The Novel Combination of Nano Vector Network Analyzer and Machine Learning for Fruit Identification and Ripeness Grading

Fruit classification is required in many smart-farming and industrial applications. In the supermarket, a fruit classification system may be used to help cashiers and customer to identify the fruit species, origin, ripeness, and prices. Some methods, such as image processing and NIRS (near-infrared...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 2; p. 952
Main Authors Tran, Van Lic, Doan, Thi Ngoc Canh, Ferrero, Fabien, Huy, Trinh Le, Le-Thanh, Nhan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 13.01.2023
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23020952

Cover

Abstract Fruit classification is required in many smart-farming and industrial applications. In the supermarket, a fruit classification system may be used to help cashiers and customer to identify the fruit species, origin, ripeness, and prices. Some methods, such as image processing and NIRS (near-infrared spectroscopy) are already used to classify fruit. In this paper, we propose a fast and cost-effective method based on a low-cost Vector Network Analyzer (VNA) device augmented by K-nearest neighbor (KNN) and Neural Network model. S-parameters features are selected, which take into account the information on signal amplitude or phase in the frequency domain, including reflection coefficient S11 and transmission coefficient S21. This approach was experimentally tested for two separate datasets of five types of fruits, including Apple, Avocado, Dragon Fruit, Guava, and Mango, for fruit recognition as well as their level of ripeness. The classification accuracy of the Neural Network model was higher than KNN with 98.75% and 99.75% on the first dataset, whereas the KNN was seen to be more effective in classifying ripeness with 98.4% as compared to 96.6% for neural network.
AbstractList Fruit classification is required in many smart-farming and industrial applications. In the supermarket, a fruit classification system may be used to help cashiers and customer to identify the fruit species, origin, ripeness, and prices. Some methods, such as image processing and NIRS (near-infrared spectroscopy) are already used to classify fruit. In this paper, we propose a fast and cost-effective method based on a low-cost Vector Network Analyzer (VNA) device augmented by K-nearest neighbor (KNN) and Neural Network model. S-parameters features are selected, which take into account the information on signal amplitude or phase in the frequency domain, including reflection coefficient S11 and transmission coefficient S21. This approach was experimentally tested for two separate datasets of five types of fruits, including Apple, Avocado, Dragon Fruit, Guava, and Mango, for fruit recognition as well as their level of ripeness. The classification accuracy of the Neural Network model was higher than KNN with 98.75% and 99.75% on the first dataset, whereas the KNN was seen to be more effective in classifying ripeness with 98.4% as compared to 96.6% for neural network.Fruit classification is required in many smart-farming and industrial applications. In the supermarket, a fruit classification system may be used to help cashiers and customer to identify the fruit species, origin, ripeness, and prices. Some methods, such as image processing and NIRS (near-infrared spectroscopy) are already used to classify fruit. In this paper, we propose a fast and cost-effective method based on a low-cost Vector Network Analyzer (VNA) device augmented by K-nearest neighbor (KNN) and Neural Network model. S-parameters features are selected, which take into account the information on signal amplitude or phase in the frequency domain, including reflection coefficient S11 and transmission coefficient S21. This approach was experimentally tested for two separate datasets of five types of fruits, including Apple, Avocado, Dragon Fruit, Guava, and Mango, for fruit recognition as well as their level of ripeness. The classification accuracy of the Neural Network model was higher than KNN with 98.75% and 99.75% on the first dataset, whereas the KNN was seen to be more effective in classifying ripeness with 98.4% as compared to 96.6% for neural network.
Fruit classification is required in many smart-farming and industrial applications. In the supermarket, a fruit classification system may be used to help cashiers and customer to identify the fruit species, origin, ripeness, and prices. Some methods, such as image processing and NIRS (near-infrared spectroscopy) are already used to classify fruit. In this paper, we propose a fast and cost-effective method based on a low-cost Vector Network Analyzer (VNA) device augmented by K-nearest neighbor (KNN) and Neural Network model. S-parameters features are selected, which take into account the information on signal amplitude or phase in the frequency domain, including reflection coefficient S11 and transmission coefficient S21. This approach was experimentally tested for two separate datasets of five types of fruits, including Apple, Avocado, Dragon Fruit, Guava, and Mango, for fruit recognition as well as their level of ripeness. The classification accuracy of the Neural Network model was higher than KNN with 98.75% and 99.75% on the first dataset, whereas the KNN was seen to be more effective in classifying ripeness with 98.4% as compared to 96.6% for neural network.
Fruit classification is required in many smart-farming and industrial applications. In the supermarket, a fruit classification system may be used to help cashiers and customer to identify the fruit species, origin, ripeness, and prices. Some methods, such as image processing and NIRS (near-infrared spectroscopy) are already used to classify fruit. In this paper, we propose a fast and cost-effective method based on a low-cost Vector Network Analyzer (VNA) device augmented by K-nearest neighbor (KNN) and Neural Network model. S-parameters features are selected, which take into account the information on signal amplitude or phase in the frequency domain, including reflection coefficient and transmission coefficient . This approach was experimentally tested for two separate datasets of five types of fruits, including Apple, Avocado, Dragon Fruit, Guava, and Mango, for fruit recognition as well as their level of ripeness. The classification accuracy of the Neural Network model was higher than KNN with 98.75% and 99.75% on the first dataset, whereas the KNN was seen to be more effective in classifying ripeness with 98.4% as compared to 96.6% for neural network.
Author Ferrero, Fabien
Huy, Trinh Le
Le-Thanh, Nhan
Tran, Van Lic
Doan, Thi Ngoc Canh
AuthorAffiliation 1 Universite Cote d’Azur, LEAT, CNRS, 06903 Sophia Antipolis, France
5 Faculty of Computer Engineering, University of Information Technology, Ho Chi Minh City 721400, Vietnam
3 The University of Danang—University of Economics, Danang 55000, Vietnam
4 The Univeristy of Danang, Danang International Institute of Technology—DNIIT, Danang 550000, Vietnam
2 The University of Danang—University of Science and Technology, Danang 550000, Vietnam
AuthorAffiliation_xml – name: 5 Faculty of Computer Engineering, University of Information Technology, Ho Chi Minh City 721400, Vietnam
– name: 2 The University of Danang—University of Science and Technology, Danang 550000, Vietnam
– name: 4 The Univeristy of Danang, Danang International Institute of Technology—DNIIT, Danang 550000, Vietnam
– name: 3 The University of Danang—University of Economics, Danang 55000, Vietnam
– name: 1 Universite Cote d’Azur, LEAT, CNRS, 06903 Sophia Antipolis, France
Author_xml – sequence: 1
  givenname: Van Lic
  surname: Tran
  fullname: Tran, Van Lic
– sequence: 2
  givenname: Thi Ngoc Canh
  surname: Doan
  fullname: Doan, Thi Ngoc Canh
– sequence: 3
  givenname: Fabien
  surname: Ferrero
  fullname: Ferrero, Fabien
– sequence: 4
  givenname: Trinh Le
  orcidid: 0000-0002-8340-6270
  surname: Huy
  fullname: Huy, Trinh Le
– sequence: 5
  givenname: Nhan
  orcidid: 0000-0003-4207-2128
  surname: Le-Thanh
  fullname: Le-Thanh, Nhan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36679749$$D View this record in MEDLINE/PubMed
BookMark eNp1kkFvEzEQhS1URNvAgT-ALHEBpFCv7d21L0hVREukECRUuFpe7zhx2NjB3m0Jvx43KVFbwcnW-POb53k-RUc-eEDoZUHeMybJWaKMUCJL-gSdFJzysaCUHN3bH6PTlFaEUMaYeIaOWVXVsubyBP26WgKeh2vo8CSsG-d174LHweK59gF_B9OHiOfQ34T4A5973W1_Q8Tat_izNkvnAc9AR-_8AttMXsTB9Xjagu-ddWavdkt_dRvwkBK-jLrN9HP01OouwYu7dYS-XXy8mnwaz75cTifns7HhlezHTVkbC42wVck4qYuaipqztuGEAa0NL8qqyOVcoWVpq0JQITQH1jSk1I1t2QhN97pt0Cu1iW6t41YF7dSuEOJC6dg704GSrbAEaFNbaXju2DBNKasYL6kphKRZ691ea_Abvb3RXXcQLIi6jUIdosjwhz28GZo1tCZPJOrugYOHJ94t1SJcKykqKoXIAm_uBGL4OUDq1dolA12nPYQhKVpXgjJa5kxH6PUjdBWGmMPaUTWVldxRr-47Olj5-xsycLYHTAwpRbDKuH4XYTboun8-8u2jG_8fyB-KaNKK
CitedBy_id crossref_primary_10_1016_j_jafr_2024_101474
crossref_primary_10_1016_j_jafr_2023_100931
crossref_primary_10_3390_s25051524
crossref_primary_10_36548_jiip_2024_3_006
crossref_primary_10_1016_j_jfca_2023_105873
crossref_primary_10_17584_rcch_2024v18i2_17428
crossref_primary_10_1109_ACCESS_2024_3496728
crossref_primary_10_1007_s11042_024_18439_x
Cites_doi 10.1109/TII.2018.2875149
10.3390/electronics9101564
10.1016/j.compag.2020.105326
10.1007/s11947-010-0411-8
10.1145/3453800.3453817
10.1109/JSEN.2017.2715222
10.1016/j.scienta.2019.108718
10.1109/JSEN.2019.2949528
10.1016/j.compag.2019.04.019
10.1016/j.dib.2019.104340
10.3390/s21113830
10.1016/j.compag.2009.09.002
10.1016/j.crfs.2022.100412
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s23020952
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Complete
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_9d8f0e2b7f9c48f6b3a22363452c1892
10.3390/s23020952
PMC9862988
36679749
10_3390_s23020952
Genre Journal Article
GrantInformation_xml – fundername: Funds for Science and Technology Development of the University of Danang
  grantid: B2022-DN02-08
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c469t-b57cfeb8f6534071728743db403e27c415610713db255f618288a4e3bb05abfd3
IEDL.DBID DOA
ISSN 1424-8220
IngestDate Tue Oct 14 19:09:10 EDT 2025
Sun Oct 26 04:06:05 EDT 2025
Tue Sep 30 17:16:30 EDT 2025
Thu Sep 04 18:11:27 EDT 2025
Tue Oct 07 08:08:31 EDT 2025
Wed Feb 19 02:26:17 EST 2025
Thu Oct 16 04:33:43 EDT 2025
Thu Apr 24 23:10:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords VNA
fruit classification
KNN
neural network
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-b57cfeb8f6534071728743db403e27c415610713db255f618288a4e3bb05abfd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4207-2128
0000-0002-8340-6270
OpenAccessLink https://doaj.org/article/9d8f0e2b7f9c48f6b3a22363452c1892
PMID 36679749
PQID 2767296933
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_9d8f0e2b7f9c48f6b3a22363452c1892
unpaywall_primary_10_3390_s23020952
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9862988
proquest_miscellaneous_2768232533
proquest_journals_2767296933
pubmed_primary_36679749
crossref_citationtrail_10_3390_s23020952
crossref_primary_10_3390_s23020952
PublicationCentury 2000
PublicationDate 20230113
PublicationDateYYYYMMDD 2023-01-13
PublicationDate_xml – month: 1
  year: 2023
  text: 20230113
  day: 13
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Jie (ref_4) 2019; 257
Rocha (ref_9) 2010; 70
Duong (ref_6) 2020; 171
Cubero (ref_5) 2011; 4
Marimuthu (ref_7) 2017; 17
ref_14
Ren (ref_12) 2020; 20
Narendra (ref_1) 2010; 1
Hikichi (ref_11) 2021; 1
Rauf (ref_2) 2019; 26
Garvin (ref_13) 2022; 6
Korostynska (ref_15) 2018; 2
Steinbrener (ref_10) 2019; 162
ref_3
ref_17
ref_16
Hossain (ref_8) 2019; 15
References_xml – volume: 1
  start-page: 2
  year: 2021
  ident: ref_11
  article-title: Contactless Estimation Method of Complex Permittivity Using Load Modulation for Agricultural Application
  publication-title: Change
– volume: 15
  start-page: 1027
  year: 2019
  ident: ref_8
  article-title: Automatic Fruit Classification Using Deep Learning for Industrial Applications
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2875149
– ident: ref_14
  doi: 10.3390/electronics9101564
– volume: 171
  start-page: 105326
  year: 2020
  ident: ref_6
  article-title: Automated fruit recognition using EfficientNet and MixNet
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105326
– volume: 4
  start-page: 487
  year: 2011
  ident: ref_5
  article-title: Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables
  publication-title: Food Bioprocess Technol.
  doi: 10.1007/s11947-010-0411-8
– ident: ref_17
  doi: 10.1145/3453800.3453817
– volume: 17
  start-page: 4903
  year: 2017
  ident: ref_7
  article-title: Particle swarm optimized fuzzy model for the classification of banana ripeness
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2017.2715222
– volume: 2
  start-page: 980
  year: 2018
  ident: ref_15
  article-title: Electromagnetic sensing for non-destructive real-time fruit ripeness detection: Case-study for automated strawberry picking
  publication-title: Multidiscip. Digit. Publ. Inst. Proc.
– ident: ref_16
– volume: 257
  start-page: 108718
  year: 2019
  ident: ref_4
  article-title: Nondestructive detection of maturity of watermelon by spectral characteristic using NIR diffuse transmittance technique
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2019.108718
– volume: 20
  start-page: 2075
  year: 2020
  ident: ref_12
  article-title: Machine learning driven approach towards the quality assessment of fresh fruits using non-invasive sensing
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2019.2949528
– volume: 162
  start-page: 364
  year: 2019
  ident: ref_10
  article-title: Hyperspectral fruit and vegetable classification using convolutional neural networks
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.04.019
– volume: 26
  start-page: 104340
  year: 2019
  ident: ref_2
  article-title: A citrus fruits and leaves dataset for detection and classification of citrus diseases through machine learning
  publication-title: Data Brief
  doi: 10.1016/j.dib.2019.104340
– volume: 1
  start-page: 1
  year: 2010
  ident: ref_1
  article-title: Prospects of computer vision automated grading and sorting systems in agricultural and food products for quality evaluation
  publication-title: Int. J. Comput. Appl.
– ident: ref_3
  doi: 10.3390/s21113830
– volume: 70
  start-page: 96
  year: 2010
  ident: ref_9
  article-title: Automatic fruit and vegetable classification from images
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2009.09.002
– volume: 6
  start-page: 100412
  year: 2022
  ident: ref_13
  article-title: Microwave imaging for watermelon maturity determination
  publication-title: Curr. Res. Food Sci.
  doi: 10.1016/j.crfs.2022.100412
SSID ssj0023338
Score 2.4409773
Snippet Fruit classification is required in many smart-farming and industrial applications. In the supermarket, a fruit classification system may be used to help...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 952
SubjectTerms Accuracy
Algorithms
Antennas
Automation
Classification
Cluster Analysis
Data collection
Datasets
Fruit - chemistry
fruit classification
Fruits
Harvest
KNN
Machine Learning
Methods
neural network
Neural networks
Neural Networks, Computer
Performance evaluation
Software
Spectroscopy, Near-Infrared - methods
Spectrum analysis
Support Vector Machine
VNA
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QF6QDxLoCDzOHCJmtiJ4xwQoqhLhdQIVRT1FvlZVlol23SX169n7GRDVxSuyShyMjPO99njbwBeWcTAZeJP9Gin40xrEQvpeMyY4onLU5uHZjDHFT86zT6e5WdbUK3PwviyyvWcGCZq02q_Rr5PC444kCP_fru4iH3XKL-7um6hIYfWCuZNkBi7AdvUK2NNYPvgsPp0MlIwhoys1xdiSPb3LxGAUwQZdOOvFMT7r0OcfxdO3lw1C_nzu5zPr_yVpnfg9gAnybve_3dhyzb3YOeKyOB9-IGRQKr2m50TTH4kwsEXpHUEZ9aWfAnL9qTqy8FJECn5ZTsiG0OOQ6WlJYMI6zlBhEum3Wq2JP0BXzes-AXrk9kiTJzkQxcK8x_A6fTw8_ujeOi3EGskyctY5YV2VgnHcxZ4ntfCZ0ZlCbO00J7qpZ7UGoU8xHFkJkLIzDKlklwqZ9hDmDRtYx8BMYganW9sTF2RWZ1JU9Jcom-M9hqDaQSv19-71oMYue-JMa-RlHjX1KNrIngxmi56BY7rjA6800YDL5odLrTdeT3kYF0a4RJLVeFKneFbKiYRHHGW5VSnosSH7K1dXg-ZfFn_ibsIno-3MQf9xopsbLsKNgKRae5tdvsIGUfCOC-Qs5URFBuxszHUzTvN7GvQ-S6RbZZCRPByjLJ_f4HH_x_8E7hFMfz94lHK9mCy7Fb2KcKppXo25MhvMbkf5g
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZWywE4IN4EFmQeBy6BxK_YB4QAUVZI7QFRtLfIduylUpSUbAu7_HrGThptRLlxjUdR4vHY32ePv0HohQMMrLJwo8d6mzJrZSq1FymlRmSe547HYjDzhThess8n_OQA7WpsDh14tpfahXpSy65-df7j4i0E_JvAOIGyvz4DGE0AKsBMfAUWKBUqOMzZeJhAKNCwXlRoaj5ZiqJi_z6Y-Xe25NVts9YXv3RdX1qKZjfRjQFD4ne902-hA9fcRtcvKQveQefgfrxof7oaQ8QD-40OwK3HMJ22-Fvcq8eLPgccR2WS367DuqnwPKZXOjwor55igLV41m1XG9zf6vXDNl-0_rJax9kSf-piNv5dtJx9_PrhOB2KLKQWmPEmNbyw3hnpBaeR3AUBfFoZllFHChv4XR6YbGWAfHgBdERKzRw1JuPa-IreQ4dN27gHCFcAFX2oZkx8wZxlulKEawAslQ3CgnmCXu76u7SDAnkohFGXwESCa8rRNQl6Npque9mNfUbvg9NGg6CUHR-03Wk5BF6pKukzR0zhlWXwl4ZqQESCMk5sLhW85Gjn8nI3-kpSCCAdQlGaoKdjMwReOE3RjWu30UYCHOXB5n4_QsYvoUIUQNRUgorJ2Jl86rSlWX2P4t4KKKaSMkHPx1H27x54-D964BG6RiBIwr5STo_Q4abbuseAtDbmSYyjPxrPJ2I
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVgewAOfEMDBZmPA5c0iR07zgkVxFIhdYUQi8opih27rLpKVtmkQH89Y8cbdaFIiGsyiZx4PH7PHr9B6KUGDJzH9kSPMipMlRKhKA0PKZU8NizRzBWDOZrxw3n64Zgd-wW3tU-rBCq-cEHansIKYQaLI0IjEuWMRKvKvD7zK0mJq1gpYkqvoh3OAItP0M589vHgqztS5J8d5IQocPtoDXibAKYgW5OQ0-q_DGD-mSd5ra9X5c_v5XJ5YRKa3kLFpvlD7snpft_JfXX-m7Lj_3_fbXTT41N8MDjUHXRF13fRjQuqhffQD3AtPGvO9BJDNAFm7ToXNwZDqG7wF7cPgGdDfjl2qifnusVlXeEjl7qpsVd1PcEAmfG07RcdHk4MG7-E6Kw_LVYuEuP3rcv0v4_m03ef3x6GvoBDqIB1d6FkmTJaCsMZdcTRiuvTSqYx1SRTljsmliVXEoiN4UB1hChTTaWMWSlNRR-gSd3UehfhCmCosZWSiclSrdKyygkrAQxVyooWJgF6tenRQnl1c1tkY1kAy7GdX4ydH6Dno-lqkPS4zOiNdYvRwKpwuwtNe1L4QV3klTCxJjIzuUrhKyUtAW1xmjKiEpHDS_Y2TlX40LAuSMaB0PCc0gA9G2_DoLY7NWWtm97ZCIC6zNo8HHxwbAnlPAMSmAco2_LOraZu36kX35xweA70NRciQC9GP_77H3j0T1aP0XUCsM8uSiV0D026ttdPAKZ18qkfi78AjpM2lQ
  priority: 102
  providerName: Unpaywall
Title The Novel Combination of Nano Vector Network Analyzer and Machine Learning for Fruit Identification and Ripeness Grading
URI https://www.ncbi.nlm.nih.gov/pubmed/36679749
https://www.proquest.com/docview/2767296933
https://www.proquest.com/docview/2768232533
https://pubmed.ncbi.nlm.nih.gov/PMC9862988
https://www.mdpi.com/1424-8220/23/2/952/pdf?version=1673868033
https://doaj.org/article/9d8f0e2b7f9c48f6b3a22363452c1892
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BcgAOiDeBpTKPA5dokzh27OMu2u4KqdFqRVE5RbZjQ6Uqqbotr1_P2EmjViziwiWHZA7WeMb-Pmf8DcBbixhYJv5Gj3Emzo0RsVCOx5RqnjiWWhaawUxKfj7NP8zYbKfVl68J6-SBO8cdyVq4xGa6cNLkwnFNFe5onOYsM6mQYfVNhNySqZ5qUWRenY4QRVJ_dIVAO0Mwke3tPkGk_zpk-WeB5O1Ns1Q_v6vFYmf3Gd-Hez1sJMfdcB_ADds8hLs7YoKP4AfOOCnbb3ZBMMmR8Aafk9YRXEFb8ikcz5OyK_smQYzkl10R1dRkEioqLenFVr8QRLJkvNrM16S7yOv6k71gfTlfhgWSnK1CAf5jmI5PP74_j_u-CrFBMryONSuMsxqdyWjgc17zntY6T6jNCuMpXerJa62RbziODEQIlVuqdcKUdjV9AgdN29hnQGpEh843MM5ckVuTq1pmTCFGqY3XEkwjeLf1d2V60XHf-2JRIfnwU1MNUxPB68F02SltXGd04idtMPDi2OEFhkzVh0z1r5CJ4HA75VWfsVdVVnDkGVxSGsGr4TPmmv-BohrbboKNQATKvM3TLkKGkVDOC-RmMoJiL3b2hrr_pZl_DXreElmlFCKCN0OU_d0Dz_-HB17AnQyTxB8lpfQQDtarjX2J4GqtR3CzmBX4FOOzEdw6OS0vLkcht_A5yQW-m5YXx59_A-tkJyw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4q5VA4IHYCBcwmcYma2InjHBBiG6a0MwfUormF2LHLSKNkyMxQyo_iN_LsLO2Iwq3XyVPk8VvyfV6-B_BcIwZOA3ujRxnlR0oJX-SG-4xJHpg41LFrBjMa8-Fh9GkSTzbgd3cXxh6r7GqiK9RFpewa-Q5NOOJAjvz79fy7b7tG2d3VroVGExZ7-uQYKdvi1e579O8LSgcfDt4N_bargK-QCi59GSfKaCkMj5ljM1bxnRUyCpimibKEJrTUrZCItg1H_C1EHmkmZRDn0hQM33sJLkcMawnmTzI5JXgM-V6jXsRYGuwsEN5ThDB07ZvnWgOch2f_Ppa5tSrn-clxPpud-eYNrsO1FqySN0103YANXd6Eq2ckDG_BT4wzMq5-6BnB0oI023maVIZg3a7IF7cpQMbNYXPiJFB-6ZrkZUFG7hynJq3E6xFB_EwG9Wq6JM31YdOuJzrrz9O5K8vkY-2O_d-GwwuZ9zuwWValvgekQExqbNtkapJIqygvUhrniIwKZRUMQw9edvOdqVbq3HbcmGVIeaxrst41HjztTeeNvsd5Rm-t03oDK8ntfqjqo6zN8CwthAk0lYlJVYT_UrIcoRdnUUxVKFJ8yXbn8qytE4vsNKo9eNI_xgy32zZ5qauVsxGIe2Nrc7eJkH4kjPMEGWHqQbIWO2tDXX9STr85FfEUuWwqhAfP-ij79wzc___gH8PW8GC0n-3vjvcewBWKqWCXqUK2DZvLeqUfInBbykcuWwh8vej0_APsx1TV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4IN4NFDAviUu0iZ04zgEhoCwtpSuEKNpbiB27XWmVLNldSvlp_DrGzqNdUbj1Go8ix_PI99njGYBnGjFwGtgbPcooP1JK-CI33GdM8sDEoY5dM5i9Ed_ejz6M4_Ea_O7uwti0yi4mukBdVMrukQ9owhEHcuTfA9OmRXzaGr6affdtByl70tq102hMZFcfHyF9m7_c2UJdP6d0-O7L222_7TDgK6SFC1_GiTJaCsNj5piNrf7OChkFTNNEWXITWhpXSETehiMWFyKPNJMyiHNpCobvvQAXE8ZSm06YjE_IHkPu11QywsFgMEeoTxHO0JX_n2sTcBa2_TtF8_KynOXHR_l0eur_N7wO11rgSl43lnYD1nR5E66eKmd4C36izZFR9UNPCYYZpNxO66QyBGN4Rb66AwIyahLPiSuH8kvXJC8LsudyOjVpy70eEMTSZFgvJwvSXCU27d6ik_48mbkQTd7X7grAbdg_l3W_A-tlVeoNIAXiU2NbKFOTRFpFeZHSOEeUVChbzTD04EW33plqy57b7hvTDOmPVU3Wq8aDJ73orKn1cZbQG6u0XsCW53YPqvoga709SwthAk1lYlIV4VdKliMM4yyKqQpFii_Z7FSetTFjnp1YuAeP-2H0dnuEk5e6WjoZgRg4tjJ3GwvpZ8I4T5Adph4kK7azMtXVkXJy6CqKp8hrUyE8eNpb2b9X4N7_J_8ILqFjZh93Rrv34QpFT7A7ViHbhPVFvdQPEMMt5EPnLAS-nbd3_gEBKlkY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVgewAOfEMDBZmPA5c0iR07zgkVxFIhdYUQi8opih27rLpKVtmkQH89Y8cbdaFIiGsyiZx4PH7PHr9B6KUGDJzH9kSPMipMlRKhKA0PKZU8NizRzBWDOZrxw3n64Zgd-wW3tU-rBCq-cEHansIKYQaLI0IjEuWMRKvKvD7zK0mJq1gpYkqvoh3OAItP0M589vHgqztS5J8d5IQocPtoDXibAKYgW5OQ0-q_DGD-mSd5ra9X5c_v5XJ5YRKa3kLFpvlD7snpft_JfXX-m7Lj_3_fbXTT41N8MDjUHXRF13fRjQuqhffQD3AtPGvO9BJDNAFm7ToXNwZDqG7wF7cPgGdDfjl2qifnusVlXeEjl7qpsVd1PcEAmfG07RcdHk4MG7-E6Kw_LVYuEuP3rcv0v4_m03ef3x6GvoBDqIB1d6FkmTJaCsMZdcTRiuvTSqYx1SRTljsmliVXEoiN4UB1hChTTaWMWSlNRR-gSd3UehfhCmCosZWSiclSrdKyygkrAQxVyooWJgF6tenRQnl1c1tkY1kAy7GdX4ydH6Dno-lqkPS4zOiNdYvRwKpwuwtNe1L4QV3klTCxJjIzuUrhKyUtAW1xmjKiEpHDS_Y2TlX40LAuSMaB0PCc0gA9G2_DoLY7NWWtm97ZCIC6zNo8HHxwbAnlPAMSmAco2_LOraZu36kX35xweA70NRciQC9GP_77H3j0T1aP0XUCsM8uSiV0D026ttdPAKZ18qkfi78AjpM2lQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Novel+Combination+of+Nano+Vector+Network+Analyzer+and+Machine+Learning+for+Fruit+Identification+and+Ripeness+Grading&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Van+Lic+Tran&rft.au=Thi+Ngoc+Canh+Doan&rft.au=Fabien+Ferrero&rft.au=Trinh+Le+Huy&rft.date=2023-01-13&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=2&rft.spage=952&rft_id=info:doi/10.3390%2Fs23020952&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9d8f0e2b7f9c48f6b3a22363452c1892
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon