM
ID FETCH-LOGICAL-c470t-20905e246f05a89eb3e2ceac7749af57e4835139c9d157d03caab0a6a4efd443
IEDL.DBID 7X7
ISSN 1420-3049
IngestDate Wed Aug 27 01:31:34 EDT 2025
Thu Aug 21 18:29:41 EDT 2025
Mon Sep 08 07:39:11 EDT 2025
Fri Jul 25 09:34:07 EDT 2025
Tue Jul 01 01:21:20 EDT 2025
Thu Apr 24 23:05:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-20905e246f05a89eb3e2ceac7749af57e4835139c9d157d03caab0a6a4efd443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6643-1781
0000-0001-5777-8612
0000-0003-4332-8690
OpenAccessLink https://www.proquest.com/docview/2706377832?pq-origsite=%requestingapplication%
PMID 36014415
PQID 2706377832
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_7d1a464b884f4534aaa284fa5138bb66
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9415016
proquest_miscellaneous_2707603606
proquest_journals_2706377832
crossref_citationtrail_10_3390_molecules27165174
crossref_primary_10_3390_molecules27165174
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220814
PublicationDateYYYYMMDD 2022-08-14
PublicationDate_xml – month: 8
  year: 2022
  text: 20220814
  day: 14
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Radovic (ref_16) 2022; 477
Liu (ref_31) 2020; 68
Grabez (ref_7) 2022; 23
Silva (ref_18) 2022; 85
Zhan (ref_21) 2021; 82
Filippova (ref_15) 2017; 163
ref_10
Surucic (ref_12) 2021; 476
Tito (ref_11) 2021; 9
Guedes (ref_34) 2021; 11
Xiu (ref_9) 2020; 63
Tian (ref_20) 2011; 26
Krieger (ref_36) 2012; 819
Daly (ref_32) 2020; 370
Makau (ref_14) 2013; 7
Young (ref_17) 2020; 106
Surucic (ref_13) 2021; 114
Shuster (ref_25) 2021; 16
Glowacka (ref_3) 2011; 85
Fischer (ref_30) 2011; 127
Tamura (ref_19) 2010; 20
Yasmin (ref_27) 2017; 9
Harwansh (ref_5) 2022; 23
ref_24
Jackson (ref_1) 2022; 23
Hoffmann (ref_2) 2020; 78
ref_23
Parker (ref_29) 2012; 287
Ojha (ref_4) 2020; 370
Trott (ref_35) 2010; 31
ref_28
ref_26
Fakih (ref_22) 2020; 6
ref_8
Jarvis (ref_33) 2010; 53
ref_6
References_xml – volume: 85
  start-page: 353
  year: 2022
  ident: ref_18
  article-title: Pedunculagin isolated from Plinia cauliflora seeds exhibits genotoxic, antigenotoxic and cytotoxic effects in bacteria and human lymphocytes
  publication-title: J. Toxicol. Environ. Health A
  doi: 10.1080/15287394.2021.2009947
– volume: 163
  start-page: 374
  year: 2017
  ident: ref_15
  article-title: Antiviral Activity of Lady’s Mantle (Alchemilla vulgaris L.) Extracts against Orthopoxviruses
  publication-title: Bull. Exp. Biol Med.
  doi: 10.1007/s10517-017-3807-x
– volume: 85
  start-page: 4122
  year: 2011
  ident: ref_3
  article-title: Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response
  publication-title: J. Virol.
  doi: 10.1128/JVI.02232-10
– volume: 23
  start-page: 57
  year: 2022
  ident: ref_7
  article-title: A prospective, randomized, double-blind, placebo-controlled trial of polyphenols on the outcomes of inflammatory factors and oxidative stress in patients with type 2 diabetes mellitus
  publication-title: Rev. Cardiovasc. Med.
  doi: 10.31083/j.rcm2302057
– volume: 477
  start-page: 1893
  year: 2022
  ident: ref_16
  article-title: Alchemilla viridiflora Rothm.: The potent natural inhibitor of angiotensin I-converting enzyme
  publication-title: Mol. Cell Biochem.
  doi: 10.1007/s11010-022-04410-7
– ident: ref_24
– volume: 370
  start-page: 861
  year: 2020
  ident: ref_32
  article-title: Neuropilin-1 is a host factor for SARS-CoV-2 infection
  publication-title: Science
  doi: 10.1126/science.abd3072
– volume: 819
  start-page: 405
  year: 2012
  ident: ref_36
  article-title: Assignment of protonation states in proteins and ligands: Combining pKa prediction with hydrogen bonding network optimization
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-61779-465-0_25
– volume: 20
  start-page: 1598
  year: 2010
  ident: ref_19
  article-title: Tellimagrandin I, HCV invasion inhibitor from Rosae Rugosae Flos
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2010.01.084
– volume: 127
  start-page: 807
  year: 2011
  ident: ref_30
  article-title: Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD-ESI/MS(n)
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2010.12.156
– volume: 11
  start-page: 5543
  year: 2021
  ident: ref_34
  article-title: Drug design and repurposing with DockThor-VS web server focusing on SARS-CoV-2 therapeutic targets and their non-synonym variants
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-84700-0
– volume: 7
  start-page: 189
  year: 2013
  ident: ref_14
  article-title: Anti-influenza activity of Alchemilla mollis extract: Possible virucidal activity against influenza virus particles
  publication-title: Drug Discov. Ther.
– volume: 9
  start-page: 638187
  year: 2021
  ident: ref_11
  article-title: Pomegranate Peel Extract as an Inhibitor of SARS-CoV-2 Spike Binding to Human ACE2 Receptor (in vitro): A Promising Source of Novel Antiviral Drugs
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2021.638187
– ident: ref_8
  doi: 10.1371/journal.pone.0253489
– ident: ref_28
  doi: 10.1101/2020.09.22.308783
– volume: 106
  start-page: 1503
  year: 2020
  ident: ref_17
  article-title: Risk of severe COVID-19 disease with ACE inhibitors and angiotensin receptor blockers: Cohort study including 8.3 million people
  publication-title: Heart
  doi: 10.1136/heartjnl-2020-317393
– volume: 23
  start-page: 3
  year: 2022
  ident: ref_1
  article-title: Mechanisms of SARS-CoV-2 entry into cells
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-021-00418-x
– volume: 23
  start-page: 235
  year: 2022
  ident: ref_5
  article-title: Herbal Medicines to Fight Against COVID-19: New Battle with an Old Weapon
  publication-title: Curr. Pharm. Biotechnol.
  doi: 10.2174/1389201022666210322124348
– volume: 370
  start-page: 856
  year: 2020
  ident: ref_4
  article-title: Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity
  publication-title: Science
  doi: 10.1126/science.abd2985
– volume: 82
  start-page: 1124
  year: 2021
  ident: ref_21
  article-title: Potential antiviral activity of isorhamnetin against SARS-CoV-2 spike pseudotyped virus in vitro
  publication-title: Drug Dev. Res.
  doi: 10.1002/ddr.21815
– volume: 6
  start-page: 48
  year: 2020
  ident: ref_22
  article-title: In silico Identification of Characteristics Spike Glycoprotein of SARS-CoV-2 in the Development Novel Candidates for COVID-19 Infectious Diseases
  publication-title: J. Biomed. Transl. Res.
  doi: 10.14710/jbtr.v6i2.7590
– volume: 63
  start-page: 12256
  year: 2020
  ident: ref_9
  article-title: Inhibitors of SARS-CoV-2 Entry: Current and Future Opportunities
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.0c00502
– volume: 78
  start-page: 779
  year: 2020
  ident: ref_2
  article-title: A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.04.022
– volume: 26
  start-page: 296
  year: 2011
  ident: ref_20
  article-title: Spectroscopy characterization of the interaction between brevifolin carboxylic acid and bovine serum albumin
  publication-title: Luminescence
  doi: 10.1002/bio.1227
– volume: 16
  start-page: 2845
  year: 2021
  ident: ref_25
  article-title: Clinical Antiviral Drug Arbidol Inhibits Infection by SARS-CoV-2 and Variants through Direct Binding to the Spike Protein
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.1c00756
– ident: ref_26
  doi: 10.3390/biomedicines10051170
– ident: ref_6
  doi: 10.52305/QQNR6474
– volume: 53
  start-page: 2215
  year: 2010
  ident: ref_33
  article-title: Small molecule inhibitors of the neuropilin-1 vascular endothelial growth factor A (VEGF-A) interaction
  publication-title: J. Med. Chem.
  doi: 10.1021/jm901755g
– ident: ref_23
  doi: 10.1101/2020.12.21.20248640
– volume: 68
  start-page: 13982
  year: 2020
  ident: ref_31
  article-title: Quercetin and Its Metabolites Inhibit Recombinant Human Angiotensin-Converting Enzyme 2 (ACE2) Activity
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.0c05064
– volume: 287
  start-page: 11082
  year: 2012
  ident: ref_29
  article-title: Structural basis for selective vascular endothelial growth factor-A (VEGF-A) binding to neuropilin-1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.331140
– volume: 31
  start-page: 455
  year: 2010
  ident: ref_35
  article-title: AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21334
– ident: ref_10
  doi: 10.3390/nu13082800
– volume: 114
  start-page: 105145
  year: 2021
  ident: ref_13
  article-title: Pomegranate peel extract polyphenols attenuate the SARS-CoV-2 S-glycoprotein binding ability to ACE2 Receptor: In silico and in vitro studies
  publication-title: Bioorg. Chem.
  doi: 10.1016/j.bioorg.2021.105145
– volume: 476
  start-page: 1179
  year: 2021
  ident: ref_12
  article-title: Computational study of pomegranate peel extract polyphenols as potential inhibitors of SARS-CoV-2 virus internalization
  publication-title: Mol. Cell Biochem.
  doi: 10.1007/s11010-020-03981-7
– volume: 9
  start-page: 184
  year: 2017
  ident: ref_27
  article-title: Interaction of Quercetin of Onion with Axon Guidance Protein Receptor, NRP-1 Plays Important Role in Cancer Treatment: An In Silico Approach
  publication-title: Interdiscip. Sci.
  doi: 10.1007/s12539-015-0137-4
SSID ssj0021415
Score 2.407769
Snippet Since the outbreak of the COVID-19 pandemic, it has been obvious that virus infection poses a serious threat to human health on a global scale. Certain plants,...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5174
SubjectTerms Alchemilla viridiflora Rothm
Antiviral drugs
Coronaviruses
COVID-19
Flavonoids
Glycoproteins
Herbal medicine
Hydrogen bonds
Infections
neuropilin-1
Pandemics
Phytochemicals
Polyphenols
Prevention
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
spike glycoprotein
Viral infections
Viruses
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL-WCKB9ioSAjcUKK6iROnByXFVWLBKq6peotGie2GilN0G5aiVtP_AIu_L3-Ep4T76oRElw4JnacxDO230vGbxh7B95DQkU60DqUgUxiGRCBrBBWDwBmEnrQLfj8JT36Kj9dJBf3Un25mLBRHnjsuANVhSRTqbNMWtcUEWFGtZSEcaZ1Oohti1xsyJSnWiHWpfEfZgxSf3A1ppo16wj0wGkzT1ahQax_gjCn8ZH3FpzDx-yRR4p8Pj7hHntg2idsd7FJ0PaU_Thu-bJuYEpObcVxdF73q4770EDeWT5vSlcfpuY39aquagt6TvwU5rm6u_150jXfXYxX16zvbn_xk653sUO4KZAs2rus9RDQ5Vpazk-XwaI7DyLuPyI2fgfnM3Z2-PFscRT4tApBKZXoA9ddiYlkakVCWQ42baIS8y-AYE42UUYClQEYlnkVJqoScUmkBaUkja2kjJ-znbZrzQvGrYlNRlFoUC7J6Bwc1wqpDWWOSJUzJja9XJRectxlvmgKUA9nmOIPw8zY--0l30a9jb9V_uBMt63opLKHE3CgwjtQ8S8HmrH9jeELP37XRaQA3ZTCdDdjb7fFsK_7nUKt6a6HOioFABBoQk0cZvJA05K2vhw0vHM4KND2y__xBq_Yw8htynBCvXKf7fSra_MaUKnXb4ZR8RvQsRhU
  priority: 102
  providerName: Directory of Open Access Journals
Title In Silico and In Vitro Studies of Alchemilla viridiflora Rothm—Polyphenols’ Potential for Inhibition of SARS-CoV-2 Internalization
URI https://www.proquest.com/docview/2706377832
https://www.proquest.com/docview/2707603606
https://pubmed.ncbi.nlm.nih.gov/PMC9415016
https://doaj.org/article/7d1a464b884f4534aaa284fa5138bb66
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZgO8AF8VOUjcpInJCiOYkTJyfUVSsDialqx9Rb9JzYLFIWjzabxG0n_gIu_Hv7S3h23Y4IaZdKrV0n7ffs9332y3uEvEfdA0xEMpAy5AFPYh4AoFgB9B5ImIFJl7fg60l6_I1_WSQLv-G28mGVmzXRLdSVKe0e-UEk0JkKgQb48fJHYKtG2dNVX0LjIdkNkYnY0g1icSe4QvRO65PMGKX9wcW64KxaRSgSbIbmni9yKft7PLMfJfmP25k8JU88X6SjNcDPyAPVPiePxpsybS_Ir88tndcNAkqhrSi-O6u7paE-QJAaTUdNafsj4PS6XtZVrVGkA50hSBe3N7-npvlpI71Ms7q9-UOnprMRRHhR5LM43nktXViXHWk-ms2DsTkLIuq3Ehv_HOdLcjo5Oh0fB764QlBywTqcHTlLVMRTzRLIctTUKipxFUY6mINOhOLIzZAelnkVJqJicQkgGaTAla44j1-Rnda06jWhWsUqgyhU2M5ByRyVrmZcKsisnCoHhG3-5aL0icdt_YumQAFigSn-A2ZAPmy_crnOunFf50ML3bajTZjtPjDL74Wff4WoQuApl1nGtbVIAEDHrAF_YiZlmg7I_gb4ws_iVXFncwPybtuM-NpDFWiVuXJ9RIo0gOEQomcwvRvqt7T1ucvknaOBIud-c__F98jjyD50YRPx8n2y0y2v1FukQp0cOnvH12zyaUh2D49OprOh21b4C6VcE5U
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbK9lAuqPyJhQJGggtSVCdx_g4V2i6tdmm7Wu0uVW_ROHHaSGlcdtOi3nriCbjwMLxMn4Rx1lmIkHrrMbHj_MyXmW_s8Qwh79HvARY4whLC5hb3XG4BoLMCaD2QMAMTdd6Co5E_-Mq_nHgna-R3sxdGh1U2OrFW1KlK9Bz5thOgMQ0CBOCni2-WrhqlV1ebEhpgSiukO3WKMbOx40Bef0cXbrEz_Izy_uA4-3uz_sAyVQashAesQphEzJMO9zPmQRihcymdBNUR8qIIMi-QHEkK8qQkSm0vSJmbAAgGPnCZpZy7OOwDss71_EmHrO_ujcaTlcdno3lcLqW6bsS2z5cVb-XCQS9Fp4huGcO6ZkCL6LbDNP-xe_ub5JEhrLS3RNhjsibLJ2Sj39SJe0p-DEs6zQtEFIUypXh0nFdzRU2EIlUZ7RWJ7o-Io1f5PE_zrEDk0Qmi5Pz25udYFdc61EwVi9ubX3SsKh3ChDdFQo3jneWijivTI017k6nVV8eWQ81cZmE2kj4js_v47s9Jp1SlfEFoJl0ZgmNLbOcgRYSudsa4kBBqfy7pEtZ85Tgxmc91AY4iRg9ICyb-TzBd8nF1ycUy7cddnXe16FYddcbu-oSan8ZGAcRBagP3uQhDnulfAgCQGWSArxgK4ftdstUIPjZqZBH_BX2XvFs1o3z1qg6UUl3WfQIfeQjDIYIWYFoP1G4p87M6lXiEAEXS__Lum78lG4PZ0WF8OBwdvCIPHb0DRGcF5lukU80v5WvkZZV4Y9BPSXzP_9sfyphTTg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkYBLxa-6tICR4IIUreM4cXJAaNmy6lKoVt1S7S0aJw6NlMZldwvqrSeegAuPwuv0SRjnZ0uE1FuPiR3nZ77xfBOPZwh5hX4PMMmVo5QrHOF7wgFAZwXQeiBhBqaqvAWf94PdL-LjzJ-tkT_tXhgbVtnOidVEnZrE_iPvc4nGVEoEYD9rwiImO6N3p98cW0HKrrS25TRqiOzp8x_ovi3ejndQ1q85H304HO46TYUBJxGSLREiEfM1F0HGfAgjdCw1T3AqQk4UQeZLLZCgIEdKotT1Zcq8BEAxCEDoLBXCw2FvkdvSQ6uOqiRnV76ei4axXkT1vIj1T-pat3rB0T-xyaE7ZrCqFtChuN0AzX8s3ug-2WioKh3U2HpA1nT5kNwdthXiHpGf45JO8wKxRKFMKR4d5cu5oU1sIjUZHRSJ7Y9Yo9_zeZ7mWYGYoweIj5PLi18TU5zbIDNTLC4vftOJWdrgJbwpUmkc7zhXVUSZHWk6OJg6Q3PkcNr8xSyaLaSPyeFNfPUnZL00pd4kNNOeDoG7GtsFaBWhk50xoTSE1pNLeoS1XzlOmpzntvRGEaPvYwUT_yeYHnmzuuS0TvhxXef3VnSrjjZXd3XCzL_GjerHMnVBBEKFocisMgAAcoIM8BVDpYKgR7ZbwcfNBLKIr-DeIy9XzShfu54DpTZnVR8ZIANhOITsAKbzQN2WMj-ukohHCFCk-0-vv_kLcge1LP403t_bIve43fph0wGLbbK-nJ_pZ0jIlup5BX1K4htWtb_Kz1Dy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Silico+and+In+Vitro+Studies+of+Alchemilla+viridiflora+Rothm-Polyphenols%27+Potential+for+Inhibition+of+SARS-CoV-2+Internalization&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Suru%C4%8Di%C4%87%2C+Relja&rft.au=Radovi%C4%87+Selgrad%2C+Jelena&rft.au=Kundakovi%C4%87-Vasovi%C4%87%2C+Tatjana&rft.au=Lazovi%C4%87%2C+Biljana&rft.date=2022-08-14&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=27&rft.issue=16&rft_id=info:doi/10.3390%2Fmolecules27165174&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon