Automated Condition-Based Suppression of the CPR Artifact in ECG Data to Make a Reliable Shock Decision for AEDs during CPR
Cardiopulmonary resuscitation (CPR) corrupts the morphology of the electrocardiogram (ECG) signal, resulting in an inaccurate automated external defibrillator (AED) rhythm analysis. Consequently, most current AEDs prohibit CPR during the rhythm analysis period, thereby decreasing the survival rate....
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 24; p. 8210 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
08.12.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s21248210 |
Cover
Abstract | Cardiopulmonary resuscitation (CPR) corrupts the morphology of the electrocardiogram (ECG) signal, resulting in an inaccurate automated external defibrillator (AED) rhythm analysis. Consequently, most current AEDs prohibit CPR during the rhythm analysis period, thereby decreasing the survival rate. To overcome this limitation, we designed a condition-based filtering algorithm that consists of three stop-band filters which are turned either ‘on’ or ‘off’ depending on the ECG’s spectral characteristics. Typically, removing the artifact’s higher frequency peaks in addition to the highest frequency peak eliminates most of the ECG’s morphological disturbance on the non-shockable rhythms. However, the shockable rhythms usually have dynamics in the frequency range of (3–6) Hz, which in certain cases coincide with CPR compression’s harmonic frequencies, hence, removing them may lead to destruction of the shockable signal’s dynamics. The proposed algorithm achieves CPR artifact removal without compromising the integrity of the shockable rhythm by considering three different spectral factors. The dataset from the PhysioNet archive was used to develop this condition-based approach. To quantify the performance of the approach on a separate dataset, three performance metrics were computed: the correlation coefficient, signal-to-noise ratio (SNR), and accuracy of Defibtech’s shock decision algorithm. This dataset, containing 14 s ECG segments of different types of rhythms from 458 subjects, belongs to Defibtech commercial AED’s validation set. The CPR artifact data from 52 different resuscitators were added to artifact-free ECG data to create 23,816 CPR-contaminated data segments. From this, 82% of the filtered shockable and 70% of the filtered non-shockable ECG data were highly correlated (>0.7) with the artifact-free ECG; this value was only 13 and 12% for CPR-contaminated shockable and non-shockable, respectively, without our filtering approach. The SNR improvement was 4.5 ± 2.5 dB, averaging over the entire dataset. Defibtech’s rhythm analysis algorithm was applied to the filtered data. We found a sensitivity improvement from 67.7 to 91.3% and 62.7 to 78% for VF and rapid VT, respectively, and specificity improved from 96.2 to 96.5% and 91.5 to 92.7% for normal sinus rhythm (NSR) and other non-shockables, respectively. |
---|---|
AbstractList | Cardiopulmonary resuscitation (CPR) corrupts the morphology of the electrocardiogram (ECG) signal, resulting in an inaccurate automated external defibrillator (AED) rhythm analysis. Consequently, most current AEDs prohibit CPR during the rhythm analysis period, thereby decreasing the survival rate. To overcome this limitation, we designed a condition-based filtering algorithm that consists of three stop-band filters which are turned either ‘on’ or ‘off’ depending on the ECG’s spectral characteristics. Typically, removing the artifact’s higher frequency peaks in addition to the highest frequency peak eliminates most of the ECG’s morphological disturbance on the non-shockable rhythms. However, the shockable rhythms usually have dynamics in the frequency range of (3–6) Hz, which in certain cases coincide with CPR compression’s harmonic frequencies, hence, removing them may lead to destruction of the shockable signal’s dynamics. The proposed algorithm achieves CPR artifact removal without compromising the integrity of the shockable rhythm by considering three different spectral factors. The dataset from the PhysioNet archive was used to develop this condition-based approach. To quantify the performance of the approach on a separate dataset, three performance metrics were computed: the correlation coefficient, signal-to-noise ratio (SNR), and accuracy of Defibtech’s shock decision algorithm. This dataset, containing 14 s ECG segments of different types of rhythms from 458 subjects, belongs to Defibtech commercial AED’s validation set. The CPR artifact data from 52 different resuscitators were added to artifact-free ECG data to create 23,816 CPR-contaminated data segments. From this, 82% of the filtered shockable and 70% of the filtered non-shockable ECG data were highly correlated (>0.7) with the artifact-free ECG; this value was only 13 and 12% for CPR-contaminated shockable and non-shockable, respectively, without our filtering approach. The SNR improvement was 4.5 ± 2.5 dB, averaging over the entire dataset. Defibtech’s rhythm analysis algorithm was applied to the filtered data. We found a sensitivity improvement from 67.7 to 91.3% and 62.7 to 78% for VF and rapid VT, respectively, and specificity improved from 96.2 to 96.5% and 91.5 to 92.7% for normal sinus rhythm (NSR) and other non-shockables, respectively. Cardiopulmonary resuscitation (CPR) corrupts the morphology of the electrocardiogram (ECG) signal, resulting in an inaccurate automated external defibrillator (AED) rhythm analysis. Consequently, most current AEDs prohibit CPR during the rhythm analysis period, thereby decreasing the survival rate. To overcome this limitation, we designed a condition-based filtering algorithm that consists of three stop-band filters which are turned either 'on' or 'off' depending on the ECG's spectral characteristics. Typically, removing the artifact's higher frequency peaks in addition to the highest frequency peak eliminates most of the ECG's morphological disturbance on the non-shockable rhythms. However, the shockable rhythms usually have dynamics in the frequency range of (3-6) Hz, which in certain cases coincide with CPR compression's harmonic frequencies, hence, removing them may lead to destruction of the shockable signal's dynamics. The proposed algorithm achieves CPR artifact removal without compromising the integrity of the shockable rhythm by considering three different spectral factors. The dataset from the PhysioNet archive was used to develop this condition-based approach. To quantify the performance of the approach on a separate dataset, three performance metrics were computed: the correlation coefficient, signal-to-noise ratio (SNR), and accuracy of Defibtech's shock decision algorithm. This dataset, containing 14 s ECG segments of different types of rhythms from 458 subjects, belongs to Defibtech commercial AED's validation set. The CPR artifact data from 52 different resuscitators were added to artifact-free ECG data to create 23,816 CPR-contaminated data segments. From this, 82% of the filtered shockable and 70% of the filtered non-shockable ECG data were highly correlated (>0.7) with the artifact-free ECG; this value was only 13 and 12% for CPR-contaminated shockable and non-shockable, respectively, without our filtering approach. The SNR improvement was 4.5 ± 2.5 dB, averaging over the entire dataset. Defibtech's rhythm analysis algorithm was applied to the filtered data. We found a sensitivity improvement from 67.7 to 91.3% and 62.7 to 78% for VF and rapid VT, respectively, and specificity improved from 96.2 to 96.5% and 91.5 to 92.7% for normal sinus rhythm (NSR) and other non-shockables, respectively.Cardiopulmonary resuscitation (CPR) corrupts the morphology of the electrocardiogram (ECG) signal, resulting in an inaccurate automated external defibrillator (AED) rhythm analysis. Consequently, most current AEDs prohibit CPR during the rhythm analysis period, thereby decreasing the survival rate. To overcome this limitation, we designed a condition-based filtering algorithm that consists of three stop-band filters which are turned either 'on' or 'off' depending on the ECG's spectral characteristics. Typically, removing the artifact's higher frequency peaks in addition to the highest frequency peak eliminates most of the ECG's morphological disturbance on the non-shockable rhythms. However, the shockable rhythms usually have dynamics in the frequency range of (3-6) Hz, which in certain cases coincide with CPR compression's harmonic frequencies, hence, removing them may lead to destruction of the shockable signal's dynamics. The proposed algorithm achieves CPR artifact removal without compromising the integrity of the shockable rhythm by considering three different spectral factors. The dataset from the PhysioNet archive was used to develop this condition-based approach. To quantify the performance of the approach on a separate dataset, three performance metrics were computed: the correlation coefficient, signal-to-noise ratio (SNR), and accuracy of Defibtech's shock decision algorithm. This dataset, containing 14 s ECG segments of different types of rhythms from 458 subjects, belongs to Defibtech commercial AED's validation set. The CPR artifact data from 52 different resuscitators were added to artifact-free ECG data to create 23,816 CPR-contaminated data segments. From this, 82% of the filtered shockable and 70% of the filtered non-shockable ECG data were highly correlated (>0.7) with the artifact-free ECG; this value was only 13 and 12% for CPR-contaminated shockable and non-shockable, respectively, without our filtering approach. The SNR improvement was 4.5 ± 2.5 dB, averaging over the entire dataset. Defibtech's rhythm analysis algorithm was applied to the filtered data. We found a sensitivity improvement from 67.7 to 91.3% and 62.7 to 78% for VF and rapid VT, respectively, and specificity improved from 96.2 to 96.5% and 91.5 to 92.7% for normal sinus rhythm (NSR) and other non-shockables, respectively. |
Author | Cascella, Alicia Valentine, Matt Chon, Ki H. Hajeb-Mohammadalipour, Shirin |
AuthorAffiliation | 1 Biomedical Engineering Department, University of Connecticut, Storrs, CT 06269, USA; ki.chon@uconn.edu 2 Defibtech, LLC, Guilford, CT 06437, USA; acascella@defibtech.com (A.C.); mvalentine@defibtech.com (M.V.) |
AuthorAffiliation_xml | – name: 1 Biomedical Engineering Department, University of Connecticut, Storrs, CT 06269, USA; ki.chon@uconn.edu – name: 2 Defibtech, LLC, Guilford, CT 06437, USA; acascella@defibtech.com (A.C.); mvalentine@defibtech.com (M.V.) |
Author_xml | – sequence: 1 givenname: Shirin orcidid: 0000-0002-9563-1627 surname: Hajeb-Mohammadalipour fullname: Hajeb-Mohammadalipour, Shirin – sequence: 2 givenname: Alicia surname: Cascella fullname: Cascella, Alicia – sequence: 3 givenname: Matt surname: Valentine fullname: Valentine, Matt – sequence: 4 givenname: Ki H. orcidid: 0000-0002-4422-4837 surname: Chon fullname: Chon, Ki H. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34960308$$D View this record in MEDLINE/PubMed |
BookMark | eNplkk1vEzEQhleoiH7AgT-ALHGBQ6g_1hv7ghQ2oVQqArVwtmzvOHG6WQfbi4T48zhNW7XlZHv8zuPXM3NcHQxhgKp6TfAHxiQ-TZTQWlCCn1VHpKb1RFCKDx7sD6vjlNYYU8aYeFEdslo2mGFxVP2djTlsdIYOtWHofPZhmHzSqZyvxu02QkolgoJDeQWo_X6JZjF7p21GfkCL9gzNddYoB_RVXwPS6BJ6r00P6GoV7DWag_U3BBcimi3mCXVj9MNyh3pZPXe6T_Dqdj2pfn5e_Gi_TC6-nZ23s4uJrRuZJ45jRh1rpg11vAOsuQFrJZdUEG2og652hEtJ5VQ6Q7ghmAsDcsqJlI2dspPqfM_tgl6rbfQbHf-ooL26CYS4VLp8yvagwHScMjCYS1NDXV4QhtXUcmopUO0K6-OetR3NBjoLQ466fwR9fDP4lVqG30pMsSCEF8C7W0AMv0ZIWW18stD3eoAwJkUbwgmhvBFF-vaJdB3GOJRS7VRUlILQnerNQ0f3Vu56XASne4GNIaUITlmf9a7RxaDvFcFqN0XqfopKxvsnGXfQ_7X_AJKhxDc |
CitedBy_id | crossref_primary_10_1016_j_resuscitation_2024_110325 crossref_primary_10_1016_j_eswa_2022_117499 crossref_primary_10_1136_openhrt_2022_001976 crossref_primary_10_3389_fphys_2023_1113524 crossref_primary_10_1016_j_bspc_2024_106502 crossref_primary_10_1016_j_ins_2023_01_055 crossref_primary_10_1016_j_compbiomed_2024_108180 crossref_primary_10_3390_jcm14030738 crossref_primary_10_1038_s41598_023_36463_z crossref_primary_10_3390_s23094500 |
Cites_doi | 10.1016/j.resuscitation.2019.02.007 10.1186/1475-925X-9-2 10.1155/2014/872470 10.1109/TBME.2007.902235 10.1378/chest.111.3.584 10.3390/s18072090 10.1016/S0300-9572(00)00259-8 10.1016/j.resuscitation.2007.08.002 10.3390/s21124105 10.1016/j.resuscitation.2006.05.017 10.1016/j.resuscitation.2017.05.017 10.1109/ITAIC.2019.8785851 10.12965/jer.1938656.328 10.1109/TBME.2016.2564642 10.1016/j.resuscitation.2013.02.016 10.1161/JAHA.120.019065 10.1007/s13246-016-0425-2 10.1161/CIRCULATIONAHA.110.010736 10.3390/e22060595 10.1109/TBME.2011.2118755 10.1161/01.CIR.101.23.e215 10.1016/j.resuscitation.2019.07.026 10.1260/2040-2295.4.2.185 10.1097/MCC.0000000000000297 10.1016/j.resuscitation.2010.02.031 10.1155/2014/140438 10.1161/01.CIR.95.6.1677 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s21248210 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_ebd523eb059b4e42818b342c52c2e2af PMC8708115 34960308 10_3390_s21248210 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Defibtech LLC. grantid: N/A |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c469t-f5032f36762f5de0a5becc959281ab2fed4f15992979fb15b1058be9751996c73 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:17:44 EDT 2025 Thu Aug 21 18:20:41 EDT 2025 Fri Sep 05 04:49:44 EDT 2025 Fri Jul 25 20:49:19 EDT 2025 Mon Jul 21 06:06:01 EDT 2025 Thu Apr 24 23:09:40 EDT 2025 Tue Jul 01 02:41:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | AED shockable non-shockable CPR chest compression ECG cardiac arrest |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-f5032f36762f5de0a5becc959281ab2fed4f15992979fb15b1058be9751996c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9563-1627 0000-0002-4422-4837 |
OpenAccessLink | https://www.proquest.com/docview/2612876228?pq-origsite=%requestingapplication% |
PMID | 34960308 |
PQID | 2612876228 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ebd523eb059b4e42818b342c52c2e2af pubmedcentral_primary_oai_pubmedcentral_nih_gov_8708115 proquest_miscellaneous_2615112568 proquest_journals_2612876228 pubmed_primary_34960308 crossref_citationtrail_10_3390_s21248210 crossref_primary_10_3390_s21248210 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211208 |
PublicationDateYYYYMMDD | 2021-12-08 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211208 day: 8 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Kerber (ref_27) 1997; 95 Bozzola (ref_26) 2014; 5 Ayala (ref_12) 2014; 2014 Aramendi (ref_29) 2007; 72 ref_11 Zijlstra (ref_24) 2017; 118 ref_33 Langhelle (ref_20) 2001; 48 Gong (ref_13) 2014; 2014 Cheskes (ref_7) 2011; 124 Cascella (ref_17) 2021; 10 ref_19 Amann (ref_31) 2010; 9 ref_16 Hu (ref_4) 2019; 143 Ruiz (ref_30) 2008; 76 Ruiz (ref_9) 2010; 81 Yu (ref_34) 2016; 39 Irusta (ref_5) 2014; 2014 Goldberger (ref_18) 2000; 101 Thomas (ref_2) 2013; 84 Gong (ref_14) 2017; 64 Nolle (ref_25) 1988; 1988 ref_23 Isasi (ref_15) 2018; 45 Pollack (ref_1) 2019; 137 ref_3 Affatato (ref_6) 2016; 22 Gong (ref_8) 2013; 4 ref_28 Rheinberger (ref_10) 2008; 55 Li (ref_32) 2012; 59 Kwon (ref_21) 2019; 15 Strohmenger (ref_22) 1997; 111 |
References_xml | – volume: 137 start-page: 168 year: 2019 ident: ref_1 article-title: Bystander automated external defibrillator application in non-shockable out-of-hospital cardiac arrest publication-title: Resuscitation doi: 10.1016/j.resuscitation.2019.02.007 – ident: ref_3 – volume: 9 start-page: 2 year: 2010 ident: ref_31 article-title: Reduction of CPR artifacts in the ventricular fibrillation ECG by coherent line removal publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-9-2 – ident: ref_11 – volume: 2014 start-page: 872470 year: 2014 ident: ref_12 article-title: A Reliable Method for Rhythm Analysis during Cardiopulmonary Resuscitation publication-title: BioMed Res. Int. doi: 10.1155/2014/872470 – volume: 55 start-page: 130 year: 2008 ident: ref_10 article-title: Removal of CPR artifacts from the ventricular fibrillation ECG by adaptive regression on lagged reference signals publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.902235 – volume: 111 start-page: 584 year: 1997 ident: ref_22 article-title: Analysis of the ventricular fibrillation ECG signal amplitude and frequency parameters as predictors of countershock success in humans publication-title: Chest doi: 10.1378/chest.111.3.584 – ident: ref_33 doi: 10.3390/s18072090 – volume: 48 start-page: 279 year: 2001 ident: ref_20 article-title: Reducing CPR artefacts in ventricular fibrillation in vitro publication-title: Resuscitation doi: 10.1016/S0300-9572(00)00259-8 – volume: 76 start-page: 271 year: 2008 ident: ref_30 article-title: A method to remove CPR artefacts from human ECG using only the recorded ECG publication-title: Resuscitation doi: 10.1016/j.resuscitation.2007.08.002 – volume: 2014 start-page: 386010 year: 2014 ident: ref_5 article-title: Rhythm Analysis during Cardiopulmonary Resuscitation: Past, Present, and Future publication-title: BioMed Res. Int. – ident: ref_28 doi: 10.3390/s21124105 – volume: 72 start-page: 115 year: 2007 ident: ref_29 article-title: Detection of ventricular fibrillation in the presence of cardiopulmonary resuscitation artefacts publication-title: Resuscitation doi: 10.1016/j.resuscitation.2006.05.017 – volume: 118 start-page: 140 year: 2017 ident: ref_24 article-title: Automated external defibrillator and operator performance in out-of-hospital cardiac arrest publication-title: Resuscitation doi: 10.1016/j.resuscitation.2017.05.017 – ident: ref_23 doi: 10.1109/ITAIC.2019.8785851 – volume: 15 start-page: 738 year: 2019 ident: ref_21 article-title: The changes in cardiopulmonary resuscitation guidelines: From 2000 to the present publication-title: J. Exerc. Rehabil. doi: 10.12965/jer.1938656.328 – volume: 64 start-page: 471 year: 2017 ident: ref_14 article-title: An Enhanced Adaptive Filtering Method for Suppressing Cardiopulmonary Resuscitation Artifact publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2564642 – volume: 45 start-page: 1 year: 2018 ident: ref_15 article-title: ECG Rhythm Analysis during Manual Chest Compressions Using an Artefact Removal Filter and Random Forest Classifiers publication-title: Comput. Cardiol. Conf. (CinC) – volume: 84 start-page: 1261 year: 2013 ident: ref_2 article-title: Survival in out-of-hospital cardiac arrests with initial asystole or pulseless electrical activity and subsequent shockable rhythms publication-title: Resuscitation doi: 10.1016/j.resuscitation.2013.02.016 – volume: 10 start-page: e019065 year: 2021 ident: ref_17 article-title: Deep Neural Network Approach for Continuous ECG-Based Automated External Defibrillator Shock Advisory System During Cardiopulmonary Resuscitation publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.120.019065 – volume: 39 start-page: 391 year: 2016 ident: ref_34 article-title: A new method without reference channels used for ventricular fibrillation detection during cardiopulmonary resuscitation publication-title: Australas Phys. Eng. Sci. Med. doi: 10.1007/s13246-016-0425-2 – volume: 124 start-page: 58 year: 2011 ident: ref_7 article-title: Perishock pause: An independent predictor of survival from out-of-hospital shockable cardiac arrest publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.110.010736 – ident: ref_16 doi: 10.3390/e22060595 – volume: 59 start-page: 78 year: 2012 ident: ref_32 article-title: An algorithm used for ventricular fibrillation detection without interrupting chest compression publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2118755 – volume: 101 start-page: 215 year: 2000 ident: ref_18 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 143 start-page: 1 year: 2019 ident: ref_4 article-title: The performance of a new shock advisory algorithm to reduce interruptions during CPR publication-title: Resuscitation doi: 10.1016/j.resuscitation.2019.07.026 – volume: 4 start-page: 185 year: 2013 ident: ref_8 article-title: A review of the performance of artifact filtering algorithms for cardiopulmonary resuscitation publication-title: J. Healthc. Eng. doi: 10.1260/2040-2295.4.2.185 – volume: 22 start-page: 199 year: 2016 ident: ref_6 article-title: See through ECG technology during cardiopulmonary resuscitation to analyze rhythm and predict defibrillation outcome publication-title: Curr. Opin. Crit. Care doi: 10.1097/MCC.0000000000000297 – volume: 81 start-page: 1087 year: 2010 ident: ref_9 article-title: Cardiopulmonary resuscitation artefact suppression using a Kalman filter and the frequency of chest compressions as the reference signal publication-title: Resuscitation doi: 10.1016/j.resuscitation.2010.02.031 – volume: 2014 start-page: 140438 year: 2014 ident: ref_13 article-title: Removal of cardiopulmonary resuscitation artifacts with an enhanced adaptive filtering method: An experimental trial publication-title: BioMed Res. Int. doi: 10.1155/2014/140438 – volume: 5 start-page: 285 year: 2014 ident: ref_26 article-title: What is Ventricular Tachycardia for an Automated External Defibrillator? publication-title: J. Clin. Exp. Cardiol. – volume: 1988 start-page: 337 year: 1988 ident: ref_25 article-title: Evaluation of a frequency-domain algorithm to detect ventricular fibrillation in the surface electrocardiogram publication-title: Proc. Comput. Cardiol. – ident: ref_19 – volume: 95 start-page: 1677 year: 1997 ident: ref_27 article-title: Automatic external defibrillators for public access defibrillation: Recommendations for specifying and reporting arrhythmia analysis algorithm performance, incorporating new waveforms, and enhancing safety. A statement for health professionals from the American Heart Association Task Force on Automatic External Defibrillation, Subcommittee on AED Safety and Efficacy publication-title: Circulation doi: 10.1161/01.CIR.95.6.1677 |
SSID | ssj0023338 |
Score | 2.4136105 |
Snippet | Cardiopulmonary resuscitation (CPR) corrupts the morphology of the electrocardiogram (ECG) signal, resulting in an inaccurate automated external defibrillator... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 8210 |
SubjectTerms | AED Algorithms Automation Cardiac arrest Cardiac arrhythmia Cardiopulmonary Resuscitation chest compression CPR Datasets Defibrillators Digital archives ECG Electrocardiography Heart Humans Morphology non-shockable shockable Signal processing |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQJzhUPEsoRQPi0EtE8CNxjsvuAkKiqihI3CI7tgVqlaBu9sSf70ySjXYRUi-9xiPL8Yw938gz3zB2JqROhbEiFmWpYxmSLDapC7EIOjPWOkTc9KJ79z29eZS3T-ppqdUX5YR19MDdxp176zBW8hZhgJVeEnmRFZKXipfccxPo9kU3tgim-lBLYOTV8QgJDOrPZ3hBS82pTHbJ-7Qk_R8hy_cJkkse52qLfeqhIoy6JW6zNV_tsM0lAsFd9jaaNzViTu9gXNPjM-5yfImOyQG16-xyXCuoAyDOg_GP-3Y2KmaAlwqm42uYmMZAU8Od-eXBAGUoUzEV_HzGixImfQceQGgLo-lkBl1ZI021xx6vpg_jm7hvpxCXGAM3cVCJ4IEY2nhQzidGkf5yleOeGsuDdzIguEG8lOXBXiiL0Etbn2eKMpXLTOyz9aqu_AEDxG0mJKlV2kvJnckdN_aCpy5NpFcZj9i3xTYXZc81Ti0vfhcYc5BGikEjETsdRF87go2PhC5JV4MAcWK3H9BSit5Sin9ZSsSOFpou-oM6K4hBjRwC1xE7GYbxiNG7ial8PW9lCJaqFGU-d4YxrIT49onyJ2LZismsLHV1pHp5bmm88abUiMcP_8e_fWEbnJJtKM9GH7H15s_cf0W01Njj9mD8BZfpEkI priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQ8SZQ0IA4cIma9SNxTmi7j1ZIRQio1FtkxzatQEnbzZ7488wk3rCLKq7xyLI84_E38cw3jL0XUufCWJGKutapDFmRmtyFVARdGGsdIm560T39nJ-cyU_n6jz-cFvFtMqNT-wdtWtr-kd-SFRXdHK5_nh1nVLXKHpdjS007rJ7E46WRJXiy-Mx4BIYfw1sQgJD-8MVummpORXLbt1BPVX_bfjy3zTJrXtn-ZDtR8AI00HDj9gd3zxmD7ZoBJ-w39N11yLy9A5mLT1B416nR3g9OaCmnUOmawNtAER7MPvytZ-NShrgsoHF7BjmpjPQtXBqfnowQHnKVFIF3y7QXcI89uEBBLgwXcxXMBQ30lRP2dly8X12ksamCmmNkXCXBpUJHoinjQflfGYUabFUJdcTY3nwTgaEOIiaijLYibIIwLT1ZaEoX7kuxDO217SNf8EA0ZsJWW6V9lJyZ0rHjUU9uDyTXhU8YR8221zVkXGcGl_8qjDyII1Uo0YS9m4UvRpoNm4TOiJdjQLEjN1_aG9-VPGgVd46jK29RdhopZdEdmWF5LXiNffchIQdbDRdxeO6qv4aV8LejsN40Oj1xDS-XfcyBE5VjjLPB8MYV0Ks-0T8k7Bix2R2lro70lxe9GTe6C81ovKX_1_WK3afUzIN5dHoA7bX3az9a0RDnX3Tm_wfA6kJZw priority: 102 providerName: ProQuest |
Title | Automated Condition-Based Suppression of the CPR Artifact in ECG Data to Make a Reliable Shock Decision for AEDs during CPR |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34960308 https://www.proquest.com/docview/2612876228 https://www.proquest.com/docview/2615112568 https://pubmed.ncbi.nlm.nih.gov/PMC8708115 https://doaj.org/article/ebd523eb059b4e42818b342c52c2e2af |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKe4ED4k2grAziwCWQ9SNxDgjtsxXSVlVhpb1FdmzTiippd7MSiD_PTJKNGrQHLjnEE8vy2J5v4plvCHnPhYq5Njzkea5C4aMk1LH1Ifcq0cZYQNx4o7s4i0-X4utKrg7IrsZmO4Gbva4d1pNarq8__rr9_QU2_Gf0OMFl_7SB41coholWR2CQGC7uheguExjndUFrzOkKwR5GDcFQ_9OeWarZ-_dBzn8jJ--Yovkj8rDFkHTUKP0xOXDFE_LgDrPgU_JntK1KAKPO0kmJt9Iw_eEYLJalWMezCX4taOkpAEA6Ob-oe8MsB3pV0NnkhE51pWlV0oX-6aimGLqMWVb02yWcoHTaluahgHnpaDbd0CbfEbt6Rpbz2ffJadjWWQhzcI6r0MuIM4_UbcxL6yItUbGpTJkaasO8s8ID6gEglaTeDKUBTKaMSxOJIcx5wp-Tw6Is3EtCAdBpH8VGKicEszq1TJshi20cCScTFpAPu2nO8paEHGthXGfgjKBGsk4jAXnXid40zBv7hMaoq04AybLrF-X6R9buvcwZC-62M4AkjXAC-a8MFyyXLGeOaR-Q452ms90CzJBaDS0FUwF52zXD3sMLFV24clvLIF6VMci8aBZGNxIk4kcuoIAkvSXTG2q_pbi6rPm94QhVANRf_c8EvCb3GUbZYICNOiaH1Xrr3gBMqsyA3EtWCTzV_GRAjsazs_OLQf3LYVBvj7-88RJj |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcgAOiDeGAgsCiYtVZx_2-oBQmqSktKkQtFJu7q53l1at7NI4Qoj_xG9kxo80QRW3XuPRau2ZnfkmO_MNIW-5UDHXhoc8z1UofJSEOrY-5F4l2hgLiBtvdCf78fhQfJ7K6Rr50_XCYFll5xNrR23LHP8j30SqKzy5TH08_xHi1Ci8Xe1GaDRmset-_YSUbfZhZwj6fcfY9uhgMA7bqQJhDqlgFXoZceaRqIx5aV2kJb5GKlOmetow76zwEOMBNiSpNz1pAIEo49JEYsFunnBY9wa5KXgkkKs_mV4meBzyvYa9iPM02pxBWBCKYXPuUsyrRwNchWf_LctcinPb98jdFqDSfmNR98maKx6QO0u0hQ_J7_68KgHpOksHJV55g27DLQiHluKQ0KaytqClp4Au6eDL13o1bKGgJwUdDT7Roa40rUo60aeOaop10djCRb8dg3umw3buDwVATfuj4Yw2zZS41CNyeC2f-zFZL8rCPSUU0KL2UWykckIwq1PLtOmx2MaRcDJhAXnffeYsbxnOcdDGWQaZDmokW2gkIG8WoucNrcdVQluoq4UAMnHXP5QX37P2YGfOWMjlnQGYaoQTSK5luGC5ZDlzTPuAbHSazlr3MMsujTkgrxeP4WDjbY0uXDmvZRAMyxhknjSGsdgJsvwj0VBAkhWTWdnq6pPi5LgmDwf_rCALePb_bb0it8YHk71sb2d_9zm5zbCQB2t41AZZry7m7gUgscq8rM2fkqPrPm9_AUodRZs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIiE4IN4YCiwIJC5WnH3Y6wNCaZzQUlpVQKXczK53l1YguzSOEOKf8euY8SNNUMWt13i1Wnte32RnviHkJRcq5trwkBeFCoWPklDH1ofcq0QbYwFx443u_kG8cyTez-Rsg_zpe2GwrLL3iY2jtlWB_5EPkOoKLZepge_KIg6z6dvTHyFOkMKb1n6cRqsie-7XT0jf5m92M5D1K8amk8_jnbCbMBAWkBbWoZcRZx5Jy5iX1kVa4iulMmVqqA3zzgoP8R4gRJJ6M5QG0IgyLk0kFu8WCYd9r5CrCRccy8mS2XmyxyH3a5mMOE-jwRxChFAMG3VX4l8zJuAibPtvieZKzJveIjc7sEpHrXbdJhuuvENurFAY3iW_R4u6AtTrLB1XeP0Ncg63ITRaigND2yrbklaeAtKk48OPzW7YTkFPSjoZv6OZrjWtK7qvvzmqKdZIYzsX_XQMrppm3QwgCuCajibZnLaNlbjVPXJ0KZ_7Ptksq9I9JBSQo_ZRbKRyQjCrU8u0GbLYxpFwMmEBed1_5rzo2M5x6Mb3HLIelEi-lEhAXiyXnrYUHxct2kZZLRcgK3fzQ3X2Ne-MPHfGQl7vDEBWI5xAoi3DBSskK5hj2gdkq5d03rmKeX6u2AF5vnwMRo43N7p01aJZg8BYxrDmQasYy5Mg4z-SDgUkWVOZtaOuPylPjhsicfDVCjKCR_8_1jNyDSwt_7B7sPeYXGdY04PlPGqLbNZnC_cEQFltnjbaT8mXyza3v31BSdY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Condition-Based+Suppression+of+the+CPR+Artifact+in+ECG+Data+to+Make+a+Reliable+Shock+Decision+for+AEDs+during+CPR&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Hajeb-Mohammadalipour%2C+Shirin&rft.au=Cascella%2C+Alicia&rft.au=Valentine%2C+Matt&rft.au=Chon%2C+Ki+H.&rft.date=2021-12-08&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=24&rft.spage=8210&rft_id=info:doi/10.3390%2Fs21248210&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s21248210 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |