Ultra-Short-Term Wind Farm Power Prediction Considering Correlation of Wind Power Fluctuation

Accurate ultra-short-term power prediction for wind farms is challenging under rapid wind speed fluctuations, complicating production planning and power balancing. This paper proposes a new method considering spatial and temporal correlations of wind fluctuations among adjacent wind farms. The metho...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 20; p. 6538
Main Authors Li, Chuandong, Zhang, Minghui, Zhang, Yi, Yi, Ziyuan, Niu, Huaqing
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 10.10.2024
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s24206538

Cover

Abstract Accurate ultra-short-term power prediction for wind farms is challenging under rapid wind speed fluctuations, complicating production planning and power balancing. This paper proposes a new method considering spatial and temporal correlations of wind fluctuations among adjacent wind farms. The method first calculates the time difference between power fluctuations based on wind speed, direction, and relative positions, determining the prior information period. The variational Bayesian model is then used to extract implicit relationships between power fluctuations of adjacent wind farms, enabling power prediction during the prior information period. Finally, the non-prior information period is predicted to complete the ultra-short-term power prediction. Using measured data from three wind farms in Fujian Province, compared to other models, the method demonstrates improved accuracy by effectively leveraging the power fluctuation characteristics of adjacent wind farms, and it has a certain amount of generalizability.
AbstractList Accurate ultra-short-term power prediction for wind farms is challenging under rapid wind speed fluctuations, complicating production planning and power balancing. This paper proposes a new method considering spatial and temporal correlations of wind fluctuations among adjacent wind farms. The method first calculates the time difference between power fluctuations based on wind speed, direction, and relative positions, determining the prior information period. The variational Bayesian model is then used to extract implicit relationships between power fluctuations of adjacent wind farms, enabling power prediction during the prior information period. Finally, the non-prior information period is predicted to complete the ultra-short-term power prediction. Using measured data from three wind farms in Fujian Province, compared to other models, the method demonstrates improved accuracy by effectively leveraging the power fluctuation characteristics of adjacent wind farms, and it has a certain amount of generalizability.
Accurate ultra-short-term power prediction for wind farms is challenging under rapid wind speed fluctuations, complicating production planning and power balancing. This paper proposes a new method considering spatial and temporal correlations of wind fluctuations among adjacent wind farms. The method first calculates the time difference between power fluctuations based on wind speed, direction, and relative positions, determining the prior information period. The variational Bayesian model is then used to extract implicit relationships between power fluctuations of adjacent wind farms, enabling power prediction during the prior information period. Finally, the non-prior information period is predicted to complete the ultra-short-term power prediction. Using measured data from three wind farms in Fujian Province, compared to other models, the method demonstrates improved accuracy by effectively leveraging the power fluctuation characteristics of adjacent wind farms, and it has a certain amount of generalizability.Accurate ultra-short-term power prediction for wind farms is challenging under rapid wind speed fluctuations, complicating production planning and power balancing. This paper proposes a new method considering spatial and temporal correlations of wind fluctuations among adjacent wind farms. The method first calculates the time difference between power fluctuations based on wind speed, direction, and relative positions, determining the prior information period. The variational Bayesian model is then used to extract implicit relationships between power fluctuations of adjacent wind farms, enabling power prediction during the prior information period. Finally, the non-prior information period is predicted to complete the ultra-short-term power prediction. Using measured data from three wind farms in Fujian Province, compared to other models, the method demonstrates improved accuracy by effectively leveraging the power fluctuation characteristics of adjacent wind farms, and it has a certain amount of generalizability.
Audience Academic
Author Zhang, Yi
Yi, Ziyuan
Niu, Huaqing
Li, Chuandong
Zhang, Minghui
AuthorAffiliation 3 College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
1 College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China; lichuandong@126.com
2 Electric Power Research Institute of State Grid Fujian Electric Power Company, Fuzhou 350003, China; zhangyi@fzu.edu.cn (M.Z.); yiziyuan2019@126.com (Z.Y.)
AuthorAffiliation_xml – name: 1 College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China; lichuandong@126.com
– name: 3 College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
– name: 2 Electric Power Research Institute of State Grid Fujian Electric Power Company, Fuzhou 350003, China; zhangyi@fzu.edu.cn (M.Z.); yiziyuan2019@126.com (Z.Y.)
Author_xml – sequence: 1
  givenname: Chuandong
  surname: Li
  fullname: Li, Chuandong
– sequence: 2
  givenname: Minghui
  surname: Zhang
  fullname: Zhang, Minghui
– sequence: 3
  givenname: Yi
  orcidid: 0000-0001-6834-3390
  surname: Zhang
  fullname: Zhang, Yi
– sequence: 4
  givenname: Ziyuan
  surname: Yi
  fullname: Yi, Ziyuan
– sequence: 5
  givenname: Huaqing
  surname: Niu
  fullname: Niu, Huaqing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39460019$$D View this record in MEDLINE/PubMed
BookMark eNpdUl1rFDEUDVKx7eqDf0AWfNGHqblJ5iNPUhZXCwULtvgkIZPcbLPMJDUzo_TfN7tTl1YSyOXec87N_TglRyEGJOQt0DPOJf00MMFoVfLmBTkBwUTRMEaPntjH5HQYtpQyznnzihxzKSpKQZ6QXzfdmHTx4zamsbjG1C9_-mCXa52tq_gX0_IqofVm9DEsVzEM3mLyYZPtlLDTe390M2smrLvJjNM-8pq8dLob8M3juyA36y_Xq2_F5fevF6vzy8KISo6FRWuNdZUpERhIVnGwdWutpZWoOJYcgDGpa2SWlk2brxQOhHZQN5VzwBfkYta1UW_VXfK9Tvcqaq_2jpg2SqfRmw6VRgEtaDBaSmGla3NXWkmx5gzaJudakM-z1t3U9mgNhtyg7pno80jwt2oT_yiAEoCXO4UPjwop_p5wGFXvB4NdpwPGaVA8F5nHVVKZoe__g27jlELu1Q5F65LxZid4NqM2Olfgg4s5scnHYu9N3gXns_-8ASEgM6pMePe0hsPn_809Az7OAJPiMCR0BwhQtdspddgp_gDHObzA
Cites_doi 10.1109/TPWRS.2020.2971607
10.1109/TETCI.2021.3100641
10.1109/ACCESS.2020.3004484
10.1016/j.automatica.2018.01.011
10.1016/j.egyr.2022.11.202
10.1109/TPWRS.2015.2466546
10.1002/(SICI)1099-1824(199809)1:1<23::AID-WE9>3.0.CO;2-9
10.1016/j.ijepes.2022.108552
10.35833/MPCE.2020.000849
10.1080/01621459.2017.1285773
10.35833/MPCE.2018.000792
10.1007/s40565-015-0151-x
10.1109/ACCESS.2023.3287319
10.35833/MPCE.2020.000935
10.1016/j.engappai.2023.105982
10.1109/CCDC.2019.8833132
10.1109/TSG.2023.3236992
10.1109/TSTE.2022.3175916
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s24206538
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database



CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_ae41b1a1ca994d9fb002b90e7321b8e5
PMC11511355
A814415236
39460019
10_3390_s24206538
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Supported by National Key R&D Program of China
  grantid: 2022YFB2402800
– fundername: National Key R&D Program of China
  grantid: 2022YFB2402800
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-deddcdf6c5e12192631d7bddd06463e5311229a7e2d058b58b94f14af1786ff13
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:21:22 EDT 2025
Thu Aug 21 18:43:46 EDT 2025
Thu Sep 04 18:05:25 EDT 2025
Sat Jul 26 00:43:08 EDT 2025
Tue Jun 10 21:04:44 EDT 2025
Thu Apr 03 07:07:00 EDT 2025
Tue Jul 01 03:51:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords ultra-short-term output prediction
prior information period
spatial–temporal correlation
variational Bayesian model
adjacent wind farms
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-deddcdf6c5e12192631d7bddd06463e5311229a7e2d058b58b94f14af1786ff13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6834-3390
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24206538
PMID 39460019
PQID 3120752385
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_ae41b1a1ca994d9fb002b90e7321b8e5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11511355
proquest_miscellaneous_3121065509
proquest_journals_3120752385
gale_infotracacademiconefile_A814415236
pubmed_primary_39460019
crossref_primary_10_3390_s24206538
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241010
PublicationDateYYYYMMDD 2024-10-10
PublicationDate_xml – month: 10
  year: 2024
  text: 20241010
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Ye (ref_16) 2021; 45
Dong (ref_14) 2022; 10
Everitt (ref_18) 2018; 91
Zhang (ref_2) 2020; 8
Liu (ref_17) 2017; 8
Li (ref_1) 2016; 31
ref_11
Zhao (ref_12) 2023; 51
Li (ref_21) 2023; 14
Zhang (ref_13) 2020; 35
Lu (ref_5) 2023; 144
Landberg (ref_3) 1998; 1
Tu (ref_9) 2021; 9
Blei (ref_19) 2016; 112
Wang (ref_4) 2022; 13
Medina (ref_8) 2020; 8
Sheng (ref_6) 2023; 11
Gu (ref_7) 2023; 9
Zhao (ref_10) 2023; 121
Zhang (ref_20) 2021; 5
Mu (ref_15) 2016; 4
References_xml – volume: 35
  start-page: 2549
  year: 2020
  ident: ref_13
  article-title: Improved Deep Mixture Density Network for Regional Wind Power Probabilistic Forecasting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2020.2971607
– volume: 5
  start-page: 726
  year: 2021
  ident: ref_20
  article-title: A Survey on Neural Network Interpretability
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2021.3100641
– volume: 8
  start-page: 124514
  year: 2020
  ident: ref_2
  article-title: Reactive Voltage Partitioning Method for the Power Grid with Comprehensive Consideration of Wind Power Fluctuation and Uncertainty
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3004484
– volume: 91
  start-page: 144
  year: 2018
  ident: ref_18
  article-title: An Empirical Bayes Approach to Identification of Modules in Dynamic Networks
  publication-title: Automatica
  doi: 10.1016/j.automatica.2018.01.011
– volume: 45
  start-page: 54
  year: 2021
  ident: ref_16
  article-title: Combined Prediction of Short-term Wind Power Considering Correlation of Meteorological Features and Fluctuation Process
  publication-title: Autom. Electr. Power Syst.
– volume: 9
  start-page: 807
  year: 2023
  ident: ref_7
  article-title: Short-term wind power forecasting and uncertainty analysis based on FCM–WOA–ELM–GMM
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.11.202
– volume: 31
  start-page: 2701
  year: 2016
  ident: ref_1
  article-title: Adaptive Robust Tie-Line Scheduling Considering Wind Power Uncertainty for Interconnected Power Systems
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2015.2466546
– volume: 1
  start-page: 23
  year: 1998
  ident: ref_3
  article-title: A Mathematical Look at a Physical Power Prediction Model
  publication-title: Wind Energy
  doi: 10.1002/(SICI)1099-1824(199809)1:1<23::AID-WE9>3.0.CO;2-9
– volume: 144
  start-page: 108552
  year: 2023
  ident: ref_5
  article-title: Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and maximum mixture correntropy long short-term memory neural network
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2022.108552
– volume: 51
  start-page: 94
  year: 2023
  ident: ref_12
  article-title: A Very Short-Term Adapt Wind Power Forecast Method Based Spatio-Temporal Correlation
  publication-title: Power Syst. Prot. Control
– volume: 10
  start-page: 388
  year: 2022
  ident: ref_14
  article-title: Spatio-temporal Convolutional Network Based Power Forecasting of Multiple Wind Farms
  publication-title: J. Mod. Power Syst. Clean Energy
  doi: 10.35833/MPCE.2020.000849
– volume: 112
  start-page: 859
  year: 2016
  ident: ref_19
  article-title: Variational Inference: A Review for Statisticians
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2017.1285773
– volume: 8
  start-page: 484
  year: 2020
  ident: ref_8
  article-title: Performance Improvement of Artificial Neural Network Model in Short-term Forecasting of Wind Farm Power Output
  publication-title: J. Mod. Power Syst. Clean Energy
  doi: 10.35833/MPCE.2018.000792
– volume: 4
  start-page: 265
  year: 2016
  ident: ref_15
  article-title: Spatial Dispersion of Wind Speeds and Its Influence on The Forecasting Error of Wind Power in A Wind Farm
  publication-title: J. Mod. Power Syst. Clean Energy
  doi: 10.1007/s40565-015-0151-x
– volume: 11
  start-page: 62840
  year: 2023
  ident: ref_6
  article-title: A Hybrid Model Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise, GRU Network and Whale Optimization Algorithm for Wind Power Prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3287319
– volume: 9
  start-page: 837
  year: 2021
  ident: ref_9
  article-title: Forecasting Scenario Generation for Multiple Wind Farms Considering Time-series Characteristics and Spatial-temporal Correlation
  publication-title: J. Mod. Power Syst. Clean Energy
  doi: 10.35833/MPCE.2020.000935
– volume: 121
  start-page: 105982
  year: 2023
  ident: ref_10
  article-title: Hybrid VMD-CNN-GRU-based Model for Short-term Forecasting of Wind Power Considering Spatio-temporal Features
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.105982
– volume: 8
  start-page: 730
  year: 2017
  ident: ref_17
  article-title: Probabilistic Load Forecasting via Quantile Regression Averaging on Sister Forecasts
  publication-title: IEEE Trans. Smart Grid
– ident: ref_11
  doi: 10.1109/CCDC.2019.8833132
– volume: 14
  start-page: 4073
  year: 2023
  ident: ref_21
  article-title: A TCN-Based Hybrid Forecasting Framework for Hours-Ahead Utility-Scale PV Forecasting
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2023.3236992
– volume: 13
  start-page: 1930
  year: 2022
  ident: ref_4
  article-title: Nonparametric Probabilistic Forecasting for Wind Power Generation Using Quadratic Spline Quantile Function and Autoregressive Recurrent Neural Network
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2022.3175916
SSID ssj0023338
Score 2.4342535
Snippet Accurate ultra-short-term power prediction for wind farms is challenging under rapid wind speed fluctuations, complicating production planning and power...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 6538
SubjectTerms Accuracy
adjacent wind farms
Buildings and facilities
Green technology
Methods
prior information period
spatial–temporal correlation
ultra-short-term output prediction
variational Bayesian model
Wind farms
Wind power
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhp-ZQ2iZt3SbBDYGeTCzJlq1jUrqEQksgWZpLEfokheANm93_3ze2d1nTQy8FH4RlGXnGo3kPSU-MnSufQt04BBLQaAF8WxcOyLQQqnYtp83X_fax7z_U9bz6dl_f7xz1RWvCBnngwXAXNlbcccu91boKOlFWcbqMjRTctbFXLy11uSFTI9WSYF6DjpAEqb94RiIiEdZ2kn16kf6_h-KdXDRdJ7mTeGav2MsRMeaXQ09fs73YvWEHOzqCh-zX_BEti9sHYOniDmNt_hNUO59ZlG7oGLT8ZkkTMuSEfHNEJ1qivFyOq-HyRRpaDQ1mj2vaWkI1R2w--3r35boYz00oPMjuqggxBB-S8nXkGJCEkjw0LoQA-KFkRNRxIbRtoghl3Tpcukq8sok3rUqJy7dsv1t08T3LlYgNIKS12reV48F5WLJpPJK8sKn0GTvb2NM8DfIYBrSCjG62Rs_YFVl6-wApWvc34Gcz-tn8y88Z-0x-MhR3MKm34_YB9JMUrMxl21NDIVXGjjeuNGNAPhvJBcAR8Ale9GlbjVCi-RHbxcW6fwYEGZRNZ-zd4Pltn6WuCBqipp38E5OPmtZ0vx96uW5gbs4B6z78DzN8ZC8EYBVlT14es_3Vch1PAItW7rSPgD9lBwtg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_q9UUfxG-jVaIIPi3NbrJJ9kGklR5F8Di0h32RZb9ihZLU9O7_dyZfXhCEewi3Wdib2Zn5_W53ZgDe5a7ysrBoSIhGGeJbySwiUyZyaUtOyddd-tiXVX6-yT5fyssDWI25MHStcvSJnaP2jaP_yI9TLjC6YYCRH29-M-oaRaerYwsNM7RW8B-6EmN34BBdskwWcHh6tlp_nShYioysry-UItk_vsUARcVZy1lU6or3_-ui92LU_P7kXkBaPoD7A5KMT3rVP4SDUD-Ce3v1BR_Dj801zmTfrhBjswv0wfF3pODx0uDTmtqjxeuWDmpIOfHYuhNn4nPbDrfk4qbqZ_UTltc7SjmhkSewWZ5dfDpnQz8F5pAEb5kP3jtf5U4Gjo5K5Cn3hfXeIyzJ04DWyIVQpgjCJ7K0-FFZxTNT8aLMq4qnT2FRN3V4DnEuQoHQ0hjlysxybx1KsigcBn9hqsRF8HaUp77py2ZopBskdD0JPYJTkvT0AlW67r5o2p96MBxtQsYtN9wZpTKvKkIVViWhSAW3ZZARvCc9abJHFKkzQ1oBrpMqW-mTsqOMIs0jOBpVqQdDvdV_t1UEb6ZhNDE6NzF1aHbdO0ickcqpCJ71mp_WnKqMICOOlLM9MftR85H611VXxhuxOOcI9178f10v4a5AIEXxkidHsNi2u_AKgdDWvh529x8PIwkJ
  priority: 102
  providerName: ProQuest
Title Ultra-Short-Term Wind Farm Power Prediction Considering Correlation of Wind Power Fluctuation
URI https://www.ncbi.nlm.nih.gov/pubmed/39460019
https://www.proquest.com/docview/3120752385
https://www.proquest.com/docview/3121065509
https://pubmed.ncbi.nlm.nih.gov/PMC11511355
https://doaj.org/article/ae41b1a1ca994d9fb002b90e7321b8e5
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Li9RAEC72cdGD-Da6DlEET9F059HJQWRXNi6Cy6A7OBcJ_XSFIbObnQH991Z1HkzQgxBCSKdCuqqr66t0VxXAq1w7kwmFioRoNEJ8m0UKkWnE80wVjIKvffjY5_P8bJF-WmbLPRhqbPYMvPmna0f1pBbt6s2v69_vUeHfkceJLvvbGzQzlGK12IdDv0xEO_jScTGBJ4kvaE0xXRHaw7hLMDQlnZgln73_7zl6x0hNN1DuWKTqLtzpoWR43Mn-HuzZ5j7c3kkw-AC-L1ZIGX29xP5FFzgJh9_QBw8riVdzqo8WzltaqSHphEPtTqTE67btt8mFa9dRdQTVaksxJ9TyEBbV6cWHs6gvqBBp9II3kbHGaONynVmGMxXPE2aEMsYgLskTi-rIOC-lsNzEWaHwKFPHUumYKHLnWPIIDpp1Y59AmHMrEFtKWeoiVcwojZwUQqP159LFOoCXAz_rqy5vRo3-BjG9HpkewAlxenyAUl37G-v2R91rTi1tyhSTTMuyTE3pCFaoMrYi4UwVNgvgNcmppiGCLNWyjyvA76TUVvVx4X1GnuQBHA2irIeBVieMI2pC4IIvejE2o47Rwols7Hrrn0HPGX25MoDHneTHb07KlDAjthSTMTHp1LSl-Xnp83gjGGcM8d7T_-7BM7jFEVSR7WTxERxs2q19jqBoo2awL5YCz0X1cQaHJ6fn8y8z_4Nh5pXhD6ZFDjg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcEG8MBQwCcbLqXT_3UKEWGqW0jSJIRC_I7MsUqbKLkwjx5_htzPhFLCRulXKwsl5rPTuz3zfenRmAV7HOTZQoNCRkox7y28hTyEw9HkcqZRR8XYePnU7jySL8cBadbcHvLhaGjlV2a2K9UJtS0zfy3YBxRDcEmOjt5Q-PqkbR7mpXQkO2pRXMXp1irA3sOLa_fqILt9w7eo_z_Zrz8eH83cRrqwx4Gl3DlWesMdrksY4sQ_PlccBMoowxCNZxYFFHGedCJpYbP0oV_kSYs1DmLEnjPGcBPvcabIf0AWUE2weH09nH3uUL0ANs8hkFgfB3lwiIlAw2HaBgXSzgX0jYwMThec0NABzfhlstc3X3G1W7A1u2uAs3N_IZ3oMviwvs6X06R07vzXHNdz-jy--OJV7NqBybO6toY4iUwe1KhWJPvK6q9lSeW-ZNr6bD-GJNIS7Uch8WVyLZBzAqysI-AjfmNkEqK6XQaaiYURolmSQayQaXua8deNnJM7ts0nRk6N6Q0LNe6A4ckKT7Gyizdv1HWX3LWkPNpA2ZYpJpKURoRE4sRgnfJgFnKrWRA29onjKyfxSplm0YA46TMmll-2ntovIgdmCnm8qsXRiW2V81duBF34wmTfs0srDlur4HHXV0HYUDD5uZ78cciJAoKrakA50YvNSwpfh-XqcNR-7PGNLLx_8f13O4PpmfnmQnR9PjJ3CDI4kjrGb-DoxW1do-RRK2Us9aTXfh61Ub1x9VQkYm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qC6IP4rfRqlEUn8Jld_P5UKS1Da3V49Ae9qXE_YoVSlJzd4j_on-VM_nyguBb4R7CbTZsZmd2fr_szgzAq0gXJowVGhKiUQ_xbegpRKYej0KVMAq-bsLHPk6jw3nw_jQ83YDffSwMHavs18RmoTaVpm_kE8E4ejd0MOGk6I5FzPazt5c_PKogRTutfTkN2ZVZMDtNurEuyOPY_vqJdG6xc7SPc_-a8-zg5N2h11Uc8DTSxKVnrDHaFJEOLUNT5pFgJlbGGHTckbCor4zzVMaWGz9MFP7SoGCBLFicREXBBD73GmzF6PWRCG7tHUxnnwb6J5ANtrmNhEj9yQKdIyWGTUYesSkc8K97WPOP47Oba84wuw23OhTr7rZqdwc2bHkXbq7lNrwHZ_ML7Ol9Pkd8753g-u9-QfrvZhKvZlSazZ3VtElEiuH2ZUOxJ17XdXdCz62KtlfbIbtYUbgLtdyH-ZVI9gFsllVpH4EbcRsjrJUy1UmgmFEaJRnHGoEHl4WvHXjZyzO_bFN25Eh1SOj5IHQH9kjSww2UZbv5o6q_5Z3R5tIGTDHJtEzTwKQFIRqV-jYWnKnEhg68oXnKaS1AkWrZhTTgOCmrVr6bNHSVi8iB7X4q826RWOR_VdqBF0Mzmjft2cjSVqvmHiTtSCNTBx62Mz-MWaQBwVVsSUY6MXqpcUv5_bxJIY48gDGEmo__P67ncB2NLP9wND1-Ajc44jly28zfhs1lvbJPEY8t1bNO0V34etW29QeIrkpq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-Short-Term+Wind+Farm+Power+Prediction+Considering+Correlation+of+Wind+Power+Fluctuation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Chuandong&rft.au=Zhang%2C+Minghui&rft.au=Zhang%2C+Yi&rft.au=Yi%2C+Ziyuan&rft.date=2024-10-10&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=20&rft_id=info:doi/10.3390%2Fs24206538&rft.externalDocID=A814415236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon