Multifactor data analysis to forecast an individual's severity over novel COVID‐19 pandemic using extreme gradient boosting and random forest classifier algorithms

AI and machine learning are increasingly often applied in the medical industry. The COVID‐19 epidemic will start to spread quickly over the planet around the start of 2020. At hospitals, there were more patients than there were beds. It was challenging for medical personnel to identify the patient w...

Full description

Saved in:
Bibliographic Details
Published inEngineering reports (Hoboken, N.J.) Vol. 5; no. 12
Main Authors Yenurkar, Ganesh Keshaorao, Mal, Sandip, Nyangaresi, Vincent O., Hedau, Anshul, Hatwar, Prajwal, Rajurkar, Shreyas, Khobragade, Juli
Format Journal Article
LanguageEnglish
Published Hoboken John Wiley & Sons, Inc 01.12.2023
Wiley
Subjects
Online AccessGet full text
ISSN2577-8196
2577-8196
DOI10.1002/eng2.12678

Cover

Abstract AI and machine learning are increasingly often applied in the medical industry. The COVID‐19 epidemic will start to spread quickly over the planet around the start of 2020. At hospitals, there were more patients than there were beds. It was challenging for medical personnel to identify the patient who needed treatment right away. A machine learning approach is used to predict COVID‐19 pandemic patients at high risk. To provide input data and output results that execute the machine learning model on the backend, a straightforward Python Flask web application is employed. Here, the XGBoost algorithm, a supervised machine learning method, is applied. In order to predict high‐risk patients based on their current underlying health issues, the model uses patient characteristics as well as criteria like age, sex, health issues including diabetes, asthma, hypertension, and smoking, among others. The XGBoost model predicts the patient's severity with an accuracy of about 98% after data pre‐processing and training. The most important factors to the models are chosen to be age, diabetes, sex, and obesity. Patients and hospital personnel will benefit from this project's assistance in making timely choices and taking appropriate action. This will let medical personnel decide how much time and space to devote to the COVID‐19 high‐risk patients. providing a treatment that is both efficient and ideal. With this programme and the necessary patient data, hospitals may decide whether a patient need immediate care or not. This paper provides the analysis of COVID‐19 dataset to forecast individuals severity by using machine learning algorithms and smart notification assistant to high‐risk patients.
AbstractList AI and machine learning are increasingly often applied in the medical industry. The COVID‐19 epidemic will start to spread quickly over the planet around the start of 2020. At hospitals, there were more patients than there were beds. It was challenging for medical personnel to identify the patient who needed treatment right away. A machine learning approach is used to predict COVID‐19 pandemic patients at high risk. To provide input data and output results that execute the machine learning model on the backend, a straightforward Python Flask web application is employed. Here, the XGBoost algorithm, a supervised machine learning method, is applied. In order to predict high‐risk patients based on their current underlying health issues, the model uses patient characteristics as well as criteria like age, sex, health issues including diabetes, asthma, hypertension, and smoking, among others. The XGBoost model predicts the patient's severity with an accuracy of about 98% after data pre‐processing and training. The most important factors to the models are chosen to be age, diabetes, sex, and obesity. Patients and hospital personnel will benefit from this project's assistance in making timely choices and taking appropriate action. This will let medical personnel decide how much time and space to devote to the COVID‐19 high‐risk patients. providing a treatment that is both efficient and ideal. With this programme and the necessary patient data, hospitals may decide whether a patient need immediate care or not.
Abstract AI and machine learning are increasingly often applied in the medical industry. The COVID‐19 epidemic will start to spread quickly over the planet around the start of 2020. At hospitals, there were more patients than there were beds. It was challenging for medical personnel to identify the patient who needed treatment right away. A machine learning approach is used to predict COVID‐19 pandemic patients at high risk. To provide input data and output results that execute the machine learning model on the backend, a straightforward Python Flask web application is employed. Here, the XGBoost algorithm, a supervised machine learning method, is applied. In order to predict high‐risk patients based on their current underlying health issues, the model uses patient characteristics as well as criteria like age, sex, health issues including diabetes, asthma, hypertension, and smoking, among others. The XGBoost model predicts the patient's severity with an accuracy of about 98% after data pre‐processing and training. The most important factors to the models are chosen to be age, diabetes, sex, and obesity. Patients and hospital personnel will benefit from this project's assistance in making timely choices and taking appropriate action. This will let medical personnel decide how much time and space to devote to the COVID‐19 high‐risk patients. providing a treatment that is both efficient and ideal. With this programme and the necessary patient data, hospitals may decide whether a patient need immediate care or not.
AI and machine learning are increasingly often applied in the medical industry. The COVID‐19 epidemic will start to spread quickly over the planet around the start of 2020. At hospitals, there were more patients than there were beds. It was challenging for medical personnel to identify the patient who needed treatment right away. A machine learning approach is used to predict COVID‐19 pandemic patients at high risk. To provide input data and output results that execute the machine learning model on the backend, a straightforward Python Flask web application is employed. Here, the XGBoost algorithm, a supervised machine learning method, is applied. In order to predict high‐risk patients based on their current underlying health issues, the model uses patient characteristics as well as criteria like age, sex, health issues including diabetes, asthma, hypertension, and smoking, among others. The XGBoost model predicts the patient's severity with an accuracy of about 98% after data pre‐processing and training. The most important factors to the models are chosen to be age, diabetes, sex, and obesity. Patients and hospital personnel will benefit from this project's assistance in making timely choices and taking appropriate action. This will let medical personnel decide how much time and space to devote to the COVID‐19 high‐risk patients. providing a treatment that is both efficient and ideal. With this programme and the necessary patient data, hospitals may decide whether a patient need immediate care or not. This paper provides the analysis of COVID‐19 dataset to forecast individuals severity by using machine learning algorithms and smart notification assistant to high‐risk patients.
Author Khobragade, Juli
Yenurkar, Ganesh Keshaorao
Nyangaresi, Vincent O.
Hedau, Anshul
Mal, Sandip
Hatwar, Prajwal
Rajurkar, Shreyas
Author_xml – sequence: 1
  givenname: Ganesh Keshaorao
  orcidid: 0000-0002-6270-4236
  surname: Yenurkar
  fullname: Yenurkar, Ganesh Keshaorao
  email: ganeshyenurkar@gmail.com
  organization: Yeshwantrao Chavan College of Engineering, Wanadongri
– sequence: 2
  givenname: Sandip
  surname: Mal
  fullname: Mal, Sandip
  organization: VIT Bhopal University
– sequence: 3
  givenname: Vincent O.
  surname: Nyangaresi
  fullname: Nyangaresi, Vincent O.
  organization: Jaramogi Oginga Odinga University of Science & Technology
– sequence: 4
  givenname: Anshul
  orcidid: 0000-0002-3804-3829
  surname: Hedau
  fullname: Hedau, Anshul
  organization: Yeshwantrao Chavan College of Engineering, Wanadongri
– sequence: 5
  givenname: Prajwal
  surname: Hatwar
  fullname: Hatwar, Prajwal
  organization: Yeshwantrao Chavan College of Engineering, Wanadongri
– sequence: 6
  givenname: Shreyas
  surname: Rajurkar
  fullname: Rajurkar, Shreyas
  organization: Yeshwantrao Chavan College of Engineering, Wanadongri
– sequence: 7
  givenname: Juli
  surname: Khobragade
  fullname: Khobragade, Juli
  organization: Yeshwantrao Chavan College of Engineering, Wanadongri
BookMark eNp9kU1uFDEQhVsoSISQDSewxAIJNMHuH7t7iZIQRgpkA2ytars8eOSxB9udMDuOwCW4GCfBM40QQiibKqv86nuW3-PqyAePVfWU0TNGaf0K_ao-YzUX_YPquO6EWPRs4Ed_nR9VpymtaREzwWhDj6sf7yaXrQGVQyQaMhDw4HbJJpIDMSGigpTLkFiv7a3VE7jniSS8xWjzjoTSiS_VkfObT8uLn9--s4FswWvcWEWmZP2K4NcccYNkFUFb9JmMIaS8vyk6EksJm4NXcVIOUrLGFiy4VSgmnzfpSfXQgEt4-rufVB_fXH44f7u4vrlanr--XqhW0H6haqq04KAVIqpxaIFi1w6i1wx1T0VvOqjb2kDTq8Fo3oxd1-pGj7xTZmxEc1ItZ64OsJbbaDcQdzKAlYdBiCsJMVvlUHIQHdfDyBsh2gFNr5GLAQxDBj1t68J6ObMmv4XdHTj3B8io3Acm94HJQ2BF_WxWb2P4MpWPkOswxRJFknU_8LbteLdn0lmlYkgpopHKZsg2-BzBuv-DX_yzcu8r2Cy-sw539yjl5furet75BX_yyRw
CitedBy_id crossref_primary_10_1007_s13369_023_08494_1
crossref_primary_10_3390_electronics13234659
Cites_doi 10.1109/ICIIS51140.2020.9342735
10.1109/CANDO-EPE51100.2020.9337775
10.1109/JBHI.2020.3037127
10.1016/j.radi.2022.03.011
10.1109/ICAECT49130.2021.9392487
10.1109/ICIIS51140.2020.9342658
10.3389/fpubh.2020.587937
10.1016/j.scs.2020.102669
10.1109/ICCSNT50940.2020.9304990
10.1007/s11739-020-02475-0
10.1016/j.eswa.2021.115452
10.1109/ICCC51575.2020.9344984
10.1109/ICOSEC51865.2021.9591801
10.1109/ICECE54449.2021.9674303
10.1038/s41598-021-88807-2
10.1109/ICIIP53038.2021.9702560
10.1109/CANDO-EPE51100.2020.9337757
10.1117/1.JEI.32.2.021406
10.1109/ISCTT51595.2020.00072
10.1109/ICBAIE49996.2020.00065
10.1109/ICECE51571.2020.9393123
10.3390/electronics11223798
10.1109/IPEC51340.2021.9421142
10.1109/CICT51604.2020.9312112
10.23919/JCN.2021.000037
10.1007/978-981-15-6572-4_3
10.3389/fimmu.2021.715072
10.1109/ICTC52510.2021.9620902
10.1109/Confluence51648.2021.9377115
10.1109/AIID51893.2021.9456463
10.1109/ICCED51276.2020.9415858
10.1109/ICCSEA54677.2022.9936194
10.1109/ICHI52183.2021.00099
10.3390/jpm11090893
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.1002/eng2.12678
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2577-8196
EndPage n/a
ExternalDocumentID oai_doaj_org_article_6a756d9b637749ef8de679af1e1a8042
10.1002/eng2.12678
10_1002_eng2_12678
ENG212678
Genre article
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
M7S
M~E
OK1
PIMPY
PTHSS
WIN
AAMMB
AAYXX
ADMLS
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
ABUWG
AZQEC
COVID
DWQXO
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c4708-c20cd76adceeecb94a0e54978d1ed8078f5a242fa38c9fd63b554d3db65cfb373
IEDL.DBID BENPR
ISSN 2577-8196
IngestDate Fri Oct 03 12:47:55 EDT 2025
Tue Aug 19 20:02:44 EDT 2025
Sat Aug 23 14:48:09 EDT 2025
Wed Oct 01 02:43:10 EDT 2025
Thu Apr 24 23:12:20 EDT 2025
Wed Jan 22 16:16:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4708-c20cd76adceeecb94a0e54978d1ed8078f5a242fa38c9fd63b554d3db65cfb373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6270-4236
0000-0002-3804-3829
OpenAccessLink https://www.proquest.com/docview/2896445652?pq-origsite=%requestingapplication%&accountid=15518
PQID 2896445652
PQPubID 5066167
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_6a756d9b637749ef8de679af1e1a8042
unpaywall_primary_10_1002_eng2_12678
proquest_journals_2896445652
crossref_citationtrail_10_1002_eng2_12678
crossref_primary_10_1002_eng2_12678
wiley_primary_10_1002_eng2_12678_ENG212678
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
20231201
2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Engineering reports (Hoboken, N.J.)
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2020; 8
2021; 23
2021; 66
2021; 11
2022
2021
2020
2020; 15
2018
2007
2021; 183
2020; 24
2022; 32
2022; 11
2022; 28
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Yenurkar G (e_1_2_10_34_1) 2022
Yenurkar GK (e_1_2_10_40_1) 2022
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 183
  year: 2021
  article-title: Automatic method for classifying COVID‐19 patients based on chest x‐ray images, using deep features and PSO‐optimized XGBoost
  publication-title: Expert Syst Appl
– start-page: 1
  year: 2022
  end-page: 21
  article-title: Effective detection of COVID‐19 outbreak in chest X‐Rays using fusionnet model
  publication-title: Imag Sci J
– volume: 24
  start-page: 3595
  issue: 12
  year: 2020
  end-page: 3605
  article-title: COVIDGR dataset and COVID‐SDNet methodology for predicting COVID‐19 based on chest X‐ray images
  publication-title: IEEE J Biomed Health Inform
– year: 2007
– year: 2022
– volume: 28
  start-page: 732
  issue: 3
  year: 2022
  end-page: 738
  article-title: Automated detection of COVID‐19 cases from chest X‐ray images using deep neural network and XGBoost
  publication-title: Radiography
– year: 2021
– year: 2020
– volume: 15
  start-page: 1435
  year: 2020
  end-page: 1443
  article-title: Utilization of machine‐learning models to accurately predict the risk for critical COVID‐19
  publication-title: Intern Emerg Med
– volume: 11
  start-page: 893
  issue: 9
  year: 2021
  article-title: COVID mortality prediction with machine learning methods: a systematic review and critical appraisal
  publication-title: J Pers Med
– volume: 23
  start-page: 390
  issue: 5
  year: 2021
  end-page: 407
  article-title: Energy efficient contact tracing and social interaction based patient prediction system for COVID‐19 pandemic
  publication-title: J Commun Netw
– start-page: 19
  year: 2020
  end-page: 28
– volume: 8
  year: 2020
  article-title: Individual‐level fatality prediction of COVID‐19 patients using AI methods
  publication-title: Front Public Health
– volume: 66
  year: 2021
  article-title: COVID‐19 cases prediction by using hybrid machine learning and beetle antennae search approach
  publication-title: Sustain Cities Soc
– volume: 11
  start-page: 9887
  issue: 1
  year: 2021
  article-title: COVID‐Classifier: An automated machine learning model to assist in the diagnosis of COVID‐19 infection in chest x‐ray images
  publication-title: Sci Rep
– volume: 11
  start-page: 3798
  issue: 22
  year: 2022
  article-title: Hybrid CNN and XGBoost model tuned by modified arithmetic optimization algorithm for COVID‐19 early diagnostics from x‐ray images
  publication-title: Electronics
– year: 2018
– volume: 32
  issue: 2
  year: 2022
  article-title: Intelligent diagnosis of coronavirus with computed tomography images using a deep learning model
  publication-title: J Electron Imag
– year: 2021
  article-title: Artificial intelligence predicts severity of COVID‐19 based on correlation of exaggerated monocyte activation, excessive organ damage and hyperinflammatory syndrome: a prospective clinical study
  publication-title: Front Immunol
– start-page: 1
  year: 2022
  end-page: 27
  article-title: Future forecasting prediction of Covid‐19 using hybrid deep learning algorithm
  publication-title: Multimed Tools Appl
– ident: e_1_2_10_23_1
  doi: 10.1109/ICIIS51140.2020.9342735
– ident: e_1_2_10_30_1
  doi: 10.1109/CANDO-EPE51100.2020.9337775
– ident: e_1_2_10_32_1
  doi: 10.1109/JBHI.2020.3037127
– ident: e_1_2_10_37_1
  doi: 10.1016/j.radi.2022.03.011
– ident: e_1_2_10_13_1
  doi: 10.1109/ICAECT49130.2021.9392487
– ident: e_1_2_10_24_1
  doi: 10.1109/ICIIS51140.2020.9342658
– ident: e_1_2_10_3_1
  doi: 10.3389/fpubh.2020.587937
– ident: e_1_2_10_10_1
  doi: 10.1016/j.scs.2020.102669
– ident: e_1_2_10_22_1
  doi: 10.1109/ICCSNT50940.2020.9304990
– ident: e_1_2_10_2_1
  doi: 10.1007/s11739-020-02475-0
– start-page: 1
  year: 2022
  ident: e_1_2_10_40_1
  article-title: Effective detection of COVID‐19 outbreak in chest X‐Rays using fusionnet model
  publication-title: Imag Sci J
– ident: e_1_2_10_39_1
  doi: 10.1016/j.eswa.2021.115452
– ident: e_1_2_10_6_1
  doi: 10.1109/ICCC51575.2020.9344984
– ident: e_1_2_10_11_1
  doi: 10.1109/ICOSEC51865.2021.9591801
– ident: e_1_2_10_15_1
  doi: 10.1109/ICECE54449.2021.9674303
– ident: e_1_2_10_17_1
  doi: 10.1038/s41598-021-88807-2
– ident: e_1_2_10_14_1
  doi: 10.1109/ICIIP53038.2021.9702560
– ident: e_1_2_10_16_1
– ident: e_1_2_10_8_1
– start-page: 1
  year: 2022
  ident: e_1_2_10_34_1
  article-title: Future forecasting prediction of Covid‐19 using hybrid deep learning algorithm
  publication-title: Multimed Tools Appl
– ident: e_1_2_10_20_1
  doi: 10.1109/CANDO-EPE51100.2020.9337757
– ident: e_1_2_10_36_1
  doi: 10.1117/1.JEI.32.2.021406
– ident: e_1_2_10_12_1
  doi: 10.1109/ISCTT51595.2020.00072
– ident: e_1_2_10_5_1
  doi: 10.1109/ICBAIE49996.2020.00065
– ident: e_1_2_10_18_1
  doi: 10.1109/ICECE51571.2020.9393123
– ident: e_1_2_10_38_1
  doi: 10.3390/electronics11223798
– ident: e_1_2_10_27_1
  doi: 10.1109/IPEC51340.2021.9421142
– ident: e_1_2_10_26_1
  doi: 10.1109/CICT51604.2020.9312112
– ident: e_1_2_10_28_1
  doi: 10.23919/JCN.2021.000037
– ident: e_1_2_10_7_1
– ident: e_1_2_10_33_1
  doi: 10.1007/978-981-15-6572-4_3
– ident: e_1_2_10_9_1
  doi: 10.3389/fimmu.2021.715072
– ident: e_1_2_10_19_1
  doi: 10.1109/ICTC52510.2021.9620902
– ident: e_1_2_10_4_1
  doi: 10.1109/Confluence51648.2021.9377115
– ident: e_1_2_10_29_1
  doi: 10.1109/AIID51893.2021.9456463
– ident: e_1_2_10_31_1
  doi: 10.1109/ICCED51276.2020.9415858
– ident: e_1_2_10_35_1
  doi: 10.1109/ICCSEA54677.2022.9936194
– ident: e_1_2_10_25_1
  doi: 10.1109/ICHI52183.2021.00099
– ident: e_1_2_10_21_1
  doi: 10.3390/jpm11090893
SSID ssj0002171030
Score 2.2632413
Snippet AI and machine learning are increasingly often applied in the medical industry. The COVID‐19 epidemic will start to spread quickly over the planet around the...
AI and machine learning are increasingly often applied in the medical industry. The COVID-19 epidemic will start to spread quickly over the planet around the...
Abstract AI and machine learning are increasingly often applied in the medical industry. The COVID‐19 epidemic will start to spread quickly over the planet...
SourceID doaj
unpaywall
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Algorithms
Applications programs
Asthma
Coronaviruses
COVID-19
Data analysis
Disease transmission
Epidemics
Health services
Heroku
high‐risk patients
Holidays & special occasions
Hospitals
Hypertension
Illnesses
Machine learning
Medical personnel
Mortality
Neural networks
Pandemics
Patients
Python flask
random forest classifier
Risk
Sex
Supervised learning
XGBoost
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQL8AB8SsWChqJSgik0MRxnPgIpaUgUS4U9Rb5d1kpm101qareeAReghfjSZhx0mgroXLhEkWOE1uZseezNf4-xnZEMJUphUx07kwiQqUT5aVKlMusMDqVxtNC8fORPDwWn06Kkw2pL8oJG-iBhx-3K3VZSKeMzBGoKB8q52WpdMh8piv0OJp900ptLKZoDkagTfpZEx8p3_XtnL_JuCQ9tY0IFIn6r6DLm2ftWl-c66a5ildjwDm4y-6MSBHeDj28x2749j67vcEf-ID9isdnB8kcoFxP0CPHCPQrQDjqre56LITFdO7qZQcYDD1p1gGlb0KL1wb2vnz7-P73j5-ZgjXtKy8XFignfg44e9MeIsxPY3ZYD4jLO0qWxu86wFDnVsvYFrZkCYsvAoZa0M18hY18X3YP2fHB_te9w2TUXUisKNMqsTy1rpTaYQD11iihU1-QEp3LvCN--lBojOxB55VVwcncICZxaGtZ2GDyMn_EttpV6x8zwFetDoEjakhF6QqtBCIaa1PhbKW5mbFXl7ao7UhKTtoYTT3QKfOa7FZHu83Yi6nueqDi-Gutd2TSqQbRZ8cCdKp6dKr6X041Y9uXDlGPY7qrcWmK4BEBMD7emZzk2q68jv5zTZV6_-gDj3dP_ke_n7JbHEHYkG6zzbb60zP_DEFTb57H8fEHob0YxA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA46-yA-uF5xllUCLohCx17StHlc111XwdEHR9ankGsd7LTDtIPokz_BP-Ef85d4knbKjMgi-FJKmlvTk3O-pCffQeiIWJnLjNBAJFoGxOYiYIaygOlIESlCKo1bKL6Z0vMZeX2RXmyd4u_4IYYNNzczvL52E3ypbafn-7_78TNTFfEkikHhXkV7NAU0PkJ7s-m7448uplyagQIGCRtYSbcL7NghT9e_gzGvraul-PpFlOUuavVm52wfiU2HO2-Tz5N1Kyfq2x9cjv_zRjfRjR6T4uNOiG6hK6a6ja5vMRXeQT_9Qd0uOA92XqVY9GwmuK0xAF-jRNNCIp4PJ7weNxjMrnHR8bBzFMUVXEt88vbDqxe_vv-IGF66HezFXGHnfV9gsBNutxIXK--H1mJYATTOLRvq1RiMqq4Xvi1oSTnUP7dg1LEoixoa-bRo7qLZ2en7k_Ogj_AQKJKFeaDiUOmMCg2m2ijJiAhN6mLe6chox4RvUwEYwookV8xqmkhAPxqkiqbKyiRL7qFRVVfmPsJQVAlrY8AnIcl0KhgB7KRUSLTKRSzH6Mnme3PV05-7KBwl74ibY-6GnvuhH6NHQ95lR_rx11zPndgMORxRt0-oVwXv5z2nIkupZpImgLOZsbk2NGPCRiYSOSjMMTrcCB3vtUfDYREMMBWgNjw-GgTx0q489YJ1SRZ-On0Z-7uDf6vzEI3a1do8AMzVyof9tPoNlgYy8A
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NatVAFB5qXagL8ZderTJgQRRik8lkkgE3WlurYHVhpbswv_FCbnK5SRF3PoIv4Yv5JJ4zyU29IAU3ISRnMoHz981w5juE7HGvC51zEanU6oj7QkXSCRlJmxiuVSy0w4XihxNxfMrfn2VnW-Tl-izMwA8xbbihZ4R4jQ6udLd_QRrqmoq9SBgE2yvkagJABu2b8U_TDguAbeyhhd3lshxCMdjaxE_K9i-Gb2SkQNy_gTavnTdL9f2bqutN_BoS0NEtcnNEjvTVoOrbZMs1d8iNv_gE75Jf4Tjt0EKHYu0nVSPnCO1bCvDUGdX18JDOp3NYTzsKydFhDzuK5Zy0gWtNDz5-effm94-fiaRL3GdezA3FGvmKQjTHPUVarUK1WE8Bp3dYPA3ftRRSn20XYS6YySA2n3tIvVTVVQuTfF1098jp0eHng-No7MMQGZ7HRWRYbGwulIWE6oyWXMUuw850NnEW-ep9piDTe5UWRnorUg0YxYLuRWa8TvP0Ptlu2sbtEApDjfKeAYqIeW4zJTkgHGNibk2hmJ6RZ2tdlGYkKcdeGXU50CuzEvVWBr3NyJNJdjlQc_xT6jWqdJJAOu3woF1V5eidpVB5JqzUIgU0LJ0vrBO5VD5xiSogrM3I7togytHHuxKWqgAmARDD673JSC79lefBfi4RKQ9P3rJw9-B_hB-S6wzA11Bms0u2-9W5ewRgqdePg0_8AdUcEuY
  priority: 102
  providerName: Wiley-Blackwell
Title Multifactor data analysis to forecast an individual's severity over novel COVID‐19 pandemic using extreme gradient boosting and random forest classifier algorithms
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feng2.12678
https://www.proquest.com/docview/2896445652
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eng2.12678
https://doaj.org/article/6a756d9b637749ef8de679af1e1a8042
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: ADMLS
  dateStart: 20190801
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: BENPR
  dateStart: 20191201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: AVUZU
  dateStart: 20190801
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Open Access
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: 24P
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1db9MwFLW27gF4QHyKslFZYhICKSxxHCd5QGgb7QbSSoUoGk-RP0OlNu3aTIgX_gx_lHvdNGwS6otVWW4d9V77Ht9cn0PIIXcqUykXgYyNCrjLZJBbkQe5iTRXMhTK4kHxYijOx_zTZXK5Q4abuzBYVrnZE_1GbeYac-RHcDCA0A3wg71fXAWoGoVvVzcSGrKRVjDvPMXYLtljyIzVIXsn_eHoS5t1AQCOulotTyk7slXJ3kZMoM7ajcjkCfxvoc4719VC_vopp9PbONYHosEDcr9BkPR4bfKHZMdWj8i9G7yCj8kff612LaVDsQaUyoZ7hNZzCjDVarmqoZNO2vtYr1YUgqRFLTuKZZ20gnZKTz9_-_ghiHK6wGzzbKIpVsqXFPZ0zCzSculrxmoKaH2FJdTwq4ZCADTzmZ8J5tGI0CcOAjCV0xL-1PrHbPWEjAf9r6fnQaPGEGiehlmgWahNKqSBsGq1yrkMbYL6dCayBlnrXSIh3jsZZzp3RsQKkIoBDxCJdipO46ekU80r-4xQ-KqWzjHAEiFPTSJzDjhH65AbnUmmuuT1xhKFbqjKUTFjWqxJllmBViu81brkZTt2sSbo-O-oEzRoOwJJtX3HfFkWzRothEwTYXIlYsDEuXWZsSLNpYtsJDPY3LrkYOMORbPSV8U_v-ySw9ZFtj7KG-89W4YU_eEZ85-eb59yn9xlALrW5TUHpFMvr-0LAEm16pFdxkfQZoOzXrMKej7hAO3F7z70jYej4-9_AdNZGrk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZG9zB4QFxFYYAlhhBIYYnjOMnDhNjW0bKtILShvQVfQ6U2LU2mab-H_8Fv49i5sEmob3uJosiJEx37fN9xjs-H0BY1IhExZR4PlfCoSbiXapZ6qQokFdxnQttA8XjMhqf081l0tob-tHthbFpl6xOdo1ZzadfItyEwAOgG-kE-LH55VjXK_l1tJTR4I62gdlyJsWZjx6G-vIAQrtwZ7YO9XxNyMDjZG3qNyoAnaewnniS-VDHjCuBCS5FS7uvI6q6pQCtbjd1EHHDM8DCRqVEsFIDACr6MRdKIMA7hubfQOg3hnh5a3x2Mv37rVnmA8Fsdr64uKtnWRU7eB4RZXbcrSOgEA66x3I3zYsEvL_h0ep03O-A7uIfuNowVf6yH2H20posH6M6VOoYP0W-3jbeW7sE25xTzptYJruYYaLGWvKzgIp50-7_elBhAWVvtPGzTSHEBxyne-_J9tO8FKV7Y1e3ZRGKbmZ9jwBC7konzpctRqzBEB6VN2YanKgyAq-Yz1xP0I21EMDEA-JhPczBi9XNWPkKnN2KXx6hXzAv9BGG4VXJjCHAXn8Yq4ikFXiWlT5VMOBF99La1RCab0uhWoWOa1UWdSWatljmr9dGrru2iLgjy31a71qBdC1vE212YL_Os8QkZ43HEVCpYCBw81SZRmsUpN4EOeALOtI822-GQNZ6lzP7Ngz7a6obIyld550bPiibZYPyJuLOnq7t8iTaGJ8dH2dFofPgM3SZA-OrUnk3Uq5bn-jkQtEq8aGYBRj9ueuL9BXOzU8A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2VInF5QFxFSoGVKEIgmdhre20_IARN04ZC4IGivpm9upESJ8Suqn4Pf8HXMbN2TCuhvPXFsqyNN9HMzpzZzJ5DyE5kZSqTiHsi1NKLbCq8zPDMy3SgIil8Lg0Wil_G_OAo-nQcH2-QP6uzMNhWuYqJLlDrucI98j4UBpC6AX6wvm3bIr4Nhu8XvzxUkMJ_WldyGo2LHJrzMyjfqnejAdj6JWPDve-7B16rMOCpKPFTTzFf6YQLDanCKJlFwjcxaq7pwGhkYrexgBxmRZiqzGoeSsi-Gn4Vj5WVYRLCe6-R6wmyuOMp9eF-t78DUB8VvDpGVNY3ZcHeBoyjotuFHOikAi7h25un5UKcn4np9DJidilveJfcabEq_dA41z2yYcr75PYFBsMH5Lc7wNuI9lDsNqWiZTmh9ZwCIDZKVDU8pJPu5NerikI6NqiaR7GBlJZwndLdrz9GAy_I6AL3tWcTRbEnv6BgAtzDpMXSdafVFOqCCpu14a2aQqrV85mbCeZRWAtMLKR6KqYFmKw-mVUPydGVWOUR2SznpXlMKHxUCWsZoBY_SnQssggQlVJ-pFUqmOyR1ytL5KolRUdtjmne0DmzHK2WO6v1yItu7KKhAvnvqI9o0G4E0ne7B_NlkbfRIOciibnOJA8BfWfGptrwJBM2MIFIIYz2yPbKHfI2plT5vxXQIzudi6z9Km-c96wZku-N95m721o_5XNyA5Zb_nk0PnxCbjFAek1PzzbZrJen5ikgs1o-c0uAkp9Xveb-Aj7_UVo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA46-yA-uF5xllUCLohCx17StHlc111XwdEHR9ankGsd7LTDtIPokz_BP-Ef85d4knbKjMgi-FJKmlvTk3O-pCffQeiIWJnLjNBAJFoGxOYiYIaygOlIESlCKo1bKL6Z0vMZeX2RXmyd4u_4IYYNNzczvL52E3ypbafn-7_78TNTFfEkikHhXkV7NAU0PkJ7s-m7448uplyagQIGCRtYSbcL7NghT9e_gzGvraul-PpFlOUuavVm52wfiU2HO2-Tz5N1Kyfq2x9cjv_zRjfRjR6T4uNOiG6hK6a6ja5vMRXeQT_9Qd0uOA92XqVY9GwmuK0xAF-jRNNCIp4PJ7weNxjMrnHR8bBzFMUVXEt88vbDqxe_vv-IGF66HezFXGHnfV9gsBNutxIXK--H1mJYATTOLRvq1RiMqq4Xvi1oSTnUP7dg1LEoixoa-bRo7qLZ2en7k_Ogj_AQKJKFeaDiUOmMCg2m2ijJiAhN6mLe6chox4RvUwEYwookV8xqmkhAPxqkiqbKyiRL7qFRVVfmPsJQVAlrY8AnIcl0KhgB7KRUSLTKRSzH6Mnme3PV05-7KBwl74ibY-6GnvuhH6NHQ95lR_rx11zPndgMORxRt0-oVwXv5z2nIkupZpImgLOZsbk2NGPCRiYSOSjMMTrcCB3vtUfDYREMMBWgNjw-GgTx0q489YJ1SRZ-On0Z-7uDf6vzEI3a1do8AMzVyof9tPoNlgYy8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifactor+data+analysis+to+forecast+an+individual%27s+severity+over+novel+COVID%E2%80%9019+pandemic+using+extreme+gradient+boosting+and+random+forest+classifier+algorithms&rft.jtitle=Engineering+reports+%28Hoboken%2C+N.J.%29&rft.au=Yenurkar%2C+Ganesh+Keshaorao&rft.au=Mal%2C+Sandip&rft.au=Nyangaresi%2C+Vincent+O.&rft.au=Hedau%2C+Anshul&rft.date=2023-12-01&rft.issn=2577-8196&rft.eissn=2577-8196&rft.volume=5&rft.issue=12&rft_id=info:doi/10.1002%2Feng2.12678&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eng2_12678
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2577-8196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2577-8196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2577-8196&client=summon