Enhancing Classification Performance of fNIRS-BCI by Identifying Cortically Active Channels Using the z-Score Method
A state-of-the-art brain–computer interface (BCI) system includes brain signal acquisition, noise removal, channel selection, feature extraction, classification, and an application interface. In functional near-infrared spectroscopy-based BCI (fNIRS-BCI) channel selection may enhance classification...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 20; no. 23; p. 6995 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
07.12.2020
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s20236995 |
Cover
| Abstract | A state-of-the-art brain–computer interface (BCI) system includes brain signal acquisition, noise removal, channel selection, feature extraction, classification, and an application interface. In functional near-infrared spectroscopy-based BCI (fNIRS-BCI) channel selection may enhance classification performance by identifying suitable brain regions that contain brain activity. In this study, the z-score method for channel selection is proposed to improve fNIRS-BCI performance. The proposed method uses cross-correlation to match the similarity between desired and recorded brain activity signals, followed by forming a vector of each channel’s correlation coefficients’ maximum values. After that, the z-score is calculated for each value of that vector. A channel is selected based on a positive z-score value. The proposed method is applied to an open-access dataset containing mental arithmetic (MA) and motor imagery (MI) tasks for twenty-nine subjects. The proposed method is compared with the conventional t-value method and with no channel selected, i.e., using all channels. The z-score method yielded significantly improved (p < 0.0167) classification accuracies of 87.2 ± 7.0%, 88.4 ± 6.2%, and 88.1 ± 6.9% for left motor imagery (LMI) vs. rest, right motor imagery (RMI) vs. rest, and mental arithmetic (MA) vs. rest, respectively. The proposed method is also validated on an open-access database of 17 subjects, containing right-hand finger tapping (RFT), left-hand finger tapping (LFT), and dominant side foot tapping (FT) tasks.The study shows an enhanced performance of the z-score method over the t-value method as an advancement in efforts to improve state-of-the-art fNIRS-BCI systems’ performance. |
|---|---|
| AbstractList | A state-of-the-art brain–computer interface (BCI) system includes brain signal acquisition, noise removal, channel selection, feature extraction, classification, and an application interface. In functional near-infrared spectroscopy-based BCI (fNIRS-BCI) channel selection may enhance classification performance by identifying suitable brain regions that contain brain activity. In this study, the z-score method for channel selection is proposed to improve fNIRS-BCI performance. The proposed method uses cross-correlation to match the similarity between desired and recorded brain activity signals, followed by forming a vector of each channel’s correlation coefficients’ maximum values. After that, the z-score is calculated for each value of that vector. A channel is selected based on a positive z-score value. The proposed method is applied to an open-access dataset containing mental arithmetic (MA) and motor imagery (MI) tasks for twenty-nine subjects. The proposed method is compared with the conventional t-value method and with no channel selected, i.e., using all channels. The z-score method yielded significantly improved (p < 0.0167) classification accuracies of 87.2 ± 7.0%, 88.4 ± 6.2%, and 88.1 ± 6.9% for left motor imagery (LMI) vs. rest, right motor imagery (RMI) vs. rest, and mental arithmetic (MA) vs. rest, respectively. The proposed method is also validated on an open-access database of 17 subjects, containing right-hand finger tapping (RFT), left-hand finger tapping (LFT), and dominant side foot tapping (FT) tasks.The study shows an enhanced performance of the z-score method over the t-value method as an advancement in efforts to improve state-of-the-art fNIRS-BCI systems’ performance. A state-of-the-art brain-computer interface (BCI) system includes brain signal acquisition, noise removal, channel selection, feature extraction, classification, and an application interface. In functional near-infrared spectroscopy-based BCI (fNIRS-BCI) channel selection may enhance classification performance by identifying suitable brain regions that contain brain activity. In this study, the z-score method for channel selection is proposed to improve fNIRS-BCI performance. The proposed method uses cross-correlation to match the similarity between desired and recorded brain activity signals, followed by forming a vector of each channel's correlation coefficients' maximum values. After that, the z-score is calculated for each value of that vector. A channel is selected based on a positive z-score value. The proposed method is applied to an open-access dataset containing mental arithmetic (MA) and motor imagery (MI) tasks for twenty-nine subjects. The proposed method is compared with the conventional -value method and with no channel selected, i.e., using all channels. The z-score method yielded significantly improved ( < 0.0167) classification accuracies of 87.2 ± 7.0%, 88.4 ± 6.2%, and 88.1 ± 6.9% for left motor imagery (LMI) vs. rest, right motor imagery (RMI) vs. rest, and mental arithmetic (MA) vs. rest, respectively. The proposed method is also validated on an open-access database of 17 subjects, containing right-hand finger tapping (RFT), left-hand finger tapping (LFT), and dominant side foot tapping (FT) tasks.The study shows an enhanced performance of the z-score method over the value method as an advancement in efforts to improve state-of-the-art fNIRS-BCI systems' performance. A state-of-the-art brain-computer interface (BCI) system includes brain signal acquisition, noise removal, channel selection, feature extraction, classification, and an application interface. In functional near-infrared spectroscopy-based BCI (fNIRS-BCI) channel selection may enhance classification performance by identifying suitable brain regions that contain brain activity. In this study, the z-score method for channel selection is proposed to improve fNIRS-BCI performance. The proposed method uses cross-correlation to match the similarity between desired and recorded brain activity signals, followed by forming a vector of each channel's correlation coefficients' maximum values. After that, the z-score is calculated for each value of that vector. A channel is selected based on a positive z-score value. The proposed method is applied to an open-access dataset containing mental arithmetic (MA) and motor imagery (MI) tasks for twenty-nine subjects. The proposed method is compared with the conventional t-value method and with no channel selected, i.e., using all channels. The z-score method yielded significantly improved (p < 0.0167) classification accuracies of 87.2 ± 7.0%, 88.4 ± 6.2%, and 88.1 ± 6.9% for left motor imagery (LMI) vs. rest, right motor imagery (RMI) vs. rest, and mental arithmetic (MA) vs. rest, respectively. The proposed method is also validated on an open-access database of 17 subjects, containing right-hand finger tapping (RFT), left-hand finger tapping (LFT), and dominant side foot tapping (FT) tasks.The study shows an enhanced performance of the z-score method over the t-value method as an advancement in efforts to improve state-of-the-art fNIRS-BCI systems' performance.A state-of-the-art brain-computer interface (BCI) system includes brain signal acquisition, noise removal, channel selection, feature extraction, classification, and an application interface. In functional near-infrared spectroscopy-based BCI (fNIRS-BCI) channel selection may enhance classification performance by identifying suitable brain regions that contain brain activity. In this study, the z-score method for channel selection is proposed to improve fNIRS-BCI performance. The proposed method uses cross-correlation to match the similarity between desired and recorded brain activity signals, followed by forming a vector of each channel's correlation coefficients' maximum values. After that, the z-score is calculated for each value of that vector. A channel is selected based on a positive z-score value. The proposed method is applied to an open-access dataset containing mental arithmetic (MA) and motor imagery (MI) tasks for twenty-nine subjects. The proposed method is compared with the conventional t-value method and with no channel selected, i.e., using all channels. The z-score method yielded significantly improved (p < 0.0167) classification accuracies of 87.2 ± 7.0%, 88.4 ± 6.2%, and 88.1 ± 6.9% for left motor imagery (LMI) vs. rest, right motor imagery (RMI) vs. rest, and mental arithmetic (MA) vs. rest, respectively. The proposed method is also validated on an open-access database of 17 subjects, containing right-hand finger tapping (RFT), left-hand finger tapping (LFT), and dominant side foot tapping (FT) tasks.The study shows an enhanced performance of the z-score method over the t-value method as an advancement in efforts to improve state-of-the-art fNIRS-BCI systems' performance. |
| Author | Naseer, Noman Mehboob, Aakif Khan, Muhammad Jawad Ayaz, Yasar Khan, Rayyan Azam Khan, Umar Shahbaz Nazeer, Hammad |
| AuthorAffiliation | 2 School of Mechanical and Manufacturing Engineering, National University of Science and Technology, Islamabad 44000, Pakistan; aakifmehboob@live.com (A.M.); jawad.khan@smme.nust.edu.pk (M.J.K.); yasar@smme.nust.edu.pk (Y.A.) 5 Department of Mechatronics Engineering, National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan; u.shahbaz@ceme.nust.edu.pk 6 National Centre of Robotics and Automation (NCRA), Rawalpindi 46000, Pakistan 1 Department of Mechatronics Engineering, Air University, Islamabad 44000, Pakistan; hammad@mail.au.edu.pk 4 Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N5A9, Canada; rayyan.khan@usask.ca 3 National Centre of Artificial Intelligence (NCAI), Islamabad 44000, Pakistan |
| AuthorAffiliation_xml | – name: 5 Department of Mechatronics Engineering, National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan; u.shahbaz@ceme.nust.edu.pk – name: 1 Department of Mechatronics Engineering, Air University, Islamabad 44000, Pakistan; hammad@mail.au.edu.pk – name: 2 School of Mechanical and Manufacturing Engineering, National University of Science and Technology, Islamabad 44000, Pakistan; aakifmehboob@live.com (A.M.); jawad.khan@smme.nust.edu.pk (M.J.K.); yasar@smme.nust.edu.pk (Y.A.) – name: 3 National Centre of Artificial Intelligence (NCAI), Islamabad 44000, Pakistan – name: 4 Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N5A9, Canada; rayyan.khan@usask.ca – name: 6 National Centre of Robotics and Automation (NCRA), Rawalpindi 46000, Pakistan |
| Author_xml | – sequence: 1 givenname: Hammad orcidid: 0000-0002-2036-9601 surname: Nazeer fullname: Nazeer, Hammad – sequence: 2 givenname: Noman surname: Naseer fullname: Naseer, Noman – sequence: 3 givenname: Aakif surname: Mehboob fullname: Mehboob, Aakif – sequence: 4 givenname: Muhammad Jawad surname: Khan fullname: Khan, Muhammad Jawad – sequence: 5 givenname: Rayyan Azam orcidid: 0000-0001-5816-1251 surname: Khan fullname: Khan, Rayyan Azam – sequence: 6 givenname: Umar Shahbaz orcidid: 0000-0002-5263-1408 surname: Khan fullname: Khan, Umar Shahbaz – sequence: 7 givenname: Yasar surname: Ayaz fullname: Ayaz, Yasar |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33297516$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kstu1DAUhi1URNuBBS-ALLEBpFDHznWDVKICkcpFlK4txz6e8ShjD3ZSFJ4eZ6aM2gpWtny-8_s_l1N0ZJ0FhJ6n5C1jNTkLlFBW1HX-CJ2kGc2SilJydOd-jE5DWJNIMVY9QceM0brM0-IEDRd2Jaw0dombXoRgtJFiMM7ib-C185sYBOw01l_a71fJ-6bF3YRbBXYwetqlOT_EnL6f8LkczA3gJipa6AO-DjMwrAD_Tq6k84A_w7By6il6rEUf4NntuUDXHy5-NJ-Sy68f2-b8MpFZUQ-JJowIRWotgSpZglIgVdflRZGSNMtTQrIiV1LmqlKkKymQuqAiL1kGQEQHbIHava5yYs233myEn7gThu8enF9yMZvvgWuQTFJV0VJWmQBRRbn4myaqIHVVzVpv9lqj3YrpV6z3IJgSPo-BH8YQ4Xd7eDt2G1AydsuL_p6D-xFrVnzpbnhZMkJJFQVe3Qp493OEMPCNCRL6XlhwY-A0NohUJSvSiL58gK7d6G3s647KymKe-wK9uOvoYOXvJkTgbA9I70LwoLk0w24TokHT_7PI1w8y_t-QP7120xs |
| CitedBy_id | crossref_primary_10_3389_fneur_2025_1524806 crossref_primary_10_1016_j_eswa_2025_127204 crossref_primary_10_1016_j_engappai_2023_106796 crossref_primary_10_3390_s22072575 crossref_primary_10_3390_s23073714 crossref_primary_10_1016_j_heliyon_2025_e42695 crossref_primary_10_1080_10447318_2023_2266242 crossref_primary_10_3389_fphys_2023_1153268 crossref_primary_10_3389_fnhum_2021_658444 crossref_primary_10_3390_s24103040 crossref_primary_10_1080_17461391_2023_2238699 crossref_primary_10_1155_2023_8812844 crossref_primary_10_3390_brainsci11050606 crossref_primary_10_1016_j_eswa_2022_117569 crossref_primary_10_3390_s22051932 |
| Cites_doi | 10.1109/ICRAI.2016.7791227 10.3389/fnbeh.2014.00418 10.1117/1.NPh.5.1.011008 10.1016/j.neuroimage.2006.05.030 10.1109/TNSRE.2020.3020975 10.3389/fnhum.2014.00549 10.3390/s120201211 10.1364/BOE.7.003491 10.1111/jpr.12227 10.1016/S1388-2457(02)00057-3 10.1038/jcbfm.2013.200 10.3389/fnsys.2015.00027 10.1007/s00221-013-3764-1 10.1002/lio2.185 10.1016/j.heares.2016.01.009 10.3389/conf.fnhum.2018.227.00144 10.3389/fnhum.2017.00165 10.1142/S0129065718500314 10.1186/s12984-018-0346-2 10.1016/j.neulet.2014.12.029 10.1007/s11065-008-9069-7 10.1117/1.2363365 10.1088/0031-9155/33/12/008 10.1088/1741-2552/abb417 10.1186/1475-925X-9-82 10.3389/fnhum.2013.00217 10.1109/TNSRE.2018.2860629 10.1109/ICRAI.2012.6413395 10.1109/iCREATE.2014.6828329 10.3389/fnhum.2016.00237 10.1111/jpr.12206 10.1155/2020/6654063 10.1016/j.neucom.2016.10.024 10.3389/fnbot.2017.00035 10.1186/s13634-015-0251-9 10.1016/j.neulet.2017.03.013 10.3389/fnbot.2017.00033 10.1364/AO.43.001053 10.1016/j.neucom.2016.05.035 10.1186/s12938-015-0087-4 10.1109/TNSRE.2016.2628057 10.1371/journal.pone.0121279 10.1016/j.neulet.2013.08.021 10.1016/j.neuroimage.2008.10.065 10.1109/ACCESS.2019.2944965 10.1117/1.2804706 10.3390/photonics6030090 10.3389/fnhum.2017.00462 10.1038/srep43293 10.1155/2019/3817124 10.1364/BOE.7.003882 10.3389/fnins.2019.00084 10.1016/j.neuroimage.2009.01.033 10.1016/0304-3940(93)90181-J 10.3389/fnhum.2018.00246 10.3389/fnhum.2018.00187 10.1117/1.NPh.4.4.040501 10.1038/s41598-017-16639-0 10.1155/2016/5480760 |
| ContentType | Journal Article |
| Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
| Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s20236995 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_fec3c2d827c84aea872eecdf0d60988e 10.3390/s20236995 PMC7730208 33297516 10_3390_s20236995 |
| Genre | Journal Article |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IAO IPNFZ ITC RIG UNPAY |
| ID | FETCH-LOGICAL-c469t-f030ad09fce2dc7eddecdbb56610145100465dcc5d8d0b72e0962a5734ee0abe3 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:38:33 EDT 2025 Sun Oct 26 03:22:27 EDT 2025 Tue Sep 30 16:36:03 EDT 2025 Thu Sep 04 15:42:30 EDT 2025 Tue Oct 07 06:41:45 EDT 2025 Wed Feb 19 02:30:19 EST 2025 Thu Oct 16 04:44:00 EDT 2025 Thu Apr 24 23:04:25 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Keywords | channel selection brain–computer interface channel of interest z-score method functional near-infrared spectroscopy region of interest |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-f030ad09fce2dc7eddecdbb56610145100465dcc5d8d0b72e0962a5734ee0abe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5816-1251 0000-0002-2036-9601 0000-0002-5263-1408 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20236995 |
| PMID | 33297516 |
| PQID | 2469476002 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fec3c2d827c84aea872eecdf0d60988e unpaywall_primary_10_3390_s20236995 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7730208 proquest_miscellaneous_2469087361 proquest_journals_2469476002 pubmed_primary_33297516 crossref_citationtrail_10_3390_s20236995 crossref_primary_10_3390_s20236995 |
| PublicationCentury | 2000 |
| PublicationDate | 20201207 |
| PublicationDateYYYYMMDD | 2020-12-07 |
| PublicationDate_xml | – month: 12 year: 2020 text: 20201207 day: 7 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Naseer (ref_57) 2016; 10 Nguyen (ref_41) 2016; 7 ref_58 ref_10 ref_54 Shin (ref_47) 2017; 7 Li (ref_38) 2017; 11 ref_19 ref_18 Gateau (ref_66) 2018; 12 ref_17 Hong (ref_16) 2015; 587 Abdelnour (ref_52) 2009; 46 Shin (ref_45) 2017; 25 ref_59 Hu (ref_39) 2010; 9 Rojas (ref_33) 2016; 6 Naseer (ref_2) 2015; 9 ref_61 Kopton (ref_13) 2014; 8 Hong (ref_55) 2018; 12 ref_25 ref_23 Kiguchi (ref_37) 2016; 7 ref_67 Wolpaw (ref_1) 2002; 113 ref_21 Asgher (ref_22) 2019; 7 Naseer (ref_60) 2016; 2016 Santosa (ref_44) 2014; 8 ref_62 Liu (ref_7) 2017; 7 Shan (ref_43) 2014; 34 Gratton (ref_50) 2006; 32 Shan (ref_29) 2015; 14 Nazeer (ref_26) 2020; 17 Zhang (ref_51) 2007; 12 Hong (ref_63) 2016; 333 Noori (ref_24) 2017; 647 Li (ref_30) 2019; 2019 Ramadan (ref_6) 2017; 223 McKendrick (ref_9) 2015; 9 Curtin (ref_65) 2018; 60 Khan (ref_49) 2020; 2020 Khan (ref_56) 2018; 15 Song (ref_35) 2004; 43 Basura (ref_5) 2018; 3 Jin (ref_32) 2020; 28 (ref_53) 2012; 12 Villringer (ref_12) 1993; 154 Abdalmalak (ref_46) 2017; 4 Pinti (ref_4) 2018; 60 Alotaiby (ref_27) 2015; 2015 Franceschini (ref_20) 2006; 11 Rivera (ref_36) 2008; 18 Tao (ref_31) 2020; 70 Delpy (ref_11) 1988; 33 Qiu (ref_28) 2016; 207 Naseer (ref_15) 2014; 232 Lindquist (ref_42) 2009; 45 Verner (ref_34) 2013; 7 ref_40 ref_3 Naseer (ref_14) 2013; 553 ref_48 ref_8 Petrantonakis (ref_64) 2018; 26 |
| References_xml | – ident: ref_54 doi: 10.1109/ICRAI.2016.7791227 – volume: 8 start-page: 1 year: 2014 ident: ref_44 article-title: Lateralization of music processing with noises in the auditory cortex: An fNIRS study publication-title: Front. Behav. Neurosci. doi: 10.3389/fnbeh.2014.00418 – ident: ref_48 doi: 10.1117/1.NPh.5.1.011008 – volume: 32 start-page: 1576 year: 2006 ident: ref_50 article-title: Effects of measurement method, wavelength, and source-detector distance on the fast optical signal publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.05.030 – volume: 9 start-page: 1 year: 2015 ident: ref_2 article-title: fNIRS-based brain-computer interfaces: A review publication-title: Front. Hum. Neurosci. – volume: 28 start-page: 2153 year: 2020 ident: ref_32 article-title: Bispectrum-based channel selection for motor imagery based brain-computer interfacing publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.3020975 – volume: 8 start-page: 1 year: 2014 ident: ref_13 article-title: Near-infrared spectroscopy (NIRS) as a new tool for neuroeconomic research publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2014.00549 – volume: 12 start-page: 1211 year: 2012 ident: ref_53 article-title: Brain computer interfaces, a review publication-title: Sensors doi: 10.3390/s120201211 – volume: 7 start-page: 3491 year: 2016 ident: ref_41 article-title: Bundled-optode implementation for 3D imaging in functional near-infrared spectroscopy publication-title: Biomed. Opt. Express doi: 10.1364/BOE.7.003491 – volume: 60 start-page: 374 year: 2018 ident: ref_65 article-title: The age of neuroergonomics: Towards ubiquitous and continuous measurement of brain function with fNIRS publication-title: Jpn. Psychol. Res. doi: 10.1111/jpr.12227 – volume: 113 start-page: 767 year: 2002 ident: ref_1 article-title: Brain-computer interfaces for communication and control publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(02)00057-3 – volume: 34 start-page: 316 year: 2014 ident: ref_43 article-title: Modeling of the hemodynamic responses in block design fMRI studies publication-title: J. Cereb. Blood Flow Metab. J. Int. Soc. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2013.200 – volume: 9 start-page: 27 year: 2015 ident: ref_9 article-title: Wearable functional near infrared spectroscopy (fNIRS) and transcranial direct current stimulation (tDCS): Expanding vistas for neurocognitive augmentation publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2015.00027 – volume: 232 start-page: 555 year: 2014 ident: ref_15 article-title: Online binary decision decoding using functional near-infrared spectroscopy for the development of brain-computer interface publication-title: Exp. Brain Res. doi: 10.1007/s00221-013-3764-1 – ident: ref_58 – volume: 3 start-page: 463 year: 2018 ident: ref_5 article-title: Human central auditory plasticity: A review of functional near-infrared spectroscopy (fNIRS) to measure cochlear implant performance and tinnitus perception publication-title: Laryngoscope Investig. Otolaryngol. doi: 10.1002/lio2.185 – volume: 333 start-page: 157 year: 2016 ident: ref_63 article-title: Decoding four different sound-categories in the auditory cortex using functional near-infrared spectroscopy publication-title: Hear. Res. doi: 10.1016/j.heares.2016.01.009 – ident: ref_21 doi: 10.3389/conf.fnhum.2018.227.00144 – ident: ref_19 doi: 10.3389/fnhum.2017.00165 – ident: ref_61 doi: 10.1142/S0129065718500314 – volume: 15 start-page: 7 year: 2018 ident: ref_56 article-title: FNIRS-based neurorobotic interface for gait rehabilitation publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-018-0346-2 – volume: 587 start-page: 87 year: 2015 ident: ref_16 article-title: Classification of prefrontal and motor cortex signals for three-class fNIRS-BCI publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2014.12.029 – volume: 18 start-page: 255 year: 2008 ident: ref_36 article-title: Neuropsychological, cognitive, and theoretical considerations for evaluation of bilingual individuals publication-title: Neuropsychol. Rev. doi: 10.1007/s11065-008-9069-7 – volume: 11 start-page: 54007 year: 2006 ident: ref_20 article-title: Diffuse optical imaging of the whole head publication-title: J. Biomed. Opt. doi: 10.1117/1.2363365 – ident: ref_10 – volume: 33 start-page: 1433 year: 1988 ident: ref_11 article-title: Estimation of optical pathlength through tissue from direct time of flight measurement publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/33/12/008 – volume: 17 start-page: 56025 year: 2020 ident: ref_26 article-title: Enhancing classification accuracy of fNIRS-BCI using features acquired from vector-based phase analysis publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abb417 – volume: 9 start-page: 82 year: 2010 ident: ref_39 article-title: Kalman estimator- and general linear model-based on-line brain activation mapping by near-infrared spectroscopy publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-9-82 – volume: 7 start-page: 217 year: 2013 ident: ref_34 article-title: Cortical oxygen consumption in mental arithmetic as a function of task difficulty: A near-infrared spectroscopy approach publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00217 – ident: ref_62 – volume: 26 start-page: 1700 year: 2018 ident: ref_64 article-title: Single-trial NIRS data classification for brain-computer interfaces using graph signal processing publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2860629 – ident: ref_17 doi: 10.1109/ICRAI.2012.6413395 – ident: ref_18 doi: 10.1109/iCREATE.2014.6828329 – volume: 6 start-page: 23 year: 2016 ident: ref_33 article-title: Cross correlation analysis of multi-channel near infrared spectroscopy publication-title: Comput. Sci. Inf. Technol. – ident: ref_59 – volume: 10 start-page: 1 year: 2016 ident: ref_57 article-title: Determining optimal feature-combination for LDA classification of functional near-infrared spectroscopy signals in brain-computer interface application publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2016.00237 – volume: 60 start-page: 347 year: 2018 ident: ref_4 article-title: A Review on the use of wearable functional near-infrared spectroscopy in naturalistic environments publication-title: Jpn. Psychol. Res. doi: 10.1111/jpr.12206 – volume: 2020 start-page: 1 year: 2020 ident: ref_49 article-title: Cortical tasks-based optimal filter selection: An fNIRS study publication-title: J. Healthc. Eng. doi: 10.1155/2020/6654063 – volume: 223 start-page: 26 year: 2017 ident: ref_6 article-title: Brain computer interface: Control signals review publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.024 – ident: ref_40 doi: 10.3389/fnbot.2017.00035 – volume: 2015 start-page: 66 year: 2015 ident: ref_27 article-title: A review of channel selection algorithms for EEG signal processing publication-title: EURASIP J. Adv. Signal. Process. doi: 10.1186/s13634-015-0251-9 – volume: 647 start-page: 61 year: 2017 ident: ref_24 article-title: Optimal feature selection from fNIRS signals using genetic algorithms for BCI publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2017.03.013 – ident: ref_25 doi: 10.3389/fnbot.2017.00033 – volume: 43 start-page: 1053 year: 2004 ident: ref_35 article-title: Automated region detection based on the contrast-to-noise ratio in near-infrared tomography publication-title: Appl. Opt. doi: 10.1364/AO.43.001053 – volume: 207 start-page: 519 year: 2016 ident: ref_28 article-title: Improved SFFS method for channel selection in motor imagery based BCI publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.05.035 – volume: 14 start-page: 93 year: 2015 ident: ref_29 article-title: A novel channel selection method for optimal classification in different motor imagery BCI paradigms publication-title: Biomed. Eng. Online doi: 10.1186/s12938-015-0087-4 – volume: 70 start-page: 1 year: 2020 ident: ref_31 article-title: EEG-based emotion recognition via channel-wise attention and self attention publication-title: IEEE Trans. Affect. Comput. – ident: ref_67 – volume: 25 start-page: 1735 year: 2017 ident: ref_45 article-title: Open access dataset for EEG+NIRS single-trial classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2628057 – ident: ref_8 doi: 10.1371/journal.pone.0121279 – volume: 553 start-page: 84 year: 2013 ident: ref_14 article-title: Classification of functional near-infrared spectroscopy signals corresponding to the right- and left-wrist motor imagery for development of a brain-computer interface publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2013.08.021 – volume: 45 start-page: S187 year: 2009 ident: ref_42 article-title: Modeling the hemodynamic response function in fMRI: Efficiency, bias and mis-modeling publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.10.065 – volume: 7 start-page: 143250 year: 2019 ident: ref_22 article-title: Assessment and classification of mental workload in the prefrontal cortex (PFC) using fixed-value modified beer-lambert law publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2944965 – volume: 12 start-page: 064009 year: 2007 ident: ref_51 article-title: Adaptive filtering to reduce global interference in evoked brain activity detection: A human subject case study publication-title: J. Biomed. Opt. doi: 10.1117/1.2804706 – ident: ref_23 doi: 10.3390/photonics6030090 – volume: 11 start-page: 1 year: 2017 ident: ref_38 article-title: Enhancing performance of a hybrid EEG-fNIRS system using channel selection and early temporal features publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2017.00462 – volume: 7 start-page: 43293 year: 2017 ident: ref_7 article-title: Measuring speaker–listener neural coupling with functional near infrared spectroscopy publication-title: Sci. Rep. doi: 10.1038/srep43293 – volume: 2019 start-page: 3817124 year: 2019 ident: ref_30 article-title: Brain-computer interface channel-selection strategy based on analysis of event-related desynchronization topography in stroke patients publication-title: J. Healthc. Eng. doi: 10.1155/2019/3817124 – volume: 7 start-page: 3882 year: 2016 ident: ref_37 article-title: Mental stress assessment using simultaneous measurement of EEG and fNIRS publication-title: Biomed. Opt. Express doi: 10.1364/BOE.7.003882 – ident: ref_3 doi: 10.3389/fnins.2019.00084 – volume: 46 start-page: 133 year: 2009 ident: ref_52 article-title: Real-time imaging of human brain function by near-infrared spectroscopy using an adaptive general linear model publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.01.033 – volume: 154 start-page: 101 year: 1993 ident: ref_12 article-title: Near infrared spectroscopy (NIRS): A new tool to study hemodynamic changes during activation of brain function in human adults publication-title: Neurosci. Lett. doi: 10.1016/0304-3940(93)90181-J – volume: 12 start-page: 1 year: 2018 ident: ref_55 article-title: Feature extraction and classification methods for hybrid fNIRS-EEG brain-computer interfaces publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2018.00246 – volume: 12 start-page: 187 year: 2018 ident: ref_66 article-title: In silico vs. over the clouds: On-the-fly mental state estimation of aircraft pilots, using a functional near infrared spectroscopy based passive-BCI publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2018.00187 – volume: 4 start-page: 1 year: 2017 ident: ref_46 article-title: Single-session communication with a locked-in patient by functional near-infrared spectroscopy publication-title: Neurophotonics doi: 10.1117/1.NPh.4.4.040501 – volume: 7 start-page: 1 year: 2017 ident: ref_47 article-title: Performance enhancement of a brain-computer interface using high-density multi-distance NIRS publication-title: Sci. Rep. doi: 10.1038/s41598-017-16639-0 – volume: 2016 start-page: 1 year: 2016 ident: ref_60 article-title: Analysis of different classification techniques for two-class functional near-infrared spectroscopy-based brain-computer interface publication-title: Comput. Intell. Neurosci. doi: 10.1155/2016/5480760 |
| SSID | ssj0023338 |
| Score | 2.430892 |
| Snippet | A state-of-the-art brain–computer interface (BCI) system includes brain signal acquisition, noise removal, channel selection, feature extraction,... A state-of-the-art brain-computer interface (BCI) system includes brain signal acquisition, noise removal, channel selection, feature extraction,... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 6995 |
| SubjectTerms | Accuracy Algorithms brain–computer interface channel of interest channel selection Classification Datasets Electroencephalography functional near-infrared spectroscopy Machine learning Medical imaging Methods Noise Open access Principal components analysis region of interest Values z-score method |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEC7ES8wh5GGSiSZ0Eg9eBnue3X3URVFBCVHB29DPGFh6RXcJ669PdffsZJcYcvE6XYem3tVT9RXAjlVOY2TTueBNfK0SuRS1Ql1WvHaNKGyELz47b4-v6tPr5npp1VfoCUvwwIlxe87qSpeGl0zzWlrJWWmtNo6algrObfC-lItFMdWXWhVWXglHqMKifu8-LAlvRVgisRR9Ikj_Y5nl3w2Sz2b-Vs5_yfF4KfocvYQXfdpI9tN1X8Ga9a_h-RKY4BuYHvqbAJ7hf5C46TL0AEW2k29_hgPIxBF3fvL9Ij8YnRA1J2lQNw47kdHkLr5sj-dkP7pBEmYPPEZPEjsLCCaL5CG_CMiX5Cyunt6Eq6PDy9Fx3u9UyDUWwtPcoVFLQ4XTtjSaWfRu2iiFSV1a2hvq5cZo3RhuqEJeY4lTyoZVtbVUKlu9hXU_8fY9EFNQ7XSLKYGTGAoNZ1ILWyhaSO6oZhnsLnjd6R5wPOy9GHdYeASxdINYMvgykN4mlI3HiA6CwAaCAIwdP6C6dL26dP9Tlwy2F-Luemu970pkTR3_UGbweThGOws_T6S3k1mioZxVbZHBu6Qdw02qKswnF20GbEVvVq66euJ_3kQsb4YeFvU3g6-Dhv2bAx-eggNbsFGGN4PQksO2YX16N7MfMbGaqk_Rhn4DRP0ktg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JbxMxFH4q6QE4IHYGCjLLgcuontWeA0JNlKpFalS1VOpt5PHSIkUzIU2Ewq_nPc9kmojCdcYH22-3_b4P4JOtnMbIpsNCZv60qghVkVaoy5VMXVZE1sMXn0zyo4v022V2uQOTdS8MPatc-0TvqE2j6Yx8P8Y6LvW3SF9nP0NijaLb1TWFhuqoFcwXDzF2D3ZjQsYawO5wPDk960uwBCuyFl8owWJ__4bIw_OCyCU2opIH778r4_z74eT9ZT1Tq19qOt2ISoeP4VGXTrKDVv5PYMfWT-HhBsjgM1iM62sC1aivmGfApLdBXhzs9LZpgDWOucnx2Xk4HB2zasXaBl7fBMVGzdyfeE9X7MC7R0Y9CTVGVeZfHDBMItnv8JwQMdmJp6R-DheH4--jo7DjWgg1buwidGjsyvDCaRsbLSx6PW2qCpO9lsyX6ujMaJ0ZaXglYoulT6wykaTWclXZ5AUM6qa2r4CZiGunc0wVnMIQaaRQurBRxSMlHdcigM_rvS51B0ROfBjTEgsSEkvZiyWAD_3QWYu-cdegIQmsH0CA2f5DM78qO_srndWJjo2MhZapskriEnCFjpucF1LaAPbW4i47K74pb3UugPf9b7Q_ulRRtW2W7RguRZJHAbxstaOfSZJQ33KUByC29GZrqtt_6h_XHuNboOeNuQzgY69h_96B1_-f_Bt4ENMpAT3CEXswWMyX9i2mUovqXWcffwDALyD9 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BegAOvAuGgpbHgYub9XPXJ5RGrVqkRhUlUjlZ-2wrIjtKE1D665ldOyaBIiEh-eQdW_uYncfuzDcA7420CjWbCgue-dOqIhRFKpGXJU9tVkTGwxcfj_LDcfrpLDtby-J3YZXoil96Ie2ysELUYLTvnqSfF0XWn2r78Xt7luTQ0VJn9Se3YSvP0BrvwdZ4dDL46pOK2q8bQKEEvfv-lasW7n6zoYY8Wv9NJuafkZJ3FtVULH-IyWRNDR08ALEaQBN98m13MZe76vo3bMf_GeFDuN_aqGTQMNUjuGWqx3BvDbnwCcz3qwuH1FGdE19W0wUc-TUmJ78yEUhtiR0dfT4N94ZHRC5JkxXsM6vIsJ75Y_TJkgy8zCUu0aFCVU18GANBy5Rch6cOZpMc-zrXT2F8sP9leBi2BRxChV73PLQoQYSmhVUm1ooZFKVKS4kWZFMh2DnnmVYq01xTyWKD_lQsMpakxlAhTbINvaquzHMgOqLKqhztDytQ72rOhCpMJGkkuKWKBfBhtZ6latHNXZGNSYlejlv6slv6AN52pNMG0uMmoj3HFB2BQ-H2L-rZedlu6tIalahY85gpngojOA4BR2ipzmnBuQlgZ8VSZSsarsoYpyb116EBvOmacVO7mxpRmXrR0FDOkjwK4FnDgV1PksQlQ0d5AGyDNze6utlSXV544HCG4jymPIB3HRf_fQZe_BPVS7gbuxMIF-DDdqA3ny3MKzTT5vJ1uxN_AmkaOJ8 priority: 102 providerName: Unpaywall |
| Title | Enhancing Classification Performance of fNIRS-BCI by Identifying Cortically Active Channels Using the z-Score Method |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33297516 https://www.proquest.com/docview/2469476002 https://www.proquest.com/docview/2469087361 https://pubmed.ncbi.nlm.nih.gov/PMC7730208 https://www.mdpi.com/1424-8220/20/23/6995/pdf?version=1607404283 https://doaj.org/article/fec3c2d827c84aea872eecdf0d60988e |
| UnpaywallVersion | publishedVersion |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wAcVrzJslTmIcQl4DztHBBqq5ZdpFbVLpXKKXIcexcpSrrdVlB-PWMnDVtRJC45OFbkeMaeGXvm-wDeqExLtGzSTXhkT6sSVyRhhrqc8VBHiacsfPFoHJ9Owy-zaLYHm7TmZgJvdoZ2hk9quije_7xef8IF_9FEnBiyf7gxFOBxkkRv59eu4ZMy964NucY-HKLNSgypwyhs7xf8ILAc16bMy0UTSWvMoe2vbVkqC-i_ywv9O5nyzqqci_UPURS3LNXwPhw1Libp1jrxAPZU-RDu3QIefATLQXllgDbKS2JZMU2-kBURmfwpJCCVJnp8dn7h9vpnJFuTuqjXFkaRfrWwp-DFmnTtlklMnUKJlpbYLASCjiX55V4YlEwysjTVj2E6HHztn7oN_4IrMWheuho3AJHTREvl55Ip3AllnmXoANYEvya2jnIpo5znNGO-wnDIFxELQqWoyFTwBA7KqlTPgOQelVrGKAot0GzmnAmZKC-jnuCaSubAu81cp7IBJzccGUWKQYoRS9qKxYFXbdd5jcixq1PPCKztYEC0bUO1uEybNZlqJQPp59xnkodCCY6_gH-oaR7ThHPlwMlG3OlGMVMfpya0t5kOvGxf45o0Fy2iVNWq7kM5C2LPgae1drQjCQJTy-zFDrAtvdka6vab8vuVxf1muBv7lDvwutWwf8_A8X-M7jnc9c3xgcnOYSdwsFys1Av0sZZZB_bZjOGTDz934LA3GE_OO_a8omMXErZNx5Put9-MIy1g |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFH4q5VA4VOxMKWA2icuontWeA0JtaJXQJkK0lXKbery0SNFMyKIq_Ch-I8-eZJKIwq3XsWV5_Hb7vfcBvNeFkWjZpJ_xxN1WZb7I4gJ5ueCxSbJAu_bF3V7aPo-_9pP-Bvxe1MLYtMqFTnSKWlXS3pHvhRjHxe4V6fPwp29Ro-zr6gJCo2aLYz27xpBt_KnzBen7IQyPDs9abX-OKuBLXGLiG2RroWhmpA6VZBrlW6qiQLemhq21EWOipEwUV7RgoUYnPxQJi2KtqSh0hOvegbtxhFtB-WH9ZYAXYbxXdy-KoozujS00eZpZ6IoVm-egAW7yZ_9Oy9yalkMxuxaDwYrNO3oA23NnlezX3PUQNnT5CO6vtDB8DJPD8sq27CgvicPXtJlHjtjk27IkgVSGmF7n-6l_0OqQYkbq8mBXYkVa1cjdpw9mZN8pX2IrHkq02cTlMxB0Uckv_9T22yRdB3j9BM5v5cyfwmZZlfo5EBVQaWSKjogRaIAVZ0JmOihoILihknnwcXHWuZy3ObdoG4Mcwx1Llrwhiwdvm6nDurfHTZMOLMGaCbYdt_tQjS7zuXTnRstIhoqHTPJYaMHxF_APDVUpzTjXHuwuyJ3PdcQ4X3K0B2-aYZRu-2QjSl1N6zmUsygNPHhWc0ezkyiyVdFB6gFb45u1ra6PlD-uXAdxhno9pNyDdw2H_fsEdv6_-dew1T7rnuQnnd7xC7gX2vsIm-7DdmFzMprql-i0TYpXTlIIXNy2aP4BHJ5Yvg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRWI5IHYCBcwm9RKNs9o5INROW3UoHVWUSnMLjpcWaZQMs6gafhq_jmcnk5kRhVuvsWU5frv93vsA3uvCSLRs0s944m6rMl9kcYG8XPDYJFmgXfvi4356eBZ_HiSDDfi9qIWxaZULnegUtaqkvSPvhBjHxe4VqWOatIiTvYNPo5--RZCyL60LOI2aRY70_BLDt8nH3h7S-kMYHux_6x76DcKAL3G5qW-QxYWimZE6VJJplHWpigJdnBrC1kaPiZIyUVzRgoUaHf5QJCyKtaai0BGuewNusijKbDohGyyDvQhjv7qTEQ7SzsTClKeZhbFYsX8OJuAq3_bvFM3bs3Ik5pdiOFyxfwf34V7juJKdmtMewIYuH8LdlXaGj2C6X17Y9h3lOXFYmzYLyRGenCzLE0hliOn3vp76u90eKeakLhV25VakW43d3fpwTnacIia2-qFE-01cbgNBd5X88k9t701y7MCvH8PZtZz5E9gsq1I_A6ICKo1M0SkxAo2x4kzITAcFDQQ3VDIPthdnncum5blF3hjmGPpYsuQtWTx4204d1X0-rpq0awnWTrCtud2HanyeN5KeGy0jGSoeMsljoQXHX8A_NFSlNONce7C1IHfe6ItJvuRuD960wyjp9vlGlLqa1XMoZ1EaePC05o52J1FkK6SD1AO2xjdrW10fKX9cuG7iDHV8SLkH71oO-_cJPP__5l_DLRTK_Euvf_QC7oT2asJm_rAt2JyOZ_ol-m_T4pUTFALfr1sy_wAZfF0B |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BegAOvAuGgpbHgYub9XPXJ5RGrVqkRhUlUjlZ-2wrIjtKE1D665ldOyaBIiEh-eQdW_uYncfuzDcA7420CjWbCgue-dOqIhRFKpGXJU9tVkTGwxcfj_LDcfrpLDtby-J3YZXoil96Ie2ysELUYLTvnqSfF0XWn2r78Xt7luTQ0VJn9Se3YSvP0BrvwdZ4dDL46pOK2q8bQKEEvfv-lasW7n6zoYY8Wv9NJuafkZJ3FtVULH-IyWRNDR08ALEaQBN98m13MZe76vo3bMf_GeFDuN_aqGTQMNUjuGWqx3BvDbnwCcz3qwuH1FGdE19W0wUc-TUmJ78yEUhtiR0dfT4N94ZHRC5JkxXsM6vIsJ75Y_TJkgy8zCUu0aFCVU18GANBy5Rch6cOZpMc-zrXT2F8sP9leBi2BRxChV73PLQoQYSmhVUm1ooZFKVKS4kWZFMh2DnnmVYq01xTyWKD_lQsMpakxlAhTbINvaquzHMgOqLKqhztDytQ72rOhCpMJGkkuKWKBfBhtZ6latHNXZGNSYlejlv6slv6AN52pNMG0uMmoj3HFB2BQ-H2L-rZedlu6tIalahY85gpngojOA4BR2ipzmnBuQlgZ8VSZSsarsoYpyb116EBvOmacVO7mxpRmXrR0FDOkjwK4FnDgV1PksQlQ0d5AGyDNze6utlSXV544HCG4jymPIB3HRf_fQZe_BPVS7gbuxMIF-DDdqA3ny3MKzTT5vJ1uxN_AmkaOJ8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Classification+Performance+of+fNIRS-BCI+by+Identifying+Cortically+Active+Channels+Using+the+z-Score+Method&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Nazeer%2C+Hammad&rft.au=Naseer%2C+Noman&rft.au=Mehboob%2C+Aakif&rft.au=Khan%2C+Muhammad+Jawad&rft.date=2020-12-07&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=20&rft.issue=23&rft_id=info:doi/10.3390%2Fs20236995&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |