Automated Condition-Based Suppression of the CPR Artifact in ECG Data to Make a Reliable Shock Decision for AEDs during CPR

Cardiopulmonary resuscitation (CPR) corrupts the morphology of the electrocardiogram (ECG) signal, resulting in an inaccurate automated external defibrillator (AED) rhythm analysis. Consequently, most current AEDs prohibit CPR during the rhythm analysis period, thereby decreasing the survival rate....

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 24; p. 8210
Main Authors Hajeb-Mohammadalipour, Shirin, Cascella, Alicia, Valentine, Matt, Chon, Ki H.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 08.12.2021
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s21248210

Cover

Abstract Cardiopulmonary resuscitation (CPR) corrupts the morphology of the electrocardiogram (ECG) signal, resulting in an inaccurate automated external defibrillator (AED) rhythm analysis. Consequently, most current AEDs prohibit CPR during the rhythm analysis period, thereby decreasing the survival rate. To overcome this limitation, we designed a condition-based filtering algorithm that consists of three stop-band filters which are turned either ‘on’ or ‘off’ depending on the ECG’s spectral characteristics. Typically, removing the artifact’s higher frequency peaks in addition to the highest frequency peak eliminates most of the ECG’s morphological disturbance on the non-shockable rhythms. However, the shockable rhythms usually have dynamics in the frequency range of (3–6) Hz, which in certain cases coincide with CPR compression’s harmonic frequencies, hence, removing them may lead to destruction of the shockable signal’s dynamics. The proposed algorithm achieves CPR artifact removal without compromising the integrity of the shockable rhythm by considering three different spectral factors. The dataset from the PhysioNet archive was used to develop this condition-based approach. To quantify the performance of the approach on a separate dataset, three performance metrics were computed: the correlation coefficient, signal-to-noise ratio (SNR), and accuracy of Defibtech’s shock decision algorithm. This dataset, containing 14 s ECG segments of different types of rhythms from 458 subjects, belongs to Defibtech commercial AED’s validation set. The CPR artifact data from 52 different resuscitators were added to artifact-free ECG data to create 23,816 CPR-contaminated data segments. From this, 82% of the filtered shockable and 70% of the filtered non-shockable ECG data were highly correlated (>0.7) with the artifact-free ECG; this value was only 13 and 12% for CPR-contaminated shockable and non-shockable, respectively, without our filtering approach. The SNR improvement was 4.5 ± 2.5 dB, averaging over the entire dataset. Defibtech’s rhythm analysis algorithm was applied to the filtered data. We found a sensitivity improvement from 67.7 to 91.3% and 62.7 to 78% for VF and rapid VT, respectively, and specificity improved from 96.2 to 96.5% and 91.5 to 92.7% for normal sinus rhythm (NSR) and other non-shockables, respectively.
AbstractList Cardiopulmonary resuscitation (CPR) corrupts the morphology of the electrocardiogram (ECG) signal, resulting in an inaccurate automated external defibrillator (AED) rhythm analysis. Consequently, most current AEDs prohibit CPR during the rhythm analysis period, thereby decreasing the survival rate. To overcome this limitation, we designed a condition-based filtering algorithm that consists of three stop-band filters which are turned either ‘on’ or ‘off’ depending on the ECG’s spectral characteristics. Typically, removing the artifact’s higher frequency peaks in addition to the highest frequency peak eliminates most of the ECG’s morphological disturbance on the non-shockable rhythms. However, the shockable rhythms usually have dynamics in the frequency range of (3–6) Hz, which in certain cases coincide with CPR compression’s harmonic frequencies, hence, removing them may lead to destruction of the shockable signal’s dynamics. The proposed algorithm achieves CPR artifact removal without compromising the integrity of the shockable rhythm by considering three different spectral factors. The dataset from the PhysioNet archive was used to develop this condition-based approach. To quantify the performance of the approach on a separate dataset, three performance metrics were computed: the correlation coefficient, signal-to-noise ratio (SNR), and accuracy of Defibtech’s shock decision algorithm. This dataset, containing 14 s ECG segments of different types of rhythms from 458 subjects, belongs to Defibtech commercial AED’s validation set. The CPR artifact data from 52 different resuscitators were added to artifact-free ECG data to create 23,816 CPR-contaminated data segments. From this, 82% of the filtered shockable and 70% of the filtered non-shockable ECG data were highly correlated (>0.7) with the artifact-free ECG; this value was only 13 and 12% for CPR-contaminated shockable and non-shockable, respectively, without our filtering approach. The SNR improvement was 4.5 ± 2.5 dB, averaging over the entire dataset. Defibtech’s rhythm analysis algorithm was applied to the filtered data. We found a sensitivity improvement from 67.7 to 91.3% and 62.7 to 78% for VF and rapid VT, respectively, and specificity improved from 96.2 to 96.5% and 91.5 to 92.7% for normal sinus rhythm (NSR) and other non-shockables, respectively.
Cardiopulmonary resuscitation (CPR) corrupts the morphology of the electrocardiogram (ECG) signal, resulting in an inaccurate automated external defibrillator (AED) rhythm analysis. Consequently, most current AEDs prohibit CPR during the rhythm analysis period, thereby decreasing the survival rate. To overcome this limitation, we designed a condition-based filtering algorithm that consists of three stop-band filters which are turned either 'on' or 'off' depending on the ECG's spectral characteristics. Typically, removing the artifact's higher frequency peaks in addition to the highest frequency peak eliminates most of the ECG's morphological disturbance on the non-shockable rhythms. However, the shockable rhythms usually have dynamics in the frequency range of (3-6) Hz, which in certain cases coincide with CPR compression's harmonic frequencies, hence, removing them may lead to destruction of the shockable signal's dynamics. The proposed algorithm achieves CPR artifact removal without compromising the integrity of the shockable rhythm by considering three different spectral factors. The dataset from the PhysioNet archive was used to develop this condition-based approach. To quantify the performance of the approach on a separate dataset, three performance metrics were computed: the correlation coefficient, signal-to-noise ratio (SNR), and accuracy of Defibtech's shock decision algorithm. This dataset, containing 14 s ECG segments of different types of rhythms from 458 subjects, belongs to Defibtech commercial AED's validation set. The CPR artifact data from 52 different resuscitators were added to artifact-free ECG data to create 23,816 CPR-contaminated data segments. From this, 82% of the filtered shockable and 70% of the filtered non-shockable ECG data were highly correlated (>0.7) with the artifact-free ECG; this value was only 13 and 12% for CPR-contaminated shockable and non-shockable, respectively, without our filtering approach. The SNR improvement was 4.5 ± 2.5 dB, averaging over the entire dataset. Defibtech's rhythm analysis algorithm was applied to the filtered data. We found a sensitivity improvement from 67.7 to 91.3% and 62.7 to 78% for VF and rapid VT, respectively, and specificity improved from 96.2 to 96.5% and 91.5 to 92.7% for normal sinus rhythm (NSR) and other non-shockables, respectively.Cardiopulmonary resuscitation (CPR) corrupts the morphology of the electrocardiogram (ECG) signal, resulting in an inaccurate automated external defibrillator (AED) rhythm analysis. Consequently, most current AEDs prohibit CPR during the rhythm analysis period, thereby decreasing the survival rate. To overcome this limitation, we designed a condition-based filtering algorithm that consists of three stop-band filters which are turned either 'on' or 'off' depending on the ECG's spectral characteristics. Typically, removing the artifact's higher frequency peaks in addition to the highest frequency peak eliminates most of the ECG's morphological disturbance on the non-shockable rhythms. However, the shockable rhythms usually have dynamics in the frequency range of (3-6) Hz, which in certain cases coincide with CPR compression's harmonic frequencies, hence, removing them may lead to destruction of the shockable signal's dynamics. The proposed algorithm achieves CPR artifact removal without compromising the integrity of the shockable rhythm by considering three different spectral factors. The dataset from the PhysioNet archive was used to develop this condition-based approach. To quantify the performance of the approach on a separate dataset, three performance metrics were computed: the correlation coefficient, signal-to-noise ratio (SNR), and accuracy of Defibtech's shock decision algorithm. This dataset, containing 14 s ECG segments of different types of rhythms from 458 subjects, belongs to Defibtech commercial AED's validation set. The CPR artifact data from 52 different resuscitators were added to artifact-free ECG data to create 23,816 CPR-contaminated data segments. From this, 82% of the filtered shockable and 70% of the filtered non-shockable ECG data were highly correlated (>0.7) with the artifact-free ECG; this value was only 13 and 12% for CPR-contaminated shockable and non-shockable, respectively, without our filtering approach. The SNR improvement was 4.5 ± 2.5 dB, averaging over the entire dataset. Defibtech's rhythm analysis algorithm was applied to the filtered data. We found a sensitivity improvement from 67.7 to 91.3% and 62.7 to 78% for VF and rapid VT, respectively, and specificity improved from 96.2 to 96.5% and 91.5 to 92.7% for normal sinus rhythm (NSR) and other non-shockables, respectively.
Author Cascella, Alicia
Valentine, Matt
Chon, Ki H.
Hajeb-Mohammadalipour, Shirin
AuthorAffiliation 1 Biomedical Engineering Department, University of Connecticut, Storrs, CT 06269, USA; ki.chon@uconn.edu
2 Defibtech, LLC, Guilford, CT 06437, USA; acascella@defibtech.com (A.C.); mvalentine@defibtech.com (M.V.)
AuthorAffiliation_xml – name: 1 Biomedical Engineering Department, University of Connecticut, Storrs, CT 06269, USA; ki.chon@uconn.edu
– name: 2 Defibtech, LLC, Guilford, CT 06437, USA; acascella@defibtech.com (A.C.); mvalentine@defibtech.com (M.V.)
Author_xml – sequence: 1
  givenname: Shirin
  orcidid: 0000-0002-9563-1627
  surname: Hajeb-Mohammadalipour
  fullname: Hajeb-Mohammadalipour, Shirin
– sequence: 2
  givenname: Alicia
  surname: Cascella
  fullname: Cascella, Alicia
– sequence: 3
  givenname: Matt
  surname: Valentine
  fullname: Valentine, Matt
– sequence: 4
  givenname: Ki H.
  orcidid: 0000-0002-4422-4837
  surname: Chon
  fullname: Chon, Ki H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34960308$$D View this record in MEDLINE/PubMed
BookMark eNplkk1vEzEQhleoiH7AgT-ALHGBQ6g_1hv7ghQ2oVQqArVwtmzvOHG6WQfbi4T48zhNW7XlZHv8zuPXM3NcHQxhgKp6TfAHxiQ-TZTQWlCCn1VHpKb1RFCKDx7sD6vjlNYYU8aYeFEdslo2mGFxVP2djTlsdIYOtWHofPZhmHzSqZyvxu02QkolgoJDeQWo_X6JZjF7p21GfkCL9gzNddYoB_RVXwPS6BJ6r00P6GoV7DWag_U3BBcimi3mCXVj9MNyh3pZPXe6T_Dqdj2pfn5e_Gi_TC6-nZ23s4uJrRuZJ45jRh1rpg11vAOsuQFrJZdUEG2og652hEtJ5VQ6Q7ghmAsDcsqJlI2dspPqfM_tgl6rbfQbHf-ooL26CYS4VLp8yvagwHScMjCYS1NDXV4QhtXUcmopUO0K6-OetR3NBjoLQ466fwR9fDP4lVqG30pMsSCEF8C7W0AMv0ZIWW18stD3eoAwJkUbwgmhvBFF-vaJdB3GOJRS7VRUlILQnerNQ0f3Vu56XASne4GNIaUITlmf9a7RxaDvFcFqN0XqfopKxvsnGXfQ_7X_AJKhxDc
CitedBy_id crossref_primary_10_1016_j_resuscitation_2024_110325
crossref_primary_10_1016_j_eswa_2022_117499
crossref_primary_10_1136_openhrt_2022_001976
crossref_primary_10_3389_fphys_2023_1113524
crossref_primary_10_1016_j_bspc_2024_106502
crossref_primary_10_1016_j_ins_2023_01_055
crossref_primary_10_1016_j_compbiomed_2024_108180
crossref_primary_10_3390_jcm14030738
crossref_primary_10_1038_s41598_023_36463_z
crossref_primary_10_3390_s23094500
Cites_doi 10.1016/j.resuscitation.2019.02.007
10.1186/1475-925X-9-2
10.1155/2014/872470
10.1109/TBME.2007.902235
10.1378/chest.111.3.584
10.3390/s18072090
10.1016/S0300-9572(00)00259-8
10.1016/j.resuscitation.2007.08.002
10.3390/s21124105
10.1016/j.resuscitation.2006.05.017
10.1016/j.resuscitation.2017.05.017
10.1109/ITAIC.2019.8785851
10.12965/jer.1938656.328
10.1109/TBME.2016.2564642
10.1016/j.resuscitation.2013.02.016
10.1161/JAHA.120.019065
10.1007/s13246-016-0425-2
10.1161/CIRCULATIONAHA.110.010736
10.3390/e22060595
10.1109/TBME.2011.2118755
10.1161/01.CIR.101.23.e215
10.1016/j.resuscitation.2019.07.026
10.1260/2040-2295.4.2.185
10.1097/MCC.0000000000000297
10.1016/j.resuscitation.2010.02.031
10.1155/2014/140438
10.1161/01.CIR.95.6.1677
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21248210
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_ebd523eb059b4e42818b342c52c2e2af
PMC8708115
34960308
10_3390_s21248210
Genre Journal Article
GrantInformation_xml – fundername: Defibtech LLC.
  grantid: N/A
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-f5032f36762f5de0a5becc959281ab2fed4f15992979fb15b1058be9751996c73
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:17:44 EDT 2025
Thu Aug 21 18:20:41 EDT 2025
Fri Sep 05 04:49:44 EDT 2025
Fri Jul 25 20:49:19 EDT 2025
Mon Jul 21 06:06:01 EDT 2025
Thu Apr 24 23:09:40 EDT 2025
Tue Jul 01 02:41:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords AED
shockable
non-shockable
CPR
chest compression
ECG
cardiac arrest
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-f5032f36762f5de0a5becc959281ab2fed4f15992979fb15b1058be9751996c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9563-1627
0000-0002-4422-4837
OpenAccessLink https://www.proquest.com/docview/2612876228?pq-origsite=%requestingapplication%
PMID 34960308
PQID 2612876228
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_ebd523eb059b4e42818b342c52c2e2af
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8708115
proquest_miscellaneous_2615112568
proquest_journals_2612876228
pubmed_primary_34960308
crossref_citationtrail_10_3390_s21248210
crossref_primary_10_3390_s21248210
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211208
PublicationDateYYYYMMDD 2021-12-08
PublicationDate_xml – month: 12
  year: 2021
  text: 20211208
  day: 8
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Kerber (ref_27) 1997; 95
Bozzola (ref_26) 2014; 5
Ayala (ref_12) 2014; 2014
Aramendi (ref_29) 2007; 72
ref_11
Zijlstra (ref_24) 2017; 118
ref_33
Langhelle (ref_20) 2001; 48
Gong (ref_13) 2014; 2014
Cheskes (ref_7) 2011; 124
Cascella (ref_17) 2021; 10
ref_19
Amann (ref_31) 2010; 9
ref_16
Hu (ref_4) 2019; 143
Ruiz (ref_30) 2008; 76
Ruiz (ref_9) 2010; 81
Yu (ref_34) 2016; 39
Irusta (ref_5) 2014; 2014
Goldberger (ref_18) 2000; 101
Thomas (ref_2) 2013; 84
Gong (ref_14) 2017; 64
Nolle (ref_25) 1988; 1988
ref_23
Isasi (ref_15) 2018; 45
Pollack (ref_1) 2019; 137
ref_3
Affatato (ref_6) 2016; 22
Gong (ref_8) 2013; 4
ref_28
Rheinberger (ref_10) 2008; 55
Li (ref_32) 2012; 59
Kwon (ref_21) 2019; 15
Strohmenger (ref_22) 1997; 111
References_xml – volume: 137
  start-page: 168
  year: 2019
  ident: ref_1
  article-title: Bystander automated external defibrillator application in non-shockable out-of-hospital cardiac arrest
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2019.02.007
– ident: ref_3
– volume: 9
  start-page: 2
  year: 2010
  ident: ref_31
  article-title: Reduction of CPR artifacts in the ventricular fibrillation ECG by coherent line removal
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-9-2
– ident: ref_11
– volume: 2014
  start-page: 872470
  year: 2014
  ident: ref_12
  article-title: A Reliable Method for Rhythm Analysis during Cardiopulmonary Resuscitation
  publication-title: BioMed Res. Int.
  doi: 10.1155/2014/872470
– volume: 55
  start-page: 130
  year: 2008
  ident: ref_10
  article-title: Removal of CPR artifacts from the ventricular fibrillation ECG by adaptive regression on lagged reference signals
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.902235
– volume: 111
  start-page: 584
  year: 1997
  ident: ref_22
  article-title: Analysis of the ventricular fibrillation ECG signal amplitude and frequency parameters as predictors of countershock success in humans
  publication-title: Chest
  doi: 10.1378/chest.111.3.584
– ident: ref_33
  doi: 10.3390/s18072090
– volume: 48
  start-page: 279
  year: 2001
  ident: ref_20
  article-title: Reducing CPR artefacts in ventricular fibrillation in vitro
  publication-title: Resuscitation
  doi: 10.1016/S0300-9572(00)00259-8
– volume: 76
  start-page: 271
  year: 2008
  ident: ref_30
  article-title: A method to remove CPR artefacts from human ECG using only the recorded ECG
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2007.08.002
– volume: 2014
  start-page: 386010
  year: 2014
  ident: ref_5
  article-title: Rhythm Analysis during Cardiopulmonary Resuscitation: Past, Present, and Future
  publication-title: BioMed Res. Int.
– ident: ref_28
  doi: 10.3390/s21124105
– volume: 72
  start-page: 115
  year: 2007
  ident: ref_29
  article-title: Detection of ventricular fibrillation in the presence of cardiopulmonary resuscitation artefacts
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2006.05.017
– volume: 118
  start-page: 140
  year: 2017
  ident: ref_24
  article-title: Automated external defibrillator and operator performance in out-of-hospital cardiac arrest
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2017.05.017
– ident: ref_23
  doi: 10.1109/ITAIC.2019.8785851
– volume: 15
  start-page: 738
  year: 2019
  ident: ref_21
  article-title: The changes in cardiopulmonary resuscitation guidelines: From 2000 to the present
  publication-title: J. Exerc. Rehabil.
  doi: 10.12965/jer.1938656.328
– volume: 64
  start-page: 471
  year: 2017
  ident: ref_14
  article-title: An Enhanced Adaptive Filtering Method for Suppressing Cardiopulmonary Resuscitation Artifact
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2564642
– volume: 45
  start-page: 1
  year: 2018
  ident: ref_15
  article-title: ECG Rhythm Analysis during Manual Chest Compressions Using an Artefact Removal Filter and Random Forest Classifiers
  publication-title: Comput. Cardiol. Conf. (CinC)
– volume: 84
  start-page: 1261
  year: 2013
  ident: ref_2
  article-title: Survival in out-of-hospital cardiac arrests with initial asystole or pulseless electrical activity and subsequent shockable rhythms
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2013.02.016
– volume: 10
  start-page: e019065
  year: 2021
  ident: ref_17
  article-title: Deep Neural Network Approach for Continuous ECG-Based Automated External Defibrillator Shock Advisory System During Cardiopulmonary Resuscitation
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.120.019065
– volume: 39
  start-page: 391
  year: 2016
  ident: ref_34
  article-title: A new method without reference channels used for ventricular fibrillation detection during cardiopulmonary resuscitation
  publication-title: Australas Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-016-0425-2
– volume: 124
  start-page: 58
  year: 2011
  ident: ref_7
  article-title: Perishock pause: An independent predictor of survival from out-of-hospital shockable cardiac arrest
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.110.010736
– ident: ref_16
  doi: 10.3390/e22060595
– volume: 59
  start-page: 78
  year: 2012
  ident: ref_32
  article-title: An algorithm used for ventricular fibrillation detection without interrupting chest compression
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2118755
– volume: 101
  start-page: 215
  year: 2000
  ident: ref_18
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 143
  start-page: 1
  year: 2019
  ident: ref_4
  article-title: The performance of a new shock advisory algorithm to reduce interruptions during CPR
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2019.07.026
– volume: 4
  start-page: 185
  year: 2013
  ident: ref_8
  article-title: A review of the performance of artifact filtering algorithms for cardiopulmonary resuscitation
  publication-title: J. Healthc. Eng.
  doi: 10.1260/2040-2295.4.2.185
– volume: 22
  start-page: 199
  year: 2016
  ident: ref_6
  article-title: See through ECG technology during cardiopulmonary resuscitation to analyze rhythm and predict defibrillation outcome
  publication-title: Curr. Opin. Crit. Care
  doi: 10.1097/MCC.0000000000000297
– volume: 81
  start-page: 1087
  year: 2010
  ident: ref_9
  article-title: Cardiopulmonary resuscitation artefact suppression using a Kalman filter and the frequency of chest compressions as the reference signal
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2010.02.031
– volume: 2014
  start-page: 140438
  year: 2014
  ident: ref_13
  article-title: Removal of cardiopulmonary resuscitation artifacts with an enhanced adaptive filtering method: An experimental trial
  publication-title: BioMed Res. Int.
  doi: 10.1155/2014/140438
– volume: 5
  start-page: 285
  year: 2014
  ident: ref_26
  article-title: What is Ventricular Tachycardia for an Automated External Defibrillator?
  publication-title: J. Clin. Exp. Cardiol.
– volume: 1988
  start-page: 337
  year: 1988
  ident: ref_25
  article-title: Evaluation of a frequency-domain algorithm to detect ventricular fibrillation in the surface electrocardiogram
  publication-title: Proc. Comput. Cardiol.
– ident: ref_19
– volume: 95
  start-page: 1677
  year: 1997
  ident: ref_27
  article-title: Automatic external defibrillators for public access defibrillation: Recommendations for specifying and reporting arrhythmia analysis algorithm performance, incorporating new waveforms, and enhancing safety. A statement for health professionals from the American Heart Association Task Force on Automatic External Defibrillation, Subcommittee on AED Safety and Efficacy
  publication-title: Circulation
  doi: 10.1161/01.CIR.95.6.1677
SSID ssj0023338
Score 2.4136105
Snippet Cardiopulmonary resuscitation (CPR) corrupts the morphology of the electrocardiogram (ECG) signal, resulting in an inaccurate automated external defibrillator...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 8210
SubjectTerms AED
Algorithms
Automation
Cardiac arrest
Cardiac arrhythmia
Cardiopulmonary Resuscitation
chest compression
CPR
Datasets
Defibrillators
Digital archives
ECG
Electrocardiography
Heart
Humans
Morphology
non-shockable
shockable
Signal processing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQJzhUPEsoRQPi0EtE8CNxjsvuAkKiqihI3CI7tgVqlaBu9sSf70ySjXYRUi-9xiPL8Yw938gz3zB2JqROhbEiFmWpYxmSLDapC7EIOjPWOkTc9KJ79z29eZS3T-ppqdUX5YR19MDdxp176zBW8hZhgJVeEnmRFZKXipfccxPo9kU3tgim-lBLYOTV8QgJDOrPZ3hBS82pTHbJ-7Qk_R8hy_cJkkse52qLfeqhIoy6JW6zNV_tsM0lAsFd9jaaNzViTu9gXNPjM-5yfImOyQG16-xyXCuoAyDOg_GP-3Y2KmaAlwqm42uYmMZAU8Od-eXBAGUoUzEV_HzGixImfQceQGgLo-lkBl1ZI021xx6vpg_jm7hvpxCXGAM3cVCJ4IEY2nhQzidGkf5yleOeGsuDdzIguEG8lOXBXiiL0Etbn2eKMpXLTOyz9aqu_AEDxG0mJKlV2kvJnckdN_aCpy5NpFcZj9i3xTYXZc81Ti0vfhcYc5BGikEjETsdRF87go2PhC5JV4MAcWK3H9BSit5Sin9ZSsSOFpou-oM6K4hBjRwC1xE7GYbxiNG7ial8PW9lCJaqFGU-d4YxrIT49onyJ2LZismsLHV1pHp5bmm88abUiMcP_8e_fWEbnJJtKM9GH7H15s_cf0W01Njj9mD8BZfpEkI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQ8SZQ0IA4cIma9SNxTmi7j1ZIRQio1FtkxzatQEnbzZ7488wk3rCLKq7xyLI84_E38cw3jL0XUufCWJGKutapDFmRmtyFVARdGGsdIm560T39nJ-cyU_n6jz-cFvFtMqNT-wdtWtr-kd-SFRXdHK5_nh1nVLXKHpdjS007rJ7E46WRJXiy-Mx4BIYfw1sQgJD-8MVummpORXLbt1BPVX_bfjy3zTJrXtn-ZDtR8AI00HDj9gd3zxmD7ZoBJ-w39N11yLy9A5mLT1B416nR3g9OaCmnUOmawNtAER7MPvytZ-NShrgsoHF7BjmpjPQtXBqfnowQHnKVFIF3y7QXcI89uEBBLgwXcxXMBQ30lRP2dly8X12ksamCmmNkXCXBpUJHoinjQflfGYUabFUJdcTY3nwTgaEOIiaijLYibIIwLT1ZaEoX7kuxDO217SNf8EA0ZsJWW6V9lJyZ0rHjUU9uDyTXhU8YR8221zVkXGcGl_8qjDyII1Uo0YS9m4UvRpoNm4TOiJdjQLEjN1_aG9-VPGgVd46jK29RdhopZdEdmWF5LXiNffchIQdbDRdxeO6qv4aV8LejsN40Oj1xDS-XfcyBE5VjjLPB8MYV0Ks-0T8k7Bix2R2lro70lxe9GTe6C81ovKX_1_WK3afUzIN5dHoA7bX3az9a0RDnX3Tm_wfA6kJZw
  priority: 102
  providerName: ProQuest
Title Automated Condition-Based Suppression of the CPR Artifact in ECG Data to Make a Reliable Shock Decision for AEDs during CPR
URI https://www.ncbi.nlm.nih.gov/pubmed/34960308
https://www.proquest.com/docview/2612876228
https://www.proquest.com/docview/2615112568
https://pubmed.ncbi.nlm.nih.gov/PMC8708115
https://doaj.org/article/ebd523eb059b4e42818b342c52c2e2af
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKe4ED4k2grAziwCWQ9SNxDgjtsxXSVlVhpb1FdmzTiippd7MSiD_PTJKNGrQHLjnEE8vy2J5v4plvCHnPhYq5Njzkea5C4aMk1LH1Ifcq0cZYQNx4o7s4i0-X4utKrg7IrsZmO4Gbva4d1pNarq8__rr9_QU2_Gf0OMFl_7SB41coholWR2CQGC7uheguExjndUFrzOkKwR5GDcFQ_9OeWarZ-_dBzn8jJ--Yovkj8rDFkHTUKP0xOXDFE_LgDrPgU_JntK1KAKPO0kmJt9Iw_eEYLJalWMezCX4taOkpAEA6Ob-oe8MsB3pV0NnkhE51pWlV0oX-6aimGLqMWVb02yWcoHTaluahgHnpaDbd0CbfEbt6Rpbz2ffJadjWWQhzcI6r0MuIM4_UbcxL6yItUbGpTJkaasO8s8ID6gEglaTeDKUBTKaMSxOJIcx5wp-Tw6Is3EtCAdBpH8VGKicEszq1TJshi20cCScTFpAPu2nO8paEHGthXGfgjKBGsk4jAXnXid40zBv7hMaoq04AybLrF-X6R9buvcwZC-62M4AkjXAC-a8MFyyXLGeOaR-Q452ms90CzJBaDS0FUwF52zXD3sMLFV24clvLIF6VMci8aBZGNxIk4kcuoIAkvSXTG2q_pbi6rPm94QhVANRf_c8EvCb3GUbZYICNOiaH1Xrr3gBMqsyA3EtWCTzV_GRAjsazs_OLQf3LYVBvj7-88RJj
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcgAOiDeGAgsCiYtVZx_2-oBQmqSktKkQtFJu7q53l1at7NI4Qoj_xG9kxo80QRW3XuPRau2ZnfkmO_MNIW-5UDHXhoc8z1UofJSEOrY-5F4l2hgLiBtvdCf78fhQfJ7K6Rr50_XCYFll5xNrR23LHP8j30SqKzy5TH08_xHi1Ci8Xe1GaDRmset-_YSUbfZhZwj6fcfY9uhgMA7bqQJhDqlgFXoZceaRqIx5aV2kJb5GKlOmetow76zwEOMBNiSpNz1pAIEo49JEYsFunnBY9wa5KXgkkKs_mV4meBzyvYa9iPM02pxBWBCKYXPuUsyrRwNchWf_LctcinPb98jdFqDSfmNR98maKx6QO0u0hQ_J7_68KgHpOksHJV55g27DLQiHluKQ0KaytqClp4Au6eDL13o1bKGgJwUdDT7Roa40rUo60aeOaop10djCRb8dg3umw3buDwVATfuj4Yw2zZS41CNyeC2f-zFZL8rCPSUU0KL2UWykckIwq1PLtOmx2MaRcDJhAXnffeYsbxnOcdDGWQaZDmokW2gkIG8WoucNrcdVQluoq4UAMnHXP5QX37P2YGfOWMjlnQGYaoQTSK5luGC5ZDlzTPuAbHSazlr3MMsujTkgrxeP4WDjbY0uXDmvZRAMyxhknjSGsdgJsvwj0VBAkhWTWdnq6pPi5LgmDwf_rCALePb_bb0it8YHk71sb2d_9zm5zbCQB2t41AZZry7m7gUgscq8rM2fkqPrPm9_AUodRZs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIiE4IN4YCiwIJC5WnH3Y6wNCaZzQUlpVQKXczK53l1YguzSOEOKf8euY8SNNUMWt13i1Wnte32RnviHkJRcq5trwkBeFCoWPklDH1ofcq0QbYwFx443u_kG8cyTez-Rsg_zpe2GwrLL3iY2jtlWB_5EPkOoKLZepge_KIg6z6dvTHyFOkMKb1n6cRqsie-7XT0jf5m92M5D1K8amk8_jnbCbMBAWkBbWoZcRZx5Jy5iX1kVa4iulMmVqqA3zzgoP8R4gRJJ6M5QG0IgyLk0kFu8WCYd9r5CrCRccy8mS2XmyxyH3a5mMOE-jwRxChFAMG3VX4l8zJuAibPtvieZKzJveIjc7sEpHrXbdJhuuvENurFAY3iW_R4u6AtTrLB1XeP0Ncg63ITRaigND2yrbklaeAtKk48OPzW7YTkFPSjoZv6OZrjWtK7qvvzmqKdZIYzsX_XQMrppm3QwgCuCajibZnLaNlbjVPXJ0KZ_7Ptksq9I9JBSQo_ZRbKRyQjCrU8u0GbLYxpFwMmEBed1_5rzo2M5x6Mb3HLIelEi-lEhAXiyXnrYUHxct2kZZLRcgK3fzQ3X2Ne-MPHfGQl7vDEBWI5xAoi3DBSskK5hj2gdkq5d03rmKeX6u2AF5vnwMRo43N7p01aJZg8BYxrDmQasYy5Mg4z-SDgUkWVOZtaOuPylPjhsicfDVCjKCR_8_1jNyDSwt_7B7sPeYXGdY04PlPGqLbNZnC_cEQFltnjbaT8mXyza3v31BSdY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Condition-Based+Suppression+of+the+CPR+Artifact+in+ECG+Data+to+Make+a+Reliable+Shock+Decision+for+AEDs+during+CPR&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Hajeb-Mohammadalipour%2C+Shirin&rft.au=Cascella%2C+Alicia&rft.au=Valentine%2C+Matt&rft.au=Chon%2C+Ki+H.&rft.date=2021-12-08&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=24&rft.spage=8210&rft_id=info:doi/10.3390%2Fs21248210&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s21248210
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon