Statistical and Clustering Analysis for Disturbances: A Case Study of Voltage Dips in Wind Farms

This paper proposes and evaluates an alternative statistical methodology to analyze a large number of voltage dips. For a given voltage dip, a set of lengths is first identified to characterize the root mean square (rms) voltage evolution along the disturbance, deduced from partial linearized time i...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power delivery Vol. 31; no. 6; pp. 2530 - 2537
Main Authors Garcia-Sanchez, T., Gomez-Lazaro, E., Muljadi, E., Kessler, M., Molina-Garcia, A.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0885-8977
1937-4208
1937-4208
DOI10.1109/TPWRD.2016.2522946

Cover

Abstract This paper proposes and evaluates an alternative statistical methodology to analyze a large number of voltage dips. For a given voltage dip, a set of lengths is first identified to characterize the root mean square (rms) voltage evolution along the disturbance, deduced from partial linearized time intervals and trajectories. Principal component analysis and K-means clustering processes are then applied to identify rms-voltage patterns and propose a reduced number of representative rms-voltage profiles from the linearized trajectories. This reduced group of averaged rms-voltage profiles enables the representation of a large amount of disturbances, which offers a visual and graphical representation of their evolution along the events, aspects that were not previously considered in other contributions. The complete process is evaluated on real voltage dips collected in intense field-measurement campaigns carried out in a wind farm in Spain among different years. The results are included in this paper.
AbstractList This paper proposes and evaluates an alternative statistical methodology to analyze a large number of voltage dips. For a given voltage dip, a set of lengths is first identified to characterize the root mean square (rms) voltage evolution along the disturbance, deduced from partial linearized time intervals and trajectories. Principal component analysis and K-means clustering processes are then applied to identify rms-voltage patterns and propose a reduced number of representative rms-voltage profiles from the linearized trajectories. This reduced group of averaged rms-voltage profiles enables the representation of a large amount of disturbances, which offers a visual and graphical representation of their evolution along the events, aspects that were not previously considered in other contributions. The complete process is evaluated on real voltage dips collected in intense field-measurement campaigns carried out in a wind farm in Spain among different years. The results are included in this paper.
This study proposes and evaluates an alternative statistical methodology to analyze a large number of voltage dips. For a given voltage dip, a set of lengths is first identified to characterize the root mean square (rms) voltage evolution along the disturbance, deduced from partial linearized time intervals and trajectories. Principal component analysis and K-means clustering processes are then applied to identify rms-voltage patterns and propose a reduced number of representative rms-voltage profiles from the linearized trajectories. This reduced group of averaged rms-voltage profiles enables the representation of a large amount of disturbances, which offers a visual and graphical representation of their evolution along the events, aspects that were not previously considered in other contributions. The complete process is evaluated on real voltage dips collected in intense field-measurement campaigns carried out in a wind farm in Spain among different years. The results are included in this paper.
Author Kessler, M.
Garcia-Sanchez, T.
Gomez-Lazaro, E.
Molina-Garcia, A.
Muljadi, E.
Author_xml – sequence: 1
  givenname: T.
  surname: Garcia-Sanchez
  fullname: Garcia-Sanchez, T.
  email: tania.garcia@uclm.es
  organization: Renewable Energy Res. Inst., Univ. de Castilla-La Mancha, Albacete, Spain
– sequence: 2
  givenname: E.
  surname: Gomez-Lazaro
  fullname: Gomez-Lazaro, E.
  email: emilio.gomez@uclm.es
  organization: Renewable Energy Res. Inst., Univ. de Castilla-La Mancha, Albacete, Spain
– sequence: 3
  givenname: E.
  surname: Muljadi
  fullname: Muljadi, E.
  email: eduard.muljadi@nrel.gov
  organization: Nat. Renewable Energy Lab., Golden, CO, USA
– sequence: 4
  givenname: M.
  surname: Kessler
  fullname: Kessler, M.
  email: mathieu.kessler@upct.es
  organization: Dept. of Appl. Math. & Stat., Univ. Politec. de Cartagena, Cartagena, Spain
– sequence: 5
  givenname: A.
  surname: Molina-Garcia
  fullname: Molina-Garcia, A.
  email: angel.molina@upct.es
  organization: Dept. of Electr. Eng., Univ. Politec. de Cartagena, Cartagena, Spain
BackLink https://www.osti.gov/servlets/purl/1330934$$D View this record in Osti.gov
BookMark eNptkU1vVCEUhompidPqH9AN0Y2bO_JxuYC7ydSqSRONrXaJDHArDQO3wE0z_17GabqYuCKQ5znn8J5TcBJTdAC8xmiJMZIfrr_f_DhfEoSHJWGEyH54BhZYUt71BIkTsEBCsE5Izl-A01LuEEI9kmgBfl9VXX2p3ugAdbRwHeZSXfbxFq6iDrviCxxThucNmvNGR-PKR7iCa10cvKqz3cE0wl8pVH3rGjUV6CO88a3Uhc7b8hI8H3Uo7tXjeQZ-Xny6Xn_pLr99_rpeXXamH2TtrNiMVFrDGNeYMEvp2J4IQoxLPXIscbthwzTX3DZAjIYyK6QdNowxS-gZoIe6c5z07kGHoKbstzrvFEZqH5Kq00O2ah-SegypWW8PVmoRqGJ8deaPSTE6UxWmFEnaN-j9AZpyup9dqWrri3Eh6OjSXBQWjNFBcMIb-u4IvUtzbjnuKUqxkITsu4oDZXIqJbtRtcZtDSnWrH14GvjfVo8HJkfq8S__K705SN459yRwKnssBvoXVuitCg
CODEN ITPDE5
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3087016
crossref_primary_10_3390_en12010043
crossref_primary_10_1049_iet_gtd_2017_0474
crossref_primary_10_1049_iet_rpg_2016_0813
crossref_primary_10_1016_j_apenergy_2018_02_094
crossref_primary_10_1002_wene_285
crossref_primary_10_3390_en14010149
Cites_doi 10.1109/TPWRD.2009.2027513
10.1049/iet-rpg.2014.0215
10.1109/61.997911
10.1109/TEC.2013.2295168
10.1109/TPWRD.2009.2028787
10.1109/TIE.2006.878356
10.1016/j.rser.2012.03.039
10.1016/S0378-7796(03)00072-5
10.1016/j.eneco.2012.08.011
10.1109/SCORED.2007.4451410
10.1016/j.enpol.2011.07.027
10.1109/PES.2008.4595977
10.1016/j.enpol.2012.08.022
10.1109/TPWRD.2007.893438
10.1109/ICHQP.2010.5625501
10.1016/j.ijepes.2012.03.018
10.1109/61.853026
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
CorporateAuthor National Renewable Energy Lab. (NREL), Golden, CO (United States)
CorporateAuthor_xml – name: National Renewable Energy Lab. (NREL), Golden, CO (United States)
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
F28
OIOZB
OTOTI
ADTOC
UNPAY
DOI 10.1109/TPWRD.2016.2522946
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
OSTI.GOV - Hybrid
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Civil Engineering Abstracts


Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1937-4208
EndPage 2537
ExternalDocumentID oai:osti.gov:1330934
1330934
4231508621
10_1109_TPWRD_2016_2522946
7394186
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
RIG
F28
ABPTK
OIOZB
OTOTI
ADTOC
UNPAY
ID FETCH-LOGICAL-c469t-d8bf39dc557a125d33fd8b200579af71918b21c5a7a7d1258fc35d89d6b555d23
IEDL.DBID UNPAY
ISSN 0885-8977
1937-4208
IngestDate Sun Oct 26 03:01:20 EDT 2025
Fri May 19 01:56:48 EDT 2023
Sun Sep 28 12:14:41 EDT 2025
Mon Jun 30 10:12:20 EDT 2025
Wed Oct 01 00:43:24 EDT 2025
Thu Apr 24 23:10:43 EDT 2025
Tue Aug 26 16:42:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-d8bf39dc557a125d33fd8b200579af71918b21c5a7a7d1258fc35d89d6b555d23
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
NREL/JA-5D00-65751
AC36-08GO28308
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Wind and Water Technologies Office (EE-4W)
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.osti.gov/biblio/1330934
PQID 1833189226
PQPubID 85445
PageCount 8
ParticipantIDs osti_scitechconnect_1330934
ieee_primary_7394186
proquest_miscellaneous_1855368727
proquest_journals_1833189226
crossref_citationtrail_10_1109_TPWRD_2016_2522946
unpaywall_primary_10_1109_tpwrd_2016_2522946
crossref_primary_10_1109_TPWRD_2016_2522946
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle IEEE transactions on power delivery
PublicationTitleAbbrev TPWRD
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
(ref14) 2010
ref11
ref10
ref2
ref1
ref17
ref16
ref18
wilkes (ref5) 2012
ref8
hastie (ref19) 2009
ref7
bollen (ref20) 2000
ref9
(ref22) 2009
ref4
ref3
ref6
(ref21) 1993
pico (ref23) 2014; 29
References_xml – ident: ref10
  doi: 10.1109/TPWRD.2009.2027513
– ident: ref18
  doi: 10.1049/iet-rpg.2014.0215
– ident: ref17
  doi: 10.1109/61.997911
– volume: 29
  start-page: 392
  year: 2014
  ident: ref23
  article-title: Voltage ride-through capability verification of wind turbines with fully-rated converters using reachability analysis
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2013.2295168
– year: 2010
  ident: ref14
  publication-title: Voltage dip immunity of equipment and installations
– ident: ref7
  doi: 10.1109/TPWRD.2009.2028787
– year: 2012
  ident: ref5
  publication-title: Wind in Power 2012 European Statistics
– ident: ref6
  doi: 10.1109/TIE.2006.878356
– year: 2009
  ident: ref22
  publication-title: Recommended Practice for Monitoring Electric Power Quality
– ident: ref4
  doi: 10.1016/j.rser.2012.03.039
– ident: ref9
  doi: 10.1016/S0378-7796(03)00072-5
– year: 1993
  ident: ref21
  publication-title: Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems
– ident: ref3
  doi: 10.1016/j.eneco.2012.08.011
– ident: ref12
  doi: 10.1109/SCORED.2007.4451410
– ident: ref2
  doi: 10.1016/j.enpol.2011.07.027
– ident: ref13
  doi: 10.1109/PES.2008.4595977
– year: 2009
  ident: ref19
  publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction
– ident: ref1
  doi: 10.1016/j.enpol.2012.08.022
– ident: ref11
  doi: 10.1109/TPWRD.2007.893438
– ident: ref15
  doi: 10.1109/ICHQP.2010.5625501
– ident: ref16
  doi: 10.1016/j.ijepes.2012.03.018
– ident: ref8
  doi: 10.1109/61.853026
– year: 2000
  ident: ref20
  publication-title: Understanding Power Quality Problems&#x2014 Voltage Sags and Interruptions
SSID ssj0004090
Score 2.2604632
Snippet This paper proposes and evaluates an alternative statistical methodology to analyze a large number of voltage dips. For a given voltage dip, a set of lengths...
This study proposes and evaluates an alternative statistical methodology to analyze a large number of voltage dips. For a given voltage dip, a set of lengths...
SourceID unpaywall
osti
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2530
SubjectTerms Circuit faults
Clustering methods
Dipping
Disturbances
Electric potential
Evolution
Graphical representations
Power quality
POWER TRANSMISSION AND DISTRIBUTION
Principal component analysis
Principal components analysis
Trajectories
Trajectory
Voltage
voltage dip
Voltage fluctuations
Voltage measurement
Wind farms
Wind power
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1Nb9QwEIZHbS_AgQIFEVqQkbjRbJM4Tmxu1ZZVhVSEUEt7M46dSIiQrHYTVe2vZyZfbAEhTtlsZiWvXn8848yMAd6oOOU2s4UfZS724zyIfRNa4QfWRaZIVBgZync--5icXsQfrsTVFhxOuTB5nnfBZ_mMPnbv8l1tW9oqO0q5ikOZbMN2KpM-V-tXDmTQ76dIKXyJUDMmyATq6PzT5ecTiuJKZhHihiLY3ViEulNV8FLjmLrDmffaamlurk1Zbiw5i104GxvbR5p8n7VNNrO3v9Vx_N9_8wgeDuzJjvvO8hi28uoJPNioSLgHXwk-u9rNaGgqx-ZlS6UU8CEb65cw5Fx2gkbtKqM-s37HjtkcV0NGQYk3rC7Yl7pscKJCq-WafavYJXr-bGFWP9ZP4WLx_nx-6g-HMPgWPefGdzIruHJWiNQgDDnOC_wq6pJYTZGiu4d3qK5JTerQQBaWCyeVSzIhhIv4M9ip6ip_DgxJzXIpszBKbUyskKJaoUHAQYpBTPEgHFXRdqhQTgdllLrzVAKlOyU1KakHJT14O_1m2dfn-Kf1HukwWQ4SeLBP4muEDqqcaynEyDYa3fdA8diDg7FP6GGArzXOhDgbKoRXD15Pj3Fo0vsWU-V1SzZC8EQiIXpwOPWlP5rZLK9X7k4zX_y9mftwn6z6YJoD2GlWbf4SkajJXnVj4Sfu_wRa
  priority: 102
  providerName: IEEE
Title Statistical and Clustering Analysis for Disturbances: A Case Study of Voltage Dips in Wind Farms
URI https://ieeexplore.ieee.org/document/7394186
https://www.proquest.com/docview/1833189226
https://www.proquest.com/docview/1855368727
https://www.osti.gov/servlets/purl/1330934
https://www.osti.gov/biblio/1330934
UnpaywallVersion submittedVersion
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1937-4208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004090
  issn: 1937-4208
  databaseCode: RIE
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3Lb9NAEIdHJT0ABwoUhOlDi-AGTuPHer3cooSoQqKqUEPLyezDliKMHSW2qvLXM-NHlLYSiFNke6JsNLO738gzvwV4J0MRGG0y19c2dMN0FLrKM9wdGeurLJKer6jf-ctZdDoPP1_xqx142_fCUFllicHd1FTqhc4X5QmmUZh3hw9gN-II3APYnZ-dj7-3fMjdWDbnKyKJCJdeFvetMSN5Ui2vVyQH6kVDH0FDEuZubT_NeSr4QT94izAf1sVS3VyrPN_abGZ7MO2H2daY_BzWlR6a33cUHP_xP57Ckw422biNjmewkxbP4fGWBOE-_CDabMSa0VAVlk3ymrQT8CHrBUsYgi2bolG90hQk649szCa4_TGqQrxhZca-lXmFKxNaLddsUbBLTPXZTK1-rV_AfPbpYnLqdqcuuAZT5cq1sc4CaQ3nQiH92CDI8JbfdK2qTGB-h1foTiWUsGgQZybgNpY20pxz6wcvYVCURfoKGKKZCeJYe74wIcGBQId5CokGsQW5xAGvd0ZiOklyOhkjT5rUZCSTi_PLr9OEHJh0DnTg_eY7y1aQ46_W--TjjaUIZOjFePuAnJMgZZBUrqGaIlMlnYMcOOxDIelm9DrBpQ-XP4m06sCbzWOci_SCRRVpWZMN50EUIxI68GETQveG2UTlrWG-_j_zA3hEl21VzSEMqlWdHiEbVfq4aWA87mbIHxyMB4k
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3fb9MwEMdPYzwMHvg1EGEDjMQbS5fEdmLzNnVUBdYJoY7tzXPsREKEpGoTTeOv55ykoQOEeErTXCRHX__4XHJ3BngtWUJNanI_Si3zWRYwX4eG-4Gxkc5jGUba5TvPTuPpGftwwS-24GDIhcmyrA0-y0buZ_st31amca_KDhMqWSjiW3CbM8Z4l631Kwsy6N6oCMF9gVizTpEJ5OH80_nnYxfHFY8iBA7pcHdjGWr3VcFDhaPqBmnuNOVCX1_pothYdCb3YbZubhdr8m3U1OnI_PitkuP_Ps8DuNfTJznqustD2MrKR3B3oybhLlw6_GyrN6OhLi0ZF40rpoAXybqCCUHSJcdo1CxT12tWb8kRGeN6SFxY4jWpcvKlKmqcqtBqsSJfS3KOvj-Z6OX31WM4m7ybj6d-vw2Db9B3rn0r0pxKazhPNOKQpTTHv6I2jVXnCTp8eIb66kQnFg1Ebii3Qto45ZzbiD6B7bIqs6dAkNUMFSINo8QwRwsJqhVqRBzkGAQVD8K1Ksr0NcrdVhmFan2VQKpWSeWUVL2SHrwZ7ll0FTr-ab3rdBgsewk82HPiK8QOVzvXuCAjUyt04ANJmQf76z6h-iG-UjgX4nwoEV89eDVcxsHpvrjoMqsaZ8M5jQUyogcHQ1_6o5n14mppbzTz2d-b-RJ2pvPZiTp5f_pxD-64O7rQmn3YrpdN9hwBqU5ftOPiJ7OwB6c
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3Lb9NAEIdHJT0AB16lqmmLFsENnMaP9Xq5RQlRhURVoYaWk9mHLUU1dpTYqspfz4wfUVokECfL9lhea2Z3v5FnfwvwToYiMNpkrq9t6IbpKHSVZ7g7MtZXWSQ9X9F65y9n0ek8_HzFr3bgbb8WhsoqSwzupqZSL3S-KE8wjcK8O3wAuxFH4B7A7vzsfPy95UPuxrLZXxFJRLj0s7hfGjOSJ9XyZkVyoF409BE0JGHu1vTT7KeCB3rhHcJ8WBdLdXuj8nxrspk9hWnfzLbG5HpYV3poft1TcPzHdzyDJx1ssnEbHc9hJy1ewOMtCcI9-EG02Yg1o6EqLJvkNWkn4E3WC5YwBFs2RaN6pSlI1h_ZmE1w-mNUhXjLyox9K_MKRya0Wq7ZomCXmOqzmVr9XL-E-ezTxeTU7XZdcA2mypVrY50F0hrOhUL6sUGQ4SW_WbWqMoH5HZ6hO5VQwqJBnJmA21jaSHPOrR_sw6Aoi_QAGKKZCeJYe74wIcGBQId5CokGsQW5xAGvd0ZiOkly2hkjT5rUZCSTi_PLr9OEHJh0DnTg_eaZZSvI8VfrPfLxxlIEMvRivHxIzkmQMkgq11BNkamSzkEOHPWhkHQ9ep3g0IfDn0RadeDN5jb2RfrBooq0rMmG8yCKEQkd-LAJoT-a2UTlnWa--j_zQ3hEp21VzREMqlWdHiMbVfp11zd-A_TYBog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+and+clustering+analysis+for+disturbances%3A+A+case+study+of+voltage+dips+in+wind+farms&rft.jtitle=IEEE+transactions+on+power+delivery&rft.au=Garcia-Sanchez%2C+Tania&rft.au=Gomez-Lazaro%2C+Emilio&rft.au=Muljadi%2C+Eduard&rft.au=Kessler%2C+Mathieu&rft.date=2016-12-01&rft.pub=IEEE&rft.issn=0885-8977&rft.eissn=1937-4208&rft.volume=31&rft.issue=6&rft_id=info:doi/10.1109%2FTPWRD.2016.2522946&rft.externalDocID=1330934
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8977&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8977&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8977&client=summon