Robust Support Vector Data Description with Truncated Loss Function for Outliers Depression
Support vector data description (SVDD) is widely regarded as an effective technique for addressing anomaly detection problems. However, its performance can significantly deteriorate when the training data are affected by outliers or mislabeled observations. This study introduces a universal truncate...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 26; no. 8; p. 628 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
25.07.2024
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1099-4300 1099-4300 |
DOI | 10.3390/e26080628 |
Cover
Abstract | Support vector data description (SVDD) is widely regarded as an effective technique for addressing anomaly detection problems. However, its performance can significantly deteriorate when the training data are affected by outliers or mislabeled observations. This study introduces a universal truncated loss function framework into the SVDD model to enhance its robustness and employs the fast alternating direction method of multipliers (ADMM) algorithm to solve various truncated loss functions. Moreover, the convergence of the fast ADMM algorithm is analyzed theoretically. Within this framework, we developed the truncated generalized ramp, truncated binary cross entropy, and truncated linear exponential loss functions for SVDD. We conducted extensive experiments on synthetic and real-world datasets to validate the effectiveness of these three SVDD models in handling data with different noise levels, demonstrating their superior robustness and generalization capabilities compared to other SVDD models. |
---|---|
AbstractList | Support vector data description (SVDD) is widely regarded as an effective technique for addressing anomaly detection problems. However, its performance can significantly deteriorate when the training data are affected by outliers or mislabeled observations. This study introduces a universal truncated loss function framework into the SVDD model to enhance its robustness and employs the fast alternating direction method of multipliers (ADMM) algorithm to solve various truncated loss functions. Moreover, the convergence of the fast ADMM algorithm is analyzed theoretically. Within this framework, we developed the truncated generalized ramp, truncated binary cross entropy, and truncated linear exponential loss functions for SVDD. We conducted extensive experiments on synthetic and real-world datasets to validate the effectiveness of these three SVDD models in handling data with different noise levels, demonstrating their superior robustness and generalization capabilities compared to other SVDD models.Support vector data description (SVDD) is widely regarded as an effective technique for addressing anomaly detection problems. However, its performance can significantly deteriorate when the training data are affected by outliers or mislabeled observations. This study introduces a universal truncated loss function framework into the SVDD model to enhance its robustness and employs the fast alternating direction method of multipliers (ADMM) algorithm to solve various truncated loss functions. Moreover, the convergence of the fast ADMM algorithm is analyzed theoretically. Within this framework, we developed the truncated generalized ramp, truncated binary cross entropy, and truncated linear exponential loss functions for SVDD. We conducted extensive experiments on synthetic and real-world datasets to validate the effectiveness of these three SVDD models in handling data with different noise levels, demonstrating their superior robustness and generalization capabilities compared to other SVDD models. Support vector data description (SVDD) is widely regarded as an effective technique for addressing anomaly detection problems. However, its performance can significantly deteriorate when the training data are affected by outliers or mislabeled observations. This study introduces a universal truncated loss function framework into the SVDD model to enhance its robustness and employs the fast alternating direction method of multipliers (ADMM) algorithm to solve various truncated loss functions. Moreover, the convergence of the fast ADMM algorithm is analyzed theoretically. Within this framework, we developed the truncated generalized ramp, truncated binary cross entropy, and truncated linear exponential loss functions for SVDD. We conducted extensive experiments on synthetic and real-world datasets to validate the effectiveness of these three SVDD models in handling data with different noise levels, demonstrating their superior robustness and generalization capabilities compared to other SVDD models. |
Audience | Academic |
Author | Lyu, Yongxi Shi, Jingping Chen, Huakun Zhang, Weiguo |
AuthorAffiliation | Department of Automatic Control, Northwestern Polytechnical University, Xi’an 710072, China; chenhuakun@mail.nwpu.edu.cn (H.C.); shijingping@nwpu.edu.cn (J.S.); zhangwg@nwpu.edu.cn (W.Z.) |
AuthorAffiliation_xml | – name: Department of Automatic Control, Northwestern Polytechnical University, Xi’an 710072, China; chenhuakun@mail.nwpu.edu.cn (H.C.); shijingping@nwpu.edu.cn (J.S.); zhangwg@nwpu.edu.cn (W.Z.) |
Author_xml | – sequence: 1 givenname: Huakun orcidid: 0000-0002-9184-9493 surname: Chen fullname: Chen, Huakun – sequence: 2 givenname: Yongxi orcidid: 0000-0001-8912-3418 surname: Lyu fullname: Lyu, Yongxi – sequence: 3 givenname: Jingping orcidid: 0000-0001-5700-2638 surname: Shi fullname: Shi, Jingping – sequence: 4 givenname: Weiguo orcidid: 0000-0002-8393-3185 surname: Zhang fullname: Zhang, Weiguo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39202098$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk1vFDEMhiNURD_gwB9AI3GBw5Z8TpITqloKlVaqBIULh8iTSbZZzU6mSQbEvyfbLauWUxz78es49jE6GOPoEHpN8CljGn9wtMUKt1Q9Q0cEa73gDOODR_YhOs55jTFllLQv0CHTFFOs1RH6-TV2cy7Nt3maYirND2dLTM0FFGguXLYpTCXEsfkdym1zk-bRQnF9s4w5N5f1dh_0NeN6LkNwKdesKbmcq_8leu5hyO7Vw3mCvl9-ujn_slhef746P1suLG91WXRKeQqagZfVkiA58VozLihRHZWt4r10ynvR2l5j0lKgQpBOA7ZgbafZCbra6fYR1mZKYQPpj4kQzL0jppWBVIIdnAEhKffgwVHgLe6hc53HljOHpfC2q1ofd1rT3G1cb91YEgxPRJ9GxnBrVvGXIYQJxhWuCu8eFFK8m10uZhOydcMAo4tzNqwORWoqlKjo2__QdZzTWP9qS0lNBG9lpU531ApqB2H0sRaurUPvNsHWTfCh-s8UlpwKibcJbx73sH_8v6lX4P0OsKnOMTm_Rwg2240y-41ifwHQdr1d |
Cites_doi | 10.1017/S026988891300043X 10.1007/s00500-016-2317-5 10.1016/j.patcog.2020.107662 10.1016/j.knosys.2015.09.025 10.1109/TNNLS.2021.3129321 10.1016/j.engappai.2023.106153 10.1016/j.sigpro.2013.12.026 10.1016/j.patrec.2020.09.005 10.1016/j.engappai.2021.104177 10.1007/s10489-022-03237-5 10.1109/JSTARS.2013.2260135 10.1016/j.neucom.2015.10.097 10.1016/j.engappai.2020.103796 10.1007/s10107-018-1235-y 10.1016/j.engappai.2020.103554 10.1162/08997660360581958 10.1109/TIM.2021.3137858 10.1016/j.patcog.2020.107685 10.1016/j.patrec.2016.11.016 10.1016/j.patcog.2019.107119 10.1023/B:MACH.0000008084.60811.49 10.1109/TNNLS.2017.2705429 10.1016/j.neucom.2023.126324 10.1007/s11590-021-01756-7 10.1007/3-540-44581-1_27 10.1109/TPAMI.2009.24 10.1007/s13042-018-0796-7 10.1109/TSTE.2014.2355837 10.1007/978-3-319-13105-4_1 10.1287/opre.2021.2248 10.1145/342009.335388 10.1016/j.neucom.2018.05.027 10.1016/j.knosys.2020.105754 10.1016/j.patcog.2018.07.015 10.1109/ICDMW.2018.00173 10.1609/aaai.v33i01.33019472 10.1016/j.eswa.2013.11.025 10.1145/1541880.1541882 10.1016/j.ijhydene.2022.08.145 10.1016/j.ymssp.2019.106587 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.3390/e26080628 |
DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1099-4300 |
ExternalDocumentID | oai_doaj_org_article_a5724fafae2a460dabebf0c43e075fcb PMC11353480 A807425707 39202098 10_3390_e26080628 |
Genre | Journal Article |
GeographicLocations | United Kingdom |
GeographicLocations_xml | – name: United Kingdom |
GrantInformation_xml | – fundername: Natural Science Foundation of Shaanxi Province grantid: 2023-JC-YB-526 – fundername: Aeronautical Science Foundation of China grantid: 20220058053002 – fundername: National Natural Science Foundation of China grantid: 62373301 and 62173277 – fundername: Shaanxi Province Key Laboratory of Flight Control and Simulation Technology grantid: 20220058053002 – fundername: National Natural Science Foundation of China grantid: 62373301; 62173277 |
GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c469t-b88f2a93af788f7a741f99345218b27684d7e8ff56cd90162a2551b9a0caccb93 |
IEDL.DBID | BENPR |
ISSN | 1099-4300 |
IngestDate | Wed Aug 27 01:22:01 EDT 2025 Thu Aug 21 18:32:08 EDT 2025 Fri Sep 05 04:23:12 EDT 2025 Fri Jul 25 11:45:07 EDT 2025 Tue Jul 01 05:40:21 EDT 2025 Thu Jan 02 22:32:53 EST 2025 Tue Jul 01 01:58:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | fast ADMM SVDD anomaly detection truncated linear exponential loss function truncated binary cross entropy loss function proximal operators truncated loss function |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-b88f2a93af788f7a741f99345218b27684d7e8ff56cd90162a2551b9a0caccb93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9184-9493 0000-0001-8912-3418 0000-0002-8393-3185 0000-0001-5700-2638 |
OpenAccessLink | https://www.proquest.com/docview/3097915467?pq-origsite=%requestingapplication%&accountid=15518 |
PMID | 39202098 |
PQID | 3097915467 |
PQPubID | 2032401 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a5724fafae2a460dabebf0c43e075fcb pubmedcentral_primary_oai_pubmedcentral_nih_gov_11353480 proquest_miscellaneous_3099792585 proquest_journals_3097915467 gale_infotracacademiconefile_A807425707 pubmed_primary_39202098 crossref_primary_10_3390_e26080628 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240725 |
PublicationDateYYYYMMDD | 2024-07-25 |
PublicationDate_xml | – month: 7 year: 2024 text: 20240725 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Entropy (Basel, Switzerland) |
PublicationTitleAlternate | Entropy (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zheng (ref_41) 2023; 545 Lu (ref_16) 2022; 47 (ref_31) 2018; 169 ref_14 ref_36 ref_12 Zhao (ref_23) 2020; 94 Zhao (ref_17) 2021; 100 Wu (ref_39) 2009; 31 Tax (ref_8) 2004; 54 Zheng (ref_9) 2019; 10 Wang (ref_35) 2022; 16 Khan (ref_5) 2014; 29 Xing (ref_28) 2018; 84 ref_38 ref_37 Fong (ref_11) 2022; 71 Chen (ref_19) 2015; 90 Sadeghi (ref_21) 2018; 22 Zheng (ref_30) 2023; 122 Hu (ref_22) 2023; 34 Tao (ref_34) 2017; 29 Zheng (ref_13) 2015; 6 Andreou (ref_15) 2014; 7 Alam (ref_7) 2020; 196 Lei (ref_3) 2020; 138 Cha (ref_20) 2014; 41 Xing (ref_40) 2021; 111 Xiao (ref_26) 2017; 85 ref_43 Zhu (ref_18) 2016; 189 Tian (ref_27) 2018; 310 Xing (ref_25) 2020; 138 Yuille (ref_33) 2003; 15 Wang (ref_24) 2020; 91 Liu (ref_32) 2023; 71 Turkoz (ref_10) 2020; 100 Chandola (ref_1) 2009; 41 Zhong (ref_29) 2022; 52 ref_4 Pimentel (ref_2) 2014; 99 Chaudhuri (ref_42) 2021; 111 ref_6 |
References_xml | – volume: 29 start-page: 345 year: 2014 ident: ref_5 article-title: One-class classification: Taxonomy of study and review of techniques publication-title: Knowl. Eng. Rev. doi: 10.1017/S026988891300043X – volume: 22 start-page: 147 year: 2018 ident: ref_21 article-title: Automatic support vector data description publication-title: Soft Comput. doi: 10.1007/s00500-016-2317-5 – volume: 111 start-page: 107662 year: 2021 ident: ref_42 article-title: The trace kernel bandwidth criterion for support vector data description publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107662 – volume: 90 start-page: 129 year: 2015 ident: ref_19 article-title: Robust support vector data description for outlier detection with noise or uncertain data publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.09.025 – volume: 34 start-page: 6602 year: 2023 ident: ref_22 article-title: Global Plus Local Jointly Regularized Support Vector Data Description for Novelty Detection publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3129321 – volume: 122 start-page: 106153 year: 2023 ident: ref_30 article-title: Robust one-class classification with support vector data description and mixed exponential loss function publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106153 – volume: 99 start-page: 215 year: 2014 ident: ref_2 article-title: A review of novelty detection publication-title: Signal Process. doi: 10.1016/j.sigpro.2013.12.026 – volume: 138 start-page: 571 year: 2020 ident: ref_25 article-title: Robust least squares one-class support vector machine publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2020.09.005 – volume: 100 start-page: 104177 year: 2021 ident: ref_17 article-title: A new dynamic radius SVDD for fault detection of aircraft engine publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104177 – volume: 52 start-page: 16940 year: 2022 ident: ref_29 article-title: Pinball loss support vector data description for outlier detection publication-title: Appl. Intell. doi: 10.1007/s10489-022-03237-5 – volume: 7 start-page: 247 year: 2014 ident: ref_15 article-title: Estimation of the Number of Endmembers Using Robust Outlier Detection Method publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2013.2260135 – volume: 189 start-page: 1 year: 2016 ident: ref_18 article-title: A weighted one-class support vector machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.10.097 – volume: 94 start-page: 103796 year: 2020 ident: ref_23 article-title: An improved weighted one class support vector machine for turboshaft engine fault detection publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103796 – volume: 169 start-page: 5 year: 2018 ident: ref_31 article-title: DC programming and DCA: Thirty years of developments publication-title: Math. Program. doi: 10.1007/s10107-018-1235-y – volume: 91 start-page: 103554 year: 2020 ident: ref_24 article-title: Robust support vector data description for novelty detection with contaminated data publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103554 – volume: 15 start-page: 915 year: 2003 ident: ref_33 article-title: The concave-convex procedure publication-title: Neural Comput. doi: 10.1162/08997660360581958 – volume: 71 start-page: 3500811 year: 2022 ident: ref_11 article-title: An Unsupervised Bayesian OC-SVM Approach for Early Degradation Detection, Thresholding, and Fault Prediction in Machinery Monitoring publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3137858 – volume: 111 start-page: 107685 year: 2021 ident: ref_40 article-title: Robust sparse coding for one-class classification based on correntropy and logarithmic penalty function publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107685 – volume: 85 start-page: 15 year: 2017 ident: ref_26 article-title: Ramp Loss based robust one-class SVM publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2016.11.016 – volume: 100 start-page: 107119 year: 2020 ident: ref_10 article-title: Generalized support vector data description for anomaly detection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107119 – volume: 54 start-page: 45 year: 2004 ident: ref_8 article-title: Support vector data description publication-title: Mach. Learn. doi: 10.1023/B:MACH.0000008084.60811.49 – volume: 29 start-page: 2782 year: 2017 ident: ref_34 article-title: Improving sparsity and scalability in regularized nonconvex truncated-loss learning problems publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2705429 – volume: 545 start-page: 126324 year: 2023 ident: ref_41 article-title: Multikernel correntropy based robust least squares one-class support vector machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126324 – volume: 16 start-page: 999 year: 2022 ident: ref_35 article-title: Proximal operator and optimality conditions for ramp loss SVM publication-title: Optim. Lett. doi: 10.1007/s11590-021-01756-7 – ident: ref_6 – ident: ref_37 doi: 10.1007/3-540-44581-1_27 – volume: 31 start-page: 2088 year: 2009 ident: ref_39 article-title: A small sphere and large margin approach for novelty detection using training data with outliers publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.24 – volume: 10 start-page: 1173 year: 2019 ident: ref_9 article-title: A fast iterative algorithm for support vector data description publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-018-0796-7 – volume: 6 start-page: 11 year: 2015 ident: ref_13 article-title: Raw Wind Data Preprocessing: A Data-Mining Approach publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2014.2355837 – ident: ref_14 doi: 10.1007/978-3-319-13105-4_1 – volume: 71 start-page: 397 year: 2023 ident: ref_32 article-title: Risk-based robust statistical learning by stochastic difference-of convex value-function optimization publication-title: Oper. Res. doi: 10.1287/opre.2021.2248 – ident: ref_12 doi: 10.1145/342009.335388 – volume: 310 start-page: 223 year: 2018 ident: ref_27 article-title: Ramp loss one-class support vector machine; A robust and effective approach to anomaly detection problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.027 – ident: ref_36 – volume: 196 start-page: 105754 year: 2020 ident: ref_7 article-title: One-class support vector classifiers: A survey publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105754 – volume: 84 start-page: 152 year: 2018 ident: ref_28 article-title: Robust one-class support vector machine with rescaled hinge loss function publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.07.015 – ident: ref_38 doi: 10.1109/ICDMW.2018.00173 – ident: ref_43 – ident: ref_4 doi: 10.1609/aaai.v33i01.33019472 – volume: 41 start-page: 3343 year: 2014 ident: ref_20 article-title: Density weighted support vector data description publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.11.025 – volume: 41 start-page: 15 year: 2009 ident: ref_1 article-title: Anomaly detection: A survey publication-title: ACM Comput. Surv. doi: 10.1145/1541880.1541882 – volume: 47 start-page: 35825 year: 2022 ident: ref_16 article-title: A novel dynamic radius support vector data description based fault diagnosis method for proton exchange membrane fuel cell systems publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.08.145 – volume: 138 start-page: 106587 year: 2020 ident: ref_3 article-title: Applications of machine learning to machine fault diagnosis: A review and roadmap publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.106587 |
SSID | ssj0023216 |
Score | 2.3465834 |
Snippet | Support vector data description (SVDD) is widely regarded as an effective technique for addressing anomaly detection problems. However, its performance can... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 628 |
SubjectTerms | Algorithms Anomalies anomaly detection Data analysis Datasets Effectiveness Entropy (Information theory) fast ADMM Information management Methods Noise levels Outliers (statistics) Propagation proximal operators Robustness SVDD truncated binary cross entropy loss function truncated loss function |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlp15CQ9rUzQdqKeRkIstaSzombZZQ2gZKUgI9iNEXLQRvSez_3xnbu6zpIZccdyXBeMbSvCdLbxj7KGzQMVW2bCzIUlUxlib6UHovvdHZQjB0d_jb9-bqVn25W9xtlfqiM2GjPPDouDNYaKkyZEgSVCMi-OSzCKpOmOxy8LT6CivWZGqiWrWsmlFHqEZSf5YQtRu6LTjLPoNI__9L8VYump-T3Eo8y1dsd0KM_Hy0dI-9SO0--_Vj5fvHjlNRTgTQ_Oew-c4_QwccqeR6KeC0zcpvHnqSfk2Rf0Wj-BJ_DY2IV_l1391TNWwcNR2JbV-z2-XlzaercqqTUAYkt13pjckSbA0Z-WzWgCAhI-xQmJmNl_SlLepkcl40IWL6byQgj6i8BREgBG_rN2ynXbXpLeM42CudMY8rUF5HHJ4qAQEdKmwCX7APa_-5v6MchkMaQU52GycX7II8u-lACtbDHxhXN8XVPRXXgp1SXBzNM3Q-WjpeF0A7SbHKnZOKD5Xg0wU7WofOTRPw0dXCaovwsMHm95tmnDr0PQTatOqHPthJImEq2MEY6Y3NCBsRSFt8FjN7B2YPNW9p__we5LkrKiWijHj3HG44ZC_REEW7yXJxxHa6hz4dIwzq_Mnwxv8DYQALQg priority: 102 providerName: Directory of Open Access Journals |
Title | Robust Support Vector Data Description with Truncated Loss Function for Outliers Depression |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39202098 https://www.proquest.com/docview/3097915467 https://www.proquest.com/docview/3099792585 https://pubmed.ncbi.nlm.nih.gov/PMC11353480 https://doaj.org/article/a5724fafae2a460dabebf0c43e075fcb |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELba7YULouIVKCuDkDhFTRwntg8I9bWtECyoatFKHCI_AQklZZv8f2byaiMkLpES28p4bM98M7ZnCHmbKCucT1VcKM1injoXS2dsbAwzUgSlrcS7w5_XxcU1_7jJNztkPd6FwWOVo0zsBLWrLfrID7NECQX6vhAfbv7EmDUKd1fHFBp6SK3g3nchxnbJHojkPFmQveOz9dfLyQTLWFr08YUyMPYPPaB5ibcIZ1qpC97_r4i-p6Pm5yfvKaTVI_JwQJL0qB_6fbLjq8fk-2Vt2tuGYrJOANb0W-eUp6e60RRMzFFEUHS_0qttiyFhvaOfgCi6greuEHAs_dI2vzFLNrQajspWT8j16uzq5CIe8ifEFozeJjZSBqZVpgPYuUFoAA8B4AgHjS0Nwx04J7wMIS-sA1hQMA32RWqUTizw06jsKVlUdeWfEwqNDRcB9DvX3AgHzX2aaAsMTZTXJiJvRv6VN32YjBLMC2RyOTE5IsfI2akCRrbuPtTbH-WwUEqdC8aDDtozzYvEaeNNSCzPPICbYOFP73BcSlx_wHygtL9GAHRiJKvyCKP7YGo-EZGDcejKYWHelnfTKCKvp2JYUrhPoitft10dqMTAkIrIs36kJ5oBTgLAVtAXOZsDs07NS6pfP7uw3SmmGOEyefF_ul6SB_ALjv5jlh-QRbNt_SsAPo1Zkl25Ol8Oc3rZuQ_geb5J_wKz9Qn_ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq7QEuCMQrUMAgEKeoieON7UOFWtrVlm4XVG1RJQ7Bjm1AQknZTYT4c_w2ZvKiERK3Hndty5Px45uxPfMR8jJSubAuVmGqNAt5bG0orclDY5iRwiudS4wdPl2m83P-7mJ6sUV-97Ew-Kyy3xObjdqWOZ6R7yaREgrwPhVvLn-EyBqFt6s9hYbuqBXsXpNirAvsOHG_foILt9k7PoTxfsXY7Gj1dh52LANhDq5hFRopPdMq0R68QS80QKwH0OaAa9IwvKeywknvp2luATxTpsEKj43SUQ69GkzGBBCwzfEAZUK2D46WH84Gly9hcdrmM0oSFe068B4kRi2OULAhC_gXEq5g4vi95hUAnN0mtzrLle63U-0O2XLFXfLprDT1pqJIDgqGPP3YXALQQ11pCi5tvyVRPO6lq3WNKWidpQsQis7gV1MIdjN9X1ffkZUbWnVPc4t75PxaNHmfTIqycA8JhcaGCw_2BNfcCAvNXRzpHBQaKadNQF70-ssu27QcGbgzqORsUHJADlCzQwXMpN38Ua6_ZN3CzPRUMO61145pnkZWG2d8lPPEgTHlc-jpNY5LhusdlA-StmELICdmzsr2MZsQUgGKgOz0Q5d1G8Em-zttA_J8KIYljPcyunBl3dSBSgwct4A8aEd6kBnMVzDoFXyLHM2B0UeNS4pvX5s04TFSmnAZPfq_XM_IjfnqdJEtjpcnj8lN6I7j2TWb7pBJta7dEzC6KvO0m9mUfL7uxfQHQNBDyg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEA-lBfFFFL9Oq0ZRfFpuN5vbbB6KtF6P1tazlFYKPsR8qiC79W4X8V_0r3Jmv-wi-NbH3SRkMsnkN5NkZgh5GUsrnE9klEnNIp44F-XO2MgYZnIRpLY5-g6_X2YH5_zdxexig_zufWHwWWW_JzYbtSstnpFP01gKCXifiWnonkWczBdvLn9EmEEKb1r7dBq6S7PgdppwY52Tx5H_9RPMufXO4Rzm_hVji_2ztwdRl3EgsmAmVpHJ88C0THUAyzAIDXAbAMA5YFxuGN5ZOeHzEGaZdQCkGdOgkSdG6thCrwYDMwEcbAlAfTAEt_b2lyeng_mXsiRrYxulqYynHiyJHD0YR4jYJA74Fx6u4OP47eYVMFzcJrc6LZbutsvuDtnwxV3y6bQ09bqimCgUlHr6sbkQoHNdaQrmbb89UTz6pWerGsPRekePgSi6gK-mEHRo-qGuvmOGbmjVPdMt7pHza-HkfbJZlIV_SCg0NlwE0C245kY4aO6TWFtgaCy9NhPyouefumxDdCgwbZDJamDyhOwhZ4cKGFW7-VGuvqhOSJWeCcaDDtozzbPYaeNNiC1PPShWwUJPr3FeFMo-MB8obV0YgE6MoqV2MbIQpgUUE7LdT53qNoW1-ruEJ-T5UAzijHc0uvBl3dSBSgyMuAl50M70QDOosqDcSxhLPloDo0GNS4pvX5uQ4QmmN-F5_Oj_dD0jN0Co1PHh8ugxuQm9cTzGZrNtslmtav8E9K_KPO0WNiWfr1uW_gBDWUgO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Support+Vector+Data+Description+with+Truncated+Loss+Function+for+Outliers+Depression&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Huakun&rft.au=Lyu%2C+Yongxi&rft.au=Shi%2C+Jingping&rft.au=Zhang%2C+Weiguo&rft.date=2024-07-25&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=26&rft.issue=8&rft.spage=628&rft_id=info:doi/10.3390%2Fe26080628&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |