Influence of Channel Selection and Subject’s Age on the Performance of the Single Channel EEG-Based Automatic Sleep Staging Algorithms
The electroencephalogram (EEG) signal is a key parameter used to identify the different sleep stages present in an overnight sleep recording. Sleep staging is crucial in the diagnosis of several sleep disorders; however, the manual annotation of the EEG signal is a costly and time-consuming process....
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 2; p. 899 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
12.01.2023
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s23020899 |
Cover
Abstract | The electroencephalogram (EEG) signal is a key parameter used to identify the different sleep stages present in an overnight sleep recording. Sleep staging is crucial in the diagnosis of several sleep disorders; however, the manual annotation of the EEG signal is a costly and time-consuming process. Automatic sleep staging algorithms offer a practical and cost-effective alternative to manual sleep staging. However, due to the limited availability of EEG sleep datasets, the reliability of existing sleep staging algorithms is questionable. Furthermore, most reported experimental results have been obtained using adult EEG signals; the effectiveness of these algorithms using pediatric EEGs is unknown. In this paper, we conduct an intensive study of two state-of-the-art single-channel EEG-based sleep staging algorithms, namely DeepSleepNet and AttnSleep, using a recently released large-scale sleep dataset collected from 3984 patients, most of whom are children. The paper studies how the performance of these sleep staging algorithms varies when applied on different EEG channels and across different age groups. Furthermore, all results were analyzed within individual sleep stages to understand how each stage is affected by the choice of EEG channel and the participants’ age. The study concluded that the selection of the channel is crucial for the accuracy of the single-channel EEG-based automatic sleep staging methods. For instance, channels O1-M2 and O2-M1 performed consistently worse than other channels for both algorithms and through all age groups. The study also revealed the challenges in the automatic sleep staging of newborns and infants (1–52 weeks). |
---|---|
AbstractList | The electroencephalogram (EEG) signal is a key parameter used to identify the different sleep stages present in an overnight sleep recording. Sleep staging is crucial in the diagnosis of several sleep disorders; however, the manual annotation of the EEG signal is a costly and time-consuming process. Automatic sleep staging algorithms offer a practical and cost-effective alternative to manual sleep staging. However, due to the limited availability of EEG sleep datasets, the reliability of existing sleep staging algorithms is questionable. Furthermore, most reported experimental results have been obtained using adult EEG signals; the effectiveness of these algorithms using pediatric EEGs is unknown. In this paper, we conduct an intensive study of two state-of-the-art single-channel EEG-based sleep staging algorithms, namely DeepSleepNet and AttnSleep, using a recently released large-scale sleep dataset collected from 3984 patients, most of whom are children. The paper studies how the performance of these sleep staging algorithms varies when applied on different EEG channels and across different age groups. Furthermore, all results were analyzed within individual sleep stages to understand how each stage is affected by the choice of EEG channel and the participants’ age. The study concluded that the selection of the channel is crucial for the accuracy of the single-channel EEG-based automatic sleep staging methods. For instance, channels O1-M2 and O2-M1 performed consistently worse than other channels for both algorithms and through all age groups. The study also revealed the challenges in the automatic sleep staging of newborns and infants (1–52 weeks). The electroencephalogram (EEG) signal is a key parameter used to identify the different sleep stages present in an overnight sleep recording. Sleep staging is crucial in the diagnosis of several sleep disorders; however, the manual annotation of the EEG signal is a costly and time-consuming process. Automatic sleep staging algorithms offer a practical and cost-effective alternative to manual sleep staging. However, due to the limited availability of EEG sleep datasets, the reliability of existing sleep staging algorithms is questionable. Furthermore, most reported experimental results have been obtained using adult EEG signals; the effectiveness of these algorithms using pediatric EEGs is unknown. In this paper, we conduct an intensive study of two state-of-the-art single-channel EEG-based sleep staging algorithms, namely DeepSleepNet and AttnSleep, using a recently released large-scale sleep dataset collected from 3984 patients, most of whom are children. The paper studies how the performance of these sleep staging algorithms varies when applied on different EEG channels and across different age groups. Furthermore, all results were analyzed within individual sleep stages to understand how each stage is affected by the choice of EEG channel and the participants' age. The study concluded that the selection of the channel is crucial for the accuracy of the single-channel EEG-based automatic sleep staging methods. For instance, channels O1-M2 and O2-M1 performed consistently worse than other channels for both algorithms and through all age groups. The study also revealed the challenges in the automatic sleep staging of newborns and infants (1-52 weeks).The electroencephalogram (EEG) signal is a key parameter used to identify the different sleep stages present in an overnight sleep recording. Sleep staging is crucial in the diagnosis of several sleep disorders; however, the manual annotation of the EEG signal is a costly and time-consuming process. Automatic sleep staging algorithms offer a practical and cost-effective alternative to manual sleep staging. However, due to the limited availability of EEG sleep datasets, the reliability of existing sleep staging algorithms is questionable. Furthermore, most reported experimental results have been obtained using adult EEG signals; the effectiveness of these algorithms using pediatric EEGs is unknown. In this paper, we conduct an intensive study of two state-of-the-art single-channel EEG-based sleep staging algorithms, namely DeepSleepNet and AttnSleep, using a recently released large-scale sleep dataset collected from 3984 patients, most of whom are children. The paper studies how the performance of these sleep staging algorithms varies when applied on different EEG channels and across different age groups. Furthermore, all results were analyzed within individual sleep stages to understand how each stage is affected by the choice of EEG channel and the participants' age. The study concluded that the selection of the channel is crucial for the accuracy of the single-channel EEG-based automatic sleep staging methods. For instance, channels O1-M2 and O2-M1 performed consistently worse than other channels for both algorithms and through all age groups. The study also revealed the challenges in the automatic sleep staging of newborns and infants (1-52 weeks). |
Author | Ahmed, Beena Nazih, Waleed Shahin, Mostafa Eldesouki, Mohamed I. |
AuthorAffiliation | 1 College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia 2 School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW 2052, Australia |
AuthorAffiliation_xml | – name: 2 School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW 2052, Australia – name: 1 College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia |
Author_xml | – sequence: 1 givenname: Waleed orcidid: 0000-0003-3153-4251 surname: Nazih fullname: Nazih, Waleed – sequence: 2 givenname: Mostafa orcidid: 0000-0002-1091-8531 surname: Shahin fullname: Shahin, Mostafa – sequence: 3 givenname: Mohamed I. surname: Eldesouki fullname: Eldesouki, Mohamed I. – sequence: 4 givenname: Beena orcidid: 0000-0002-1240-6572 surname: Ahmed fullname: Ahmed, Beena |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36679711$$D View this record in MEDLINE/PubMed |
BookMark | eNptksuO0zAUhiM0iLnAghdAltjAoowvSZxskEpVhkojgRRYW459nKZy7GInSOxY8gq8Hk-CQ0s1M2Jl-_g7v_5zuczOnHeQZc8JfsNYja8jZZjiqq4fZRckp_miohSf3bmfZ5cx7jCmjLHqSXbOypLXnJCL7OfGGTuBU4C8QautdA4sasCCGnvvkHQaNVO7S8_fP35FtOwS6NC4BfQJgvFhkMfcOdT0rrNwklmvbxbvZASNltPoBzn2CjUWYI-aUXaJRUvb-dCP2yE-zR4baSM8O55X2Zf368-rD4vbjzeb1fJ2ofKyHhdtTrlUQAolMcGFlrTIa2VKILhuc864gVQbUZjpVpUt10VuJMPACdcUNGFX2eagq73ciX3oBxm-Cy978TfgQydkSEYtiJZVFVctlNionEDVVlVeMKMN5abAXCettwet_dQOoBW4MUh7T_T-j-u3ovPfRF2VJaGzmVdHgeC_ThBHMfRRgbXSgZ-ioLxM4ytrzBP68gG681NwqVUzxWldkGoWfHHX0cnKv4En4PUBUMHHGMCcEILFvEzitEyJvX7Aqn6U81qkYnr7n4w_rfbMQA |
CitedBy_id | crossref_primary_10_2147_NSS_S401270 crossref_primary_10_1038_s41598_024_68978_4 crossref_primary_10_1088_1741_2552_adb996 |
Cites_doi | 10.1016/j.cmpb.2011.11.005 10.3390/jpm12020136 10.3389/fphys.2021.628502 10.1016/j.jad.2011.01.011 10.3390/ijerph19052845 10.1109/TNSRE.2021.3076234 10.1016/j.bspc.2017.12.001 10.1016/j.jneumeth.2019.108312 10.1109/JBHI.2014.2303991 10.1038/s41597-022-01545-6 10.1007/978-3-319-73848-2_3 10.1136/bmj.294.6568.371-b 10.1016/j.compbiomed.2022.105877 10.2147/NSS.S336344 10.1109/TCBB.2019.2912955 10.1093/jamia/ocy064 10.1371/journal.pone.0216456 10.1016/j.ymeth.2022.03.013 10.1161/01.CIR.101.23.e215 10.1016/j.jneumeth.2019.108320 10.1109/ACCESS.2019.2928129 10.3390/ijerph19095199 10.1007/s10916-014-0018-0 10.1109/TNSRE.2019.2896659 10.2741/1105 10.1007/s11280-021-00983-3 10.1109/TNSRE.2017.2721116 10.1016/B978-1-4557-1267-0.00003-5 10.3390/diagnostics12051235 10.1016/j.socscimed.2010.05.041 10.1007/s13534-022-00244-w 10.5664/jcsm.9538 10.1088/1741-2552/ab260c |
ContentType | Journal Article |
Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s23020899 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_b3887cbe60fc41e8b88453fdf27f507d PMC9866121 36679711 10_3390_s23020899 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia grantid: IF-PSAU-2021/01/18582 – fundername: Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia grantid: IF-PSAU-2021/01/18582 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c469t-b427ace15ca0105da2549cf6e109b4737fe6671c03dbc6b7d54fa30e717d2ed13 |
IEDL.DBID | 8FG |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:55 EDT 2025 Thu Aug 21 18:38:47 EDT 2025 Thu Sep 04 19:37:12 EDT 2025 Fri Jul 25 20:25:39 EDT 2025 Wed Feb 19 02:26:17 EST 2025 Tue Jul 01 01:19:44 EDT 2025 Thu Apr 24 23:10:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | deep learning sleep stage scoring EEG electroencephalogram pediatric |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-b427ace15ca0105da2549cf6e109b4737fe6671c03dbc6b7d54fa30e717d2ed13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1240-6572 0000-0003-3153-4251 0000-0002-1091-8531 |
OpenAccessLink | https://www.proquest.com/docview/2767295181?pq-origsite=%requestingapplication% |
PMID | 36679711 |
PQID | 2767295181 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b3887cbe60fc41e8b88453fdf27f507d pubmedcentral_primary_oai_pubmedcentral_nih_gov_9866121 proquest_miscellaneous_2768226907 proquest_journals_2767295181 pubmed_primary_36679711 crossref_primary_10_3390_s23020899 crossref_citationtrail_10_3390_s23020899 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230112 |
PublicationDateYYYYMMDD | 2023-01-12 |
PublicationDate_xml | – month: 1 year: 2023 text: 20230112 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Fraiwan (ref_8) 2012; 108 Vaswani (ref_34) 2017; 30 Fatimah (ref_31) 2022; 148 Roy (ref_10) 2019; 16 Sokolovsky (ref_32) 2019; 17 ref_14 ref_35 ref_11 Yates (ref_2) 1987; 294 Murali (ref_1) 2003; 8 Jeon (ref_22) 2019; 7 Goldberger (ref_28) 2000; 101 Lee (ref_29) 2022; 9 Sors (ref_30) 2018; 42 Fu (ref_12) 2021; 12 Baglioni (ref_3) 2011; 135 ref_17 ref_39 Ghimatgar (ref_23) 2019; 324 Berry (ref_41) 2012; Volume 176 ref_15 ref_37 Buxton (ref_4) 2010; 71 Wang (ref_27) 2021; 13 Zhang (ref_36) 2018; 25 Phan (ref_33) 2019; 27 Peker (ref_9) 2014; 38 ref_24 Eldele (ref_18) 2021; 29 Mousavi (ref_19) 2019; 324 ref_21 ref_40 Supratak (ref_20) 2017; 25 Li (ref_16) 2022; 204 (ref_38) 2018; 142 Lee (ref_42) 2022; 18 Zhu (ref_7) 2014; 18 Phan (ref_25) 2021; 44 Zhu (ref_13) 2022; 25 Kim (ref_26) 2022; 12 ref_5 ref_6 |
References_xml | – volume: 108 start-page: 10 year: 2012 ident: ref_8 article-title: Automated sleep stage identification system based on time—Frequency analysis of a single EEG channel and random forest classifier publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2011.11.005 – ident: ref_24 doi: 10.3390/jpm12020136 – volume: 12 start-page: 628502 year: 2021 ident: ref_12 article-title: Deep learning in automatic sleep staging with a single channel electroencephalography publication-title: Front. Physiol. doi: 10.3389/fphys.2021.628502 – volume: 44 start-page: 5903 year: 2021 ident: ref_25 article-title: XSleepNet: Multi-view sequential model for automatic sleep staging publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 135 start-page: 10 year: 2011 ident: ref_3 article-title: Insomnia as a predictor of depression: A meta-analytic evaluation of longitudinal epidemiological studies publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2011.01.011 – ident: ref_5 – ident: ref_14 doi: 10.3390/ijerph19052845 – volume: 29 start-page: 809 year: 2021 ident: ref_18 article-title: An Attention-Based Deep Learning Approach for Sleep Stage Classification With Single-Channel EEG publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3076234 – volume: 42 start-page: 107 year: 2018 ident: ref_30 article-title: A convolutional neural network for sleep stage scoring from raw single-channel EEG publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.12.001 – volume: 324 start-page: 108312 year: 2019 ident: ref_19 article-title: Deep convolutional neural network for classification of sleep stages from single-channel EEG signals publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2019.108312 – ident: ref_11 – volume: 18 start-page: 1813 year: 2014 ident: ref_7 article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2014.2303991 – volume: 9 start-page: 421 year: 2022 ident: ref_29 article-title: A large collection of real-world pediatric sleep studies publication-title: Sci. Data doi: 10.1038/s41597-022-01545-6 – ident: ref_39 – volume: 142 start-page: 33 year: 2018 ident: ref_38 article-title: An Optimal Transportation Approach for Assessing Almost Stochastic Order publication-title: Math. Uncertain doi: 10.1007/978-3-319-73848-2_3 – ident: ref_37 – volume: 294 start-page: 371 year: 1987 ident: ref_2 article-title: Snoring as a risk factor for ischemic heart disease and stroke in men publication-title: Br. Med. J. (Clin. Res. Ed.) doi: 10.1136/bmj.294.6568.371-b – volume: 148 start-page: 105877 year: 2022 ident: ref_31 article-title: A multi-modal assessment of sleep stages using adaptive Fourier decomposition and machine learning publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105877 – ident: ref_35 – volume: 13 start-page: 2101 year: 2021 ident: ref_27 article-title: Automatic Sleep Stage Classification of Children with Sleep-Disordered Breathing Using the Modularized Network publication-title: Nat. Sci. Sleep doi: 10.2147/NSS.S336344 – volume: 17 start-page: 1835 year: 2019 ident: ref_32 article-title: Deep learning for automated feature discovery and classification of sleep stages publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2019.2912955 – volume: 25 start-page: 1351 year: 2018 ident: ref_36 article-title: The National Sleep Research Resource: Towards a sleep data commons publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocy064 – ident: ref_40 doi: 10.1371/journal.pone.0216456 – ident: ref_21 – volume: 204 start-page: 84 year: 2022 ident: ref_16 article-title: Adversarial learning for semi-supervised pediatric sleep staging with single-EEG channel publication-title: Methods doi: 10.1016/j.ymeth.2022.03.013 – volume: 101 start-page: e215 year: 2000 ident: ref_28 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 324 start-page: 108320 year: 2019 ident: ref_23 article-title: An automatic single-channel EEG-based sleep stage scoring method based on hidden Markov Model publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2019.108320 – volume: 7 start-page: 96495 year: 2019 ident: ref_22 article-title: Pediatric sleep stage classification using multi-domain hybrid neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2928129 – ident: ref_17 doi: 10.3390/ijerph19095199 – volume: 38 start-page: 18 year: 2014 ident: ref_9 article-title: A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms publication-title: J. Med. Syst. doi: 10.1007/s10916-014-0018-0 – volume: 27 start-page: 400 year: 2019 ident: ref_33 article-title: SeqSleepNet: End-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2896659 – volume: 8 start-page: 636 year: 2003 ident: ref_1 article-title: Cardiovascular physiology and sleep publication-title: Front. Biosci.-Landmark doi: 10.2741/1105 – volume: 25 start-page: 1883 year: 2022 ident: ref_13 article-title: A lightweight automatic sleep staging method for children using single-channel EEG based on edge artificial intelligence publication-title: World Wide Web doi: 10.1007/s11280-021-00983-3 – volume: 25 start-page: 1998 year: 2017 ident: ref_20 article-title: DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2721116 – ident: ref_6 doi: 10.1016/B978-1-4557-1267-0.00003-5 – ident: ref_15 doi: 10.3390/diagnostics12051235 – volume: 71 start-page: 1027 year: 2010 ident: ref_4 article-title: Short and long sleep are positively associated with obesity, diabetes, hypertension, and cardiovascular disease among adults in the United States publication-title: Soc. Sci. Med. doi: 10.1016/j.socscimed.2010.05.041 – volume: 12 start-page: 413 year: 2022 ident: ref_26 article-title: Automatic sleep stages classification using multi-level fusion publication-title: Biomed. Eng. Lett. doi: 10.1007/s13534-022-00244-w – volume: 18 start-page: 193 year: 2022 ident: ref_42 article-title: Interrater reliability of sleep stage scoring: A meta-analysis publication-title: J. Clin. Sleep Med. doi: 10.5664/jcsm.9538 – volume: 16 start-page: 051001 year: 2019 ident: ref_10 article-title: Deep learning-based electroencephalography analysis: A systematic review publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab260c – volume: Volume 176 start-page: 2012 year: 2012 ident: ref_41 article-title: The AASM manual for the scoring of sleep and associated events publication-title: Rules, Terminology and Technical Specifications – volume: 30 start-page: 5998 year: 2017 ident: ref_34 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. |
SSID | ssj0023338 |
Score | 2.4105513 |
Snippet | The electroencephalogram (EEG) signal is a key parameter used to identify the different sleep stages present in an overnight sleep recording. Sleep staging is... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 899 |
SubjectTerms | Accuracy Adult Age Algorithms Child Classification Datasets Deep learning EEG electroencephalogram Electroencephalography Electroencephalography - methods Eye movements Humans Infant, Newborn Machine learning Neural networks pediatric Pediatrics Reproducibility of Results Sleep Sleep disorders sleep stage scoring Sleep Stages Support vector machines |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT3BAlN_QUhnEgUvUxHbs5LitthQkENJSqbcotsdtpZBU3ey9x74Cr8eTMJNkwy6qxIVrPLGc8YxnPtv5hrH30srgU4-eVmQ-VlrKOAeh4iTLQIENYiDS_vJVn56pz-fZ-UapL7oTNtADD4o7tBLdwFnQSXAqhdzmucqw_yBMwFzG0-qLYWwNpkaoJRF5DTxCEkH94RITbUEHXFvRpyfpvy-z_PuC5EbEOXnCHo-pIp8NQ9xlD6B5yh5tEAg-Y3ef1jVGeBs4_SnQQM0XfW0bVDivGs9xaaC9ll-3P5d8doGCDcekj3_788cAvUuPFthnDVM38_nH-AiDnOezVdf21K58UQNcc8xQqbYRn9UX7c1Vd_lj-Zydncy_H5_GY22F2CEg7mKrhKkcpJmrqEamrwgouqAhTQqrjDQBtDapS6S3TlvjMxUqmQCiPy_Ap_IF22naBl4xrgsjMMTRLTevBDGXF8oUgOrOwXphI_ZhrfPSjcTjVP-iLhGA0PSU0_RE7N0kej2wbdwndEQTNwkQQXb_AM2mHM2m_JfZRGx_Pe3l6LXLUhiNWCPDpCdib6dm9Dc6RKkaaFe9DOZUtKcQsZeDlUwjkaiywqT4ttmyn62hbrc0V5c9p3eRa-Jye_0_vm2PPRToArRRlIp9ttPdrOANpk6dPei95DfqVhlr priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELZKucAB8d9AQQYhxCWQ2I6dHBDaoi0FqQhpWam3KI4nW6SQbHezEtw48gq8Hk_CTDYJDVpxtSeWNTPOzPjn-xh7Jq0sXOhwpSWR85WW0o9BKD-IIlBgC7EF0j79qE_m6sNZdLbH-mvNnQLXO0s74pOar8qX3y6-v8EF_5oqTizZX60xjRZ0fPV8eeETnxSdu3bkGlfYVYxRgvz9VA3nC0JiZbbFGRqPMIpOLYj_rszz3wuUlyLS8U12o0sl-WRr-1tsD6rb7PolgME77Of7noOE1wWnlwQVlHzWct-gQXhWOY6_DtqL-f3j15pPFihYcUwK-ae_LwroW2qa4ZglDMNMp-_8IwyCjk82Td1Cv_JZCbDkmMES9xGflAtUVHP-dX2XzY-nn9-e-B33gp9jwdz4VgmT5RBGeUYcmi6jQjIvNIRBYpWRpgCtTZgH0tlcW-MiVWQyAKwOnQAXyntsv6orOGBcJ0ZgCKRbcE4JQjZPlEkA1R2DdcJ67EWv8zTvgMmJH6NMsUAh86SDeTz2dBBdbtE4dgkdkeEGAQLQbhvq1SLt1mNqJf5dcws6KHIVQmzjWEXotoUwBabIzmOHvdnT3ilTYTTWIhEmRR57MnTjeqRDlqyCetPKYM5Few4eu7_1kmEmElWWmBC_NiP_GU113FN9OW8xv5NYE9bbg_9P6yG7JtC5aYsoFIdsv1lt4BEmTY193Pr_H8-ZGU4 priority: 102 providerName: Scholars Portal |
Title | Influence of Channel Selection and Subject’s Age on the Performance of the Single Channel EEG-Based Automatic Sleep Staging Algorithms |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36679711 https://www.proquest.com/docview/2767295181 https://www.proquest.com/docview/2768226907 https://pubmed.ncbi.nlm.nih.gov/PMC9866121 https://doaj.org/article/b3887cbe60fc41e8b88453fdf27f507d |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (Free e-resource, activated by CARLI) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoe4ED4k2grAziwCXqxnbs5IR20W4LUquKpdLeojiebCuFZGmyd478Bf4ev4SZJJt2UcUlh2QcWfPwPGx_w9h7aWXuAoeWFofOV1pKPwKh_HEYggKbiw5I-_RMn1yoL8tw2Rfc6v5Y5XZNbBdqV2VUIz8SRmMcGKJD-rj-4VPXKNpd7Vto7LGDQKAm0U3x-fGQcEnMvzo0IYmp_VGN4bagba4dH9RC9d8VX_57TPKW35k_Yg_7gJFPOgk_ZvegfMIe3IIRfMp-fd52GuFVzum-QAkFX7QdbpDtPC0dxwWCKi5_fv6u-WSFhCXH0I-f39wboLH0aoH_LGD4zWx27E_R1Tk-2TRVC_DKFwXAmmOcSh2O-KRYIaOay-_1M3Yxn337dOL3HRb8DNPixrdKmDSDIMxS6pTpUkoXs1xDMI6tMtLkoLUJsrF0NtPWuFDlqRwD5oBOgAvkc7ZfViW8ZFzHRqCjo7NuTgnCL4-ViQHZHYF1wnrsw5bnSdbDj1MXjCLBNITEkwzi8di7gXTdYW7cRTQlwQ0EBJPdvqiuV0lvdYmVuIZmFvQ4z1QAkY0iFaJy5sLkGAg7jx1uxZ70tlsnN5rmsbfDZ7Q62kpJS6g2LQ1GVlRZ8NiLTkuGmUhkWWwCHG129GdnqrtfyqvLFtk7jjQhur36_7Res_vU9J4KQYE4ZPvN9QbeYGjU2BHbM0szaq1gxA6ms7Pzr6O2zIDPUxX9BQTHFKg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJuFAgaBxCVqYjtxckBoC1t26UNI20p7S-N4skVakqXZFeLGkb_An-BH8UuYyWu7qOLWqz22LM_bj28YeymNzKxnUdMi3zoqkNIJQSjH9X1QYDJRA2kfHAbDY_Vx4k822O_2Lww9q2xtYmWobZHSGfm20AHGgT46pLfzrw5VjaLb1baERi0We_D9G6Zs5ZvRe-TvKyF2B0fvhk5TVcBJMRVcOEYJnaTg-WlC1SFtQilSmgXguZFRWuoMgkB7qSutSQOjra-yRLqAeY8VYD2J815hV5V0FWH168kqwZOY79XoRVJG7naJ4b2ga7U1n1eVBrgonv33WeY5P7d7i91sAlTeryXqNtuA_A67cQ628C77OWorm_Ai4_Q_IYcZH1cVdZDNPMktR4NEJzx_fvwqeX-KhDnHUJN_Wv1ToLHUNMY5Z9BNMxh8cHbQtVreXy6KClCWj2cAc45xMVVU4v3ZFBmzOP1S3mPHl7L399lmXuTwkPEg0gIdK72ts0oQXnqkdAS43SEYK0yPvW73PE4buHOqujGLMe0h9sQde3rsRUc6rzE-LiLaIcZ1BATLXTUUZ9O40fLYSLTZqYHAzVLlQWjCUPmoDJnQGQbetse2WrbHja0o45Vk99jzrhu1nK5ukhyKZUWDkRydZPTYg1pKupVI3LJIezhar8nP2lLXe_LPpxWSeBQGhCD36P_LesauDY8O9uP90eHeY3ZdoKDTIZQnttjm4mwJTzAsW5inlS5wdnLZyvcXy7xNng |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELaWRUJwQPwTWMAgkLhETWwnTg4IddmWLQurlcpKvYU4nnSRSlK2rRA3jrwCr8Lj8CTM5K9btOK212RsWZ5_e_wNY8-lkbn1LWpaHFhXhVK6EQjlekEACkwuaiDtD4fh_rF6NwkmW-x3-xaGyipbm1gZaltmdEbeEzrEODBAh9TLm7KIo73h6_lXlzpI0U1r206jFpED-P4N07fFq9Ee8vqFEMPBxzf7btNhwM0wLVy6RgmdZuAHWUqdIm1K6VKWh-B7sVFa6hzCUPuZJ63JQqNtoPJUeoA5kBVgfYnzXmKXtVSSysn0ZJ3sScz9aiQjKWOvt8BQX9AV24b_q9oEnBfb_luiecbnDW-w602wyvu1dN1kW1DcYtfOQBjeZj9HbZcTXuac3ioUMOPjqrsOspynheVonOi058-PXwvenyJhwTHs5EfrNws0lj6Ncc4ZdNMMBm_dXXSzlvdXy7ICl-XjGcCcY4xM3ZV4fzZFxixPvizusOML2fu7bLsoC7jPeBhrgU6W6uysEoSdHisdA253BMYK47CX7Z4nWQN9Th04ZgmmQMSepGOPw551pPMa7-M8ol1iXEdAEN3Vh_J0mjQanxiJ9jszEHp5pnyITBSpABUjFzrHINw6bKdle9LYjUWylnKHPe1-o8bTNU5aQLmqaDCqo1MNh92rpaRbicQti7WPo_WG_GwsdfNP8fmkQhWPo5DQ5B78f1lP2BVUu-T96PDgIbsqUM7pPMoXO2x7ebqCRxihLc3jShU4-3TRuvcXLo9R2Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Channel+Selection+and+Subject%E2%80%99s+Age+on+the+Performance+of+the+Single+Channel+EEG-Based+Automatic+Sleep+Staging+Algorithms&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Nazih%2C+Waleed&rft.au=Shahin%2C+Mostafa&rft.au=Eldesouki%2C+Mohamed+I&rft.au=Ahmed%2C+Beena&rft.date=2023-01-12&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=2&rft.spage=899&rft_id=info:doi/10.3390%2Fs23020899&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |