Study on Visual Detection Algorithm of Sea Surface Targets Based on Improved YOLOv3

Countries around the world have paid increasing attention to the issue of marine security, and sea target detection is a key task to ensure marine safety. Therefore, it is of great significance to propose an efficient and accurate sea-surface target detection algorithm. The anchor-setting method of...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 24; p. 7263
Main Authors Liu, Tao, Pang, Bo, Ai, Shangmao, Sun, Xiaoqiang
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 18.12.2020
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s20247263

Cover

Abstract Countries around the world have paid increasing attention to the issue of marine security, and sea target detection is a key task to ensure marine safety. Therefore, it is of great significance to propose an efficient and accurate sea-surface target detection algorithm. The anchor-setting method of the traditional YOLO v3 only uses the degree of overlap between the anchor and the ground-truth box as the standard. As a result, the information of some feature maps cannot be used, and the required accuracy of target detection is hard to achieve in a complex sea environment. Therefore, two new anchor-setting methods for the visual detection of sea targets were proposed in this paper: the average method and the select-all method. In addition, cross PANet, a feature fusion structure for cross-feature maps was developed and was used to obtain a better baseline cross YOLO v3, where different anchor-setting methods were combined with a focal loss for experimental comparison in the datasets of sea buoys and existing sea ships, SeaBuoys and SeaShips, respectively. The results showed that the method proposed in this paper could significantly improve the accuracy of YOLO v3 in detecting sea-surface targets, and the highest value of mAP in the two datasets is 98.37% and 90.58%, respectively.
AbstractList Countries around the world have paid increasing attention to the issue of marine security, and sea target detection is a key task to ensure marine safety. Therefore, it is of great significance to propose an efficient and accurate sea-surface target detection algorithm. The anchor-setting method of the traditional YOLO v3 only uses the degree of overlap between the anchor and the ground-truth box as the standard. As a result, the information of some feature maps cannot be used, and the required accuracy of target detection is hard to achieve in a complex sea environment. Therefore, two new anchor-setting methods for the visual detection of sea targets were proposed in this paper: the average method and the select-all method. In addition, cross PANet, a feature fusion structure for cross-feature maps was developed and was used to obtain a better baseline cross YOLO v3, where different anchor-setting methods were combined with a focal loss for experimental comparison in the datasets of sea buoys and existing sea ships, SeaBuoys and SeaShips, respectively. The results showed that the method proposed in this paper could significantly improve the accuracy of YOLO v3 in detecting sea-surface targets, and the highest value of mAP in the two datasets is 98.37% and 90.58%, respectively.
Countries around the world have paid increasing attention to the issue of marine security, and sea target detection is a key task to ensure marine safety. Therefore, it is of great significance to propose an efficient and accurate sea-surface target detection algorithm. The anchor-setting method of the traditional YOLO v3 only uses the degree of overlap between the anchor and the ground-truth box as the standard. As a result, the information of some feature maps cannot be used, and the required accuracy of target detection is hard to achieve in a complex sea environment. Therefore, two new anchor-setting methods for the visual detection of sea targets were proposed in this paper: the average method and the select-all method. In addition, cross PANet, a feature fusion structure for cross-feature maps was developed and was used to obtain a better baseline cross YOLO v3, where different anchor-setting methods were combined with a focal loss for experimental comparison in the datasets of sea buoys and existing sea ships, SeaBuoys and SeaShips, respectively. The results showed that the method proposed in this paper could significantly improve the accuracy of YOLO v3 in detecting sea-surface targets, and the highest value of mAP in the two datasets is 98.37% and 90.58%, respectively.Countries around the world have paid increasing attention to the issue of marine security, and sea target detection is a key task to ensure marine safety. Therefore, it is of great significance to propose an efficient and accurate sea-surface target detection algorithm. The anchor-setting method of the traditional YOLO v3 only uses the degree of overlap between the anchor and the ground-truth box as the standard. As a result, the information of some feature maps cannot be used, and the required accuracy of target detection is hard to achieve in a complex sea environment. Therefore, two new anchor-setting methods for the visual detection of sea targets were proposed in this paper: the average method and the select-all method. In addition, cross PANet, a feature fusion structure for cross-feature maps was developed and was used to obtain a better baseline cross YOLO v3, where different anchor-setting methods were combined with a focal loss for experimental comparison in the datasets of sea buoys and existing sea ships, SeaBuoys and SeaShips, respectively. The results showed that the method proposed in this paper could significantly improve the accuracy of YOLO v3 in detecting sea-surface targets, and the highest value of mAP in the two datasets is 98.37% and 90.58%, respectively.
Author Ai, Shangmao
Pang, Bo
Liu, Tao
Sun, Xiaoqiang
AuthorAffiliation 2 College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
1 College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China; liutao@hrbeu.edu.cn (T.L.); pangbo@hrbeu.edu.cn (B.P.); sunxiaoqiang@hrbeu.edu.cn (X.S.)
AuthorAffiliation_xml – name: 1 College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China; liutao@hrbeu.edu.cn (T.L.); pangbo@hrbeu.edu.cn (B.P.); sunxiaoqiang@hrbeu.edu.cn (X.S.)
– name: 2 College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
Author_xml – sequence: 1
  givenname: Tao
  surname: Liu
  fullname: Liu, Tao
– sequence: 2
  givenname: Bo
  surname: Pang
  fullname: Pang, Bo
– sequence: 3
  givenname: Shangmao
  surname: Ai
  fullname: Ai, Shangmao
– sequence: 4
  givenname: Xiaoqiang
  surname: Sun
  fullname: Sun, Xiaoqiang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33352867$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1rGzEQhkVJaT7aQ_9AWeilKbjRx1orXQpp-mUw-OC00JPQamcdGe3KkbQu_vfR1qlJQulphtEzr94Z6RQd9b4HhF4T_IExiS8ixbSsKGfP0AkpaTkRlOKjB_kxOo1xjTFljIkX6DiHKRW8OkHLZRqaXeH74qeNg3bFZ0hgks2FS7fywaabrvBtsQRdLIfQagPFtQ4rSLH4pCM0Y-us2wS_zfmvxXyxZS_R81a7CK_u4xn68fXL9dX3yXzxbXZ1OZ-Ykss0aaiRXFAuRENaCpRLqHBdMiqYaRk0kgiMgdFWSyoIqQkYSgBP26nJjZixMzTb6zZer9Um2E6HnfLaqj8FH1ZKh2SNA9WAFLJm2GDelllDl6WoG9EKUgtc1zhrvd9rDf1G735r5w6CBKtxy-qw5Qx_3MOboe6gMdCnoN0jB49PenujVn6rqorzkogs8O5eIPjbAWJSnY0GnNM9-CGqfA8rCRaMZPTtE3Tth9DnvY4UkYJLMlJvHjo6WPn70Bk43wMm-BgDtP8d7-IJa2zS45_Iw1j3j447oSnEkg
CitedBy_id crossref_primary_10_1016_j_measurement_2023_112496
crossref_primary_10_1109_ACCESS_2022_3193669
crossref_primary_10_1109_ACCESS_2024_3483014
crossref_primary_10_4108_eetinis_v12i1_6794
crossref_primary_10_1016_j_ifacol_2022_10_433
crossref_primary_10_3390_app12126009
crossref_primary_10_1049_ipr2_13054
crossref_primary_10_3390_s22093271
crossref_primary_10_1007_s11802_023_5296_z
crossref_primary_10_3390_rs14010026
crossref_primary_10_1007_s10846_023_02020_z
crossref_primary_10_1007_s10846_021_01499_8
crossref_primary_10_32877_bt_v6i1_893
crossref_primary_10_3390_jmse10070965
crossref_primary_10_3390_s23198093
crossref_primary_10_1155_2021_5808206
crossref_primary_10_3390_jmse9070753
crossref_primary_10_1007_s11554_024_01445_5
crossref_primary_10_1016_j_ijnaoe_2025_100651
crossref_primary_10_1007_s11554_024_01417_9
crossref_primary_10_1109_MITS_2022_3198334
Cites_doi 10.1002/cpe.5820
10.3390/s20174885
10.1109/TPAMI.2016.2577031
10.1109/CVPR.2017.634
10.1109/CVPR.2017.690
10.1109/CVPR.2016.90
10.1007/978-3-319-46448-0_2
10.1109/LGRS.2018.2882551
10.1109/CVPR.2017.106
10.1109/CVPR42600.2020.01079
10.1109/CVPRW50498.2020.00203
10.1109/CVPR.2016.91
10.1080/01431161.2019.1706781
10.1109/OCEANSE.2019.8867209
10.1016/j.ssci.2020.104812
10.1109/ICCV.2015.169
10.1109/CVPR.2019.00075
10.1109/CVPR.2018.00913
10.1109/CVPR.2015.7298594
10.1109/CVPR.2016.308
10.1109/CVPR.2017.243
10.1155/2020/1520872
10.3390/s20174696
10.3390/s20092547
10.1109/APSAR46974.2019.9048269
10.1609/aaai.v31i1.11231
10.1109/CVPR.2019.00065
10.1109/CVPR.2014.81
10.1109/ICIP.2017.8296411
10.1109/TMM.2018.2865686
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s20247263
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Publicly Available Content Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_de989b30c06f4e05a448bd8f81b80bb0
10.3390/s20247263
PMC7766418
33352867
10_3390_s20247263
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IAO
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c469t-d2c9682688d1f2e269e70b43283cf3ed91800e32fa92811b1ec21e05f5cc96033
IEDL.DBID DOA
ISSN 1424-8220
IngestDate Fri Oct 03 12:53:53 EDT 2025
Sun Oct 26 04:16:49 EDT 2025
Tue Sep 30 16:41:43 EDT 2025
Thu Oct 02 11:09:34 EDT 2025
Tue Oct 07 07:07:51 EDT 2025
Wed Feb 19 02:29:14 EST 2025
Thu Oct 16 04:34:45 EDT 2025
Thu Apr 24 23:10:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords connection of cross-feature maps
ships
target detection
feature fusion
YOLO v3
buoys
anchor-setting
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-d2c9682688d1f2e269e70b43283cf3ed91800e32fa92811b1ec21e05f5cc96033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/de989b30c06f4e05a448bd8f81b80bb0
PMID 33352867
PQID 2471986911
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_de989b30c06f4e05a448bd8f81b80bb0
unpaywall_primary_10_3390_s20247263
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7766418
proquest_miscellaneous_2473410831
proquest_journals_2471986911
pubmed_primary_33352867
crossref_primary_10_3390_s20247263
crossref_citationtrail_10_3390_s20247263
PublicationCentury 2000
PublicationDate 20201218
PublicationDateYYYYMMDD 2020-12-18
PublicationDate_xml – month: 12
  year: 2020
  text: 20201218
  day: 18
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Shao (ref_33) 2018; 20
Dong (ref_26) 2020; 41
ref_14
ref_13
ref_35
ref_12
ref_34
ref_11
ref_10
ref_32
ref_30
Ren (ref_15) 2017; 39
ref_19
ref_18
ref_17
Chen (ref_31) 2020; 130
ref_16
Xiao (ref_23) 2020; 32
ref_25
ref_21
ref_20
ref_1
Zhang (ref_24) 2020; 1
ref_3
ref_2
ref_29
ref_28
Lin (ref_22) 2019; 16
ref_27
ref_9
ref_8
ref_5
ref_4
ref_7
ref_6
References_xml – volume: 32
  start-page: e5820
  year: 2020
  ident: ref_23
  article-title: Improved region convolutional neural network for ship detection in multiresolution synthetic aperture radar images
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.5820
– ident: ref_29
  doi: 10.3390/s20174885
– volume: 39
  start-page: 1137
  year: 2017
  ident: ref_15
  article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref_6
  doi: 10.1109/CVPR.2017.634
– ident: ref_17
  doi: 10.1109/CVPR.2017.690
– ident: ref_5
  doi: 10.1109/CVPR.2016.90
– ident: ref_20
  doi: 10.1007/978-3-319-46448-0_2
– volume: 16
  start-page: 751
  year: 2019
  ident: ref_22
  article-title: Squeeze and Excitation Rank Faster R-CNN for Ship Detection in SAR Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2882551
– ident: ref_9
  doi: 10.1109/CVPR.2017.106
– ident: ref_11
  doi: 10.1109/CVPR42600.2020.01079
– ident: ref_1
– ident: ref_18
– ident: ref_8
  doi: 10.1109/CVPRW50498.2020.00203
– ident: ref_16
  doi: 10.1109/CVPR.2016.91
– volume: 41
  start-page: 3614
  year: 2020
  ident: ref_26
  article-title: Learning a robust CNN-based rotation insensitive model for ship detection in VHR remote sensing images
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1706781
– ident: ref_21
  doi: 10.1109/OCEANSE.2019.8867209
– ident: ref_12
– volume: 130
  start-page: 104812
  year: 2020
  ident: ref_31
  article-title: Deep learning for autonomous ship-oriented small ship detection
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2020.104812
– ident: ref_14
  doi: 10.1109/ICCV.2015.169
– ident: ref_34
  doi: 10.1109/CVPR.2019.00075
– ident: ref_10
  doi: 10.1109/CVPR.2018.00913
– ident: ref_2
  doi: 10.1109/CVPR.2015.7298594
– volume: 1
  start-page: 1
  year: 2020
  ident: ref_24
  article-title: Comparison of two deep learning methods for ship target recognition with optical remotely sensed data
  publication-title: Neural Comput. Appl.
– ident: ref_3
  doi: 10.1109/CVPR.2016.308
– ident: ref_7
  doi: 10.1109/CVPR.2017.243
– ident: ref_27
  doi: 10.1155/2020/1520872
– ident: ref_28
  doi: 10.3390/s20174696
– ident: ref_30
  doi: 10.3390/s20092547
– ident: ref_19
– ident: ref_32
  doi: 10.1109/APSAR46974.2019.9048269
– ident: ref_4
  doi: 10.1609/aaai.v31i1.11231
– ident: ref_35
  doi: 10.1109/CVPR.2019.00065
– ident: ref_13
  doi: 10.1109/CVPR.2014.81
– ident: ref_25
  doi: 10.1109/ICIP.2017.8296411
– volume: 20
  start-page: 2593
  year: 2018
  ident: ref_33
  article-title: SeaShips: A Large-Scale Precisely Annotated Dataset for Ship Detection
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2018.2865686
SSID ssj0023338
Score 2.476508
Snippet Countries around the world have paid increasing attention to the issue of marine security, and sea target detection is a key task to ensure marine safety....
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 7263
SubjectTerms Accuracy
Algorithms
anchor-setting
buoys
connection of cross-feature maps
Datasets
feature fusion
Methods
Neural networks
Remote sensing
Semantics
Sensors
target detection
YOLO v3
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QE4IN6kFGQeBy5RYztx7ANCXWhVIdgitkXlFDmO3VZaku1uAuq_Z5xNQlcUblEylia2xzOfPf4G4HUS59oabcPEOR2iP45ClbA0VBqRmIgjGzl_d_jzRBwcxx9PkpMNmPR3YXxaZb8mtgt1URm_R77DcBVVUqBtvptfhL5qlD9d7Uto6K60QvG2pRi7AZvMM2ONYHO8N_nydYBgHBHZil-II9jfWSL0j1Mm-JpXasn7r4s4_06cvNmUc335S89mV7zS_l2404WTZHc1_vdgw5b34fYVksEHMPWpgpekKsm382WDwh9s3eZflWR3doq_WJ_9IJUjU6vJtFk4bSw5avPDl2SMPq7wTVd7D_j8_fDT4U_-EI73947eH4RdKYXQIP6tw4IZJRBJSFlQxywTyqZRHnMMLozjtlAUA0fLmdOKSUpzag2jNkpcYrBhxPkjGJVVaZ8ASZWz1OSInKlGgy_yWGvmMKxixkR5rgN403dlZjqecV_uYpYh3vC9ng29HsDLQXS-Ite4Tmjsx2MQ8HzY7YtqcZp15pUVVkmV88hEwsWot0bUmRfSYVAuUakogO1-NLPOSJfZnykVwIvhM5qXPzPRpa2aVgb9vC_HFsDj1eAPmnB_X02KNIB0bVqsqbr-pTw_aym801SImMoAXg0T6N89sPV_5Z_CLeY3ASgLqdyGUb1o7DOMlOr8eTf9fwMdOBMy
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKOQAHxJtAQeZx4BLwI3HiA0ItUFWI0sN2UTlFtmO3K6VJm02A_feMk2zUiOXGLYrH0WjGk5nPHs8g9DqOtLJG2TB2ToXgj0koY5aEUgESExGxxPm7w4ffxME8-nISn2yhdY_NQYDLjdDO95Oa18Xb35erD2Dw7z3iBMj-bgkAPkqY4NfQdXBQ0ndwOIzGwwTGAYb1RYWm5BNX1FXs3xRm_p0teaMtL9TqlyqKK65o_w66PcSQeLdX-l20Zct76NaVyoL30cznB65wVeLvi2ULxJ9s0yVdlXi3OK3qRXN2jiuHZ1bhWVs7ZSw-7pLCl3gPHFvup_YbDvD84-jr0U_-AM33Px9_PAiH_gmhAdDbhDkzUgB8SNOcOmaZkDYhOuIQURjHbS4pRIuWM6ckSynV1BpGLYldbGAi4fwh2i6r0j5GOJHOUqMBLlMFVp7rSCnmIJZixhCtVYDerEWZmaG4uO9xUWQAMrzUs1HqAXo5kl70FTU2Ee15fYwEvgh296KqT7PBprLcylRqTgwRLgK-FUBNnacOIvEUmCIB2llrM1svrAy-T2Uq4B8foBfjMNiUPyhRpa3ajgacu-_BFqBHvfJHTri_pJaKJEDJZFlMWJ2OlIuzrm53kggR0TRAr8YF9G8JPPkfEniKbjK_P0BZSNMdtN3UrX0GQVSjn3cm8gcNeBtB
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9B9wA88D0IDBQ-HnjJajuJEz-hDpgmBBtSV7Q9RbZjbxUlqdpkaPz1nJM0amFISEh5iOJzZMdn3-_n3J0BXseRkkZLE8TWygDtMQlEzJJASGRiPCKGWBc7_PmQH0yijyfxyVoUv3OrRCo-bRZpF4UVoAUjQ3dFw4TxcDjP7duLbi-JcrRgDlPw67DFY0TjA9iaHH4ZnTZBRV3tNqFQiOx-uESuH7nXbJihJlv_VRDzT0_JG3Uxl5c_5Gy2Zob274BcdaD1Pvm2W1dqV__8Lbfj__TwLtzuMKo_apXqHlwzxX24tZa58AGMnf_hpV8W_tfpskbh96ZqnLoKfzQ7KxfT6vy7X1p_bKQ_rhdWauMfN07nS38PDWfuqrYbGnh_evTp6CJ8CJP9D8fvDoLufIZAI6mugpxpwZGepGlOLTOMC5MQFYWIWLQNTS4oolETMisFSylV1GhGDYltrLEiCcNtGBRlYR6DnwhrqFZIx6nEVSRXkZTMIlZjWhOlpAdvVsOV6S55uTtDY5YhiXEjm_Uj68HLXnTeZuy4SmjPjXkv4JJsNw_KxVnWzdksNyIVKiSacBthuyVSWZWnFpF-io0iHuysNCbrZv4yw_dTkXK0IR686ItxzrofMbIwZd3IIHhwZ7x58KhVsL4loQuCS3niQbKhehtN3SwppudNXvAk4TyiqQeveiX9-xd48k9ST-EmcxsMlAU03YFBtajNM0RhlXreTbRfiWYqsg
  priority: 102
  providerName: Unpaywall
Title Study on Visual Detection Algorithm of Sea Surface Targets Based on Improved YOLOv3
URI https://www.ncbi.nlm.nih.gov/pubmed/33352867
https://www.proquest.com/docview/2471986911
https://www.proquest.com/docview/2473410831
https://pubmed.ncbi.nlm.nih.gov/PMC7766418
https://www.mdpi.com/1424-8220/20/24/7263/pdf?version=1608274166
https://doaj.org/article/de989b30c06f4e05a448bd8f81b80bb0
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (Free e-resource, activated by CARLI)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgPAAPiM8RGJX5eOAlmj8Sx35sYWVCrJvoirqnyHFsVqkkU5uA9t9zTtKoFUO88GJF9jmyzne5-znnO4TexVGmrdE2jJ3TIdhjEqqYJaHSgMRERCxx_u7wyUQcz6LP83i-VerLx4S16YFbxh3mVkmVcWKIcJElsQY8keXSgbslSZY1aJ1ItQFTHdTigLzaPEIcQP3hGiB-lDDBd6xPk6T_Js_yzwDJu3Vxpa9_6eVyy_qMH6IHnduIh-1yH6FbtniM7m8lE3yCpj4k8BqXBf62WNdA_NFWTZxVgYfL7-VqUV3-wKXDU6vxtF45bSw-b-LA13gEtiz3U9szBni-OP1y-pM_RbPx0fmH47ArmRAawLlVmDOjBCAGKXPqmGVC2YRkEQcnwjhuc0XBQbScOa2YpDSj1jAKXHWxgYmE82dorygL-xzhRDlLTQYImWpQ7DyLtGYO3CdmDDBeB-j9hpWp6fKJ-7IWyxRwhed62nM9QG960qs2icZNRCO_Hz2Bz3vddIA0pJ00pP-ShgAdbHYz7ZRxncL7qZICPusBet0Pgxr5fyO6sGXd0IA992XXArTfbn6_Eu7vpUmRBCjZEYudpe6OFIvLJlV3kggRURmgt70A_Z0DL_4HB16ie8wfCVAWUnmA9qpVbV-B31RlA3Q7mSfQyvGnAbozOpqcfR00agPtSSShbzY5G178BtG0G4w
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSVQ-GAeBNawLwkLlH9yMsHhFpKtaXb9rBbtD0Fx7HbSttk2QfV_hTfyDjZpF1RuPUWxWNpNO-xxzMA78MgU0Yr44fWKh_9MfVlyGNfKszEooAaat3b4YPDqHMcfBuEgxX43byFcWWVjU2sDHVeandGvsnRisokQt38PPrpu6lR7na1GaFRi8W-mV9iyjb5tLeD_P3A-e7X_peOv5gq4GtMBad-zrWMMKhOkpxZbngkTUyzQKCf1VaYXDKMoYzgVkmeMJYxozkzNLShxo3UHYCiyb8TCLQlqD_x4CrBE5jv1d2LhJB0c8LRAcY8Eks-rxoNcFM8-3dZ5tqsGKn5pRoOr_m83QdwfxGskq1auh7Ciikewb1rLQwfQ88VIs5JWZDv55MZAu-YaVXdVZCt4SkScHp2QUpLekaR3mxslTakX1WfT8g2etDcba1PNvD75Kh79Es8geNbIelTWC3KwjwHEktrmM4wL2cKzUmeBUpxi0Eb15pmmfLgY0PKVC-6mLthGsMUsxlH9bSlugdvW9BR3brjJqBtx48WwHXbrn6U49N0obxpbmQiM0E1jWyAeCvMabM8sRjyJ4gU9WCj4Wa6MAGT9EpgPXjTLqPyuhsZVZhyVsFgFOGGvXnwrGZ-i4lwr-GSKPYgXhKLJVSXV4rzs6pBeBxHUcASD961AvRvCrz4P_KvYa3TP-im3b3D_XW4y91xA-M-SzZgdTqemZcYk02zV5UiEPhx25r3Bw-YSDU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFQVCegB8SZQwLwkLtHaztMHhFqWVUtLi7RttZyC49htpW2y7Gap9tf4OsZ5tSsKt96ieCyN5j32eAbgbeCnUiup3cAY6aI_pq4IeOQKiZlY6FNNjX07_HUv3Dr0v4yC0Qr8bt_C2LLK1iZWhjorlD0j73G0oiIOUTd7pimL-NYffJz8dO0EKXvT2o7TqEVkRy_OMX2bfdjuI6_fcT74fPBpy20mDLgK08LSzbgSIQbYcZwxwzUPhY5o6nvoc5XxdCYYxlPa40YKHjOWMq040zQwgcKN1B6Govm_EXmesOWE0egi2fMw96s7GeEi7c04OsOIh96S_6vGBFwV2_5donlrnk_k4lyOx5f83-Au3GkCV7JRS9o9WNH5fVi71M7wAQxtUeKCFDk5Op3NEbivy6rSKycb42MkYHlyRgpDhlqS4XxqpNLkoKpEn5FN9KaZ3VqfcuD39_3d_V_eQzi8FpI-gtW8yPUTIJEwmqkUc3Qm0bRkqS8lNxjAcaVomkoH3rekTFTT0dwO1hgnmNlYqicd1R143YFO6jYeVwFtWn50ALbzdvWjmB4njSInmRaxSD2qaGh8xFtifptmscHwP0akqAPrLTeTxhzMkgvhdeBVt4yKbG9nZK6LeQWDEYUd_ObA45r5HSaefRkXh5ED0ZJYLKG6vJKfnlTNwqMoDH0WO_CmE6B_U-Dp_5F_CTdR55Ld7b2dZ3Cb25MHxl0Wr8NqOZ3r5xielemLSg8I_LhuxfsDiPxMeA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9B9wA88D0IDBQ-HnjJajuJEz-hDpgmBBtSV7Q9RbZjbxUlqdpkaPz1nJM0amFISEh5iOJzZMdn3-_n3J0BXseRkkZLE8TWygDtMQlEzJJASGRiPCKGWBc7_PmQH0yijyfxyVoUv3OrRCo-bRZpF4UVoAUjQ3dFw4TxcDjP7duLbi-JcrRgDlPw67DFY0TjA9iaHH4ZnTZBRV3tNqFQiOx-uESuH7nXbJihJlv_VRDzT0_JG3Uxl5c_5Gy2Zob274BcdaD1Pvm2W1dqV__8Lbfj__TwLtzuMKo_apXqHlwzxX24tZa58AGMnf_hpV8W_tfpskbh96ZqnLoKfzQ7KxfT6vy7X1p_bKQ_rhdWauMfN07nS38PDWfuqrYbGnh_evTp6CJ8CJP9D8fvDoLufIZAI6mugpxpwZGepGlOLTOMC5MQFYWIWLQNTS4oolETMisFSylV1GhGDYltrLEiCcNtGBRlYR6DnwhrqFZIx6nEVSRXkZTMIlZjWhOlpAdvVsOV6S55uTtDY5YhiXEjm_Uj68HLXnTeZuy4SmjPjXkv4JJsNw_KxVnWzdksNyIVKiSacBthuyVSWZWnFpF-io0iHuysNCbrZv4yw_dTkXK0IR686ItxzrofMbIwZd3IIHhwZ7x58KhVsL4loQuCS3niQbKhehtN3SwppudNXvAk4TyiqQeveiX9-xd48k9ST-EmcxsMlAU03YFBtajNM0RhlXreTbRfiWYqsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+Visual+Detection+Algorithm+of+Sea+Surface+Targets+Based+on+Improved+YOLOv3&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Tao+Liu&rft.au=Bo+Pang&rft.au=Shangmao+Ai&rft.au=Xiaoqiang+Sun&rft.date=2020-12-18&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=20&rft.issue=24&rft.spage=7263&rft_id=info:doi/10.3390%2Fs20247263&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_de989b30c06f4e05a448bd8f81b80bb0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon