Wearable Inertial Gait Algorithms: Impact of Wear Location and Environment in Healthy and Parkinson’s Populations
Wearable inertial measurement units (IMUs) are used in gait analysis due to their discrete wearable attachment and long data recording possibilities within indoor and outdoor environments. Previously, lower back and shin/shank-based IMU algorithms detecting initial and final contact events (ICs-FCs)...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 21; no. 19; p. 6476 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
28.09.2021
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s21196476 |
Cover
| Abstract | Wearable inertial measurement units (IMUs) are used in gait analysis due to their discrete wearable attachment and long data recording possibilities within indoor and outdoor environments. Previously, lower back and shin/shank-based IMU algorithms detecting initial and final contact events (ICs-FCs) were developed and validated on a limited number of healthy young adults (YA), reporting that both IMU wear locations are suitable to use during indoor and outdoor gait analysis. However, the impact of age (e.g., older adults, OA), pathology (e.g., Parkinson′s Disease, PD) and/or environment (e.g., indoor vs. outdoor) on algorithm accuracy have not been fully investigated. Here, we examined IMU gait data from 128 participants (72-YA, 20-OA, and 36-PD) to thoroughly investigate the suitability of ICs-FCs detection algorithms (1 × lower back and 1 × shin/shank-based) for quantifying temporal gait characteristics depending on IMU wear location and walking environment. The level of agreement between algorithms was investigated for different cohorts and walking environments. Although mean temporal characteristics from both algorithms were significantly correlated for all groups and environments, subtle but characteristically nuanced differences were observed between cohorts and environments. The lowest absolute agreement level was observed in PD (ICC2,1 = 0.979, 0.806, 0.730, 0.980) whereas highest in YA (ICC2,1 = 0.987, 0.936, 0.909, 0.989) for mean stride, stance, swing, and step times, respectively. Absolute agreement during treadmill walking (ICC2,1 = 0.975, 0.914, 0.684, 0.945), indoor walking (ICC2,1 = 0.987, 0.936, 0.909, 0.989) and outdoor walking (ICC2,1 = 0.998, 0.940, 0.856, 0.998) was found for mean stride, stance, swing, and step times, respectively. Findings of this study suggest that agreements between algorithms are sensitive to the target cohort and environment. Therefore, researchers/clinicians should be cautious while interpreting temporal parameters that are extracted from inertial sensors-based algorithms especially for those with a neurological condition. |
|---|---|
| AbstractList | Wearable inertial measurement units (IMUs) are used in gait analysis due to their discrete wearable attachment and long data recording possibilities within indoor and outdoor environments. Previously, lower back and shin/shank-based IMU algorithms detecting initial and final contact events (ICs-FCs) were developed and validated on a limited number of healthy young adults (YA), reporting that both IMU wear locations are suitable to use during indoor and outdoor gait analysis. However, the impact of age (e.g., older adults, OA), pathology (e.g., Parkinson′s Disease, PD) and/or environment (e.g., indoor vs. outdoor) on algorithm accuracy have not been fully investigated. Here, we examined IMU gait data from 128 participants (72-YA, 20-OA, and 36-PD) to thoroughly investigate the suitability of ICs-FCs detection algorithms (1 × lower back and 1 × shin/shank-based) for quantifying temporal gait characteristics depending on IMU wear location and walking environment. The level of agreement between algorithms was investigated for different cohorts and walking environments. Although mean temporal characteristics from both algorithms were significantly correlated for all groups and environments, subtle but characteristically nuanced differences were observed between cohorts and environments. The lowest absolute agreement level was observed in PD (ICC2,1 = 0.979, 0.806, 0.730, 0.980) whereas highest in YA (ICC2,1 = 0.987, 0.936, 0.909, 0.989) for mean stride, stance, swing, and step times, respectively. Absolute agreement during treadmill walking (ICC2,1 = 0.975, 0.914, 0.684, 0.945), indoor walking (ICC2,1 = 0.987, 0.936, 0.909, 0.989) and outdoor walking (ICC2,1 = 0.998, 0.940, 0.856, 0.998) was found for mean stride, stance, swing, and step times, respectively. Findings of this study suggest that agreements between algorithms are sensitive to the target cohort and environment. Therefore, researchers/clinicians should be cautious while interpreting temporal parameters that are extracted from inertial sensors-based algorithms especially for those with a neurological condition. Wearable inertial measurement units (IMUs) are used in gait analysis due to their discrete wearable attachment and long data recording possibilities within indoor and outdoor environments. Previously, lower back and shin/shank-based IMU algorithms detecting initial and final contact events (ICs-FCs) were developed and validated on a limited number of healthy young adults (YA), reporting that both IMU wear locations are suitable to use during indoor and outdoor gait analysis. However, the impact of age (e.g., older adults, OA), pathology (e.g., Parkinson's Disease, PD) and/or environment (e.g., indoor vs. outdoor) on algorithm accuracy have not been fully investigated. Here, we examined IMU gait data from 128 participants (72-YA, 20-OA, and 36-PD) to thoroughly investigate the suitability of ICs-FCs detection algorithms (1 × lower back and 1 × shin/shank-based) for quantifying temporal gait characteristics depending on IMU wear location and walking environment. The level of agreement between algorithms was investigated for different cohorts and walking environments. Although mean temporal characteristics from both algorithms were significantly correlated for all groups and environments, subtle but characteristically nuanced differences were observed between cohorts and environments. The lowest absolute agreement level was observed in PD (ICC = 0.979, 0.806, 0.730, 0.980) whereas highest in YA (ICC = 0.987, 0.936, 0.909, 0.989) for mean stride, stance, swing, and step times, respectively. Absolute agreement during treadmill walking (ICC = 0.975, 0.914, 0.684, 0.945), indoor walking (ICC = 0.987, 0.936, 0.909, 0.989) and outdoor walking (ICC = 0.998, 0.940, 0.856, 0.998) was found for mean stride, stance, swing, and step times, respectively. Findings of this study suggest that agreements between algorithms are sensitive to the target cohort and environment. Therefore, researchers/clinicians should be cautious while interpreting temporal parameters that are extracted from inertial sensors-based algorithms especially for those with a neurological condition. Wearable inertial measurement units (IMUs) are used in gait analysis due to their discrete wearable attachment and long data recording possibilities within indoor and outdoor environments. Previously, lower back and shin/shank-based IMU algorithms detecting initial and final contact events (ICs-FCs) were developed and validated on a limited number of healthy young adults (YA), reporting that both IMU wear locations are suitable to use during indoor and outdoor gait analysis. However, the impact of age (e.g., older adults, OA), pathology (e.g., Parkinson's Disease, PD) and/or environment (e.g., indoor vs. outdoor) on algorithm accuracy have not been fully investigated. Here, we examined IMU gait data from 128 participants (72-YA, 20-OA, and 36-PD) to thoroughly investigate the suitability of ICs-FCs detection algorithms (1 × lower back and 1 × shin/shank-based) for quantifying temporal gait characteristics depending on IMU wear location and walking environment. The level of agreement between algorithms was investigated for different cohorts and walking environments. Although mean temporal characteristics from both algorithms were significantly correlated for all groups and environments, subtle but characteristically nuanced differences were observed between cohorts and environments. The lowest absolute agreement level was observed in PD (ICC2,1 = 0.979, 0.806, 0.730, 0.980) whereas highest in YA (ICC2,1 = 0.987, 0.936, 0.909, 0.989) for mean stride, stance, swing, and step times, respectively. Absolute agreement during treadmill walking (ICC2,1 = 0.975, 0.914, 0.684, 0.945), indoor walking (ICC2,1 = 0.987, 0.936, 0.909, 0.989) and outdoor walking (ICC2,1 = 0.998, 0.940, 0.856, 0.998) was found for mean stride, stance, swing, and step times, respectively. Findings of this study suggest that agreements between algorithms are sensitive to the target cohort and environment. Therefore, researchers/clinicians should be cautious while interpreting temporal parameters that are extracted from inertial sensors-based algorithms especially for those with a neurological condition.Wearable inertial measurement units (IMUs) are used in gait analysis due to their discrete wearable attachment and long data recording possibilities within indoor and outdoor environments. Previously, lower back and shin/shank-based IMU algorithms detecting initial and final contact events (ICs-FCs) were developed and validated on a limited number of healthy young adults (YA), reporting that both IMU wear locations are suitable to use during indoor and outdoor gait analysis. However, the impact of age (e.g., older adults, OA), pathology (e.g., Parkinson's Disease, PD) and/or environment (e.g., indoor vs. outdoor) on algorithm accuracy have not been fully investigated. Here, we examined IMU gait data from 128 participants (72-YA, 20-OA, and 36-PD) to thoroughly investigate the suitability of ICs-FCs detection algorithms (1 × lower back and 1 × shin/shank-based) for quantifying temporal gait characteristics depending on IMU wear location and walking environment. The level of agreement between algorithms was investigated for different cohorts and walking environments. Although mean temporal characteristics from both algorithms were significantly correlated for all groups and environments, subtle but characteristically nuanced differences were observed between cohorts and environments. The lowest absolute agreement level was observed in PD (ICC2,1 = 0.979, 0.806, 0.730, 0.980) whereas highest in YA (ICC2,1 = 0.987, 0.936, 0.909, 0.989) for mean stride, stance, swing, and step times, respectively. Absolute agreement during treadmill walking (ICC2,1 = 0.975, 0.914, 0.684, 0.945), indoor walking (ICC2,1 = 0.987, 0.936, 0.909, 0.989) and outdoor walking (ICC2,1 = 0.998, 0.940, 0.856, 0.998) was found for mean stride, stance, swing, and step times, respectively. Findings of this study suggest that agreements between algorithms are sensitive to the target cohort and environment. Therefore, researchers/clinicians should be cautious while interpreting temporal parameters that are extracted from inertial sensors-based algorithms especially for those with a neurological condition. |
| Author | Woo, Wai Lok Stuart, Sam Celik, Yunus Godfrey, Alan |
| AuthorAffiliation | 1 Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; yunus.celik@northumbria.ac.uk 2 Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; sam.stuart@northumbria.ac.uk |
| AuthorAffiliation_xml | – name: 2 Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; sam.stuart@northumbria.ac.uk – name: 1 Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; yunus.celik@northumbria.ac.uk |
| Author_xml | – sequence: 1 givenname: Yunus orcidid: 0000-0002-3384-4213 surname: Celik fullname: Celik, Yunus – sequence: 2 givenname: Sam orcidid: 0000-0001-6846-9372 surname: Stuart fullname: Stuart, Sam – sequence: 3 givenname: Wai Lok orcidid: 0000-0002-8698-7605 surname: Woo fullname: Woo, Wai Lok – sequence: 4 givenname: Alan orcidid: 0000-0003-4049-9291 surname: Godfrey fullname: Godfrey, Alan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34640799$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ks1u1DAQxyNURD_gwAsgS1wAaam_ktgckKqqtCutRA8gjtbEcXa9OHZqJ0V74zV4PZ6EbLas2gpOtjy_-c9_ZnycHfjgTZa9JPg9YxKfJkqILHhZPMmOCKd8JijFB_fuh9lxSmuMKWNMPMsOGS84LqU8ytI3AxEqZ9Dcm9hbcOgSbI_O3DJE26_a9AHN2w50j0KDtjBaBA29DR6Br9GFv7Ux-Nb4HlmPrgy4frWZQtcQv1ufgv_981dC16Eb3JSXnmdPG3DJvLg7T7Kvny6-nF_NFp8v5-dni5nmhexnjayEpLiRVLOqlpXmtSxk2WiiqaAS67IxwEQjJBBjipLrIpc51CKvOaGYsZNsvtOtA6xVF20LcaMCWDU9hLhUMLasnVGEUUMoqUktDResliXGDTayMBIEpmLUerfTGnwHmx_g3F6QYLXdgtpvYYQ_7uBuqFpT63E4EdwDBw8j3q7UMtwqkRPK5bbamzuBGG4Gk3rV2qSNc-BNGJKiuSACS874iL5-hK7DEP0414nCeV6IcqRe3Xe0t_L3I4zA6Q7QMaQUTaO07ad1jQat-2eTbx9l_H8gfwBd29KF |
| CitedBy_id | crossref_primary_10_1109_JSEN_2023_3328054 crossref_primary_10_1016_j_gaitpost_2024_06_001 crossref_primary_10_1038_s41746_024_01050_7 crossref_primary_10_3390_s24154914 crossref_primary_10_1016_j_bspc_2025_107659 crossref_primary_10_3390_diagnostics15010036 crossref_primary_10_1186_s12984_024_01320_1 crossref_primary_10_3390_s23020891 crossref_primary_10_1371_journal_pone_0290912 crossref_primary_10_1177_20552076241277174 crossref_primary_10_3390_s24217059 crossref_primary_10_3390_s23083902 crossref_primary_10_1007_s12311_023_01625_2 crossref_primary_10_1016_j_maturitas_2024_108065 crossref_primary_10_3390_s23135778 crossref_primary_10_1109_JBHI_2023_3340716 |
| Cites_doi | 10.1016/j.gaitpost.2016.08.012 10.3389/fneur.2020.00994 10.1016/j.gaitpost.2016.11.024 10.1109/TBME.2004.827933 10.1016/j.gaitpost.2009.11.014 10.1088/1361-6579/38/1/N1 10.1186/s12984-017-0341-z 10.1016/j.gaitpost.2018.08.025 10.1016/S0021-9290(02)00008-8 10.1016/j.jcm.2016.02.012 10.1097/PHM.0000000000000324 10.1177/096228029900800204 10.1002/mds.26718 10.1016/j.gaitpost.2014.07.007 10.1038/s41598-020-61423-2 10.1002/mds.28631 10.1016/j.gaitpost.2015.06.008 10.1016/j.cmpb.2012.02.003 10.1186/1743-0003-11-152 10.1088/1361-6579/ab4023 10.3233/JPD-130179 10.1093/gerona/glx254 10.3390/s100605683 10.1016/j.gaitpost.2012.02.019 10.3390/s20030656 10.1007/s00508-016-1096-4 10.3390/ijerph18052369 10.1016/j.gaitpost.2005.12.017 10.3389/fspor.2020.00119 10.1016/S0268-0033(98)00089-8 10.1016/S1474-4422(19)30397-7 10.3390/s21144795 10.1016/j.gaitpost.2016.09.023 10.1186/s12984-016-0154-5 10.1007/s11517-015-1357-9 10.1016/j.buildenv.2021.108014 10.1016/j.medengphy.2020.11.005 10.1109/EMBC.2018.8512910 10.1007/s40846-017-0297-2 10.1088/0967-3334/37/10/1785 10.1186/s12984-020-00779-y 10.1016/j.gaitpost.2015.05.020 10.3390/s20226417 10.3390/s20051343 10.1016/j.medengphy.2011.04.009 10.1037/0033-2909.86.2.420 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s21196476 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_132e121d1d9e483d9700f0e96e9a8028 10.3390/s21196476 PMC8512498 34640799 10_3390_s21196476 |
| Genre | Journal Article |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GrantInformation_xml | – fundername: Parkinson's Disease Foundation grantid: PF-FBS-1898 – fundername: Parkinson's Foundation grantid: PF-FBS-1898-18-21 – fundername: Turkish Ministry of Education grantid: n/a – fundername: Parkinson's Foundation grantid: PF-CRA-2073 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c469t-f9b8920f92c3bd9bc4d9697fc1c28290c7fea38f89a1ee674c6595ad85d412033 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:42:49 EDT 2025 Sun Oct 26 03:20:14 EDT 2025 Tue Sep 30 16:50:52 EDT 2025 Fri Sep 05 07:58:47 EDT 2025 Tue Oct 07 07:35:25 EDT 2025 Mon Jul 21 06:03:14 EDT 2025 Thu Apr 24 23:01:46 EDT 2025 Thu Oct 16 04:37:55 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Keywords | wearable electronic devices computing methodologies gait analysis patient outcome assessment |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-f9b8920f92c3bd9bc4d9697fc1c28290c7fea38f89a1ee674c6595ad85d412033 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6846-9372 0000-0003-4049-9291 0000-0002-3384-4213 0000-0002-8698-7605 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21196476 |
| PMID | 34640799 |
| PQID | 2581055687 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_132e121d1d9e483d9700f0e96e9a8028 unpaywall_primary_10_3390_s21196476 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8512498 proquest_miscellaneous_2581809434 proquest_journals_2581055687 pubmed_primary_34640799 crossref_citationtrail_10_3390_s21196476 crossref_primary_10_3390_s21196476 |
| PublicationCentury | 2000 |
| PublicationDate | 20210928 |
| PublicationDateYYYYMMDD | 2021-09-28 |
| PublicationDate_xml | – month: 9 year: 2021 text: 20210928 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Godfrey (ref_45) 2015; 20 Zhou (ref_48) 2020; 10 Aminian (ref_32) 2002; 35 Koo (ref_34) 2016; 15 Beijer (ref_39) 2013; 3 Warmerdam (ref_29) 2020; 19 Shrout (ref_35) 1979; 86 Hickey (ref_27) 2016; 38 McCamley (ref_23) 2012; 36 Godfrey (ref_28) 2016; 13 Brodie (ref_40) 2016; 54 ref_18 Hickey (ref_38) 2016; 37 Jasiewicz (ref_19) 2006; 24 Rast (ref_47) 2020; 17 Coulby (ref_36) 2021; 203 (ref_33) 1998; 13 Phinyomark (ref_49) 2018; 38 Storm (ref_11) 2016; 50 Benedetti (ref_15) 2012; 108 Mirelman (ref_50) 2021; 36 ref_21 ref_20 Godfrey (ref_3) 2016; 31 Trojaniello (ref_22) 2014; 40 Khandelwal (ref_25) 2017; 51 Bland (ref_37) 1999; 8 Morris (ref_7) 2019; 40 Panebianco (ref_9) 2018; 66 ref_31 ref_30 Morris (ref_2) 2017; 52 Alvarez (ref_13) 2010; 31 Celik (ref_6) 2020; 87 Toda (ref_41) 2020; 2 Salarian (ref_17) 2004; 51 Agostini (ref_42) 2020; 11 Trojaniello (ref_24) 2015; 42 Trojaniello (ref_16) 2014; 11 Galna (ref_26) 2019; 74 Zurales (ref_43) 2016; 95 Pirker (ref_1) 2017; 129 ref_44 Catalfamo (ref_12) 2010; 10 Moore (ref_46) 2017; 14 Mansour (ref_10) 2015; 42 ref_8 ref_5 Shin (ref_14) 2011; 33 ref_4 |
| References_xml | – volume: 50 start-page: 42 year: 2016 ident: ref_11 article-title: Gait event detection in laboratory and real life settings: Accuracy of ankle and waist sensor based methods publication-title: Gait Posture doi: 10.1016/j.gaitpost.2016.08.012 – volume: 11 start-page: 994 year: 2020 ident: ref_42 article-title: Surface electromyography applied to gait analysis: How to improve its impact in clinics? publication-title: Front. Neurol. doi: 10.3389/fneur.2020.00994 – volume: 52 start-page: 68 year: 2017 ident: ref_2 article-title: A model of free-living gait: A factor analysis in Parkinson’s disease publication-title: Gait Posture doi: 10.1016/j.gaitpost.2016.11.024 – volume: 51 start-page: 1434 year: 2004 ident: ref_17 article-title: Gait assessment in Parkinson’s disease: Toward an ambulatory system for long-term monitoring publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.827933 – volume: 31 start-page: 322 year: 2010 ident: ref_13 article-title: Real-time gait event detection for normal subjects from lower trunk accelerations publication-title: Gait Posture doi: 10.1016/j.gaitpost.2009.11.014 – volume: 38 start-page: N1 year: 2016 ident: ref_27 article-title: Detecting free-living steps and walking bouts: Validating an algorithm for macro gait analysis publication-title: Physiol. Meas. doi: 10.1088/1361-6579/38/1/N1 – volume: 14 start-page: 130 year: 2017 ident: ref_46 article-title: Comprehensive measurement of stroke gait characteristics with a single accelerometer in the laboratory and community: A feasibility, validity and reliability study publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-017-0341-z – volume: 66 start-page: 76 year: 2018 ident: ref_9 article-title: Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements publication-title: Gait Posture doi: 10.1016/j.gaitpost.2018.08.025 – volume: 35 start-page: 689 year: 2002 ident: ref_32 article-title: Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes publication-title: J. Biomech. doi: 10.1016/S0021-9290(02)00008-8 – volume: 15 start-page: 155 year: 2016 ident: ref_34 article-title: A guideline of selecting and reporting intraclass correlation coefficients for reliability research publication-title: J. Chiropr. Med. doi: 10.1016/j.jcm.2016.02.012 – volume: 95 start-page: 83 year: 2016 ident: ref_43 article-title: Gait efficiency on an uneven surface is associated with falls and injury in older subjects with a spectrum of lower limb neuromuscular function: A prospective study publication-title: Am. J. Phys. Med. Rehabil./Assoc. Acad. Phys. doi: 10.1097/PHM.0000000000000324 – volume: 8 start-page: 135 year: 1999 ident: ref_37 article-title: Measuring agreement in method comparison studies publication-title: Stat. Methods Med. Res. doi: 10.1177/096228029900800204 – volume: 31 start-page: 1293 year: 2016 ident: ref_3 article-title: Free-living monitoring of Parkinson’s disease: Lessons from the field publication-title: Mov. Disord. doi: 10.1002/mds.26718 – volume: 40 start-page: 487 year: 2014 ident: ref_22 article-title: Accuracy, sensitivity and robustness of five different methods for the estimation of gait temporal parameters using a single inertial sensor mounted on the lower trunk publication-title: Gait Posture doi: 10.1016/j.gaitpost.2014.07.007 – volume: 10 start-page: 4426 year: 2020 ident: ref_48 article-title: The detection of age groups by dynamic gait outcomes using machine learning approaches publication-title: Sci. Rep. doi: 10.1038/s41598-020-61423-2 – volume: 36 start-page: 2144 year: 2021 ident: ref_50 article-title: Detecting Sensitive Mobility Features for Parkinson’s Disease Stages Via Machine Learning publication-title: Mov. Disord. doi: 10.1002/mds.28631 – volume: 42 start-page: 310 year: 2015 ident: ref_24 article-title: Comparative assessment of different methods for the estimation of gait temporal parameters using a single inertial sensor: Application to elderly, post-stroke, Parkinson’s disease and Huntington’s disease subjects publication-title: Gait Posture doi: 10.1016/j.gaitpost.2015.06.008 – volume: 108 start-page: 129 year: 2012 ident: ref_15 article-title: Estimation of spatial-temporal gait parameters in level walking based on a single accelerometer: Validation on normal subjects by standard gait analysis publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2012.02.003 – volume: 11 start-page: 152 year: 2014 ident: ref_16 article-title: Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: Application to elderly, hemiparetic, parkinsonian and choreic gait publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-11-152 – volume: 40 start-page: 095003 year: 2019 ident: ref_7 article-title: Validity of Mobility Lab (version 2) for gait assessment in young adults, older adults and Parkinson’s disease publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ab4023 – volume: 3 start-page: 199 year: 2013 ident: ref_39 article-title: Comparison of Handheld Video Camera and GAITRite® Measurement of Gait Impairment in People with Early Stage Parkinson’s Disease: A Pilot Study publication-title: J. Parkinson’s Dis. doi: 10.3233/JPD-130179 – volume: 74 start-page: 500 year: 2019 ident: ref_26 article-title: Analysis of free-living gait in older adults with and without Parkinson’s disease and with and without a history of falls: Identifying generic and disease-specific characteristics publication-title: J. Gerontol. Ser. A doi: 10.1093/gerona/glx254 – volume: 10 start-page: 5683 year: 2010 ident: ref_12 article-title: Gait event detection on level ground and incline walking using a rate gyroscope publication-title: Sensors doi: 10.3390/s100605683 – volume: 36 start-page: 316 year: 2012 ident: ref_23 article-title: An enhanced estimate of initial contact and final contact instants of time using lower trunk inertial sensor data publication-title: Gait Posture doi: 10.1016/j.gaitpost.2012.02.019 – ident: ref_44 doi: 10.3390/s20030656 – volume: 129 start-page: 81 year: 2017 ident: ref_1 article-title: Gait disorders in adults and the elderly publication-title: Wien. Klin. Wochenschr. doi: 10.1007/s00508-016-1096-4 – ident: ref_4 doi: 10.3390/ijerph18052369 – volume: 24 start-page: 502 year: 2006 ident: ref_19 article-title: Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals publication-title: Gait Posture doi: 10.1016/j.gaitpost.2005.12.017 – volume: 2 start-page: 119 year: 2020 ident: ref_41 article-title: Indoor versus outdoor walking: Does it make any difference in joint angle depending on road surface? publication-title: Front. Sports Act. Living doi: 10.3389/fspor.2020.00119 – ident: ref_30 – volume: 13 start-page: 320 year: 1998 ident: ref_33 article-title: A new method for evaluating motor control in gait under real-life environmental conditions. Part 1: The instrument publication-title: Clin. Biomech. doi: 10.1016/S0268-0033(98)00089-8 – volume: 19 start-page: 462 year: 2020 ident: ref_29 article-title: Long-term unsupervised mobility assessment in movement disorders publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(19)30397-7 – ident: ref_5 doi: 10.3390/ijerph18052369 – ident: ref_8 doi: 10.3390/s21144795 – volume: 51 start-page: 84 year: 2017 ident: ref_25 article-title: Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database publication-title: Gait Posture doi: 10.1016/j.gaitpost.2016.09.023 – volume: 13 start-page: 46 year: 2016 ident: ref_28 article-title: Free-living gait characteristics in ageing and Parkinson’s disease: Impact of environment and ambulatory bout length publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-016-0154-5 – volume: 54 start-page: 663 year: 2016 ident: ref_40 article-title: Wearable pendant device monitoring using new wavelet-based methods shows daily life and laboratory gaits are different publication-title: Med. Biol. Eng. Compu. doi: 10.1007/s11517-015-1357-9 – ident: ref_18 – volume: 203 start-page: 108014 year: 2021 ident: ref_36 article-title: Low-cost, multimodal environmental monitoring based on the Internet of Things publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.108014 – volume: 87 start-page: 9 year: 2020 ident: ref_6 article-title: Gait analysis in neurological populations: Progression in the use of wearables publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2020.11.005 – ident: ref_31 doi: 10.1109/EMBC.2018.8512910 – volume: 38 start-page: 244 year: 2018 ident: ref_49 article-title: Analysis of big data in gait biomechanics: Current trends and future directions publication-title: J. Med. Biol. Eng. doi: 10.1007/s40846-017-0297-2 – volume: 37 start-page: 1785 year: 2016 ident: ref_38 article-title: Measuring gait with an accelerometer-based wearable: Influence of device location, testing protocol and age publication-title: Physiol. Meas. doi: 10.1088/0967-3334/37/10/1785 – volume: 17 start-page: 1 year: 2020 ident: ref_47 article-title: Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments publication-title: J. NeuroEng. Rehabil. doi: 10.1186/s12984-020-00779-y – volume: 42 start-page: 409 year: 2015 ident: ref_10 article-title: Analysis of several methods and inertial sensors locations to assess gait parameters in able-bodied subjects publication-title: Gait Posture doi: 10.1016/j.gaitpost.2015.05.020 – ident: ref_20 doi: 10.3390/s20226417 – ident: ref_21 doi: 10.3390/s20051343 – volume: 33 start-page: 1064 year: 2011 ident: ref_14 article-title: Adaptive step length estimation algorithm using optimal parameters and movement status awareness publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2011.04.009 – volume: 20 start-page: 838 year: 2015 ident: ref_45 article-title: Validation of an accelerometer to quantify a comprehensive battery of gait characteristics in healthy older adults and Parkinson’s disease: Toward clinical and at home use publication-title: IEEE J. Biomed. Health Inform. – volume: 86 start-page: 420 year: 1979 ident: ref_35 article-title: Intraclass correlations: Uses in assessing rater reliability publication-title: Psychol. Bull. doi: 10.1037/0033-2909.86.2.420 |
| SSID | ssj0023338 |
| Score | 2.4345543 |
| Snippet | Wearable inertial measurement units (IMUs) are used in gait analysis due to their discrete wearable attachment and long data recording possibilities within... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 6476 |
| SubjectTerms | Aged Agreements Algorithms Approximation Clinical outcomes computing methodologies Consent Data collection Datasets Fitness equipment Gait gait analysis Humans Older people Parkinson Disease - diagnosis Parkinson's disease patient outcome assessment Sensors Velocity Walking Wavelet transforms Wearable Electronic Devices Young Adult Young adults |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL4UDouUVKMg8DlyiJrGT2NwKamkRIA5U9BY5frQrLU7VZIV642_w9_glzNjZdFcUceGSQzwHa2acmS-e-YaQl6WFtKHITFoj0kEuTDhz2qUA4jJVcFG5HJuTP36qDo_5-5PyZGXUF9aERXrgqLhdQEs2L3KTG2m5YEbWWeYyKysrlYDgiF_fTMglmBqhFgPkFXmEGID63R55zCqOxCIr0SeQ9F-XWf5ZILm58Ofq8ruaz1eiz8EdcntMG-le3O4WuWH9Nrm1QiZ4l_RfwWmxEYoeeSyWBvF3ajbQvflpdzEbzr71r-lR6ImknaMoTD908YcdVd7Q_auWNzrzNPYnXYYlbI0OXWK_fvzs6edp5ld_jxwf7H95e5iOIxVSDTh4SJ1shSwyJwvNWiNbzY2sZO10rsOVqq6dVUw4IVVubVVzjXyDyojS8LzIGLtPNnzn7UNCXa1aSG9aTMpAs2VbQ6TT8LScOcbbhLxaqrrRI984jr2YN4A70CrNZJWEPJ9EzyPJxnVCb9BekwDyYocX4C3N6C3Nv7wlITtLazfjYe2bohRhTKioE_JsWoZjhncnyttuEWUEVmHyhDyIzjHthHG8DZUyIfWa26xtdX3Fz84ClTfku4B_YVsvJgf7uwYe_Q8NPCY3CyzLwYs1sUM2houFfQJ51dA-DUfoN6hJIG8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9gAcEM8SKMg8DlyiJrGT2EgItWhLi2BVISp6ixw_2pWWZGmyQr3xN_h7_BJmnGy6KwqXPcRz8Hpm4vkyM98Q8jK1EDYkkQlzRDrIhQk-p10IIC5SCReZi7E5-dMkOzjmH07Skw0yWfbCYFnl8p3oX9Sm1viNfCdJhZ_lKPK38-8hTo3C7OpyhIbqRyuYN55i7BrZTJAZa0Q298aTo88DBGOAyDp-IQZgf6dBfrOMI-HIyq3kyfuvijj_Lpy8vqjm6uKHms1WbqX92-RWH07S3U7_d8iGre6Smyskg_dI8xWMGRuk6GGFRdQg_l5NW7o7O4X_1559a17TQ98rSWtHUZh-rLsPeVRVho4vW-HotKJd39KFX8KWad899vvnr4YeDbPAmvvkeH_85d1B2I9aCDXg4zZ0shQyiZxMNCuNLDU3MpO507H2qVadO6uYcEKq2Nos5xp5CJURqeFxEjH2gIyqurIPCXW5KiHsKTFYg5NNyxxuQA2_ljPHeBmQV8ujLnTPQ47jMGYF4BHUSjFoJSDPB9F5R75xldAe6msQQL5s_6A-Py169ysAc1swCBMbablgRuZR5CIrMyuVgBArINtLbRe9EzfFpckF5NmwDO6HORVV2XrRyQiszuQB2eqMY9gJ45gllTIg-ZrZrG11faWannmKb4iDARfDtl4MBvbvE3j0_80_JjcSLMTBVJrYJqP2fGGfQCTVlk979_gDSfQffg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgewAOvKGBgszjwCXNy4ltLmhBLS2CqgdWlFPkOHYbsU1WmyyonPgb_D1-CTNJNuxCkZC47GE9u3Limcw38XyfCXkaG4ANoZ-7HCsd1MKEmNPWhSLOVyETiQ2QnPzuINmbsDdH8dEKix_bKqEUL9qHNLKwXMhgvhcGXiC9hPHEm-X2xef-XRKAiRDyKbjtRbKRxIDGR2RjcnA4_tiSivpfd4JCEVT3Xo2CZvg3a2moVes_D2L-2Sl5aVHO1NkXNZ2upKHda0QtL6DrPvm0vWiybf31N23H_7nC6-Rqj1HpuHOqG-SCKW-SKyvKhbdI_QEiBFlXdL_Ezmwwf62Kho6nx9W8aE5O6-d0vyVg0spSNKZvq-7tIFVlTnd-8etoUdKODHXWDiEPu6Wk_fj2vaaHwwFj9W0y2d15_2rP7c9vcDUU3Y1rZSZk6FsZ6ijLZaZZLhPJrQ50u3-ruTUqElZIFRiTcKZR3FDlIs5ZEPpRdIeMyqo0m4RarjLAUhkiQLhFccYhrWr4NCyyEcsc8my5nKnuxc3xjI1pCkUOrnw6rLxDHg-ms07R4zyjl-gTgwGKcLdfVPPjtI_pFAp5E4RBHuTSMBHlkvu-9Y1MjFQCcJtDtpYelfZPhjoNY9GeSSq4Qx4NwxDTuFGjSlMtOhuBLZ_MIXc7BxxmEjHcepXSIXzNNdemuj5SFietbjiAayi2YVpPBif--x24909W98nlEJt8cJtObJFRM1-YB4DSmuxhH4g_AccRNx4 priority: 102 providerName: Unpaywall |
| Title | Wearable Inertial Gait Algorithms: Impact of Wear Location and Environment in Healthy and Parkinson’s Populations |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34640799 https://www.proquest.com/docview/2581055687 https://www.proquest.com/docview/2581809434 https://pubmed.ncbi.nlm.nih.gov/PMC8512498 https://www.mdpi.com/1424-8220/21/19/6476/pdf?version=1632976070 https://doaj.org/article/132e121d1d9e483d9700f0e96e9a8028 |
| UnpaywallVersion | publishedVersion |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1ZbxMxEB71kKA8IO4ulMgcErwE9nDWNhJCKUraIhpFiIjwtPLu2m2kdLfNIci_Z8abbBuRvvjBHmktz4w8347nG4C3LYNhQ-jnTUFIh7gw0ecy20QQ5-uQy9gGVJx82ouPB_zbsDXcglWPzeUBTjdCO-onNZiMP_y9WnxBh_9MiBMh-8cpsZTFXMTbsIsXlKIODqe8TiaEEcKwilRoXXwP7kScElmO-PX6VnLk_Zsizv8fTt6dF5d68UePxzdupe4DuL8MJ1m70v9D2DLFI7h3g2TwMVz9QmOmAil2UtAjahQ_0qMZa4_Pyslodn4x_cROXK0kKy0jYfa9rH7kMV3krHNdCsdGBavqlhZuiUqmXfXYuynr153Apk9g0O38_HrcXDZaaGaIjmdNq1KpQt-qMIvSXKUZz1WshM2CzCVaM2GNjqSVSgfGxIJnxEKoc9nKeRD6UfQUdoqyMPvArNApBj0phWp4xK1U4P2X4Wh4ZCOeevB-ddBJtmQhp2YY4wTRCKknqdXjweta9LKi3tgkdEjaqgWILdtNlJOzZOl8CSJuE4RBHuTKcBnlSvi-9Y2KjdISAywPDla6TlYWmIQt6ZqHSuHBq3oZnY8yKrow5bySkfQ2k3vwrDKNeicr0_JArBnN2lbXV4rRuSP4xigYUTFu601tXrefwPNbv_wC9kJ6gUM5NHkAO7PJ3LzEEGqWNmBbDAWOsnvUgN3DTq__o-F-RzSc6-DcoNdv__4H-PUeeQ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcigcEG9CC5iXxCVq4jiJjYRQgZZduq04tGJvwXHsdqVtsjS7qvbG3-BP8KP4JczktbuicOslh3gO1rw8Y898Q8jL0EDYwLzMjTHTQSxMsDltXUjiPMW4iKyPzckHh1HvmH8ehsM18qvthcGyytYnVo46KzTekW-zUFSzHEX8bvLdxalR-LrajtCo1WLfzC8gZSvf9j-CfF8xtrd79KHnNlMFXA2p4NS1MhWSeVYyHaSZTDXPZCRjq31dvSrq2BoVCCuk8o2JYq4Rck9lIsy4zzy8AAWXf40H4EvAfuLhIsELIN-r0YuCQHrbJaKnRRzhTJbOvGo0wGXx7N9lmRuzfKLmF2o8Xjrz9m6Rm02wSndq7bpN1kx-h9xYgjC8S8qvwBNsv6L9HEu0gfyTGk3pzvgEuDc9PSvf0H7ViUkLS5GYDor6mpCqPKO7i0Y7Ospp3RU1r5awIbvqTfv942dJv3STxsp75PhKWH6frOdFbh4SamOVQlCVYigInA3TGM5XDV_DAxvw1CGvW1YnukE5x2Eb4wSyHZRK0knFIc870kkN7XEZ0XuUV0eAaNzVj-L8JGmMO4GM3vjMz_xMGi6CTMaeZz0jIyOVgADOIVuttJPGRZTJQqEd8qxbBuPGFxuVm2JW0wis_eQOeVArR7eTgOMbrJQOiVfUZmWrqyv56LQCEIcoG7Ju2NaLTsH-zYFH_9_8U7LROzoYJIP-4f4muc6w5Acf7cQWWZ-ez8xjiNmm6ZPKUCj5dtWW-Qc88VXp |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIvE4VLxJKWBeEpdo83BiGwmhQrt0aal6oGJvwXHsdqUlWZqsqr3xN_gr_Bx-CTNJNrsrCrdecojnYM3DnvHMfEPIi8iA2xB4mcsx0kEsTLA5bV0I4jwVMBFbH5uTPx3Ge8fs4zAarpFf814YLKucn4n1QZ0VGt_Ie0Ek6lmOgvdsWxZxtNN_O_nu4gQpzLTOx2k0KrJvZucQvpVvBjsg65dB0N_9_H7PbScMuBrCwsq1MhUy8KwMdJhmMtUsk7HkVvu6zjBqbo0KhRVS-cbEnGmE31OZiDLmBx4-hsLxf4WHocRyQj5cBHshxH4NkhEser0SkdRihtAmS_dfPSbgIt_27xLNa9N8ombnajxeuv_6N8lG67jS7UbTbpE1k98mN5bgDO-Q8gvwBFux6CDHcm0g_6BGFd0enwD3qtNv5Ws6qLsyaWEpEtODonkypCrP6O6i6Y6Octp0SM3qJWzOrvvUfv_4WdKjbupYeZccXwrL75H1vMjNA0ItVyk4WCm6hcDZKOVw12r4GhbakKUOeTVndaJbxHMcvDFOIPJBqSSdVBzyrCOdNDAfFxG9Q3l1BIjMXf8ozk6S1tATiO6NH_iZn0nDRJhJ7nnWMzI2Uglw5hyyNZd20h4XZbJQboc87ZbB0DF7o3JTTBsagXWgzCH3G-XodhIyzMdK6RC-ojYrW11dyUenNZg4eNwQgcO2nncK9m8ObP5_80_IVbDJ5GBwuP-QXA-w-gfzd2KLrFdnU_MI3LcqfVzbCSVfL9sw_wA0HFos |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgewAOvKGBgszjwCXNy4ltLmhBLS2CqgdWlFPkOHYbsU1WmyyonPgb_D1-CTNJNuxCkZC47GE9u3Limcw38XyfCXkaG4ANoZ-7HCsd1MKEmNPWhSLOVyETiQ2QnPzuINmbsDdH8dEKix_bKqEUL9qHNLKwXMhgvhcGXiC9hPHEm-X2xef-XRKAiRDyKbjtRbKRxIDGR2RjcnA4_tiSivpfd4JCEVT3Xo2CZvg3a2moVes_D2L-2Sl5aVHO1NkXNZ2upKHda0QtL6DrPvm0vWiybf31N23H_7nC6-Rqj1HpuHOqG-SCKW-SKyvKhbdI_QEiBFlXdL_Ezmwwf62Kho6nx9W8aE5O6-d0vyVg0spSNKZvq-7tIFVlTnd-8etoUdKODHXWDiEPu6Wk_fj2vaaHwwFj9W0y2d15_2rP7c9vcDUU3Y1rZSZk6FsZ6ijLZaZZLhPJrQ50u3-ruTUqElZIFRiTcKZR3FDlIs5ZEPpRdIeMyqo0m4RarjLAUhkiQLhFccYhrWr4NCyyEcsc8my5nKnuxc3xjI1pCkUOrnw6rLxDHg-ms07R4zyjl-gTgwGKcLdfVPPjtI_pFAp5E4RBHuTSMBHlkvu-9Y1MjFQCcJtDtpYelfZPhjoNY9GeSSq4Qx4NwxDTuFGjSlMtOhuBLZ_MIXc7BxxmEjHcepXSIXzNNdemuj5SFietbjiAayi2YVpPBif--x24909W98nlEJt8cJtObJFRM1-YB4DSmuxhH4g_AccRNx4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wearable+Inertial+Gait+Algorithms%3A+Impact+of+Wear+Location+and+Environment+in+Healthy+and+Parkinson%27s+Populations&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Celik%2C+Yunus&rft.au=Stuart%2C+Sam&rft.au=Woo%2C+Wai+Lok&rft.au=Godfrey%2C+Alan&rft.date=2021-09-28&rft.eissn=1424-8220&rft.volume=21&rft.issue=19&rft_id=info:doi/10.3390%2Fs21196476&rft_id=info%3Apmid%2F34640799&rft.externalDocID=34640799 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |