Study on Visual Detection Algorithm of Sea Surface Targets Based on Improved YOLOv3
Countries around the world have paid increasing attention to the issue of marine security, and sea target detection is a key task to ensure marine safety. Therefore, it is of great significance to propose an efficient and accurate sea-surface target detection algorithm. The anchor-setting method of...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 20; no. 24; p. 7263 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
18.12.2020
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s20247263 |
Cover
| Abstract | Countries around the world have paid increasing attention to the issue of marine security, and sea target detection is a key task to ensure marine safety. Therefore, it is of great significance to propose an efficient and accurate sea-surface target detection algorithm. The anchor-setting method of the traditional YOLO v3 only uses the degree of overlap between the anchor and the ground-truth box as the standard. As a result, the information of some feature maps cannot be used, and the required accuracy of target detection is hard to achieve in a complex sea environment. Therefore, two new anchor-setting methods for the visual detection of sea targets were proposed in this paper: the average method and the select-all method. In addition, cross PANet, a feature fusion structure for cross-feature maps was developed and was used to obtain a better baseline cross YOLO v3, where different anchor-setting methods were combined with a focal loss for experimental comparison in the datasets of sea buoys and existing sea ships, SeaBuoys and SeaShips, respectively. The results showed that the method proposed in this paper could significantly improve the accuracy of YOLO v3 in detecting sea-surface targets, and the highest value of mAP in the two datasets is 98.37% and 90.58%, respectively. |
|---|---|
| AbstractList | Countries around the world have paid increasing attention to the issue of marine security, and sea target detection is a key task to ensure marine safety. Therefore, it is of great significance to propose an efficient and accurate sea-surface target detection algorithm. The anchor-setting method of the traditional YOLO v3 only uses the degree of overlap between the anchor and the ground-truth box as the standard. As a result, the information of some feature maps cannot be used, and the required accuracy of target detection is hard to achieve in a complex sea environment. Therefore, two new anchor-setting methods for the visual detection of sea targets were proposed in this paper: the average method and the select-all method. In addition, cross PANet, a feature fusion structure for cross-feature maps was developed and was used to obtain a better baseline cross YOLO v3, where different anchor-setting methods were combined with a focal loss for experimental comparison in the datasets of sea buoys and existing sea ships, SeaBuoys and SeaShips, respectively. The results showed that the method proposed in this paper could significantly improve the accuracy of YOLO v3 in detecting sea-surface targets, and the highest value of mAP in the two datasets is 98.37% and 90.58%, respectively. Countries around the world have paid increasing attention to the issue of marine security, and sea target detection is a key task to ensure marine safety. Therefore, it is of great significance to propose an efficient and accurate sea-surface target detection algorithm. The anchor-setting method of the traditional YOLO v3 only uses the degree of overlap between the anchor and the ground-truth box as the standard. As a result, the information of some feature maps cannot be used, and the required accuracy of target detection is hard to achieve in a complex sea environment. Therefore, two new anchor-setting methods for the visual detection of sea targets were proposed in this paper: the average method and the select-all method. In addition, cross PANet, a feature fusion structure for cross-feature maps was developed and was used to obtain a better baseline cross YOLO v3, where different anchor-setting methods were combined with a focal loss for experimental comparison in the datasets of sea buoys and existing sea ships, SeaBuoys and SeaShips, respectively. The results showed that the method proposed in this paper could significantly improve the accuracy of YOLO v3 in detecting sea-surface targets, and the highest value of mAP in the two datasets is 98.37% and 90.58%, respectively.Countries around the world have paid increasing attention to the issue of marine security, and sea target detection is a key task to ensure marine safety. Therefore, it is of great significance to propose an efficient and accurate sea-surface target detection algorithm. The anchor-setting method of the traditional YOLO v3 only uses the degree of overlap between the anchor and the ground-truth box as the standard. As a result, the information of some feature maps cannot be used, and the required accuracy of target detection is hard to achieve in a complex sea environment. Therefore, two new anchor-setting methods for the visual detection of sea targets were proposed in this paper: the average method and the select-all method. In addition, cross PANet, a feature fusion structure for cross-feature maps was developed and was used to obtain a better baseline cross YOLO v3, where different anchor-setting methods were combined with a focal loss for experimental comparison in the datasets of sea buoys and existing sea ships, SeaBuoys and SeaShips, respectively. The results showed that the method proposed in this paper could significantly improve the accuracy of YOLO v3 in detecting sea-surface targets, and the highest value of mAP in the two datasets is 98.37% and 90.58%, respectively. |
| Author | Ai, Shangmao Pang, Bo Liu, Tao Sun, Xiaoqiang |
| AuthorAffiliation | 2 College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China 1 College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China; liutao@hrbeu.edu.cn (T.L.); pangbo@hrbeu.edu.cn (B.P.); sunxiaoqiang@hrbeu.edu.cn (X.S.) |
| AuthorAffiliation_xml | – name: 1 College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China; liutao@hrbeu.edu.cn (T.L.); pangbo@hrbeu.edu.cn (B.P.); sunxiaoqiang@hrbeu.edu.cn (X.S.) – name: 2 College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China |
| Author_xml | – sequence: 1 givenname: Tao surname: Liu fullname: Liu, Tao – sequence: 2 givenname: Bo surname: Pang fullname: Pang, Bo – sequence: 3 givenname: Shangmao surname: Ai fullname: Ai, Shangmao – sequence: 4 givenname: Xiaoqiang surname: Sun fullname: Sun, Xiaoqiang |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33352867$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1rGzEQhkVJaT7aQ_9AWeilKbjRx1orXQpp-mUw-OC00JPQamcdGe3KkbQu_vfR1qlJQulphtEzr94Z6RQd9b4HhF4T_IExiS8ixbSsKGfP0AkpaTkRlOKjB_kxOo1xjTFljIkX6DiHKRW8OkHLZRqaXeH74qeNg3bFZ0hgks2FS7fywaabrvBtsQRdLIfQagPFtQ4rSLH4pCM0Y-us2wS_zfmvxXyxZS_R81a7CK_u4xn68fXL9dX3yXzxbXZ1OZ-Ykss0aaiRXFAuRENaCpRLqHBdMiqYaRk0kgiMgdFWSyoIqQkYSgBP26nJjZixMzTb6zZer9Um2E6HnfLaqj8FH1ZKh2SNA9WAFLJm2GDelllDl6WoG9EKUgtc1zhrvd9rDf1G735r5w6CBKtxy-qw5Qx_3MOboe6gMdCnoN0jB49PenujVn6rqorzkogs8O5eIPjbAWJSnY0GnNM9-CGqfA8rCRaMZPTtE3Tth9DnvY4UkYJLMlJvHjo6WPn70Bk43wMm-BgDtP8d7-IJa2zS45_Iw1j3j447oSnEkg |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2023_112496 crossref_primary_10_1109_ACCESS_2022_3193669 crossref_primary_10_1109_ACCESS_2024_3483014 crossref_primary_10_4108_eetinis_v12i1_6794 crossref_primary_10_1016_j_ifacol_2022_10_433 crossref_primary_10_3390_app12126009 crossref_primary_10_1049_ipr2_13054 crossref_primary_10_3390_s22093271 crossref_primary_10_1007_s11802_023_5296_z crossref_primary_10_3390_rs14010026 crossref_primary_10_1007_s10846_023_02020_z crossref_primary_10_1007_s10846_021_01499_8 crossref_primary_10_32877_bt_v6i1_893 crossref_primary_10_3390_jmse10070965 crossref_primary_10_3390_s23198093 crossref_primary_10_1155_2021_5808206 crossref_primary_10_3390_jmse9070753 crossref_primary_10_1007_s11554_024_01445_5 crossref_primary_10_1016_j_ijnaoe_2025_100651 crossref_primary_10_1007_s11554_024_01417_9 crossref_primary_10_1109_MITS_2022_3198334 |
| Cites_doi | 10.1002/cpe.5820 10.3390/s20174885 10.1109/TPAMI.2016.2577031 10.1109/CVPR.2017.634 10.1109/CVPR.2017.690 10.1109/CVPR.2016.90 10.1007/978-3-319-46448-0_2 10.1109/LGRS.2018.2882551 10.1109/CVPR.2017.106 10.1109/CVPR42600.2020.01079 10.1109/CVPRW50498.2020.00203 10.1109/CVPR.2016.91 10.1080/01431161.2019.1706781 10.1109/OCEANSE.2019.8867209 10.1016/j.ssci.2020.104812 10.1109/ICCV.2015.169 10.1109/CVPR.2019.00075 10.1109/CVPR.2018.00913 10.1109/CVPR.2015.7298594 10.1109/CVPR.2016.308 10.1109/CVPR.2017.243 10.1155/2020/1520872 10.3390/s20174696 10.3390/s20092547 10.1109/APSAR46974.2019.9048269 10.1609/aaai.v31i1.11231 10.1109/CVPR.2019.00065 10.1109/CVPR.2014.81 10.1109/ICIP.2017.8296411 10.1109/TMM.2018.2865686 |
| ContentType | Journal Article |
| Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
| Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s20247263 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_de989b30c06f4e05a448bd8f81b80bb0 10.3390/s20247263 PMC7766418 33352867 10_3390_s20247263 |
| Genre | Journal Article |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IAO IPNFZ ITC RIG UNPAY |
| ID | FETCH-LOGICAL-c469t-d2c9682688d1f2e269e70b43283cf3ed91800e32fa92811b1ec21e05f5cc96033 |
| IEDL.DBID | DOA |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:53:53 EDT 2025 Sun Oct 26 04:16:49 EDT 2025 Tue Sep 30 16:41:43 EDT 2025 Thu Oct 02 11:09:34 EDT 2025 Tue Oct 07 07:07:51 EDT 2025 Wed Feb 19 02:29:14 EST 2025 Thu Oct 16 04:34:45 EDT 2025 Thu Apr 24 23:10:51 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Keywords | connection of cross-feature maps ships target detection feature fusion YOLO v3 buoys anchor-setting |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-d2c9682688d1f2e269e70b43283cf3ed91800e32fa92811b1ec21e05f5cc96033 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/de989b30c06f4e05a448bd8f81b80bb0 |
| PMID | 33352867 |
| PQID | 2471986911 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_de989b30c06f4e05a448bd8f81b80bb0 unpaywall_primary_10_3390_s20247263 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7766418 proquest_miscellaneous_2473410831 proquest_journals_2471986911 pubmed_primary_33352867 crossref_primary_10_3390_s20247263 crossref_citationtrail_10_3390_s20247263 |
| PublicationCentury | 2000 |
| PublicationDate | 20201218 |
| PublicationDateYYYYMMDD | 2020-12-18 |
| PublicationDate_xml | – month: 12 year: 2020 text: 20201218 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Shao (ref_33) 2018; 20 Dong (ref_26) 2020; 41 ref_14 ref_13 ref_35 ref_12 ref_34 ref_11 ref_10 ref_32 ref_30 Ren (ref_15) 2017; 39 ref_19 ref_18 ref_17 Chen (ref_31) 2020; 130 ref_16 Xiao (ref_23) 2020; 32 ref_25 ref_21 ref_20 ref_1 Zhang (ref_24) 2020; 1 ref_3 ref_2 ref_29 ref_28 Lin (ref_22) 2019; 16 ref_27 ref_9 ref_8 ref_5 ref_4 ref_7 ref_6 |
| References_xml | – volume: 32 start-page: e5820 year: 2020 ident: ref_23 article-title: Improved region convolutional neural network for ship detection in multiresolution synthetic aperture radar images publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.5820 – ident: ref_29 doi: 10.3390/s20174885 – volume: 39 start-page: 1137 year: 2017 ident: ref_15 article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – ident: ref_6 doi: 10.1109/CVPR.2017.634 – ident: ref_17 doi: 10.1109/CVPR.2017.690 – ident: ref_5 doi: 10.1109/CVPR.2016.90 – ident: ref_20 doi: 10.1007/978-3-319-46448-0_2 – volume: 16 start-page: 751 year: 2019 ident: ref_22 article-title: Squeeze and Excitation Rank Faster R-CNN for Ship Detection in SAR Images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2882551 – ident: ref_9 doi: 10.1109/CVPR.2017.106 – ident: ref_11 doi: 10.1109/CVPR42600.2020.01079 – ident: ref_1 – ident: ref_18 – ident: ref_8 doi: 10.1109/CVPRW50498.2020.00203 – ident: ref_16 doi: 10.1109/CVPR.2016.91 – volume: 41 start-page: 3614 year: 2020 ident: ref_26 article-title: Learning a robust CNN-based rotation insensitive model for ship detection in VHR remote sensing images publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1706781 – ident: ref_21 doi: 10.1109/OCEANSE.2019.8867209 – ident: ref_12 – volume: 130 start-page: 104812 year: 2020 ident: ref_31 article-title: Deep learning for autonomous ship-oriented small ship detection publication-title: Saf. Sci. doi: 10.1016/j.ssci.2020.104812 – ident: ref_14 doi: 10.1109/ICCV.2015.169 – ident: ref_34 doi: 10.1109/CVPR.2019.00075 – ident: ref_10 doi: 10.1109/CVPR.2018.00913 – ident: ref_2 doi: 10.1109/CVPR.2015.7298594 – volume: 1 start-page: 1 year: 2020 ident: ref_24 article-title: Comparison of two deep learning methods for ship target recognition with optical remotely sensed data publication-title: Neural Comput. Appl. – ident: ref_3 doi: 10.1109/CVPR.2016.308 – ident: ref_7 doi: 10.1109/CVPR.2017.243 – ident: ref_27 doi: 10.1155/2020/1520872 – ident: ref_28 doi: 10.3390/s20174696 – ident: ref_30 doi: 10.3390/s20092547 – ident: ref_19 – ident: ref_32 doi: 10.1109/APSAR46974.2019.9048269 – ident: ref_4 doi: 10.1609/aaai.v31i1.11231 – ident: ref_35 doi: 10.1109/CVPR.2019.00065 – ident: ref_13 doi: 10.1109/CVPR.2014.81 – ident: ref_25 doi: 10.1109/ICIP.2017.8296411 – volume: 20 start-page: 2593 year: 2018 ident: ref_33 article-title: SeaShips: A Large-Scale Precisely Annotated Dataset for Ship Detection publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2018.2865686 |
| SSID | ssj0023338 |
| Score | 2.476508 |
| Snippet | Countries around the world have paid increasing attention to the issue of marine security, and sea target detection is a key task to ensure marine safety.... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 7263 |
| SubjectTerms | Accuracy Algorithms anchor-setting buoys connection of cross-feature maps Datasets feature fusion Methods Neural networks Remote sensing Semantics Sensors target detection YOLO v3 |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QE4IN6kFGQeBy5RYztx7ANCXWhVIdgitkXlFDmO3VZaku1uAuq_Z5xNQlcUblEylia2xzOfPf4G4HUS59oabcPEOR2iP45ClbA0VBqRmIgjGzl_d_jzRBwcxx9PkpMNmPR3YXxaZb8mtgt1URm_R77DcBVVUqBtvptfhL5qlD9d7Uto6K60QvG2pRi7AZvMM2ONYHO8N_nydYBgHBHZil-II9jfWSL0j1Mm-JpXasn7r4s4_06cvNmUc335S89mV7zS_l2404WTZHc1_vdgw5b34fYVksEHMPWpgpekKsm382WDwh9s3eZflWR3doq_WJ_9IJUjU6vJtFk4bSw5avPDl2SMPq7wTVd7D_j8_fDT4U_-EI73947eH4RdKYXQIP6tw4IZJRBJSFlQxywTyqZRHnMMLozjtlAUA0fLmdOKSUpzag2jNkpcYrBhxPkjGJVVaZ8ASZWz1OSInKlGgy_yWGvmMKxixkR5rgN403dlZjqecV_uYpYh3vC9ng29HsDLQXS-Ite4Tmjsx2MQ8HzY7YtqcZp15pUVVkmV88hEwsWot0bUmRfSYVAuUakogO1-NLPOSJfZnykVwIvhM5qXPzPRpa2aVgb9vC_HFsDj1eAPmnB_X02KNIB0bVqsqbr-pTw_aym801SImMoAXg0T6N89sPV_5Z_CLeY3ASgLqdyGUb1o7DOMlOr8eTf9fwMdOBMy priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKOQAHxJtAQeZx4BLwI3HiA0ItUFWI0sN2UTlFtmO3K6VJm02A_feMk2zUiOXGLYrH0WjGk5nPHs8g9DqOtLJG2TB2ToXgj0koY5aEUgESExGxxPm7w4ffxME8-nISn2yhdY_NQYDLjdDO95Oa18Xb35erD2Dw7z3iBMj-bgkAPkqY4NfQdXBQ0ndwOIzGwwTGAYb1RYWm5BNX1FXs3xRm_p0teaMtL9TqlyqKK65o_w66PcSQeLdX-l20Zct76NaVyoL30cznB65wVeLvi2ULxJ9s0yVdlXi3OK3qRXN2jiuHZ1bhWVs7ZSw-7pLCl3gPHFvup_YbDvD84-jr0U_-AM33Px9_PAiH_gmhAdDbhDkzUgB8SNOcOmaZkDYhOuIQURjHbS4pRIuWM6ckSynV1BpGLYldbGAi4fwh2i6r0j5GOJHOUqMBLlMFVp7rSCnmIJZixhCtVYDerEWZmaG4uO9xUWQAMrzUs1HqAXo5kl70FTU2Ee15fYwEvgh296KqT7PBprLcylRqTgwRLgK-FUBNnacOIvEUmCIB2llrM1svrAy-T2Uq4B8foBfjMNiUPyhRpa3ajgacu-_BFqBHvfJHTri_pJaKJEDJZFlMWJ2OlIuzrm53kggR0TRAr8YF9G8JPPkfEniKbjK_P0BZSNMdtN3UrX0GQVSjn3cm8gcNeBtB priority: 102 providerName: Scholars Portal – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9B9wA88D0IDBQ-HnjJajuJEz-hDpgmBBtSV7Q9RbZjbxUlqdpkaPz1nJM0amFISEh5iOJzZMdn3-_n3J0BXseRkkZLE8TWygDtMQlEzJJASGRiPCKGWBc7_PmQH0yijyfxyVoUv3OrRCo-bRZpF4UVoAUjQ3dFw4TxcDjP7duLbi-JcrRgDlPw67DFY0TjA9iaHH4ZnTZBRV3tNqFQiOx-uESuH7nXbJihJlv_VRDzT0_JG3Uxl5c_5Gy2Zob274BcdaD1Pvm2W1dqV__8Lbfj__TwLtzuMKo_apXqHlwzxX24tZa58AGMnf_hpV8W_tfpskbh96ZqnLoKfzQ7KxfT6vy7X1p_bKQ_rhdWauMfN07nS38PDWfuqrYbGnh_evTp6CJ8CJP9D8fvDoLufIZAI6mugpxpwZGepGlOLTOMC5MQFYWIWLQNTS4oolETMisFSylV1GhGDYltrLEiCcNtGBRlYR6DnwhrqFZIx6nEVSRXkZTMIlZjWhOlpAdvVsOV6S55uTtDY5YhiXEjm_Uj68HLXnTeZuy4SmjPjXkv4JJsNw_KxVnWzdksNyIVKiSacBthuyVSWZWnFpF-io0iHuysNCbrZv4yw_dTkXK0IR686ItxzrofMbIwZd3IIHhwZ7x58KhVsL4loQuCS3niQbKhehtN3SwppudNXvAk4TyiqQeveiX9-xd48k9ST-EmcxsMlAU03YFBtajNM0RhlXreTbRfiWYqsg priority: 102 providerName: Unpaywall |
| Title | Study on Visual Detection Algorithm of Sea Surface Targets Based on Improved YOLOv3 |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33352867 https://www.proquest.com/docview/2471986911 https://www.proquest.com/docview/2473410831 https://pubmed.ncbi.nlm.nih.gov/PMC7766418 https://www.mdpi.com/1424-8220/20/24/7263/pdf?version=1608274166 https://doaj.org/article/de989b30c06f4e05a448bd8f81b80bb0 |
| UnpaywallVersion | publishedVersion |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (Free e-resource, activated by CARLI) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgPAAPiM8RGJX5eOAlmj8Sx35sYWVCrJvoirqnyHFsVqkkU5uA9t9zTtKoFUO88GJF9jmyzne5-znnO4TexVGmrdE2jJ3TIdhjEqqYJaHSgMRERCxx_u7wyUQcz6LP83i-VerLx4S16YFbxh3mVkmVcWKIcJElsQY8keXSgbslSZY1aJ1ItQFTHdTigLzaPEIcQP3hGiB-lDDBd6xPk6T_Js_yzwDJu3Vxpa9_6eVyy_qMH6IHnduIh-1yH6FbtniM7m8lE3yCpj4k8BqXBf62WNdA_NFWTZxVgYfL7-VqUV3-wKXDU6vxtF45bSw-b-LA13gEtiz3U9szBni-OP1y-pM_RbPx0fmH47ArmRAawLlVmDOjBCAGKXPqmGVC2YRkEQcnwjhuc0XBQbScOa2YpDSj1jAKXHWxgYmE82dorygL-xzhRDlLTQYImWpQ7DyLtGYO3CdmDDBeB-j9hpWp6fKJ-7IWyxRwhed62nM9QG960qs2icZNRCO_Hz2Bz3vddIA0pJ00pP-ShgAdbHYz7ZRxncL7qZICPusBet0Pgxr5fyO6sGXd0IA992XXArTfbn6_Eu7vpUmRBCjZEYudpe6OFIvLJlV3kggRURmgt70A_Z0DL_4HB16ie8wfCVAWUnmA9qpVbV-B31RlA3Q7mSfQyvGnAbozOpqcfR00agPtSSShbzY5G178BtG0G4w |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSVQ-GAeBNawLwkLlH9yMsHhFpKtaXb9rBbtD0Fx7HbSttk2QfV_hTfyDjZpF1RuPUWxWNpNO-xxzMA78MgU0Yr44fWKh_9MfVlyGNfKszEooAaat3b4YPDqHMcfBuEgxX43byFcWWVjU2sDHVeandGvsnRisokQt38PPrpu6lR7na1GaFRi8W-mV9iyjb5tLeD_P3A-e7X_peOv5gq4GtMBad-zrWMMKhOkpxZbngkTUyzQKCf1VaYXDKMoYzgVkmeMJYxozkzNLShxo3UHYCiyb8TCLQlqD_x4CrBE5jv1d2LhJB0c8LRAcY8Eks-rxoNcFM8-3dZ5tqsGKn5pRoOr_m83QdwfxGskq1auh7Ciikewb1rLQwfQ88VIs5JWZDv55MZAu-YaVXdVZCt4SkScHp2QUpLekaR3mxslTakX1WfT8g2etDcba1PNvD75Kh79Es8geNbIelTWC3KwjwHEktrmM4wL2cKzUmeBUpxi0Eb15pmmfLgY0PKVC-6mLthGsMUsxlH9bSlugdvW9BR3brjJqBtx48WwHXbrn6U49N0obxpbmQiM0E1jWyAeCvMabM8sRjyJ4gU9WCj4Wa6MAGT9EpgPXjTLqPyuhsZVZhyVsFgFOGGvXnwrGZ-i4lwr-GSKPYgXhKLJVSXV4rzs6pBeBxHUcASD961AvRvCrz4P_KvYa3TP-im3b3D_XW4y91xA-M-SzZgdTqemZcYk02zV5UiEPhx25r3Bw-YSDU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFQVCegB8SZQwLwkLtHaztMHhFqWVUtLi7RttZyC49htpW2y7Gap9tf4OsZ5tSsKt96ieCyN5j32eAbgbeCnUiup3cAY6aI_pq4IeOQKiZlY6FNNjX07_HUv3Dr0v4yC0Qr8bt_C2LLK1iZWhjorlD0j73G0oiIOUTd7pimL-NYffJz8dO0EKXvT2o7TqEVkRy_OMX2bfdjuI6_fcT74fPBpy20mDLgK08LSzbgSIQbYcZwxwzUPhY5o6nvoc5XxdCYYxlPa40YKHjOWMq040zQwgcKN1B6Govm_EXmesOWE0egi2fMw96s7GeEi7c04OsOIh96S_6vGBFwV2_5donlrnk_k4lyOx5f83-Au3GkCV7JRS9o9WNH5fVi71M7wAQxtUeKCFDk5Op3NEbivy6rSKycb42MkYHlyRgpDhlqS4XxqpNLkoKpEn5FN9KaZ3VqfcuD39_3d_V_eQzi8FpI-gtW8yPUTIJEwmqkUc3Qm0bRkqS8lNxjAcaVomkoH3rekTFTT0dwO1hgnmNlYqicd1R143YFO6jYeVwFtWn50ALbzdvWjmB4njSInmRaxSD2qaGh8xFtifptmscHwP0akqAPrLTeTxhzMkgvhdeBVt4yKbG9nZK6LeQWDEYUd_ObA45r5HSaefRkXh5ED0ZJYLKG6vJKfnlTNwqMoDH0WO_CmE6B_U-Dp_5F_CTdR55Ld7b2dZ3Cb25MHxl0Wr8NqOZ3r5xielemLSg8I_LhuxfsDiPxMeA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9B9wA88D0IDBQ-HnjJajuJEz-hDpgmBBtSV7Q9RbZjbxUlqdpkaPz1nJM0amFISEh5iOJzZMdn3-_n3J0BXseRkkZLE8TWygDtMQlEzJJASGRiPCKGWBc7_PmQH0yijyfxyVoUv3OrRCo-bRZpF4UVoAUjQ3dFw4TxcDjP7duLbi-JcrRgDlPw67DFY0TjA9iaHH4ZnTZBRV3tNqFQiOx-uESuH7nXbJihJlv_VRDzT0_JG3Uxl5c_5Gy2Zob274BcdaD1Pvm2W1dqV__8Lbfj__TwLtzuMKo_apXqHlwzxX24tZa58AGMnf_hpV8W_tfpskbh96ZqnLoKfzQ7KxfT6vy7X1p_bKQ_rhdWauMfN07nS38PDWfuqrYbGnh_evTp6CJ8CJP9D8fvDoLufIZAI6mugpxpwZGepGlOLTOMC5MQFYWIWLQNTS4oolETMisFSylV1GhGDYltrLEiCcNtGBRlYR6DnwhrqFZIx6nEVSRXkZTMIlZjWhOlpAdvVsOV6S55uTtDY5YhiXEjm_Uj68HLXnTeZuy4SmjPjXkv4JJsNw_KxVnWzdksNyIVKiSacBthuyVSWZWnFpF-io0iHuysNCbrZv4yw_dTkXK0IR686ItxzrofMbIwZd3IIHhwZ7x58KhVsL4loQuCS3niQbKhehtN3SwppudNXvAk4TyiqQeveiX9-xd48k9ST-EmcxsMlAU03YFBtajNM0RhlXreTbRfiWYqsg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+Visual+Detection+Algorithm+of+Sea+Surface+Targets+Based+on+Improved+YOLOv3&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Tao+Liu&rft.au=Bo+Pang&rft.au=Shangmao+Ai&rft.au=Xiaoqiang+Sun&rft.date=2020-12-18&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=20&rft.issue=24&rft.spage=7263&rft_id=info:doi/10.3390%2Fs20247263&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_de989b30c06f4e05a448bd8f81b80bb0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |