Wearable Inertial Gait Algorithms: Impact of Wear Location and Environment in Healthy and Parkinson’s Populations

Wearable inertial measurement units (IMUs) are used in gait analysis due to their discrete wearable attachment and long data recording possibilities within indoor and outdoor environments. Previously, lower back and shin/shank-based IMU algorithms detecting initial and final contact events (ICs-FCs)...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 19; p. 6476
Main Authors Celik, Yunus, Stuart, Sam, Woo, Wai Lok, Godfrey, Alan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 28.09.2021
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s21196476

Cover

Abstract Wearable inertial measurement units (IMUs) are used in gait analysis due to their discrete wearable attachment and long data recording possibilities within indoor and outdoor environments. Previously, lower back and shin/shank-based IMU algorithms detecting initial and final contact events (ICs-FCs) were developed and validated on a limited number of healthy young adults (YA), reporting that both IMU wear locations are suitable to use during indoor and outdoor gait analysis. However, the impact of age (e.g., older adults, OA), pathology (e.g., Parkinson′s Disease, PD) and/or environment (e.g., indoor vs. outdoor) on algorithm accuracy have not been fully investigated. Here, we examined IMU gait data from 128 participants (72-YA, 20-OA, and 36-PD) to thoroughly investigate the suitability of ICs-FCs detection algorithms (1 × lower back and 1 × shin/shank-based) for quantifying temporal gait characteristics depending on IMU wear location and walking environment. The level of agreement between algorithms was investigated for different cohorts and walking environments. Although mean temporal characteristics from both algorithms were significantly correlated for all groups and environments, subtle but characteristically nuanced differences were observed between cohorts and environments. The lowest absolute agreement level was observed in PD (ICC2,1 = 0.979, 0.806, 0.730, 0.980) whereas highest in YA (ICC2,1 = 0.987, 0.936, 0.909, 0.989) for mean stride, stance, swing, and step times, respectively. Absolute agreement during treadmill walking (ICC2,1 = 0.975, 0.914, 0.684, 0.945), indoor walking (ICC2,1 = 0.987, 0.936, 0.909, 0.989) and outdoor walking (ICC2,1 = 0.998, 0.940, 0.856, 0.998) was found for mean stride, stance, swing, and step times, respectively. Findings of this study suggest that agreements between algorithms are sensitive to the target cohort and environment. Therefore, researchers/clinicians should be cautious while interpreting temporal parameters that are extracted from inertial sensors-based algorithms especially for those with a neurological condition.
AbstractList Wearable inertial measurement units (IMUs) are used in gait analysis due to their discrete wearable attachment and long data recording possibilities within indoor and outdoor environments. Previously, lower back and shin/shank-based IMU algorithms detecting initial and final contact events (ICs-FCs) were developed and validated on a limited number of healthy young adults (YA), reporting that both IMU wear locations are suitable to use during indoor and outdoor gait analysis. However, the impact of age (e.g., older adults, OA), pathology (e.g., Parkinson′s Disease, PD) and/or environment (e.g., indoor vs. outdoor) on algorithm accuracy have not been fully investigated. Here, we examined IMU gait data from 128 participants (72-YA, 20-OA, and 36-PD) to thoroughly investigate the suitability of ICs-FCs detection algorithms (1 × lower back and 1 × shin/shank-based) for quantifying temporal gait characteristics depending on IMU wear location and walking environment. The level of agreement between algorithms was investigated for different cohorts and walking environments. Although mean temporal characteristics from both algorithms were significantly correlated for all groups and environments, subtle but characteristically nuanced differences were observed between cohorts and environments. The lowest absolute agreement level was observed in PD (ICC2,1 = 0.979, 0.806, 0.730, 0.980) whereas highest in YA (ICC2,1 = 0.987, 0.936, 0.909, 0.989) for mean stride, stance, swing, and step times, respectively. Absolute agreement during treadmill walking (ICC2,1 = 0.975, 0.914, 0.684, 0.945), indoor walking (ICC2,1 = 0.987, 0.936, 0.909, 0.989) and outdoor walking (ICC2,1 = 0.998, 0.940, 0.856, 0.998) was found for mean stride, stance, swing, and step times, respectively. Findings of this study suggest that agreements between algorithms are sensitive to the target cohort and environment. Therefore, researchers/clinicians should be cautious while interpreting temporal parameters that are extracted from inertial sensors-based algorithms especially for those with a neurological condition.
Wearable inertial measurement units (IMUs) are used in gait analysis due to their discrete wearable attachment and long data recording possibilities within indoor and outdoor environments. Previously, lower back and shin/shank-based IMU algorithms detecting initial and final contact events (ICs-FCs) were developed and validated on a limited number of healthy young adults (YA), reporting that both IMU wear locations are suitable to use during indoor and outdoor gait analysis. However, the impact of age (e.g., older adults, OA), pathology (e.g., Parkinson's Disease, PD) and/or environment (e.g., indoor vs. outdoor) on algorithm accuracy have not been fully investigated. Here, we examined IMU gait data from 128 participants (72-YA, 20-OA, and 36-PD) to thoroughly investigate the suitability of ICs-FCs detection algorithms (1 × lower back and 1 × shin/shank-based) for quantifying temporal gait characteristics depending on IMU wear location and walking environment. The level of agreement between algorithms was investigated for different cohorts and walking environments. Although mean temporal characteristics from both algorithms were significantly correlated for all groups and environments, subtle but characteristically nuanced differences were observed between cohorts and environments. The lowest absolute agreement level was observed in PD (ICC = 0.979, 0.806, 0.730, 0.980) whereas highest in YA (ICC = 0.987, 0.936, 0.909, 0.989) for mean stride, stance, swing, and step times, respectively. Absolute agreement during treadmill walking (ICC = 0.975, 0.914, 0.684, 0.945), indoor walking (ICC = 0.987, 0.936, 0.909, 0.989) and outdoor walking (ICC = 0.998, 0.940, 0.856, 0.998) was found for mean stride, stance, swing, and step times, respectively. Findings of this study suggest that agreements between algorithms are sensitive to the target cohort and environment. Therefore, researchers/clinicians should be cautious while interpreting temporal parameters that are extracted from inertial sensors-based algorithms especially for those with a neurological condition.
Wearable inertial measurement units (IMUs) are used in gait analysis due to their discrete wearable attachment and long data recording possibilities within indoor and outdoor environments. Previously, lower back and shin/shank-based IMU algorithms detecting initial and final contact events (ICs-FCs) were developed and validated on a limited number of healthy young adults (YA), reporting that both IMU wear locations are suitable to use during indoor and outdoor gait analysis. However, the impact of age (e.g., older adults, OA), pathology (e.g., Parkinson's Disease, PD) and/or environment (e.g., indoor vs. outdoor) on algorithm accuracy have not been fully investigated. Here, we examined IMU gait data from 128 participants (72-YA, 20-OA, and 36-PD) to thoroughly investigate the suitability of ICs-FCs detection algorithms (1 × lower back and 1 × shin/shank-based) for quantifying temporal gait characteristics depending on IMU wear location and walking environment. The level of agreement between algorithms was investigated for different cohorts and walking environments. Although mean temporal characteristics from both algorithms were significantly correlated for all groups and environments, subtle but characteristically nuanced differences were observed between cohorts and environments. The lowest absolute agreement level was observed in PD (ICC2,1 = 0.979, 0.806, 0.730, 0.980) whereas highest in YA (ICC2,1 = 0.987, 0.936, 0.909, 0.989) for mean stride, stance, swing, and step times, respectively. Absolute agreement during treadmill walking (ICC2,1 = 0.975, 0.914, 0.684, 0.945), indoor walking (ICC2,1 = 0.987, 0.936, 0.909, 0.989) and outdoor walking (ICC2,1 = 0.998, 0.940, 0.856, 0.998) was found for mean stride, stance, swing, and step times, respectively. Findings of this study suggest that agreements between algorithms are sensitive to the target cohort and environment. Therefore, researchers/clinicians should be cautious while interpreting temporal parameters that are extracted from inertial sensors-based algorithms especially for those with a neurological condition.Wearable inertial measurement units (IMUs) are used in gait analysis due to their discrete wearable attachment and long data recording possibilities within indoor and outdoor environments. Previously, lower back and shin/shank-based IMU algorithms detecting initial and final contact events (ICs-FCs) were developed and validated on a limited number of healthy young adults (YA), reporting that both IMU wear locations are suitable to use during indoor and outdoor gait analysis. However, the impact of age (e.g., older adults, OA), pathology (e.g., Parkinson's Disease, PD) and/or environment (e.g., indoor vs. outdoor) on algorithm accuracy have not been fully investigated. Here, we examined IMU gait data from 128 participants (72-YA, 20-OA, and 36-PD) to thoroughly investigate the suitability of ICs-FCs detection algorithms (1 × lower back and 1 × shin/shank-based) for quantifying temporal gait characteristics depending on IMU wear location and walking environment. The level of agreement between algorithms was investigated for different cohorts and walking environments. Although mean temporal characteristics from both algorithms were significantly correlated for all groups and environments, subtle but characteristically nuanced differences were observed between cohorts and environments. The lowest absolute agreement level was observed in PD (ICC2,1 = 0.979, 0.806, 0.730, 0.980) whereas highest in YA (ICC2,1 = 0.987, 0.936, 0.909, 0.989) for mean stride, stance, swing, and step times, respectively. Absolute agreement during treadmill walking (ICC2,1 = 0.975, 0.914, 0.684, 0.945), indoor walking (ICC2,1 = 0.987, 0.936, 0.909, 0.989) and outdoor walking (ICC2,1 = 0.998, 0.940, 0.856, 0.998) was found for mean stride, stance, swing, and step times, respectively. Findings of this study suggest that agreements between algorithms are sensitive to the target cohort and environment. Therefore, researchers/clinicians should be cautious while interpreting temporal parameters that are extracted from inertial sensors-based algorithms especially for those with a neurological condition.
Author Woo, Wai Lok
Stuart, Sam
Celik, Yunus
Godfrey, Alan
AuthorAffiliation 1 Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; yunus.celik@northumbria.ac.uk
2 Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; sam.stuart@northumbria.ac.uk
AuthorAffiliation_xml – name: 2 Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; sam.stuart@northumbria.ac.uk
– name: 1 Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; yunus.celik@northumbria.ac.uk
Author_xml – sequence: 1
  givenname: Yunus
  orcidid: 0000-0002-3384-4213
  surname: Celik
  fullname: Celik, Yunus
– sequence: 2
  givenname: Sam
  orcidid: 0000-0001-6846-9372
  surname: Stuart
  fullname: Stuart, Sam
– sequence: 3
  givenname: Wai Lok
  orcidid: 0000-0002-8698-7605
  surname: Woo
  fullname: Woo, Wai Lok
– sequence: 4
  givenname: Alan
  orcidid: 0000-0003-4049-9291
  surname: Godfrey
  fullname: Godfrey, Alan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34640799$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1u1DAQxyNURD_gwAsgS1wAaam_ktgckKqqtCutRA8gjtbEcXa9OHZqJ0V74zV4PZ6EbLas2gpOtjy_-c9_ZnycHfjgTZa9JPg9YxKfJkqILHhZPMmOCKd8JijFB_fuh9lxSmuMKWNMPMsOGS84LqU8ytI3AxEqZ9Dcm9hbcOgSbI_O3DJE26_a9AHN2w50j0KDtjBaBA29DR6Br9GFv7Ux-Nb4HlmPrgy4frWZQtcQv1ufgv_981dC16Eb3JSXnmdPG3DJvLg7T7Kvny6-nF_NFp8v5-dni5nmhexnjayEpLiRVLOqlpXmtSxk2WiiqaAS67IxwEQjJBBjipLrIpc51CKvOaGYsZNsvtOtA6xVF20LcaMCWDU9hLhUMLasnVGEUUMoqUktDResliXGDTayMBIEpmLUerfTGnwHmx_g3F6QYLXdgtpvYYQ_7uBuqFpT63E4EdwDBw8j3q7UMtwqkRPK5bbamzuBGG4Gk3rV2qSNc-BNGJKiuSACS874iL5-hK7DEP0414nCeV6IcqRe3Xe0t_L3I4zA6Q7QMaQUTaO07ad1jQat-2eTbx9l_H8gfwBd29KF
CitedBy_id crossref_primary_10_1109_JSEN_2023_3328054
crossref_primary_10_1016_j_gaitpost_2024_06_001
crossref_primary_10_1038_s41746_024_01050_7
crossref_primary_10_3390_s24154914
crossref_primary_10_1016_j_bspc_2025_107659
crossref_primary_10_3390_diagnostics15010036
crossref_primary_10_1186_s12984_024_01320_1
crossref_primary_10_3390_s23020891
crossref_primary_10_1371_journal_pone_0290912
crossref_primary_10_1177_20552076241277174
crossref_primary_10_3390_s24217059
crossref_primary_10_3390_s23083902
crossref_primary_10_1007_s12311_023_01625_2
crossref_primary_10_1016_j_maturitas_2024_108065
crossref_primary_10_3390_s23135778
crossref_primary_10_1109_JBHI_2023_3340716
Cites_doi 10.1016/j.gaitpost.2016.08.012
10.3389/fneur.2020.00994
10.1016/j.gaitpost.2016.11.024
10.1109/TBME.2004.827933
10.1016/j.gaitpost.2009.11.014
10.1088/1361-6579/38/1/N1
10.1186/s12984-017-0341-z
10.1016/j.gaitpost.2018.08.025
10.1016/S0021-9290(02)00008-8
10.1016/j.jcm.2016.02.012
10.1097/PHM.0000000000000324
10.1177/096228029900800204
10.1002/mds.26718
10.1016/j.gaitpost.2014.07.007
10.1038/s41598-020-61423-2
10.1002/mds.28631
10.1016/j.gaitpost.2015.06.008
10.1016/j.cmpb.2012.02.003
10.1186/1743-0003-11-152
10.1088/1361-6579/ab4023
10.3233/JPD-130179
10.1093/gerona/glx254
10.3390/s100605683
10.1016/j.gaitpost.2012.02.019
10.3390/s20030656
10.1007/s00508-016-1096-4
10.3390/ijerph18052369
10.1016/j.gaitpost.2005.12.017
10.3389/fspor.2020.00119
10.1016/S0268-0033(98)00089-8
10.1016/S1474-4422(19)30397-7
10.3390/s21144795
10.1016/j.gaitpost.2016.09.023
10.1186/s12984-016-0154-5
10.1007/s11517-015-1357-9
10.1016/j.buildenv.2021.108014
10.1016/j.medengphy.2020.11.005
10.1109/EMBC.2018.8512910
10.1007/s40846-017-0297-2
10.1088/0967-3334/37/10/1785
10.1186/s12984-020-00779-y
10.1016/j.gaitpost.2015.05.020
10.3390/s20226417
10.3390/s20051343
10.1016/j.medengphy.2011.04.009
10.1037/0033-2909.86.2.420
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s21196476
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Publicly Available Content Database

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_132e121d1d9e483d9700f0e96e9a8028
10.3390/s21196476
PMC8512498
34640799
10_3390_s21196476
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: Parkinson's Disease Foundation
  grantid: PF-FBS-1898
– fundername: Parkinson's Foundation
  grantid: PF-FBS-1898-18-21
– fundername: Turkish Ministry of Education
  grantid: n/a
– fundername: Parkinson's Foundation
  grantid: PF-CRA-2073
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c469t-f9b8920f92c3bd9bc4d9697fc1c28290c7fea38f89a1ee674c6595ad85d412033
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:42:49 EDT 2025
Sun Oct 26 03:20:14 EDT 2025
Tue Sep 30 16:50:52 EDT 2025
Fri Sep 05 07:58:47 EDT 2025
Tue Oct 07 07:35:25 EDT 2025
Mon Jul 21 06:03:14 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
Thu Oct 16 04:37:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords wearable electronic devices
computing methodologies
gait analysis
patient outcome assessment
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-f9b8920f92c3bd9bc4d9697fc1c28290c7fea38f89a1ee674c6595ad85d412033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6846-9372
0000-0003-4049-9291
0000-0002-3384-4213
0000-0002-8698-7605
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21196476
PMID 34640799
PQID 2581055687
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_132e121d1d9e483d9700f0e96e9a8028
unpaywall_primary_10_3390_s21196476
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8512498
proquest_miscellaneous_2581809434
proquest_journals_2581055687
pubmed_primary_34640799
crossref_citationtrail_10_3390_s21196476
crossref_primary_10_3390_s21196476
PublicationCentury 2000
PublicationDate 20210928
PublicationDateYYYYMMDD 2021-09-28
PublicationDate_xml – month: 9
  year: 2021
  text: 20210928
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Godfrey (ref_45) 2015; 20
Zhou (ref_48) 2020; 10
Aminian (ref_32) 2002; 35
Koo (ref_34) 2016; 15
Beijer (ref_39) 2013; 3
Warmerdam (ref_29) 2020; 19
Shrout (ref_35) 1979; 86
Hickey (ref_27) 2016; 38
McCamley (ref_23) 2012; 36
Godfrey (ref_28) 2016; 13
Brodie (ref_40) 2016; 54
ref_18
Hickey (ref_38) 2016; 37
Jasiewicz (ref_19) 2006; 24
Rast (ref_47) 2020; 17
Coulby (ref_36) 2021; 203
(ref_33) 1998; 13
Phinyomark (ref_49) 2018; 38
Storm (ref_11) 2016; 50
Benedetti (ref_15) 2012; 108
Mirelman (ref_50) 2021; 36
ref_21
ref_20
Godfrey (ref_3) 2016; 31
Trojaniello (ref_22) 2014; 40
Khandelwal (ref_25) 2017; 51
Bland (ref_37) 1999; 8
Morris (ref_7) 2019; 40
Panebianco (ref_9) 2018; 66
ref_31
ref_30
Morris (ref_2) 2017; 52
Alvarez (ref_13) 2010; 31
Celik (ref_6) 2020; 87
Toda (ref_41) 2020; 2
Salarian (ref_17) 2004; 51
Agostini (ref_42) 2020; 11
Trojaniello (ref_24) 2015; 42
Trojaniello (ref_16) 2014; 11
Galna (ref_26) 2019; 74
Zurales (ref_43) 2016; 95
Pirker (ref_1) 2017; 129
ref_44
Catalfamo (ref_12) 2010; 10
Moore (ref_46) 2017; 14
Mansour (ref_10) 2015; 42
ref_8
ref_5
Shin (ref_14) 2011; 33
ref_4
References_xml – volume: 50
  start-page: 42
  year: 2016
  ident: ref_11
  article-title: Gait event detection in laboratory and real life settings: Accuracy of ankle and waist sensor based methods
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2016.08.012
– volume: 11
  start-page: 994
  year: 2020
  ident: ref_42
  article-title: Surface electromyography applied to gait analysis: How to improve its impact in clinics?
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2020.00994
– volume: 52
  start-page: 68
  year: 2017
  ident: ref_2
  article-title: A model of free-living gait: A factor analysis in Parkinson’s disease
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2016.11.024
– volume: 51
  start-page: 1434
  year: 2004
  ident: ref_17
  article-title: Gait assessment in Parkinson’s disease: Toward an ambulatory system for long-term monitoring
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827933
– volume: 31
  start-page: 322
  year: 2010
  ident: ref_13
  article-title: Real-time gait event detection for normal subjects from lower trunk accelerations
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2009.11.014
– volume: 38
  start-page: N1
  year: 2016
  ident: ref_27
  article-title: Detecting free-living steps and walking bouts: Validating an algorithm for macro gait analysis
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/38/1/N1
– volume: 14
  start-page: 130
  year: 2017
  ident: ref_46
  article-title: Comprehensive measurement of stroke gait characteristics with a single accelerometer in the laboratory and community: A feasibility, validity and reliability study
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-017-0341-z
– volume: 66
  start-page: 76
  year: 2018
  ident: ref_9
  article-title: Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2018.08.025
– volume: 35
  start-page: 689
  year: 2002
  ident: ref_32
  article-title: Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(02)00008-8
– volume: 15
  start-page: 155
  year: 2016
  ident: ref_34
  article-title: A guideline of selecting and reporting intraclass correlation coefficients for reliability research
  publication-title: J. Chiropr. Med.
  doi: 10.1016/j.jcm.2016.02.012
– volume: 95
  start-page: 83
  year: 2016
  ident: ref_43
  article-title: Gait efficiency on an uneven surface is associated with falls and injury in older subjects with a spectrum of lower limb neuromuscular function: A prospective study
  publication-title: Am. J. Phys. Med. Rehabil./Assoc. Acad. Phys.
  doi: 10.1097/PHM.0000000000000324
– volume: 8
  start-page: 135
  year: 1999
  ident: ref_37
  article-title: Measuring agreement in method comparison studies
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/096228029900800204
– volume: 31
  start-page: 1293
  year: 2016
  ident: ref_3
  article-title: Free-living monitoring of Parkinson’s disease: Lessons from the field
  publication-title: Mov. Disord.
  doi: 10.1002/mds.26718
– volume: 40
  start-page: 487
  year: 2014
  ident: ref_22
  article-title: Accuracy, sensitivity and robustness of five different methods for the estimation of gait temporal parameters using a single inertial sensor mounted on the lower trunk
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2014.07.007
– volume: 10
  start-page: 4426
  year: 2020
  ident: ref_48
  article-title: The detection of age groups by dynamic gait outcomes using machine learning approaches
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61423-2
– volume: 36
  start-page: 2144
  year: 2021
  ident: ref_50
  article-title: Detecting Sensitive Mobility Features for Parkinson’s Disease Stages Via Machine Learning
  publication-title: Mov. Disord.
  doi: 10.1002/mds.28631
– volume: 42
  start-page: 310
  year: 2015
  ident: ref_24
  article-title: Comparative assessment of different methods for the estimation of gait temporal parameters using a single inertial sensor: Application to elderly, post-stroke, Parkinson’s disease and Huntington’s disease subjects
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2015.06.008
– volume: 108
  start-page: 129
  year: 2012
  ident: ref_15
  article-title: Estimation of spatial-temporal gait parameters in level walking based on a single accelerometer: Validation on normal subjects by standard gait analysis
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2012.02.003
– volume: 11
  start-page: 152
  year: 2014
  ident: ref_16
  article-title: Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: Application to elderly, hemiparetic, parkinsonian and choreic gait
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-11-152
– volume: 40
  start-page: 095003
  year: 2019
  ident: ref_7
  article-title: Validity of Mobility Lab (version 2) for gait assessment in young adults, older adults and Parkinson’s disease
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ab4023
– volume: 3
  start-page: 199
  year: 2013
  ident: ref_39
  article-title: Comparison of Handheld Video Camera and GAITRite® Measurement of Gait Impairment in People with Early Stage Parkinson’s Disease: A Pilot Study
  publication-title: J. Parkinson’s Dis.
  doi: 10.3233/JPD-130179
– volume: 74
  start-page: 500
  year: 2019
  ident: ref_26
  article-title: Analysis of free-living gait in older adults with and without Parkinson’s disease and with and without a history of falls: Identifying generic and disease-specific characteristics
  publication-title: J. Gerontol. Ser. A
  doi: 10.1093/gerona/glx254
– volume: 10
  start-page: 5683
  year: 2010
  ident: ref_12
  article-title: Gait event detection on level ground and incline walking using a rate gyroscope
  publication-title: Sensors
  doi: 10.3390/s100605683
– volume: 36
  start-page: 316
  year: 2012
  ident: ref_23
  article-title: An enhanced estimate of initial contact and final contact instants of time using lower trunk inertial sensor data
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2012.02.019
– ident: ref_44
  doi: 10.3390/s20030656
– volume: 129
  start-page: 81
  year: 2017
  ident: ref_1
  article-title: Gait disorders in adults and the elderly
  publication-title: Wien. Klin. Wochenschr.
  doi: 10.1007/s00508-016-1096-4
– ident: ref_4
  doi: 10.3390/ijerph18052369
– volume: 24
  start-page: 502
  year: 2006
  ident: ref_19
  article-title: Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2005.12.017
– volume: 2
  start-page: 119
  year: 2020
  ident: ref_41
  article-title: Indoor versus outdoor walking: Does it make any difference in joint angle depending on road surface?
  publication-title: Front. Sports Act. Living
  doi: 10.3389/fspor.2020.00119
– ident: ref_30
– volume: 13
  start-page: 320
  year: 1998
  ident: ref_33
  article-title: A new method for evaluating motor control in gait under real-life environmental conditions. Part 1: The instrument
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(98)00089-8
– volume: 19
  start-page: 462
  year: 2020
  ident: ref_29
  article-title: Long-term unsupervised mobility assessment in movement disorders
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(19)30397-7
– ident: ref_5
  doi: 10.3390/ijerph18052369
– ident: ref_8
  doi: 10.3390/s21144795
– volume: 51
  start-page: 84
  year: 2017
  ident: ref_25
  article-title: Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2016.09.023
– volume: 13
  start-page: 46
  year: 2016
  ident: ref_28
  article-title: Free-living gait characteristics in ageing and Parkinson’s disease: Impact of environment and ambulatory bout length
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-016-0154-5
– volume: 54
  start-page: 663
  year: 2016
  ident: ref_40
  article-title: Wearable pendant device monitoring using new wavelet-based methods shows daily life and laboratory gaits are different
  publication-title: Med. Biol. Eng. Compu.
  doi: 10.1007/s11517-015-1357-9
– ident: ref_18
– volume: 203
  start-page: 108014
  year: 2021
  ident: ref_36
  article-title: Low-cost, multimodal environmental monitoring based on the Internet of Things
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108014
– volume: 87
  start-page: 9
  year: 2020
  ident: ref_6
  article-title: Gait analysis in neurological populations: Progression in the use of wearables
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2020.11.005
– ident: ref_31
  doi: 10.1109/EMBC.2018.8512910
– volume: 38
  start-page: 244
  year: 2018
  ident: ref_49
  article-title: Analysis of big data in gait biomechanics: Current trends and future directions
  publication-title: J. Med. Biol. Eng.
  doi: 10.1007/s40846-017-0297-2
– volume: 37
  start-page: 1785
  year: 2016
  ident: ref_38
  article-title: Measuring gait with an accelerometer-based wearable: Influence of device location, testing protocol and age
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/37/10/1785
– volume: 17
  start-page: 1
  year: 2020
  ident: ref_47
  article-title: Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/s12984-020-00779-y
– volume: 42
  start-page: 409
  year: 2015
  ident: ref_10
  article-title: Analysis of several methods and inertial sensors locations to assess gait parameters in able-bodied subjects
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2015.05.020
– ident: ref_20
  doi: 10.3390/s20226417
– ident: ref_21
  doi: 10.3390/s20051343
– volume: 33
  start-page: 1064
  year: 2011
  ident: ref_14
  article-title: Adaptive step length estimation algorithm using optimal parameters and movement status awareness
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2011.04.009
– volume: 20
  start-page: 838
  year: 2015
  ident: ref_45
  article-title: Validation of an accelerometer to quantify a comprehensive battery of gait characteristics in healthy older adults and Parkinson’s disease: Toward clinical and at home use
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 86
  start-page: 420
  year: 1979
  ident: ref_35
  article-title: Intraclass correlations: Uses in assessing rater reliability
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.86.2.420
SSID ssj0023338
Score 2.4345543
Snippet Wearable inertial measurement units (IMUs) are used in gait analysis due to their discrete wearable attachment and long data recording possibilities within...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6476
SubjectTerms Aged
Agreements
Algorithms
Approximation
Clinical outcomes
computing methodologies
Consent
Data collection
Datasets
Fitness equipment
Gait
gait analysis
Humans
Older people
Parkinson Disease - diagnosis
Parkinson's disease
patient outcome assessment
Sensors
Velocity
Walking
Wavelet transforms
Wearable Electronic Devices
Young Adult
Young adults
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL4UDouUVKMg8DlyiJrGT2NwKamkRIA5U9BY5frQrLU7VZIV642_w9_glzNjZdFcUceGSQzwHa2acmS-e-YaQl6WFtKHITFoj0kEuTDhz2qUA4jJVcFG5HJuTP36qDo_5-5PyZGXUF9aERXrgqLhdQEs2L3KTG2m5YEbWWeYyKysrlYDgiF_fTMglmBqhFgPkFXmEGID63R55zCqOxCIr0SeQ9F-XWf5ZILm58Ofq8ruaz1eiz8EdcntMG-le3O4WuWH9Nrm1QiZ4l_RfwWmxEYoeeSyWBvF3ajbQvflpdzEbzr71r-lR6ImknaMoTD908YcdVd7Q_auWNzrzNPYnXYYlbI0OXWK_fvzs6edp5ld_jxwf7H95e5iOIxVSDTh4SJ1shSwyJwvNWiNbzY2sZO10rsOVqq6dVUw4IVVubVVzjXyDyojS8LzIGLtPNnzn7UNCXa1aSG9aTMpAs2VbQ6TT8LScOcbbhLxaqrrRI984jr2YN4A70CrNZJWEPJ9EzyPJxnVCb9BekwDyYocX4C3N6C3Nv7wlITtLazfjYe2bohRhTKioE_JsWoZjhncnyttuEWUEVmHyhDyIzjHthHG8DZUyIfWa26xtdX3Fz84ClTfku4B_YVsvJgf7uwYe_Q8NPCY3CyzLwYs1sUM2houFfQJ51dA-DUfoN6hJIG8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9gAcEM8SKMg8DlyiJrGT2EgItWhLi2BVISp6ixw_2pWWZGmyQr3xN_h7_BJmnGy6KwqXPcRz8Hpm4vkyM98Q8jK1EDYkkQlzRDrIhQk-p10IIC5SCReZi7E5-dMkOzjmH07Skw0yWfbCYFnl8p3oX9Sm1viNfCdJhZ_lKPK38-8hTo3C7OpyhIbqRyuYN55i7BrZTJAZa0Q298aTo88DBGOAyDp-IQZgf6dBfrOMI-HIyq3kyfuvijj_Lpy8vqjm6uKHms1WbqX92-RWH07S3U7_d8iGre6Smyskg_dI8xWMGRuk6GGFRdQg_l5NW7o7O4X_1559a17TQ98rSWtHUZh-rLsPeVRVho4vW-HotKJd39KFX8KWad899vvnr4YeDbPAmvvkeH_85d1B2I9aCDXg4zZ0shQyiZxMNCuNLDU3MpO507H2qVadO6uYcEKq2Nos5xp5CJURqeFxEjH2gIyqurIPCXW5KiHsKTFYg5NNyxxuQA2_ljPHeBmQV8ujLnTPQ47jMGYF4BHUSjFoJSDPB9F5R75xldAe6msQQL5s_6A-Py169ysAc1swCBMbablgRuZR5CIrMyuVgBArINtLbRe9EzfFpckF5NmwDO6HORVV2XrRyQiszuQB2eqMY9gJ45gllTIg-ZrZrG11faWannmKb4iDARfDtl4MBvbvE3j0_80_JjcSLMTBVJrYJqP2fGGfQCTVlk979_gDSfQffg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgewAOvKGBgszjwCXNy4ltLmhBLS2CqgdWlFPkOHYbsU1WmyyonPgb_D1-CTNJNuxCkZC47GE9u3Limcw38XyfCXkaG4ANoZ-7HCsd1MKEmNPWhSLOVyETiQ2QnPzuINmbsDdH8dEKix_bKqEUL9qHNLKwXMhgvhcGXiC9hPHEm-X2xef-XRKAiRDyKbjtRbKRxIDGR2RjcnA4_tiSivpfd4JCEVT3Xo2CZvg3a2moVes_D2L-2Sl5aVHO1NkXNZ2upKHda0QtL6DrPvm0vWiybf31N23H_7nC6-Rqj1HpuHOqG-SCKW-SKyvKhbdI_QEiBFlXdL_Ezmwwf62Kho6nx9W8aE5O6-d0vyVg0spSNKZvq-7tIFVlTnd-8etoUdKODHXWDiEPu6Wk_fj2vaaHwwFj9W0y2d15_2rP7c9vcDUU3Y1rZSZk6FsZ6ijLZaZZLhPJrQ50u3-ruTUqElZIFRiTcKZR3FDlIs5ZEPpRdIeMyqo0m4RarjLAUhkiQLhFccYhrWr4NCyyEcsc8my5nKnuxc3xjI1pCkUOrnw6rLxDHg-ms07R4zyjl-gTgwGKcLdfVPPjtI_pFAp5E4RBHuTSMBHlkvu-9Y1MjFQCcJtDtpYelfZPhjoNY9GeSSq4Qx4NwxDTuFGjSlMtOhuBLZ_MIXc7BxxmEjHcepXSIXzNNdemuj5SFietbjiAayi2YVpPBif--x24909W98nlEJt8cJtObJFRM1-YB4DSmuxhH4g_AccRNx4
  priority: 102
  providerName: Unpaywall
Title Wearable Inertial Gait Algorithms: Impact of Wear Location and Environment in Healthy and Parkinson’s Populations
URI https://www.ncbi.nlm.nih.gov/pubmed/34640799
https://www.proquest.com/docview/2581055687
https://www.proquest.com/docview/2581809434
https://pubmed.ncbi.nlm.nih.gov/PMC8512498
https://www.mdpi.com/1424-8220/21/19/6476/pdf?version=1632976070
https://doaj.org/article/132e121d1d9e483d9700f0e96e9a8028
UnpaywallVersion publishedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1ZbxMxEB71kKA8IO4ulMgcErwE9nDWNhJCKUraIhpFiIjwtPLu2m2kdLfNIci_Z8abbBuRvvjBHmktz4w8347nG4C3LYNhQ-jnTUFIh7gw0ecy20QQ5-uQy9gGVJx82ouPB_zbsDXcglWPzeUBTjdCO-onNZiMP_y9WnxBh_9MiBMh-8cpsZTFXMTbsIsXlKIODqe8TiaEEcKwilRoXXwP7kScElmO-PX6VnLk_Zsizv8fTt6dF5d68UePxzdupe4DuL8MJ1m70v9D2DLFI7h3g2TwMVz9QmOmAil2UtAjahQ_0qMZa4_Pyslodn4x_cROXK0kKy0jYfa9rH7kMV3krHNdCsdGBavqlhZuiUqmXfXYuynr153Apk9g0O38_HrcXDZaaGaIjmdNq1KpQt-qMIvSXKUZz1WshM2CzCVaM2GNjqSVSgfGxIJnxEKoc9nKeRD6UfQUdoqyMPvArNApBj0phWp4xK1U4P2X4Wh4ZCOeevB-ddBJtmQhp2YY4wTRCKknqdXjweta9LKi3tgkdEjaqgWILdtNlJOzZOl8CSJuE4RBHuTKcBnlSvi-9Y2KjdISAywPDla6TlYWmIQt6ZqHSuHBq3oZnY8yKrow5bySkfQ2k3vwrDKNeicr0_JArBnN2lbXV4rRuSP4xigYUTFu601tXrefwPNbv_wC9kJ6gUM5NHkAO7PJ3LzEEGqWNmBbDAWOsnvUgN3DTq__o-F-RzSc6-DcoNdv__4H-PUeeQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcigcEG9CC5iXxCVq4jiJjYRQgZZduq04tGJvwXHsdqVtsjS7qvbG3-BP8KP4JczktbuicOslh3gO1rw8Y898Q8jL0EDYwLzMjTHTQSxMsDltXUjiPMW4iKyPzckHh1HvmH8ehsM18qvthcGyytYnVo46KzTekW-zUFSzHEX8bvLdxalR-LrajtCo1WLfzC8gZSvf9j-CfF8xtrd79KHnNlMFXA2p4NS1MhWSeVYyHaSZTDXPZCRjq31dvSrq2BoVCCuk8o2JYq4Rck9lIsy4zzy8AAWXf40H4EvAfuLhIsELIN-r0YuCQHrbJaKnRRzhTJbOvGo0wGXx7N9lmRuzfKLmF2o8Xjrz9m6Rm02wSndq7bpN1kx-h9xYgjC8S8qvwBNsv6L9HEu0gfyTGk3pzvgEuDc9PSvf0H7ViUkLS5GYDor6mpCqPKO7i0Y7Ospp3RU1r5awIbvqTfv942dJv3STxsp75PhKWH6frOdFbh4SamOVQlCVYigInA3TGM5XDV_DAxvw1CGvW1YnukE5x2Eb4wSyHZRK0knFIc870kkN7XEZ0XuUV0eAaNzVj-L8JGmMO4GM3vjMz_xMGi6CTMaeZz0jIyOVgADOIVuttJPGRZTJQqEd8qxbBuPGFxuVm2JW0wis_eQOeVArR7eTgOMbrJQOiVfUZmWrqyv56LQCEIcoG7Ju2NaLTsH-zYFH_9_8U7LROzoYJIP-4f4muc6w5Acf7cQWWZ-ez8xjiNmm6ZPKUCj5dtWW-Qc88VXp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIvE4VLxJKWBeEpdo83BiGwmhQrt0aal6oGJvwXHsdqUlWZqsqr3xN_gr_Bx-CTNJNrsrCrdecojnYM3DnvHMfEPIi8iA2xB4mcsx0kEsTLA5bV0I4jwVMBFbH5uTPx3Ge8fs4zAarpFf814YLKucn4n1QZ0VGt_Ie0Ek6lmOgvdsWxZxtNN_O_nu4gQpzLTOx2k0KrJvZucQvpVvBjsg65dB0N_9_H7PbScMuBrCwsq1MhUy8KwMdJhmMtUsk7HkVvu6zjBqbo0KhRVS-cbEnGmE31OZiDLmBx4-hsLxf4WHocRyQj5cBHshxH4NkhEser0SkdRihtAmS_dfPSbgIt_27xLNa9N8ombnajxeuv_6N8lG67jS7UbTbpE1k98mN5bgDO-Q8gvwBFux6CDHcm0g_6BGFd0enwD3qtNv5Ws6qLsyaWEpEtODonkypCrP6O6i6Y6Octp0SM3qJWzOrvvUfv_4WdKjbupYeZccXwrL75H1vMjNA0ItVyk4WCm6hcDZKOVw12r4GhbakKUOeTVndaJbxHMcvDFOIPJBqSSdVBzyrCOdNDAfFxG9Q3l1BIjMXf8ozk6S1tATiO6NH_iZn0nDRJhJ7nnWMzI2Uglw5hyyNZd20h4XZbJQboc87ZbB0DF7o3JTTBsagXWgzCH3G-XodhIyzMdK6RC-ojYrW11dyUenNZg4eNwQgcO2nncK9m8ObP5_80_IVbDJ5GBwuP-QXA-w-gfzd2KLrFdnU_MI3LcqfVzbCSVfL9sw_wA0HFos
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgewAOvKGBgszjwCXNy4ltLmhBLS2CqgdWlFPkOHYbsU1WmyyonPgb_D1-CTNJNuxCkZC47GE9u3Limcw38XyfCXkaG4ANoZ-7HCsd1MKEmNPWhSLOVyETiQ2QnPzuINmbsDdH8dEKix_bKqEUL9qHNLKwXMhgvhcGXiC9hPHEm-X2xef-XRKAiRDyKbjtRbKRxIDGR2RjcnA4_tiSivpfd4JCEVT3Xo2CZvg3a2moVes_D2L-2Sl5aVHO1NkXNZ2upKHda0QtL6DrPvm0vWiybf31N23H_7nC6-Rqj1HpuHOqG-SCKW-SKyvKhbdI_QEiBFlXdL_Ezmwwf62Kho6nx9W8aE5O6-d0vyVg0spSNKZvq-7tIFVlTnd-8etoUdKODHXWDiEPu6Wk_fj2vaaHwwFj9W0y2d15_2rP7c9vcDUU3Y1rZSZk6FsZ6ijLZaZZLhPJrQ50u3-ruTUqElZIFRiTcKZR3FDlIs5ZEPpRdIeMyqo0m4RarjLAUhkiQLhFccYhrWr4NCyyEcsc8my5nKnuxc3xjI1pCkUOrnw6rLxDHg-ms07R4zyjl-gTgwGKcLdfVPPjtI_pFAp5E4RBHuTSMBHlkvu-9Y1MjFQCcJtDtpYelfZPhjoNY9GeSSq4Qx4NwxDTuFGjSlMtOhuBLZ_MIXc7BxxmEjHcepXSIXzNNdemuj5SFietbjiAayi2YVpPBif--x24909W98nlEJt8cJtObJFRM1-YB4DSmuxhH4g_AccRNx4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wearable+Inertial+Gait+Algorithms%3A+Impact+of+Wear+Location+and+Environment+in+Healthy+and+Parkinson%27s+Populations&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Celik%2C+Yunus&rft.au=Stuart%2C+Sam&rft.au=Woo%2C+Wai+Lok&rft.au=Godfrey%2C+Alan&rft.date=2021-09-28&rft.eissn=1424-8220&rft.volume=21&rft.issue=19&rft_id=info:doi/10.3390%2Fs21196476&rft_id=info%3Apmid%2F34640799&rft.externalDocID=34640799
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon