Robust Support Vector Data Description with Truncated Loss Function for Outliers Depression

Support vector data description (SVDD) is widely regarded as an effective technique for addressing anomaly detection problems. However, its performance can significantly deteriorate when the training data are affected by outliers or mislabeled observations. This study introduces a universal truncate...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 26; no. 8; p. 628
Main Authors Chen, Huakun, Lyu, Yongxi, Shi, Jingping, Zhang, Weiguo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 25.07.2024
MDPI
Subjects
Online AccessGet full text
ISSN1099-4300
1099-4300
DOI10.3390/e26080628

Cover

Abstract Support vector data description (SVDD) is widely regarded as an effective technique for addressing anomaly detection problems. However, its performance can significantly deteriorate when the training data are affected by outliers or mislabeled observations. This study introduces a universal truncated loss function framework into the SVDD model to enhance its robustness and employs the fast alternating direction method of multipliers (ADMM) algorithm to solve various truncated loss functions. Moreover, the convergence of the fast ADMM algorithm is analyzed theoretically. Within this framework, we developed the truncated generalized ramp, truncated binary cross entropy, and truncated linear exponential loss functions for SVDD. We conducted extensive experiments on synthetic and real-world datasets to validate the effectiveness of these three SVDD models in handling data with different noise levels, demonstrating their superior robustness and generalization capabilities compared to other SVDD models.
AbstractList Support vector data description (SVDD) is widely regarded as an effective technique for addressing anomaly detection problems. However, its performance can significantly deteriorate when the training data are affected by outliers or mislabeled observations. This study introduces a universal truncated loss function framework into the SVDD model to enhance its robustness and employs the fast alternating direction method of multipliers (ADMM) algorithm to solve various truncated loss functions. Moreover, the convergence of the fast ADMM algorithm is analyzed theoretically. Within this framework, we developed the truncated generalized ramp, truncated binary cross entropy, and truncated linear exponential loss functions for SVDD. We conducted extensive experiments on synthetic and real-world datasets to validate the effectiveness of these three SVDD models in handling data with different noise levels, demonstrating their superior robustness and generalization capabilities compared to other SVDD models.Support vector data description (SVDD) is widely regarded as an effective technique for addressing anomaly detection problems. However, its performance can significantly deteriorate when the training data are affected by outliers or mislabeled observations. This study introduces a universal truncated loss function framework into the SVDD model to enhance its robustness and employs the fast alternating direction method of multipliers (ADMM) algorithm to solve various truncated loss functions. Moreover, the convergence of the fast ADMM algorithm is analyzed theoretically. Within this framework, we developed the truncated generalized ramp, truncated binary cross entropy, and truncated linear exponential loss functions for SVDD. We conducted extensive experiments on synthetic and real-world datasets to validate the effectiveness of these three SVDD models in handling data with different noise levels, demonstrating their superior robustness and generalization capabilities compared to other SVDD models.
Support vector data description (SVDD) is widely regarded as an effective technique for addressing anomaly detection problems. However, its performance can significantly deteriorate when the training data are affected by outliers or mislabeled observations. This study introduces a universal truncated loss function framework into the SVDD model to enhance its robustness and employs the fast alternating direction method of multipliers (ADMM) algorithm to solve various truncated loss functions. Moreover, the convergence of the fast ADMM algorithm is analyzed theoretically. Within this framework, we developed the truncated generalized ramp, truncated binary cross entropy, and truncated linear exponential loss functions for SVDD. We conducted extensive experiments on synthetic and real-world datasets to validate the effectiveness of these three SVDD models in handling data with different noise levels, demonstrating their superior robustness and generalization capabilities compared to other SVDD models.
Audience Academic
Author Lyu, Yongxi
Shi, Jingping
Chen, Huakun
Zhang, Weiguo
AuthorAffiliation Department of Automatic Control, Northwestern Polytechnical University, Xi’an 710072, China; chenhuakun@mail.nwpu.edu.cn (H.C.); shijingping@nwpu.edu.cn (J.S.); zhangwg@nwpu.edu.cn (W.Z.)
AuthorAffiliation_xml – name: Department of Automatic Control, Northwestern Polytechnical University, Xi’an 710072, China; chenhuakun@mail.nwpu.edu.cn (H.C.); shijingping@nwpu.edu.cn (J.S.); zhangwg@nwpu.edu.cn (W.Z.)
Author_xml – sequence: 1
  givenname: Huakun
  orcidid: 0000-0002-9184-9493
  surname: Chen
  fullname: Chen, Huakun
– sequence: 2
  givenname: Yongxi
  orcidid: 0000-0001-8912-3418
  surname: Lyu
  fullname: Lyu, Yongxi
– sequence: 3
  givenname: Jingping
  orcidid: 0000-0001-5700-2638
  surname: Shi
  fullname: Shi, Jingping
– sequence: 4
  givenname: Weiguo
  orcidid: 0000-0002-8393-3185
  surname: Zhang
  fullname: Zhang, Weiguo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39202098$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1vFDEMhiNURD_gwB9AI3GBw5Z8TpITqloKlVaqBIULh8iTSbZZzU6mSQbEvyfbLauWUxz78es49jE6GOPoEHpN8CljGn9wtMUKt1Q9Q0cEa73gDOODR_YhOs55jTFllLQv0CHTFFOs1RH6-TV2cy7Nt3maYirND2dLTM0FFGguXLYpTCXEsfkdym1zk-bRQnF9s4w5N5f1dh_0NeN6LkNwKdesKbmcq_8leu5hyO7Vw3mCvl9-ujn_slhef746P1suLG91WXRKeQqagZfVkiA58VozLihRHZWt4r10ynvR2l5j0lKgQpBOA7ZgbafZCbra6fYR1mZKYQPpj4kQzL0jppWBVIIdnAEhKffgwVHgLe6hc53HljOHpfC2q1ofd1rT3G1cb91YEgxPRJ9GxnBrVvGXIYQJxhWuCu8eFFK8m10uZhOydcMAo4tzNqwORWoqlKjo2__QdZzTWP9qS0lNBG9lpU531ApqB2H0sRaurUPvNsHWTfCh-s8UlpwKibcJbx73sH_8v6lX4P0OsKnOMTm_Rwg2240y-41ifwHQdr1d
Cites_doi 10.1017/S026988891300043X
10.1007/s00500-016-2317-5
10.1016/j.patcog.2020.107662
10.1016/j.knosys.2015.09.025
10.1109/TNNLS.2021.3129321
10.1016/j.engappai.2023.106153
10.1016/j.sigpro.2013.12.026
10.1016/j.patrec.2020.09.005
10.1016/j.engappai.2021.104177
10.1007/s10489-022-03237-5
10.1109/JSTARS.2013.2260135
10.1016/j.neucom.2015.10.097
10.1016/j.engappai.2020.103796
10.1007/s10107-018-1235-y
10.1016/j.engappai.2020.103554
10.1162/08997660360581958
10.1109/TIM.2021.3137858
10.1016/j.patcog.2020.107685
10.1016/j.patrec.2016.11.016
10.1016/j.patcog.2019.107119
10.1023/B:MACH.0000008084.60811.49
10.1109/TNNLS.2017.2705429
10.1016/j.neucom.2023.126324
10.1007/s11590-021-01756-7
10.1007/3-540-44581-1_27
10.1109/TPAMI.2009.24
10.1007/s13042-018-0796-7
10.1109/TSTE.2014.2355837
10.1007/978-3-319-13105-4_1
10.1287/opre.2021.2248
10.1145/342009.335388
10.1016/j.neucom.2018.05.027
10.1016/j.knosys.2020.105754
10.1016/j.patcog.2018.07.015
10.1109/ICDMW.2018.00173
10.1609/aaai.v33i01.33019472
10.1016/j.eswa.2013.11.025
10.1145/1541880.1541882
10.1016/j.ijhydene.2022.08.145
10.1016/j.ymssp.2019.106587
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/e26080628
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database

CrossRef
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_a5724fafae2a460dabebf0c43e075fcb
PMC11353480
A807425707
39202098
10_3390_e26080628
Genre Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GrantInformation_xml – fundername: Natural Science Foundation of Shaanxi Province
  grantid: 2023-JC-YB-526
– fundername: Aeronautical Science Foundation of China
  grantid: 20220058053002
– fundername: National Natural Science Foundation of China
  grantid: 62373301 and 62173277
– fundername: Shaanxi Province Key Laboratory of Flight Control and Simulation Technology
  grantid: 20220058053002
– fundername: National Natural Science Foundation of China
  grantid: 62373301; 62173277
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-b88f2a93af788f7a741f99345218b27684d7e8ff56cd90162a2551b9a0caccb93
IEDL.DBID BENPR
ISSN 1099-4300
IngestDate Wed Aug 27 01:22:01 EDT 2025
Thu Aug 21 18:32:08 EDT 2025
Fri Sep 05 04:23:12 EDT 2025
Fri Jul 25 11:45:07 EDT 2025
Tue Jul 01 05:40:21 EDT 2025
Thu Jan 02 22:32:53 EST 2025
Tue Jul 01 01:58:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords fast ADMM
SVDD
anomaly detection
truncated linear exponential loss function
truncated binary cross entropy loss function
proximal operators
truncated loss function
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-b88f2a93af788f7a741f99345218b27684d7e8ff56cd90162a2551b9a0caccb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9184-9493
0000-0001-8912-3418
0000-0002-8393-3185
0000-0001-5700-2638
OpenAccessLink https://www.proquest.com/docview/3097915467?pq-origsite=%requestingapplication%&accountid=15518
PMID 39202098
PQID 3097915467
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_a5724fafae2a460dabebf0c43e075fcb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11353480
proquest_miscellaneous_3099792585
proquest_journals_3097915467
gale_infotracacademiconefile_A807425707
pubmed_primary_39202098
crossref_primary_10_3390_e26080628
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240725
PublicationDateYYYYMMDD 2024-07-25
PublicationDate_xml – month: 7
  year: 2024
  text: 20240725
  day: 25
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zheng (ref_41) 2023; 545
Lu (ref_16) 2022; 47
(ref_31) 2018; 169
ref_14
ref_36
ref_12
Zhao (ref_23) 2020; 94
Zhao (ref_17) 2021; 100
Wu (ref_39) 2009; 31
Tax (ref_8) 2004; 54
Zheng (ref_9) 2019; 10
Wang (ref_35) 2022; 16
Khan (ref_5) 2014; 29
Xing (ref_28) 2018; 84
ref_38
ref_37
Fong (ref_11) 2022; 71
Chen (ref_19) 2015; 90
Sadeghi (ref_21) 2018; 22
Zheng (ref_30) 2023; 122
Hu (ref_22) 2023; 34
Tao (ref_34) 2017; 29
Zheng (ref_13) 2015; 6
Andreou (ref_15) 2014; 7
Alam (ref_7) 2020; 196
Lei (ref_3) 2020; 138
Cha (ref_20) 2014; 41
Xing (ref_40) 2021; 111
Xiao (ref_26) 2017; 85
ref_43
Zhu (ref_18) 2016; 189
Tian (ref_27) 2018; 310
Xing (ref_25) 2020; 138
Yuille (ref_33) 2003; 15
Wang (ref_24) 2020; 91
Liu (ref_32) 2023; 71
Turkoz (ref_10) 2020; 100
Chandola (ref_1) 2009; 41
Zhong (ref_29) 2022; 52
ref_4
Pimentel (ref_2) 2014; 99
Chaudhuri (ref_42) 2021; 111
ref_6
References_xml – volume: 29
  start-page: 345
  year: 2014
  ident: ref_5
  article-title: One-class classification: Taxonomy of study and review of techniques
  publication-title: Knowl. Eng. Rev.
  doi: 10.1017/S026988891300043X
– volume: 22
  start-page: 147
  year: 2018
  ident: ref_21
  article-title: Automatic support vector data description
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2317-5
– volume: 111
  start-page: 107662
  year: 2021
  ident: ref_42
  article-title: The trace kernel bandwidth criterion for support vector data description
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107662
– volume: 90
  start-page: 129
  year: 2015
  ident: ref_19
  article-title: Robust support vector data description for outlier detection with noise or uncertain data
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.09.025
– volume: 34
  start-page: 6602
  year: 2023
  ident: ref_22
  article-title: Global Plus Local Jointly Regularized Support Vector Data Description for Novelty Detection
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3129321
– volume: 122
  start-page: 106153
  year: 2023
  ident: ref_30
  article-title: Robust one-class classification with support vector data description and mixed exponential loss function
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106153
– volume: 99
  start-page: 215
  year: 2014
  ident: ref_2
  article-title: A review of novelty detection
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2013.12.026
– volume: 138
  start-page: 571
  year: 2020
  ident: ref_25
  article-title: Robust least squares one-class support vector machine
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2020.09.005
– volume: 100
  start-page: 104177
  year: 2021
  ident: ref_17
  article-title: A new dynamic radius SVDD for fault detection of aircraft engine
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104177
– volume: 52
  start-page: 16940
  year: 2022
  ident: ref_29
  article-title: Pinball loss support vector data description for outlier detection
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-03237-5
– volume: 7
  start-page: 247
  year: 2014
  ident: ref_15
  article-title: Estimation of the Number of Endmembers Using Robust Outlier Detection Method
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2013.2260135
– volume: 189
  start-page: 1
  year: 2016
  ident: ref_18
  article-title: A weighted one-class support vector machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.10.097
– volume: 94
  start-page: 103796
  year: 2020
  ident: ref_23
  article-title: An improved weighted one class support vector machine for turboshaft engine fault detection
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103796
– volume: 169
  start-page: 5
  year: 2018
  ident: ref_31
  article-title: DC programming and DCA: Thirty years of developments
  publication-title: Math. Program.
  doi: 10.1007/s10107-018-1235-y
– volume: 91
  start-page: 103554
  year: 2020
  ident: ref_24
  article-title: Robust support vector data description for novelty detection with contaminated data
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103554
– volume: 15
  start-page: 915
  year: 2003
  ident: ref_33
  article-title: The concave-convex procedure
  publication-title: Neural Comput.
  doi: 10.1162/08997660360581958
– volume: 71
  start-page: 3500811
  year: 2022
  ident: ref_11
  article-title: An Unsupervised Bayesian OC-SVM Approach for Early Degradation Detection, Thresholding, and Fault Prediction in Machinery Monitoring
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3137858
– volume: 111
  start-page: 107685
  year: 2021
  ident: ref_40
  article-title: Robust sparse coding for one-class classification based on correntropy and logarithmic penalty function
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107685
– volume: 85
  start-page: 15
  year: 2017
  ident: ref_26
  article-title: Ramp Loss based robust one-class SVM
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2016.11.016
– volume: 100
  start-page: 107119
  year: 2020
  ident: ref_10
  article-title: Generalized support vector data description for anomaly detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107119
– volume: 54
  start-page: 45
  year: 2004
  ident: ref_8
  article-title: Support vector data description
  publication-title: Mach. Learn.
  doi: 10.1023/B:MACH.0000008084.60811.49
– volume: 29
  start-page: 2782
  year: 2017
  ident: ref_34
  article-title: Improving sparsity and scalability in regularized nonconvex truncated-loss learning problems
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2705429
– volume: 545
  start-page: 126324
  year: 2023
  ident: ref_41
  article-title: Multikernel correntropy based robust least squares one-class support vector machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126324
– volume: 16
  start-page: 999
  year: 2022
  ident: ref_35
  article-title: Proximal operator and optimality conditions for ramp loss SVM
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-021-01756-7
– ident: ref_6
– ident: ref_37
  doi: 10.1007/3-540-44581-1_27
– volume: 31
  start-page: 2088
  year: 2009
  ident: ref_39
  article-title: A small sphere and large margin approach for novelty detection using training data with outliers
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.24
– volume: 10
  start-page: 1173
  year: 2019
  ident: ref_9
  article-title: A fast iterative algorithm for support vector data description
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-018-0796-7
– volume: 6
  start-page: 11
  year: 2015
  ident: ref_13
  article-title: Raw Wind Data Preprocessing: A Data-Mining Approach
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2014.2355837
– ident: ref_14
  doi: 10.1007/978-3-319-13105-4_1
– volume: 71
  start-page: 397
  year: 2023
  ident: ref_32
  article-title: Risk-based robust statistical learning by stochastic difference-of convex value-function optimization
  publication-title: Oper. Res.
  doi: 10.1287/opre.2021.2248
– ident: ref_12
  doi: 10.1145/342009.335388
– volume: 310
  start-page: 223
  year: 2018
  ident: ref_27
  article-title: Ramp loss one-class support vector machine; A robust and effective approach to anomaly detection problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.027
– ident: ref_36
– volume: 196
  start-page: 105754
  year: 2020
  ident: ref_7
  article-title: One-class support vector classifiers: A survey
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105754
– volume: 84
  start-page: 152
  year: 2018
  ident: ref_28
  article-title: Robust one-class support vector machine with rescaled hinge loss function
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.07.015
– ident: ref_38
  doi: 10.1109/ICDMW.2018.00173
– ident: ref_43
– ident: ref_4
  doi: 10.1609/aaai.v33i01.33019472
– volume: 41
  start-page: 3343
  year: 2014
  ident: ref_20
  article-title: Density weighted support vector data description
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.11.025
– volume: 41
  start-page: 15
  year: 2009
  ident: ref_1
  article-title: Anomaly detection: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1541880.1541882
– volume: 47
  start-page: 35825
  year: 2022
  ident: ref_16
  article-title: A novel dynamic radius support vector data description based fault diagnosis method for proton exchange membrane fuel cell systems
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.08.145
– volume: 138
  start-page: 106587
  year: 2020
  ident: ref_3
  article-title: Applications of machine learning to machine fault diagnosis: A review and roadmap
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.106587
SSID ssj0023216
Score 2.3465834
Snippet Support vector data description (SVDD) is widely regarded as an effective technique for addressing anomaly detection problems. However, its performance can...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 628
SubjectTerms Algorithms
Anomalies
anomaly detection
Data analysis
Datasets
Effectiveness
Entropy (Information theory)
fast ADMM
Information management
Methods
Noise levels
Outliers (statistics)
Propagation
proximal operators
Robustness
SVDD
truncated binary cross entropy loss function
truncated loss function
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlp15CQ9rUzQdqKeRkIstaSzombZZQ2gZKUgI9iNEXLQRvSez_3xnbu6zpIZccdyXBeMbSvCdLbxj7KGzQMVW2bCzIUlUxlib6UHovvdHZQjB0d_jb9-bqVn25W9xtlfqiM2GjPPDouDNYaKkyZEgSVCMi-OSzCKpOmOxy8LT6CivWZGqiWrWsmlFHqEZSf5YQtRu6LTjLPoNI__9L8VYump-T3Eo8y1dsd0KM_Hy0dI-9SO0--_Vj5fvHjlNRTgTQ_Oew-c4_QwccqeR6KeC0zcpvHnqSfk2Rf0Wj-BJ_DY2IV_l1391TNWwcNR2JbV-z2-XlzaercqqTUAYkt13pjckSbA0Z-WzWgCAhI-xQmJmNl_SlLepkcl40IWL6byQgj6i8BREgBG_rN2ynXbXpLeM42CudMY8rUF5HHJ4qAQEdKmwCX7APa_-5v6MchkMaQU52GycX7II8u-lACtbDHxhXN8XVPRXXgp1SXBzNM3Q-WjpeF0A7SbHKnZOKD5Xg0wU7WofOTRPw0dXCaovwsMHm95tmnDr0PQTatOqHPthJImEq2MEY6Y3NCBsRSFt8FjN7B2YPNW9p__we5LkrKiWijHj3HG44ZC_REEW7yXJxxHa6hz4dIwzq_Mnwxv8DYQALQg
  priority: 102
  providerName: Directory of Open Access Journals
Title Robust Support Vector Data Description with Truncated Loss Function for Outliers Depression
URI https://www.ncbi.nlm.nih.gov/pubmed/39202098
https://www.proquest.com/docview/3097915467
https://www.proquest.com/docview/3099792585
https://pubmed.ncbi.nlm.nih.gov/PMC11353480
https://doaj.org/article/a5724fafae2a460dabebf0c43e075fcb
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELba7YULouIVKCuDkDhFTRwntg8I9bWtECyoatFKHCI_AQklZZv8f2byaiMkLpES28p4bM98M7ZnCHmbKCucT1VcKM1injoXS2dsbAwzUgSlrcS7w5_XxcU1_7jJNztkPd6FwWOVo0zsBLWrLfrID7NECQX6vhAfbv7EmDUKd1fHFBp6SK3g3nchxnbJHojkPFmQveOz9dfLyQTLWFr08YUyMPYPPaB5ibcIZ1qpC97_r4i-p6Pm5yfvKaTVI_JwQJL0qB_6fbLjq8fk-2Vt2tuGYrJOANb0W-eUp6e60RRMzFFEUHS_0qttiyFhvaOfgCi6greuEHAs_dI2vzFLNrQajspWT8j16uzq5CIe8ifEFozeJjZSBqZVpgPYuUFoAA8B4AgHjS0Nwx04J7wMIS-sA1hQMA32RWqUTizw06jsKVlUdeWfEwqNDRcB9DvX3AgHzX2aaAsMTZTXJiJvRv6VN32YjBLMC2RyOTE5IsfI2akCRrbuPtTbH-WwUEqdC8aDDtozzYvEaeNNSCzPPICbYOFP73BcSlx_wHygtL9GAHRiJKvyCKP7YGo-EZGDcejKYWHelnfTKCKvp2JYUrhPoitft10dqMTAkIrIs36kJ5oBTgLAVtAXOZsDs07NS6pfP7uw3SmmGOEyefF_ul6SB_ALjv5jlh-QRbNt_SsAPo1Zkl25Ol8Oc3rZuQ_geb5J_wKz9Qn_
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq7QEuCMQrUMAgEKeoieON7UOFWtrVlm4XVG1RJQ7Bjm1AQknZTYT4c_w2ZvKiERK3Hndty5Px45uxPfMR8jJSubAuVmGqNAt5bG0orclDY5iRwiudS4wdPl2m83P-7mJ6sUV-97Ew-Kyy3xObjdqWOZ6R7yaREgrwPhVvLn-EyBqFt6s9hYbuqBXsXpNirAvsOHG_foILt9k7PoTxfsXY7Gj1dh52LANhDq5hFRopPdMq0R68QS80QKwH0OaAa9IwvKeywknvp2luATxTpsEKj43SUQ69GkzGBBCwzfEAZUK2D46WH84Gly9hcdrmM0oSFe068B4kRi2OULAhC_gXEq5g4vi95hUAnN0mtzrLle63U-0O2XLFXfLprDT1pqJIDgqGPP3YXALQQ11pCi5tvyVRPO6lq3WNKWidpQsQis7gV1MIdjN9X1ffkZUbWnVPc4t75PxaNHmfTIqycA8JhcaGCw_2BNfcCAvNXRzpHBQaKadNQF70-ssu27QcGbgzqORsUHJADlCzQwXMpN38Ua6_ZN3CzPRUMO61145pnkZWG2d8lPPEgTHlc-jpNY5LhusdlA-StmELICdmzsr2MZsQUgGKgOz0Q5d1G8Em-zttA_J8KIYljPcyunBl3dSBSgwct4A8aEd6kBnMVzDoFXyLHM2B0UeNS4pvX5s04TFSmnAZPfq_XM_IjfnqdJEtjpcnj8lN6I7j2TWb7pBJta7dEzC6KvO0m9mUfL7uxfQHQNBDyg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEA-lBfFFFL9Oq0ZRfFpuN5vbbB6KtF6P1tazlFYKPsR8qiC79W4X8V_0r3Jmv-wi-NbH3SRkMsnkN5NkZgh5GUsrnE9klEnNIp44F-XO2MgYZnIRpLY5-g6_X2YH5_zdxexig_zufWHwWWW_JzYbtSstnpFP01gKCXifiWnonkWczBdvLn9EmEEKb1r7dBq6S7PgdppwY52Tx5H_9RPMufXO4Rzm_hVji_2ztwdRl3EgsmAmVpHJ88C0THUAyzAIDXAbAMA5YFxuGN5ZOeHzEGaZdQCkGdOgkSdG6thCrwYDMwEcbAlAfTAEt_b2lyeng_mXsiRrYxulqYynHiyJHD0YR4jYJA74Fx6u4OP47eYVMFzcJrc6LZbutsvuDtnwxV3y6bQ09bqimCgUlHr6sbkQoHNdaQrmbb89UTz6pWerGsPRekePgSi6gK-mEHRo-qGuvmOGbmjVPdMt7pHza-HkfbJZlIV_SCg0NlwE0C245kY4aO6TWFtgaCy9NhPyouefumxDdCgwbZDJamDyhOwhZ4cKGFW7-VGuvqhOSJWeCcaDDtozzbPYaeNNiC1PPShWwUJPr3FeFMo-MB8obV0YgE6MoqV2MbIQpgUUE7LdT53qNoW1-ruEJ-T5UAzijHc0uvBl3dSBSgyMuAl50M70QDOosqDcSxhLPloDo0GNS4pvX5uQ4QmmN-F5_Oj_dD0jN0Co1PHh8ugxuQm9cTzGZrNtslmtav8E9K_KPO0WNiWfr1uW_gBDWUgO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Support+Vector+Data+Description+with+Truncated+Loss+Function+for+Outliers+Depression&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Huakun&rft.au=Lyu%2C+Yongxi&rft.au=Shi%2C+Jingping&rft.au=Zhang%2C+Weiguo&rft.date=2024-07-25&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=26&rft.issue=8&rft.spage=628&rft_id=info:doi/10.3390%2Fe26080628&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon