Ultra-Short-Term Wind Farm Power Prediction Considering Correlation of Wind Power Fluctuation
Accurate ultra-short-term power prediction for wind farms is challenging under rapid wind speed fluctuations, complicating production planning and power balancing. This paper proposes a new method considering spatial and temporal correlations of wind fluctuations among adjacent wind farms. The metho...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 20; p. 6538 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
10.10.2024
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s24206538 |
Cover
Abstract | Accurate ultra-short-term power prediction for wind farms is challenging under rapid wind speed fluctuations, complicating production planning and power balancing. This paper proposes a new method considering spatial and temporal correlations of wind fluctuations among adjacent wind farms. The method first calculates the time difference between power fluctuations based on wind speed, direction, and relative positions, determining the prior information period. The variational Bayesian model is then used to extract implicit relationships between power fluctuations of adjacent wind farms, enabling power prediction during the prior information period. Finally, the non-prior information period is predicted to complete the ultra-short-term power prediction. Using measured data from three wind farms in Fujian Province, compared to other models, the method demonstrates improved accuracy by effectively leveraging the power fluctuation characteristics of adjacent wind farms, and it has a certain amount of generalizability. |
---|---|
AbstractList | Accurate ultra-short-term power prediction for wind farms is challenging under rapid wind speed fluctuations, complicating production planning and power balancing. This paper proposes a new method considering spatial and temporal correlations of wind fluctuations among adjacent wind farms. The method first calculates the time difference between power fluctuations based on wind speed, direction, and relative positions, determining the prior information period. The variational Bayesian model is then used to extract implicit relationships between power fluctuations of adjacent wind farms, enabling power prediction during the prior information period. Finally, the non-prior information period is predicted to complete the ultra-short-term power prediction. Using measured data from three wind farms in Fujian Province, compared to other models, the method demonstrates improved accuracy by effectively leveraging the power fluctuation characteristics of adjacent wind farms, and it has a certain amount of generalizability. Accurate ultra-short-term power prediction for wind farms is challenging under rapid wind speed fluctuations, complicating production planning and power balancing. This paper proposes a new method considering spatial and temporal correlations of wind fluctuations among adjacent wind farms. The method first calculates the time difference between power fluctuations based on wind speed, direction, and relative positions, determining the prior information period. The variational Bayesian model is then used to extract implicit relationships between power fluctuations of adjacent wind farms, enabling power prediction during the prior information period. Finally, the non-prior information period is predicted to complete the ultra-short-term power prediction. Using measured data from three wind farms in Fujian Province, compared to other models, the method demonstrates improved accuracy by effectively leveraging the power fluctuation characteristics of adjacent wind farms, and it has a certain amount of generalizability.Accurate ultra-short-term power prediction for wind farms is challenging under rapid wind speed fluctuations, complicating production planning and power balancing. This paper proposes a new method considering spatial and temporal correlations of wind fluctuations among adjacent wind farms. The method first calculates the time difference between power fluctuations based on wind speed, direction, and relative positions, determining the prior information period. The variational Bayesian model is then used to extract implicit relationships between power fluctuations of adjacent wind farms, enabling power prediction during the prior information period. Finally, the non-prior information period is predicted to complete the ultra-short-term power prediction. Using measured data from three wind farms in Fujian Province, compared to other models, the method demonstrates improved accuracy by effectively leveraging the power fluctuation characteristics of adjacent wind farms, and it has a certain amount of generalizability. |
Audience | Academic |
Author | Zhang, Yi Yi, Ziyuan Niu, Huaqing Li, Chuandong Zhang, Minghui |
AuthorAffiliation | 3 College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China 1 College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China; lichuandong@126.com 2 Electric Power Research Institute of State Grid Fujian Electric Power Company, Fuzhou 350003, China; zhangyi@fzu.edu.cn (M.Z.); yiziyuan2019@126.com (Z.Y.) |
AuthorAffiliation_xml | – name: 1 College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China; lichuandong@126.com – name: 3 College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China – name: 2 Electric Power Research Institute of State Grid Fujian Electric Power Company, Fuzhou 350003, China; zhangyi@fzu.edu.cn (M.Z.); yiziyuan2019@126.com (Z.Y.) |
Author_xml | – sequence: 1 givenname: Chuandong surname: Li fullname: Li, Chuandong – sequence: 2 givenname: Minghui surname: Zhang fullname: Zhang, Minghui – sequence: 3 givenname: Yi orcidid: 0000-0001-6834-3390 surname: Zhang fullname: Zhang, Yi – sequence: 4 givenname: Ziyuan surname: Yi fullname: Yi, Ziyuan – sequence: 5 givenname: Huaqing surname: Niu fullname: Niu, Huaqing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39460019$$D View this record in MEDLINE/PubMed |
BookMark | eNpdUl1rFDEUDVKx7eqDf0AWfNGHqblJ5iNPUhZXCwULtvgkIZPcbLPMJDUzo_TfN7tTl1YSyOXec87N_TglRyEGJOQt0DPOJf00MMFoVfLmBTkBwUTRMEaPntjH5HQYtpQyznnzihxzKSpKQZ6QXzfdmHTx4zamsbjG1C9_-mCXa52tq_gX0_IqofVm9DEsVzEM3mLyYZPtlLDTe390M2smrLvJjNM-8pq8dLob8M3juyA36y_Xq2_F5fevF6vzy8KISo6FRWuNdZUpERhIVnGwdWutpZWoOJYcgDGpa2SWlk2brxQOhHZQN5VzwBfkYta1UW_VXfK9Tvcqaq_2jpg2SqfRmw6VRgEtaDBaSmGla3NXWkmx5gzaJudakM-z1t3U9mgNhtyg7pno80jwt2oT_yiAEoCXO4UPjwop_p5wGFXvB4NdpwPGaVA8F5nHVVKZoe__g27jlELu1Q5F65LxZid4NqM2Olfgg4s5scnHYu9N3gXns_-8ASEgM6pMePe0hsPn_809Az7OAJPiMCR0BwhQtdspddgp_gDHObzA |
Cites_doi | 10.1109/TPWRS.2020.2971607 10.1109/TETCI.2021.3100641 10.1109/ACCESS.2020.3004484 10.1016/j.automatica.2018.01.011 10.1016/j.egyr.2022.11.202 10.1109/TPWRS.2015.2466546 10.1002/(SICI)1099-1824(199809)1:1<23::AID-WE9>3.0.CO;2-9 10.1016/j.ijepes.2022.108552 10.35833/MPCE.2020.000849 10.1080/01621459.2017.1285773 10.35833/MPCE.2018.000792 10.1007/s40565-015-0151-x 10.1109/ACCESS.2023.3287319 10.35833/MPCE.2020.000935 10.1016/j.engappai.2023.105982 10.1109/CCDC.2019.8833132 10.1109/TSG.2023.3236992 10.1109/TSTE.2022.3175916 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s24206538 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_ae41b1a1ca994d9fb002b90e7321b8e5 PMC11511355 A814415236 39460019 10_3390_s24206538 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Supported by National Key R&D Program of China grantid: 2022YFB2402800 – fundername: National Key R&D Program of China grantid: 2022YFB2402800 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c469t-deddcdf6c5e12192631d7bddd06463e5311229a7e2d058b58b94f14af1786ff13 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:21:22 EDT 2025 Thu Aug 21 18:43:46 EDT 2025 Thu Sep 04 18:05:25 EDT 2025 Sat Jul 26 00:43:08 EDT 2025 Tue Jun 10 21:04:44 EDT 2025 Thu Apr 03 07:07:00 EDT 2025 Tue Jul 01 03:51:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | ultra-short-term output prediction prior information period spatial–temporal correlation variational Bayesian model adjacent wind farms |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-deddcdf6c5e12192631d7bddd06463e5311229a7e2d058b58b94f14af1786ff13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6834-3390 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24206538 |
PMID | 39460019 |
PQID | 3120752385 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ae41b1a1ca994d9fb002b90e7321b8e5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11511355 proquest_miscellaneous_3121065509 proquest_journals_3120752385 gale_infotracacademiconefile_A814415236 pubmed_primary_39460019 crossref_primary_10_3390_s24206538 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241010 |
PublicationDateYYYYMMDD | 2024-10-10 |
PublicationDate_xml | – month: 10 year: 2024 text: 20241010 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Ye (ref_16) 2021; 45 Dong (ref_14) 2022; 10 Everitt (ref_18) 2018; 91 Zhang (ref_2) 2020; 8 Liu (ref_17) 2017; 8 Li (ref_1) 2016; 31 ref_11 Zhao (ref_12) 2023; 51 Li (ref_21) 2023; 14 Zhang (ref_13) 2020; 35 Lu (ref_5) 2023; 144 Landberg (ref_3) 1998; 1 Tu (ref_9) 2021; 9 Blei (ref_19) 2016; 112 Wang (ref_4) 2022; 13 Medina (ref_8) 2020; 8 Sheng (ref_6) 2023; 11 Gu (ref_7) 2023; 9 Zhao (ref_10) 2023; 121 Zhang (ref_20) 2021; 5 Mu (ref_15) 2016; 4 |
References_xml | – volume: 35 start-page: 2549 year: 2020 ident: ref_13 article-title: Improved Deep Mixture Density Network for Regional Wind Power Probabilistic Forecasting publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2020.2971607 – volume: 5 start-page: 726 year: 2021 ident: ref_20 article-title: A Survey on Neural Network Interpretability publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/TETCI.2021.3100641 – volume: 8 start-page: 124514 year: 2020 ident: ref_2 article-title: Reactive Voltage Partitioning Method for the Power Grid with Comprehensive Consideration of Wind Power Fluctuation and Uncertainty publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3004484 – volume: 91 start-page: 144 year: 2018 ident: ref_18 article-title: An Empirical Bayes Approach to Identification of Modules in Dynamic Networks publication-title: Automatica doi: 10.1016/j.automatica.2018.01.011 – volume: 45 start-page: 54 year: 2021 ident: ref_16 article-title: Combined Prediction of Short-term Wind Power Considering Correlation of Meteorological Features and Fluctuation Process publication-title: Autom. Electr. Power Syst. – volume: 9 start-page: 807 year: 2023 ident: ref_7 article-title: Short-term wind power forecasting and uncertainty analysis based on FCM–WOA–ELM–GMM publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.11.202 – volume: 31 start-page: 2701 year: 2016 ident: ref_1 article-title: Adaptive Robust Tie-Line Scheduling Considering Wind Power Uncertainty for Interconnected Power Systems publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2015.2466546 – volume: 1 start-page: 23 year: 1998 ident: ref_3 article-title: A Mathematical Look at a Physical Power Prediction Model publication-title: Wind Energy doi: 10.1002/(SICI)1099-1824(199809)1:1<23::AID-WE9>3.0.CO;2-9 – volume: 144 start-page: 108552 year: 2023 ident: ref_5 article-title: Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and maximum mixture correntropy long short-term memory neural network publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2022.108552 – volume: 51 start-page: 94 year: 2023 ident: ref_12 article-title: A Very Short-Term Adapt Wind Power Forecast Method Based Spatio-Temporal Correlation publication-title: Power Syst. Prot. Control – volume: 10 start-page: 388 year: 2022 ident: ref_14 article-title: Spatio-temporal Convolutional Network Based Power Forecasting of Multiple Wind Farms publication-title: J. Mod. Power Syst. Clean Energy doi: 10.35833/MPCE.2020.000849 – volume: 112 start-page: 859 year: 2016 ident: ref_19 article-title: Variational Inference: A Review for Statisticians publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2017.1285773 – volume: 8 start-page: 484 year: 2020 ident: ref_8 article-title: Performance Improvement of Artificial Neural Network Model in Short-term Forecasting of Wind Farm Power Output publication-title: J. Mod. Power Syst. Clean Energy doi: 10.35833/MPCE.2018.000792 – volume: 4 start-page: 265 year: 2016 ident: ref_15 article-title: Spatial Dispersion of Wind Speeds and Its Influence on The Forecasting Error of Wind Power in A Wind Farm publication-title: J. Mod. Power Syst. Clean Energy doi: 10.1007/s40565-015-0151-x – volume: 11 start-page: 62840 year: 2023 ident: ref_6 article-title: A Hybrid Model Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise, GRU Network and Whale Optimization Algorithm for Wind Power Prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3287319 – volume: 9 start-page: 837 year: 2021 ident: ref_9 article-title: Forecasting Scenario Generation for Multiple Wind Farms Considering Time-series Characteristics and Spatial-temporal Correlation publication-title: J. Mod. Power Syst. Clean Energy doi: 10.35833/MPCE.2020.000935 – volume: 121 start-page: 105982 year: 2023 ident: ref_10 article-title: Hybrid VMD-CNN-GRU-based Model for Short-term Forecasting of Wind Power Considering Spatio-temporal Features publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.105982 – volume: 8 start-page: 730 year: 2017 ident: ref_17 article-title: Probabilistic Load Forecasting via Quantile Regression Averaging on Sister Forecasts publication-title: IEEE Trans. Smart Grid – ident: ref_11 doi: 10.1109/CCDC.2019.8833132 – volume: 14 start-page: 4073 year: 2023 ident: ref_21 article-title: A TCN-Based Hybrid Forecasting Framework for Hours-Ahead Utility-Scale PV Forecasting publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2023.3236992 – volume: 13 start-page: 1930 year: 2022 ident: ref_4 article-title: Nonparametric Probabilistic Forecasting for Wind Power Generation Using Quadratic Spline Quantile Function and Autoregressive Recurrent Neural Network publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2022.3175916 |
SSID | ssj0023338 |
Score | 2.4342535 |
Snippet | Accurate ultra-short-term power prediction for wind farms is challenging under rapid wind speed fluctuations, complicating production planning and power... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 6538 |
SubjectTerms | Accuracy adjacent wind farms Buildings and facilities Green technology Methods prior information period spatial–temporal correlation ultra-short-term output prediction variational Bayesian model Wind farms Wind power |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhp-ZQ2iZt3SbBDYGeTCzJlq1jUrqEQksgWZpLEfokheANm93_3ze2d1nTQy8FH4RlGXnGo3kPSU-MnSufQt04BBLQaAF8WxcOyLQQqnYtp83X_fax7z_U9bz6dl_f7xz1RWvCBnngwXAXNlbcccu91boKOlFWcbqMjRTctbFXLy11uSFTI9WSYF6DjpAEqb94RiIiEdZ2kn16kf6_h-KdXDRdJ7mTeGav2MsRMeaXQ09fs73YvWEHOzqCh-zX_BEti9sHYOniDmNt_hNUO59ZlG7oGLT8ZkkTMuSEfHNEJ1qivFyOq-HyRRpaDQ1mj2vaWkI1R2w--3r35boYz00oPMjuqggxBB-S8nXkGJCEkjw0LoQA-KFkRNRxIbRtoghl3Tpcukq8sok3rUqJy7dsv1t08T3LlYgNIKS12reV48F5WLJpPJK8sKn0GTvb2NM8DfIYBrSCjG62Rs_YFVl6-wApWvc34Gcz-tn8y88Z-0x-MhR3MKm34_YB9JMUrMxl21NDIVXGjjeuNGNAPhvJBcAR8Ale9GlbjVCi-RHbxcW6fwYEGZRNZ-zd4Pltn6WuCBqipp38E5OPmtZ0vx96uW5gbs4B6z78DzN8ZC8EYBVlT14es_3Vch1PAItW7rSPgD9lBwtg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_q9UUfxG-jVaIIPi3NbrJJ9kGklR5F8Di0h32RZb9ihZLU9O7_dyZfXhCEewi3Wdib2Zn5_W53ZgDe5a7ysrBoSIhGGeJbySwiUyZyaUtOyddd-tiXVX6-yT5fyssDWI25MHStcvSJnaP2jaP_yI9TLjC6YYCRH29-M-oaRaerYwsNM7RW8B-6EmN34BBdskwWcHh6tlp_nShYioysry-UItk_vsUARcVZy1lU6or3_-ui92LU_P7kXkBaPoD7A5KMT3rVP4SDUD-Ce3v1BR_Dj801zmTfrhBjswv0wfF3pODx0uDTmtqjxeuWDmpIOfHYuhNn4nPbDrfk4qbqZ_UTltc7SjmhkSewWZ5dfDpnQz8F5pAEb5kP3jtf5U4Gjo5K5Cn3hfXeIyzJ04DWyIVQpgjCJ7K0-FFZxTNT8aLMq4qnT2FRN3V4DnEuQoHQ0hjlysxybx1KsigcBn9hqsRF8HaUp77py2ZopBskdD0JPYJTkvT0AlW67r5o2p96MBxtQsYtN9wZpTKvKkIVViWhSAW3ZZARvCc9abJHFKkzQ1oBrpMqW-mTsqOMIs0jOBpVqQdDvdV_t1UEb6ZhNDE6NzF1aHbdO0ickcqpCJ71mp_WnKqMICOOlLM9MftR85H611VXxhuxOOcI9178f10v4a5AIEXxkidHsNi2u_AKgdDWvh529x8PIwkJ priority: 102 providerName: ProQuest |
Title | Ultra-Short-Term Wind Farm Power Prediction Considering Correlation of Wind Power Fluctuation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39460019 https://www.proquest.com/docview/3120752385 https://www.proquest.com/docview/3121065509 https://pubmed.ncbi.nlm.nih.gov/PMC11511355 https://doaj.org/article/ae41b1a1ca994d9fb002b90e7321b8e5 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Li9RAEC72cdGD-Da6DlEET9F059HJQWRXNi6Cy6A7OBcJ_XSFIbObnQH991Z1HkzQgxBCSKdCuqqr66t0VxXAq1w7kwmFioRoNEJ8m0UKkWnE80wVjIKvffjY5_P8bJF-WmbLPRhqbPYMvPmna0f1pBbt6s2v69_vUeHfkceJLvvbGzQzlGK12IdDv0xEO_jScTGBJ4kvaE0xXRHaw7hLMDQlnZgln73_7zl6x0hNN1DuWKTqLtzpoWR43Mn-HuzZ5j7c3kkw-AC-L1ZIGX29xP5FFzgJh9_QBw8riVdzqo8WzltaqSHphEPtTqTE67btt8mFa9dRdQTVaksxJ9TyEBbV6cWHs6gvqBBp9II3kbHGaONynVmGMxXPE2aEMsYgLskTi-rIOC-lsNzEWaHwKFPHUumYKHLnWPIIDpp1Y59AmHMrEFtKWeoiVcwojZwUQqP159LFOoCXAz_rqy5vRo3-BjG9HpkewAlxenyAUl37G-v2R91rTi1tyhSTTMuyTE3pCFaoMrYi4UwVNgvgNcmppiGCLNWyjyvA76TUVvVx4X1GnuQBHA2irIeBVieMI2pC4IIvejE2o47Rwols7Hrrn0HPGX25MoDHneTHb07KlDAjthSTMTHp1LSl-Xnp83gjGGcM8d7T_-7BM7jFEVSR7WTxERxs2q19jqBoo2awL5YCz0X1cQaHJ6fn8y8z_4Nh5pXhD6ZFDjg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcEG8MBQwCcbLqXT_3UKEWGqW0jSJIRC_I7MsUqbKLkwjx5_htzPhFLCRulXKwsl5rPTuz3zfenRmAV7HOTZQoNCRkox7y28hTyEw9HkcqZRR8XYePnU7jySL8cBadbcHvLhaGjlV2a2K9UJtS0zfy3YBxRDcEmOjt5Q-PqkbR7mpXQkO2pRXMXp1irA3sOLa_fqILt9w7eo_z_Zrz8eH83cRrqwx4Gl3DlWesMdrksY4sQ_PlccBMoowxCNZxYFFHGedCJpYbP0oV_kSYs1DmLEnjPGcBPvcabIf0AWUE2weH09nH3uUL0ANs8hkFgfB3lwiIlAw2HaBgXSzgX0jYwMThec0NABzfhlstc3X3G1W7A1u2uAs3N_IZ3oMviwvs6X06R07vzXHNdz-jy--OJV7NqBybO6toY4iUwe1KhWJPvK6q9lSeW-ZNr6bD-GJNIS7Uch8WVyLZBzAqysI-AjfmNkEqK6XQaaiYURolmSQayQaXua8deNnJM7ts0nRk6N6Q0LNe6A4ckKT7Gyizdv1HWX3LWkPNpA2ZYpJpKURoRE4sRgnfJgFnKrWRA29onjKyfxSplm0YA46TMmll-2ntovIgdmCnm8qsXRiW2V81duBF34wmTfs0srDlur4HHXV0HYUDD5uZ78cciJAoKrakA50YvNSwpfh-XqcNR-7PGNLLx_8f13O4PpmfnmQnR9PjJ3CDI4kjrGb-DoxW1do-RRK2Us9aTXfh61Ub1x9VQkYm |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qC6IP4rfRqlEUn8Jld_P5UKS1Da3V49Ae9qXE_YoVSlJzd4j_on-VM_nyguBb4R7CbTZsZmd2fr_szgzAq0gXJowVGhKiUQ_xbegpRKYej0KVMAq-bsLHPk6jw3nw_jQ83YDffSwMHavs18RmoTaVpm_kE8E4ejd0MOGk6I5FzPazt5c_PKogRTutfTkN2ZVZMDtNurEuyOPY_vqJdG6xc7SPc_-a8-zg5N2h11Uc8DTSxKVnrDHaFJEOLUNT5pFgJlbGGHTckbCor4zzVMaWGz9MFP7SoGCBLFicREXBBD73GmzF6PWRCG7tHUxnnwb6J5ANtrmNhEj9yQKdIyWGTUYesSkc8K97WPOP47Oba84wuw23OhTr7rZqdwc2bHkXbq7lNrwHZ_ML7Ol9Pkd8753g-u9-QfrvZhKvZlSazZ3VtElEiuH2ZUOxJ17XdXdCz62KtlfbIbtYUbgLtdyH-ZVI9gFsllVpH4EbcRsjrJUy1UmgmFEaJRnHGoEHl4WvHXjZyzO_bFN25Eh1SOj5IHQH9kjSww2UZbv5o6q_5Z3R5tIGTDHJtEzTwKQFIRqV-jYWnKnEhg68oXnKaS1AkWrZhTTgOCmrVr6bNHSVi8iB7X4q826RWOR_VdqBF0Mzmjft2cjSVqvmHiTtSCNTBx62Mz-MWaQBwVVsSUY6MXqpcUv5_bxJIY48gDGEmo__P67ncB2NLP9wND1-Ajc44jly28zfhs1lvbJPEY8t1bNO0V34etW29QeIrkpq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-Short-Term+Wind+Farm+Power+Prediction+Considering+Correlation+of+Wind+Power+Fluctuation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Chuandong&rft.au=Zhang%2C+Minghui&rft.au=Zhang%2C+Yi&rft.au=Yi%2C+Ziyuan&rft.date=2024-10-10&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=20&rft_id=info:doi/10.3390%2Fs24206538&rft.externalDocID=A814415236 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |