Multifactor data analysis to forecast an individual's severity over novel COVID‐19 pandemic using extreme gradient boosting and random forest classifier algorithms
AI and machine learning are increasingly often applied in the medical industry. The COVID‐19 epidemic will start to spread quickly over the planet around the start of 2020. At hospitals, there were more patients than there were beds. It was challenging for medical personnel to identify the patient w...
        Saved in:
      
    
          | Published in | Engineering reports (Hoboken, N.J.) Vol. 5; no. 12 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hoboken
          John Wiley & Sons, Inc
    
        01.12.2023
     Wiley  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2577-8196 2577-8196  | 
| DOI | 10.1002/eng2.12678 | 
Cover
| Abstract | AI and machine learning are increasingly often applied in the medical industry. The COVID‐19 epidemic will start to spread quickly over the planet around the start of 2020. At hospitals, there were more patients than there were beds. It was challenging for medical personnel to identify the patient who needed treatment right away. A machine learning approach is used to predict COVID‐19 pandemic patients at high risk. To provide input data and output results that execute the machine learning model on the backend, a straightforward Python Flask web application is employed. Here, the XGBoost algorithm, a supervised machine learning method, is applied. In order to predict high‐risk patients based on their current underlying health issues, the model uses patient characteristics as well as criteria like age, sex, health issues including diabetes, asthma, hypertension, and smoking, among others. The XGBoost model predicts the patient's severity with an accuracy of about 98% after data pre‐processing and training. The most important factors to the models are chosen to be age, diabetes, sex, and obesity. Patients and hospital personnel will benefit from this project's assistance in making timely choices and taking appropriate action. This will let medical personnel decide how much time and space to devote to the COVID‐19 high‐risk patients. providing a treatment that is both efficient and ideal. With this programme and the necessary patient data, hospitals may decide whether a patient need immediate care or not.
This paper provides the analysis of COVID‐19 dataset to forecast individuals severity by using machine learning algorithms and smart notification assistant to high‐risk patients. | 
    
|---|---|
| AbstractList | AI and machine learning are increasingly often applied in the medical industry. The COVID‐19 epidemic will start to spread quickly over the planet around the start of 2020. At hospitals, there were more patients than there were beds. It was challenging for medical personnel to identify the patient who needed treatment right away. A machine learning approach is used to predict COVID‐19 pandemic patients at high risk. To provide input data and output results that execute the machine learning model on the backend, a straightforward Python Flask web application is employed. Here, the XGBoost algorithm, a supervised machine learning method, is applied. In order to predict high‐risk patients based on their current underlying health issues, the model uses patient characteristics as well as criteria like age, sex, health issues including diabetes, asthma, hypertension, and smoking, among others. The XGBoost model predicts the patient's severity with an accuracy of about 98% after data pre‐processing and training. The most important factors to the models are chosen to be age, diabetes, sex, and obesity. Patients and hospital personnel will benefit from this project's assistance in making timely choices and taking appropriate action. This will let medical personnel decide how much time and space to devote to the COVID‐19 high‐risk patients. providing a treatment that is both efficient and ideal. With this programme and the necessary patient data, hospitals may decide whether a patient need immediate care or not. Abstract AI and machine learning are increasingly often applied in the medical industry. The COVID‐19 epidemic will start to spread quickly over the planet around the start of 2020. At hospitals, there were more patients than there were beds. It was challenging for medical personnel to identify the patient who needed treatment right away. A machine learning approach is used to predict COVID‐19 pandemic patients at high risk. To provide input data and output results that execute the machine learning model on the backend, a straightforward Python Flask web application is employed. Here, the XGBoost algorithm, a supervised machine learning method, is applied. In order to predict high‐risk patients based on their current underlying health issues, the model uses patient characteristics as well as criteria like age, sex, health issues including diabetes, asthma, hypertension, and smoking, among others. The XGBoost model predicts the patient's severity with an accuracy of about 98% after data pre‐processing and training. The most important factors to the models are chosen to be age, diabetes, sex, and obesity. Patients and hospital personnel will benefit from this project's assistance in making timely choices and taking appropriate action. This will let medical personnel decide how much time and space to devote to the COVID‐19 high‐risk patients. providing a treatment that is both efficient and ideal. With this programme and the necessary patient data, hospitals may decide whether a patient need immediate care or not. AI and machine learning are increasingly often applied in the medical industry. The COVID‐19 epidemic will start to spread quickly over the planet around the start of 2020. At hospitals, there were more patients than there were beds. It was challenging for medical personnel to identify the patient who needed treatment right away. A machine learning approach is used to predict COVID‐19 pandemic patients at high risk. To provide input data and output results that execute the machine learning model on the backend, a straightforward Python Flask web application is employed. Here, the XGBoost algorithm, a supervised machine learning method, is applied. In order to predict high‐risk patients based on their current underlying health issues, the model uses patient characteristics as well as criteria like age, sex, health issues including diabetes, asthma, hypertension, and smoking, among others. The XGBoost model predicts the patient's severity with an accuracy of about 98% after data pre‐processing and training. The most important factors to the models are chosen to be age, diabetes, sex, and obesity. Patients and hospital personnel will benefit from this project's assistance in making timely choices and taking appropriate action. This will let medical personnel decide how much time and space to devote to the COVID‐19 high‐risk patients. providing a treatment that is both efficient and ideal. With this programme and the necessary patient data, hospitals may decide whether a patient need immediate care or not. This paper provides the analysis of COVID‐19 dataset to forecast individuals severity by using machine learning algorithms and smart notification assistant to high‐risk patients.  | 
    
| Author | Khobragade, Juli Yenurkar, Ganesh Keshaorao Nyangaresi, Vincent O. Hedau, Anshul Mal, Sandip Hatwar, Prajwal Rajurkar, Shreyas  | 
    
| Author_xml | – sequence: 1 givenname: Ganesh Keshaorao orcidid: 0000-0002-6270-4236 surname: Yenurkar fullname: Yenurkar, Ganesh Keshaorao email: ganeshyenurkar@gmail.com organization: Yeshwantrao Chavan College of Engineering, Wanadongri – sequence: 2 givenname: Sandip surname: Mal fullname: Mal, Sandip organization: VIT Bhopal University – sequence: 3 givenname: Vincent O. surname: Nyangaresi fullname: Nyangaresi, Vincent O. organization: Jaramogi Oginga Odinga University of Science & Technology – sequence: 4 givenname: Anshul orcidid: 0000-0002-3804-3829 surname: Hedau fullname: Hedau, Anshul organization: Yeshwantrao Chavan College of Engineering, Wanadongri – sequence: 5 givenname: Prajwal surname: Hatwar fullname: Hatwar, Prajwal organization: Yeshwantrao Chavan College of Engineering, Wanadongri – sequence: 6 givenname: Shreyas surname: Rajurkar fullname: Rajurkar, Shreyas organization: Yeshwantrao Chavan College of Engineering, Wanadongri – sequence: 7 givenname: Juli surname: Khobragade fullname: Khobragade, Juli organization: Yeshwantrao Chavan College of Engineering, Wanadongri  | 
    
| BookMark | eNp9kU1uFDEQhVsoSISQDSewxAIJNMHuH7t7iZIQRgpkA2ytars8eOSxB9udMDuOwCW4GCfBM40QQiibKqv86nuW3-PqyAePVfWU0TNGaf0K_ao-YzUX_YPquO6EWPRs4Ed_nR9VpymtaREzwWhDj6sf7yaXrQGVQyQaMhDw4HbJJpIDMSGigpTLkFiv7a3VE7jniSS8xWjzjoTSiS_VkfObT8uLn9--s4FswWvcWEWmZP2K4NcccYNkFUFb9JmMIaS8vyk6EksJm4NXcVIOUrLGFiy4VSgmnzfpSfXQgEt4-rufVB_fXH44f7u4vrlanr--XqhW0H6haqq04KAVIqpxaIFi1w6i1wx1T0VvOqjb2kDTq8Fo3oxd1-pGj7xTZmxEc1ItZ64OsJbbaDcQdzKAlYdBiCsJMVvlUHIQHdfDyBsh2gFNr5GLAQxDBj1t68J6ObMmv4XdHTj3B8io3Acm94HJQ2BF_WxWb2P4MpWPkOswxRJFknU_8LbteLdn0lmlYkgpopHKZsg2-BzBuv-DX_yzcu8r2Cy-sw539yjl5furet75BX_yyRw | 
    
| CitedBy_id | crossref_primary_10_1007_s13369_023_08494_1 crossref_primary_10_3390_electronics13234659  | 
    
| Cites_doi | 10.1109/ICIIS51140.2020.9342735 10.1109/CANDO-EPE51100.2020.9337775 10.1109/JBHI.2020.3037127 10.1016/j.radi.2022.03.011 10.1109/ICAECT49130.2021.9392487 10.1109/ICIIS51140.2020.9342658 10.3389/fpubh.2020.587937 10.1016/j.scs.2020.102669 10.1109/ICCSNT50940.2020.9304990 10.1007/s11739-020-02475-0 10.1016/j.eswa.2021.115452 10.1109/ICCC51575.2020.9344984 10.1109/ICOSEC51865.2021.9591801 10.1109/ICECE54449.2021.9674303 10.1038/s41598-021-88807-2 10.1109/ICIIP53038.2021.9702560 10.1109/CANDO-EPE51100.2020.9337757 10.1117/1.JEI.32.2.021406 10.1109/ISCTT51595.2020.00072 10.1109/ICBAIE49996.2020.00065 10.1109/ICECE51571.2020.9393123 10.3390/electronics11223798 10.1109/IPEC51340.2021.9421142 10.1109/CICT51604.2020.9312112 10.23919/JCN.2021.000037 10.1007/978-981-15-6572-4_3 10.3389/fimmu.2021.715072 10.1109/ICTC52510.2021.9620902 10.1109/Confluence51648.2021.9377115 10.1109/AIID51893.2021.9456463 10.1109/ICCED51276.2020.9415858 10.1109/ICCSEA54677.2022.9936194 10.1109/ICHI52183.2021.00099 10.3390/jpm11090893  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 The Authors. published by John Wiley & Sons Ltd. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA  | 
    
| DOI | 10.1002/eng2.12678 | 
    
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2577-8196 | 
    
| EndPage | n/a | 
    
| ExternalDocumentID | oai_doaj_org_article_6a756d9b637749ef8de679af1e1a8042 10.1002/eng2.12678 10_1002_eng2_12678 ENG212678  | 
    
| Genre | article | 
    
| GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ARCSS AVUZU BENPR BGLVJ CCPQU EBS EJD GROUPED_DOAJ HCIFZ IAO IGS ITC M7S M~E OK1 PIMPY PTHSS WIN AAMMB AAYXX ADMLS AEFGJ AGXDD AIDQK AIDYY CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG ABUWG AZQEC COVID DWQXO L6V PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c4708-c20cd76adceeecb94a0e54978d1ed8078f5a242fa38c9fd63b554d3db65cfb373 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2577-8196 | 
    
| IngestDate | Fri Oct 03 12:47:55 EDT 2025 Tue Aug 19 20:02:44 EDT 2025 Sat Aug 23 14:48:09 EDT 2025 Wed Oct 01 02:43:10 EDT 2025 Thu Apr 24 23:12:20 EDT 2025 Wed Jan 22 16:16:39 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Language | English | 
    
| License | Attribution cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4708-c20cd76adceeecb94a0e54978d1ed8078f5a242fa38c9fd63b554d3db65cfb373 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-6270-4236 0000-0002-3804-3829  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2896445652?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 2896445652 | 
    
| PQPubID | 5066167 | 
    
| PageCount | 18 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6a756d9b637749ef8de679af1e1a8042 unpaywall_primary_10_1002_eng2_12678 proquest_journals_2896445652 crossref_citationtrail_10_1002_eng2_12678 crossref_primary_10_1002_eng2_12678 wiley_primary_10_1002_eng2_12678_ENG212678  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | December 2023 2023-12-00 20231201 2023-12-01  | 
    
| PublicationDateYYYYMMDD | 2023-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2023 text: December 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Hoboken | 
    
| PublicationPlace_xml | – name: Hoboken | 
    
| PublicationTitle | Engineering reports (Hoboken, N.J.) | 
    
| PublicationYear | 2023 | 
    
| Publisher | John Wiley & Sons, Inc Wiley  | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley  | 
    
| References | 2020; 8 2021; 23 2021; 66 2021; 11 2022 2021 2020 2020; 15 2018 2007 2021; 183 2020; 24 2022; 32 2022; 11 2022; 28 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 Yenurkar G (e_1_2_10_34_1) 2022 Yenurkar GK (e_1_2_10_40_1) 2022 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1  | 
    
| References_xml | – volume: 183 year: 2021 article-title: Automatic method for classifying COVID‐19 patients based on chest x‐ray images, using deep features and PSO‐optimized XGBoost publication-title: Expert Syst Appl – start-page: 1 year: 2022 end-page: 21 article-title: Effective detection of COVID‐19 outbreak in chest X‐Rays using fusionnet model publication-title: Imag Sci J – volume: 24 start-page: 3595 issue: 12 year: 2020 end-page: 3605 article-title: COVIDGR dataset and COVID‐SDNet methodology for predicting COVID‐19 based on chest X‐ray images publication-title: IEEE J Biomed Health Inform – year: 2007 – year: 2022 – volume: 28 start-page: 732 issue: 3 year: 2022 end-page: 738 article-title: Automated detection of COVID‐19 cases from chest X‐ray images using deep neural network and XGBoost publication-title: Radiography – year: 2021 – year: 2020 – volume: 15 start-page: 1435 year: 2020 end-page: 1443 article-title: Utilization of machine‐learning models to accurately predict the risk for critical COVID‐19 publication-title: Intern Emerg Med – volume: 11 start-page: 893 issue: 9 year: 2021 article-title: COVID mortality prediction with machine learning methods: a systematic review and critical appraisal publication-title: J Pers Med – volume: 23 start-page: 390 issue: 5 year: 2021 end-page: 407 article-title: Energy efficient contact tracing and social interaction based patient prediction system for COVID‐19 pandemic publication-title: J Commun Netw – start-page: 19 year: 2020 end-page: 28 – volume: 8 year: 2020 article-title: Individual‐level fatality prediction of COVID‐19 patients using AI methods publication-title: Front Public Health – volume: 66 year: 2021 article-title: COVID‐19 cases prediction by using hybrid machine learning and beetle antennae search approach publication-title: Sustain Cities Soc – volume: 11 start-page: 9887 issue: 1 year: 2021 article-title: COVID‐Classifier: An automated machine learning model to assist in the diagnosis of COVID‐19 infection in chest x‐ray images publication-title: Sci Rep – volume: 11 start-page: 3798 issue: 22 year: 2022 article-title: Hybrid CNN and XGBoost model tuned by modified arithmetic optimization algorithm for COVID‐19 early diagnostics from x‐ray images publication-title: Electronics – year: 2018 – volume: 32 issue: 2 year: 2022 article-title: Intelligent diagnosis of coronavirus with computed tomography images using a deep learning model publication-title: J Electron Imag – year: 2021 article-title: Artificial intelligence predicts severity of COVID‐19 based on correlation of exaggerated monocyte activation, excessive organ damage and hyperinflammatory syndrome: a prospective clinical study publication-title: Front Immunol – start-page: 1 year: 2022 end-page: 27 article-title: Future forecasting prediction of Covid‐19 using hybrid deep learning algorithm publication-title: Multimed Tools Appl – ident: e_1_2_10_23_1 doi: 10.1109/ICIIS51140.2020.9342735 – ident: e_1_2_10_30_1 doi: 10.1109/CANDO-EPE51100.2020.9337775 – ident: e_1_2_10_32_1 doi: 10.1109/JBHI.2020.3037127 – ident: e_1_2_10_37_1 doi: 10.1016/j.radi.2022.03.011 – ident: e_1_2_10_13_1 doi: 10.1109/ICAECT49130.2021.9392487 – ident: e_1_2_10_24_1 doi: 10.1109/ICIIS51140.2020.9342658 – ident: e_1_2_10_3_1 doi: 10.3389/fpubh.2020.587937 – ident: e_1_2_10_10_1 doi: 10.1016/j.scs.2020.102669 – ident: e_1_2_10_22_1 doi: 10.1109/ICCSNT50940.2020.9304990 – ident: e_1_2_10_2_1 doi: 10.1007/s11739-020-02475-0 – start-page: 1 year: 2022 ident: e_1_2_10_40_1 article-title: Effective detection of COVID‐19 outbreak in chest X‐Rays using fusionnet model publication-title: Imag Sci J – ident: e_1_2_10_39_1 doi: 10.1016/j.eswa.2021.115452 – ident: e_1_2_10_6_1 doi: 10.1109/ICCC51575.2020.9344984 – ident: e_1_2_10_11_1 doi: 10.1109/ICOSEC51865.2021.9591801 – ident: e_1_2_10_15_1 doi: 10.1109/ICECE54449.2021.9674303 – ident: e_1_2_10_17_1 doi: 10.1038/s41598-021-88807-2 – ident: e_1_2_10_14_1 doi: 10.1109/ICIIP53038.2021.9702560 – ident: e_1_2_10_16_1 – ident: e_1_2_10_8_1 – start-page: 1 year: 2022 ident: e_1_2_10_34_1 article-title: Future forecasting prediction of Covid‐19 using hybrid deep learning algorithm publication-title: Multimed Tools Appl – ident: e_1_2_10_20_1 doi: 10.1109/CANDO-EPE51100.2020.9337757 – ident: e_1_2_10_36_1 doi: 10.1117/1.JEI.32.2.021406 – ident: e_1_2_10_12_1 doi: 10.1109/ISCTT51595.2020.00072 – ident: e_1_2_10_5_1 doi: 10.1109/ICBAIE49996.2020.00065 – ident: e_1_2_10_18_1 doi: 10.1109/ICECE51571.2020.9393123 – ident: e_1_2_10_38_1 doi: 10.3390/electronics11223798 – ident: e_1_2_10_27_1 doi: 10.1109/IPEC51340.2021.9421142 – ident: e_1_2_10_26_1 doi: 10.1109/CICT51604.2020.9312112 – ident: e_1_2_10_28_1 doi: 10.23919/JCN.2021.000037 – ident: e_1_2_10_7_1 – ident: e_1_2_10_33_1 doi: 10.1007/978-981-15-6572-4_3 – ident: e_1_2_10_9_1 doi: 10.3389/fimmu.2021.715072 – ident: e_1_2_10_19_1 doi: 10.1109/ICTC52510.2021.9620902 – ident: e_1_2_10_4_1 doi: 10.1109/Confluence51648.2021.9377115 – ident: e_1_2_10_29_1 doi: 10.1109/AIID51893.2021.9456463 – ident: e_1_2_10_31_1 doi: 10.1109/ICCED51276.2020.9415858 – ident: e_1_2_10_35_1 doi: 10.1109/ICCSEA54677.2022.9936194 – ident: e_1_2_10_25_1 doi: 10.1109/ICHI52183.2021.00099 – ident: e_1_2_10_21_1 doi: 10.3390/jpm11090893  | 
    
| SSID | ssj0002171030 | 
    
| Score | 2.2632413 | 
    
| Snippet | AI and machine learning are increasingly often applied in the medical industry. The COVID‐19 epidemic will start to spread quickly over the planet around the... AI and machine learning are increasingly often applied in the medical industry. The COVID-19 epidemic will start to spread quickly over the planet around the... Abstract AI and machine learning are increasingly often applied in the medical industry. The COVID‐19 epidemic will start to spread quickly over the planet...  | 
    
| SourceID | doaj unpaywall proquest crossref wiley  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| SubjectTerms | Accuracy Algorithms Applications programs Asthma Coronaviruses COVID-19 Data analysis Disease transmission Epidemics Health services Heroku high‐risk patients Holidays & special occasions Hospitals Hypertension Illnesses Machine learning Medical personnel Mortality Neural networks Pandemics Patients Python flask random forest classifier Risk Sex Supervised learning XGBoost  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQL8AB8SsWChqJSgik0MRxnPgIpaUgUS4U9Rb5d1kpm101qareeAReghfjSZhx0mgroXLhEkWOE1uZseezNf4-xnZEMJUphUx07kwiQqUT5aVKlMusMDqVxtNC8fORPDwWn06Kkw2pL8oJG-iBhx-3K3VZSKeMzBGoKB8q52WpdMh8piv0OJp900ptLKZoDkagTfpZEx8p3_XtnL_JuCQ9tY0IFIn6r6DLm2ftWl-c66a5ildjwDm4y-6MSBHeDj28x2749j67vcEf-ID9isdnB8kcoFxP0CPHCPQrQDjqre56LITFdO7qZQcYDD1p1gGlb0KL1wb2vnz7-P73j5-ZgjXtKy8XFignfg44e9MeIsxPY3ZYD4jLO0qWxu86wFDnVsvYFrZkCYsvAoZa0M18hY18X3YP2fHB_te9w2TUXUisKNMqsTy1rpTaYQD11iihU1-QEp3LvCN--lBojOxB55VVwcncICZxaGtZ2GDyMn_EttpV6x8zwFetDoEjakhF6QqtBCIaa1PhbKW5mbFXl7ao7UhKTtoYTT3QKfOa7FZHu83Yi6nueqDi-Gutd2TSqQbRZ8cCdKp6dKr6X041Y9uXDlGPY7qrcWmK4BEBMD7emZzk2q68jv5zTZV6_-gDj3dP_ke_n7JbHEHYkG6zzbb60zP_DEFTb57H8fEHob0YxA priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA46-yA-uF5xllUCLohCx17StHlc111XwdEHR9ankGsd7LTDtIPokz_BP-Ef85d4knbKjMgi-FJKmlvTk3O-pCffQeiIWJnLjNBAJFoGxOYiYIaygOlIESlCKo1bKL6Z0vMZeX2RXmyd4u_4IYYNNzczvL52E3ypbafn-7_78TNTFfEkikHhXkV7NAU0PkJ7s-m7448uplyagQIGCRtYSbcL7NghT9e_gzGvraul-PpFlOUuavVm52wfiU2HO2-Tz5N1Kyfq2x9cjv_zRjfRjR6T4uNOiG6hK6a6ja5vMRXeQT_9Qd0uOA92XqVY9GwmuK0xAF-jRNNCIp4PJ7weNxjMrnHR8bBzFMUVXEt88vbDqxe_vv-IGF66HezFXGHnfV9gsBNutxIXK--H1mJYATTOLRvq1RiMqq4Xvi1oSTnUP7dg1LEoixoa-bRo7qLZ2en7k_Ogj_AQKJKFeaDiUOmMCg2m2ijJiAhN6mLe6chox4RvUwEYwookV8xqmkhAPxqkiqbKyiRL7qFRVVfmPsJQVAlrY8AnIcl0KhgB7KRUSLTKRSzH6Mnme3PV05-7KBwl74ibY-6GnvuhH6NHQ95lR_rx11zPndgMORxRt0-oVwXv5z2nIkupZpImgLOZsbk2NGPCRiYSOSjMMTrcCB3vtUfDYREMMBWgNjw-GgTx0q489YJ1SRZ-On0Z-7uDf6vzEI3a1do8AMzVyof9tPoNlgYy8A priority: 102 providerName: Unpaywall – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NatVAFB5qXagL8ZderTJgQRRik8lkkgE3WlurYHVhpbswv_FCbnK5SRF3PoIv4Yv5JJ4zyU29IAU3ISRnMoHz981w5juE7HGvC51zEanU6oj7QkXSCRlJmxiuVSy0w4XihxNxfMrfn2VnW-Tl-izMwA8xbbihZ4R4jQ6udLd_QRrqmoq9SBgE2yvkagJABu2b8U_TDguAbeyhhd3lshxCMdjaxE_K9i-Gb2SkQNy_gTavnTdL9f2bqutN_BoS0NEtcnNEjvTVoOrbZMs1d8iNv_gE75Jf4Tjt0EKHYu0nVSPnCO1bCvDUGdX18JDOp3NYTzsKydFhDzuK5Zy0gWtNDz5-effm94-fiaRL3GdezA3FGvmKQjTHPUVarUK1WE8Bp3dYPA3ftRRSn20XYS6YySA2n3tIvVTVVQuTfF1098jp0eHng-No7MMQGZ7HRWRYbGwulIWE6oyWXMUuw850NnEW-ep9piDTe5UWRnorUg0YxYLuRWa8TvP0Ptlu2sbtEApDjfKeAYqIeW4zJTkgHGNibk2hmJ6RZ2tdlGYkKcdeGXU50CuzEvVWBr3NyJNJdjlQc_xT6jWqdJJAOu3woF1V5eidpVB5JqzUIgU0LJ0vrBO5VD5xiSogrM3I7togytHHuxKWqgAmARDD673JSC79lefBfi4RKQ9P3rJw9-B_hB-S6wzA11Bms0u2-9W5ewRgqdePg0_8AdUcEuY priority: 102 providerName: Wiley-Blackwell  | 
    
| Title | Multifactor data analysis to forecast an individual's severity over novel COVID‐19 pandemic using extreme gradient boosting and random forest classifier algorithms | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feng2.12678 https://www.proquest.com/docview/2896445652 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eng2.12678 https://doaj.org/article/6a756d9b637749ef8de679af1e1a8042  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 5 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2577-8196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2577-8196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: ADMLS dateStart: 20190801 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2577-8196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2577-8196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: BENPR dateStart: 20191201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2577-8196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: AVUZU dateStart: 20190801 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Open Access customDbUrl: eissn: 2577-8196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: 24P dateStart: 20190101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1db9MwFLW27gF4QHyKslFZYhICKSxxHCd5QGgb7QbSSoUoGk-RP0OlNu3aTIgX_gx_lHvdNGwS6otVWW4d9V77Ht9cn0PIIXcqUykXgYyNCrjLZJBbkQe5iTRXMhTK4kHxYijOx_zTZXK5Q4abuzBYVrnZE_1GbeYac-RHcDCA0A3wg71fXAWoGoVvVzcSGrKRVjDvPMXYLtljyIzVIXsn_eHoS5t1AQCOulotTyk7slXJ3kZMoM7ajcjkCfxvoc4719VC_vopp9PbONYHosEDcr9BkPR4bfKHZMdWj8i9G7yCj8kff612LaVDsQaUyoZ7hNZzCjDVarmqoZNO2vtYr1YUgqRFLTuKZZ20gnZKTz9_-_ghiHK6wGzzbKIpVsqXFPZ0zCzSculrxmoKaH2FJdTwq4ZCADTzmZ8J5tGI0CcOAjCV0xL-1PrHbPWEjAf9r6fnQaPGEGiehlmgWahNKqSBsGq1yrkMbYL6dCayBlnrXSIh3jsZZzp3RsQKkIoBDxCJdipO46ekU80r-4xQ-KqWzjHAEiFPTSJzDjhH65AbnUmmuuT1xhKFbqjKUTFjWqxJllmBViu81brkZTt2sSbo-O-oEzRoOwJJtX3HfFkWzRothEwTYXIlYsDEuXWZsSLNpYtsJDPY3LrkYOMORbPSV8U_v-ySw9ZFtj7KG-89W4YU_eEZ85-eb59yn9xlALrW5TUHpFMvr-0LAEm16pFdxkfQZoOzXrMKej7hAO3F7z70jYej4-9_AdNZGrk | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZG9zB4QFxFYYAlhhBIYYnjOMnDhNjW0bKtILShvQVfQ6U2LU2mab-H_8Fv49i5sEmob3uJosiJEx37fN9xjs-H0BY1IhExZR4PlfCoSbiXapZ6qQokFdxnQttA8XjMhqf081l0tob-tHthbFpl6xOdo1ZzadfItyEwAOgG-kE-LH55VjXK_l1tJTR4I62gdlyJsWZjx6G-vIAQrtwZ7YO9XxNyMDjZG3qNyoAnaewnniS-VDHjCuBCS5FS7uvI6q6pQCtbjd1EHHDM8DCRqVEsFIDACr6MRdKIMA7hubfQOg3hnh5a3x2Mv37rVnmA8Fsdr64uKtnWRU7eB4RZXbcrSOgEA66x3I3zYsEvL_h0ep03O-A7uIfuNowVf6yH2H20posH6M6VOoYP0W-3jbeW7sE25xTzptYJruYYaLGWvKzgIp50-7_elBhAWVvtPGzTSHEBxyne-_J9tO8FKV7Y1e3ZRGKbmZ9jwBC7konzpctRqzBEB6VN2YanKgyAq-Yz1xP0I21EMDEA-JhPczBi9XNWPkKnN2KXx6hXzAv9BGG4VXJjCHAXn8Yq4ikFXiWlT5VMOBF99La1RCab0uhWoWOa1UWdSWatljmr9dGrru2iLgjy31a71qBdC1vE212YL_Os8QkZ43HEVCpYCBw81SZRmsUpN4EOeALOtI822-GQNZ6lzP7Ngz7a6obIyld550bPiibZYPyJuLOnq7t8iTaGJ8dH2dFofPgM3SZA-OrUnk3Uq5bn-jkQtEq8aGYBRj9ueuL9BXOzU8A | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2VInF5QFxFSoGVKEIgmdhre20_IARN04ZC4IGivpm9upESJ8Suqn4Pf8HXMbN2TCuhvPXFsqyNN9HMzpzZzJ5DyE5kZSqTiHsi1NKLbCq8zPDMy3SgIil8Lg0Wil_G_OAo-nQcH2-QP6uzMNhWuYqJLlDrucI98j4UBpC6AX6wvm3bIr4Nhu8XvzxUkMJ_WldyGo2LHJrzMyjfqnejAdj6JWPDve-7B16rMOCpKPFTTzFf6YQLDanCKJlFwjcxaq7pwGhkYrexgBxmRZiqzGoeSsi-Gn4Vj5WVYRLCe6-R6wmyuOMp9eF-t78DUB8VvDpGVNY3ZcHeBoyjotuFHOikAi7h25un5UKcn4np9DJidilveJfcabEq_dA41z2yYcr75PYFBsMH5Lc7wNuI9lDsNqWiZTmh9ZwCIDZKVDU8pJPu5NerikI6NqiaR7GBlJZwndLdrz9GAy_I6AL3tWcTRbEnv6BgAtzDpMXSdafVFOqCCpu14a2aQqrV85mbCeZRWAtMLKR6KqYFmKw-mVUPydGVWOUR2SznpXlMKHxUCWsZoBY_SnQssggQlVJ-pFUqmOyR1ytL5KolRUdtjmne0DmzHK2WO6v1yItu7KKhAvnvqI9o0G4E0ne7B_NlkbfRIOciibnOJA8BfWfGptrwJBM2MIFIIYz2yPbKHfI2plT5vxXQIzudi6z9Km-c96wZku-N95m721o_5XNyA5Zb_nk0PnxCbjFAek1PzzbZrJen5ikgs1o-c0uAkp9Xveb-Aj7_UVo | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA46-yA-uF5xllUCLohCx17StHlc111XwdEHR9ankGsd7LTDtIPokz_BP-Ef85d4knbKjMgi-FJKmlvTk3O-pCffQeiIWJnLjNBAJFoGxOYiYIaygOlIESlCKo1bKL6Z0vMZeX2RXmyd4u_4IYYNNzczvL52E3ypbafn-7_78TNTFfEkikHhXkV7NAU0PkJ7s-m7448uplyagQIGCRtYSbcL7NghT9e_gzGvraul-PpFlOUuavVm52wfiU2HO2-Tz5N1Kyfq2x9cjv_zRjfRjR6T4uNOiG6hK6a6ja5vMRXeQT_9Qd0uOA92XqVY9GwmuK0xAF-jRNNCIp4PJ7weNxjMrnHR8bBzFMUVXEt88vbDqxe_vv-IGF66HezFXGHnfV9gsBNutxIXK--H1mJYATTOLRvq1RiMqq4Xvi1oSTnUP7dg1LEoixoa-bRo7qLZ2en7k_Ogj_AQKJKFeaDiUOmMCg2m2ijJiAhN6mLe6chox4RvUwEYwookV8xqmkhAPxqkiqbKyiRL7qFRVVfmPsJQVAlrY8AnIcl0KhgB7KRUSLTKRSzH6Mnme3PV05-7KBwl74ibY-6GnvuhH6NHQ95lR_rx11zPndgMORxRt0-oVwXv5z2nIkupZpImgLOZsbk2NGPCRiYSOSjMMTrcCB3vtUfDYREMMBWgNjw-GgTx0q489YJ1SRZ-On0Z-7uDf6vzEI3a1do8AMzVyof9tPoNlgYy8A | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifactor+data+analysis+to+forecast+an+individual%27s+severity+over+novel+COVID%E2%80%9019+pandemic+using+extreme+gradient+boosting+and+random+forest+classifier+algorithms&rft.jtitle=Engineering+reports+%28Hoboken%2C+N.J.%29&rft.au=Yenurkar%2C+Ganesh+Keshaorao&rft.au=Mal%2C+Sandip&rft.au=Nyangaresi%2C+Vincent+O.&rft.au=Hedau%2C+Anshul&rft.date=2023-12-01&rft.issn=2577-8196&rft.eissn=2577-8196&rft.volume=5&rft.issue=12&rft_id=info:doi/10.1002%2Feng2.12678&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eng2_12678 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2577-8196&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2577-8196&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2577-8196&client=summon |