Influence of Channel Selection and Subject’s Age on the Performance of the Single Channel EEG-Based Automatic Sleep Staging Algorithms

The electroencephalogram (EEG) signal is a key parameter used to identify the different sleep stages present in an overnight sleep recording. Sleep staging is crucial in the diagnosis of several sleep disorders; however, the manual annotation of the EEG signal is a costly and time-consuming process....

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 2; p. 899
Main Authors Nazih, Waleed, Shahin, Mostafa, Eldesouki, Mohamed I., Ahmed, Beena
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 12.01.2023
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23020899

Cover

Abstract The electroencephalogram (EEG) signal is a key parameter used to identify the different sleep stages present in an overnight sleep recording. Sleep staging is crucial in the diagnosis of several sleep disorders; however, the manual annotation of the EEG signal is a costly and time-consuming process. Automatic sleep staging algorithms offer a practical and cost-effective alternative to manual sleep staging. However, due to the limited availability of EEG sleep datasets, the reliability of existing sleep staging algorithms is questionable. Furthermore, most reported experimental results have been obtained using adult EEG signals; the effectiveness of these algorithms using pediatric EEGs is unknown. In this paper, we conduct an intensive study of two state-of-the-art single-channel EEG-based sleep staging algorithms, namely DeepSleepNet and AttnSleep, using a recently released large-scale sleep dataset collected from 3984 patients, most of whom are children. The paper studies how the performance of these sleep staging algorithms varies when applied on different EEG channels and across different age groups. Furthermore, all results were analyzed within individual sleep stages to understand how each stage is affected by the choice of EEG channel and the participants’ age. The study concluded that the selection of the channel is crucial for the accuracy of the single-channel EEG-based automatic sleep staging methods. For instance, channels O1-M2 and O2-M1 performed consistently worse than other channels for both algorithms and through all age groups. The study also revealed the challenges in the automatic sleep staging of newborns and infants (1–52 weeks).
AbstractList The electroencephalogram (EEG) signal is a key parameter used to identify the different sleep stages present in an overnight sleep recording. Sleep staging is crucial in the diagnosis of several sleep disorders; however, the manual annotation of the EEG signal is a costly and time-consuming process. Automatic sleep staging algorithms offer a practical and cost-effective alternative to manual sleep staging. However, due to the limited availability of EEG sleep datasets, the reliability of existing sleep staging algorithms is questionable. Furthermore, most reported experimental results have been obtained using adult EEG signals; the effectiveness of these algorithms using pediatric EEGs is unknown. In this paper, we conduct an intensive study of two state-of-the-art single-channel EEG-based sleep staging algorithms, namely DeepSleepNet and AttnSleep, using a recently released large-scale sleep dataset collected from 3984 patients, most of whom are children. The paper studies how the performance of these sleep staging algorithms varies when applied on different EEG channels and across different age groups. Furthermore, all results were analyzed within individual sleep stages to understand how each stage is affected by the choice of EEG channel and the participants’ age. The study concluded that the selection of the channel is crucial for the accuracy of the single-channel EEG-based automatic sleep staging methods. For instance, channels O1-M2 and O2-M1 performed consistently worse than other channels for both algorithms and through all age groups. The study also revealed the challenges in the automatic sleep staging of newborns and infants (1–52 weeks).
The electroencephalogram (EEG) signal is a key parameter used to identify the different sleep stages present in an overnight sleep recording. Sleep staging is crucial in the diagnosis of several sleep disorders; however, the manual annotation of the EEG signal is a costly and time-consuming process. Automatic sleep staging algorithms offer a practical and cost-effective alternative to manual sleep staging. However, due to the limited availability of EEG sleep datasets, the reliability of existing sleep staging algorithms is questionable. Furthermore, most reported experimental results have been obtained using adult EEG signals; the effectiveness of these algorithms using pediatric EEGs is unknown. In this paper, we conduct an intensive study of two state-of-the-art single-channel EEG-based sleep staging algorithms, namely DeepSleepNet and AttnSleep, using a recently released large-scale sleep dataset collected from 3984 patients, most of whom are children. The paper studies how the performance of these sleep staging algorithms varies when applied on different EEG channels and across different age groups. Furthermore, all results were analyzed within individual sleep stages to understand how each stage is affected by the choice of EEG channel and the participants' age. The study concluded that the selection of the channel is crucial for the accuracy of the single-channel EEG-based automatic sleep staging methods. For instance, channels O1-M2 and O2-M1 performed consistently worse than other channels for both algorithms and through all age groups. The study also revealed the challenges in the automatic sleep staging of newborns and infants (1-52 weeks).The electroencephalogram (EEG) signal is a key parameter used to identify the different sleep stages present in an overnight sleep recording. Sleep staging is crucial in the diagnosis of several sleep disorders; however, the manual annotation of the EEG signal is a costly and time-consuming process. Automatic sleep staging algorithms offer a practical and cost-effective alternative to manual sleep staging. However, due to the limited availability of EEG sleep datasets, the reliability of existing sleep staging algorithms is questionable. Furthermore, most reported experimental results have been obtained using adult EEG signals; the effectiveness of these algorithms using pediatric EEGs is unknown. In this paper, we conduct an intensive study of two state-of-the-art single-channel EEG-based sleep staging algorithms, namely DeepSleepNet and AttnSleep, using a recently released large-scale sleep dataset collected from 3984 patients, most of whom are children. The paper studies how the performance of these sleep staging algorithms varies when applied on different EEG channels and across different age groups. Furthermore, all results were analyzed within individual sleep stages to understand how each stage is affected by the choice of EEG channel and the participants' age. The study concluded that the selection of the channel is crucial for the accuracy of the single-channel EEG-based automatic sleep staging methods. For instance, channels O1-M2 and O2-M1 performed consistently worse than other channels for both algorithms and through all age groups. The study also revealed the challenges in the automatic sleep staging of newborns and infants (1-52 weeks).
Author Ahmed, Beena
Nazih, Waleed
Shahin, Mostafa
Eldesouki, Mohamed I.
AuthorAffiliation 1 College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
2 School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW 2052, Australia
AuthorAffiliation_xml – name: 2 School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW 2052, Australia
– name: 1 College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
Author_xml – sequence: 1
  givenname: Waleed
  orcidid: 0000-0003-3153-4251
  surname: Nazih
  fullname: Nazih, Waleed
– sequence: 2
  givenname: Mostafa
  orcidid: 0000-0002-1091-8531
  surname: Shahin
  fullname: Shahin, Mostafa
– sequence: 3
  givenname: Mohamed I.
  surname: Eldesouki
  fullname: Eldesouki, Mohamed I.
– sequence: 4
  givenname: Beena
  orcidid: 0000-0002-1240-6572
  surname: Ahmed
  fullname: Ahmed, Beena
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36679711$$D View this record in MEDLINE/PubMed
BookMark eNptksuO0zAUhiM0iLnAghdAltjAoowvSZxskEpVhkojgRRYW459nKZy7GInSOxY8gq8Hk-CQ0s1M2Jl-_g7v_5zuczOnHeQZc8JfsNYja8jZZjiqq4fZRckp_miohSf3bmfZ5cx7jCmjLHqSXbOypLXnJCL7OfGGTuBU4C8QautdA4sasCCGnvvkHQaNVO7S8_fP35FtOwS6NC4BfQJgvFhkMfcOdT0rrNwklmvbxbvZASNltPoBzn2CjUWYI-aUXaJRUvb-dCP2yE-zR4baSM8O55X2Zf368-rD4vbjzeb1fJ2ofKyHhdtTrlUQAolMcGFlrTIa2VKILhuc864gVQbUZjpVpUt10VuJMPACdcUNGFX2eagq73ciX3oBxm-Cy978TfgQydkSEYtiJZVFVctlNionEDVVlVeMKMN5abAXCettwet_dQOoBW4MUh7T_T-j-u3ovPfRF2VJaGzmVdHgeC_ThBHMfRRgbXSgZ-ioLxM4ytrzBP68gG681NwqVUzxWldkGoWfHHX0cnKv4En4PUBUMHHGMCcEILFvEzitEyJvX7Aqn6U81qkYnr7n4w_rfbMQA
CitedBy_id crossref_primary_10_2147_NSS_S401270
crossref_primary_10_1038_s41598_024_68978_4
crossref_primary_10_1088_1741_2552_adb996
Cites_doi 10.1016/j.cmpb.2011.11.005
10.3390/jpm12020136
10.3389/fphys.2021.628502
10.1016/j.jad.2011.01.011
10.3390/ijerph19052845
10.1109/TNSRE.2021.3076234
10.1016/j.bspc.2017.12.001
10.1016/j.jneumeth.2019.108312
10.1109/JBHI.2014.2303991
10.1038/s41597-022-01545-6
10.1007/978-3-319-73848-2_3
10.1136/bmj.294.6568.371-b
10.1016/j.compbiomed.2022.105877
10.2147/NSS.S336344
10.1109/TCBB.2019.2912955
10.1093/jamia/ocy064
10.1371/journal.pone.0216456
10.1016/j.ymeth.2022.03.013
10.1161/01.CIR.101.23.e215
10.1016/j.jneumeth.2019.108320
10.1109/ACCESS.2019.2928129
10.3390/ijerph19095199
10.1007/s10916-014-0018-0
10.1109/TNSRE.2019.2896659
10.2741/1105
10.1007/s11280-021-00983-3
10.1109/TNSRE.2017.2721116
10.1016/B978-1-4557-1267-0.00003-5
10.3390/diagnostics12051235
10.1016/j.socscimed.2010.05.041
10.1007/s13534-022-00244-w
10.5664/jcsm.9538
10.1088/1741-2552/ab260c
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23020899
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
MEDLINE

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_b3887cbe60fc41e8b88453fdf27f507d
PMC9866121
36679711
10_3390_s23020899
Genre Journal Article
GrantInformation_xml – fundername: Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia
  grantid: IF-PSAU-2021/01/18582
– fundername: Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia
  grantid: IF-PSAU-2021/01/18582
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-b427ace15ca0105da2549cf6e109b4737fe6671c03dbc6b7d54fa30e717d2ed13
IEDL.DBID 8FG
ISSN 1424-8220
IngestDate Wed Aug 27 01:31:55 EDT 2025
Thu Aug 21 18:38:47 EDT 2025
Thu Sep 04 19:37:12 EDT 2025
Fri Jul 25 20:25:39 EDT 2025
Wed Feb 19 02:26:17 EST 2025
Tue Jul 01 01:19:44 EDT 2025
Thu Apr 24 23:10:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords deep learning
sleep stage scoring
EEG
electroencephalogram
pediatric
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-b427ace15ca0105da2549cf6e109b4737fe6671c03dbc6b7d54fa30e717d2ed13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1240-6572
0000-0003-3153-4251
0000-0002-1091-8531
OpenAccessLink https://www.proquest.com/docview/2767295181?pq-origsite=%requestingapplication%
PMID 36679711
PQID 2767295181
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_b3887cbe60fc41e8b88453fdf27f507d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9866121
proquest_miscellaneous_2768226907
proquest_journals_2767295181
pubmed_primary_36679711
crossref_primary_10_3390_s23020899
crossref_citationtrail_10_3390_s23020899
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230112
PublicationDateYYYYMMDD 2023-01-12
PublicationDate_xml – month: 1
  year: 2023
  text: 20230112
  day: 12
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Fraiwan (ref_8) 2012; 108
Vaswani (ref_34) 2017; 30
Fatimah (ref_31) 2022; 148
Roy (ref_10) 2019; 16
Sokolovsky (ref_32) 2019; 17
ref_14
ref_35
ref_11
Yates (ref_2) 1987; 294
Murali (ref_1) 2003; 8
Jeon (ref_22) 2019; 7
Goldberger (ref_28) 2000; 101
Lee (ref_29) 2022; 9
Sors (ref_30) 2018; 42
Fu (ref_12) 2021; 12
Baglioni (ref_3) 2011; 135
ref_17
ref_39
Ghimatgar (ref_23) 2019; 324
Berry (ref_41) 2012; Volume 176
ref_15
ref_37
Buxton (ref_4) 2010; 71
Wang (ref_27) 2021; 13
Zhang (ref_36) 2018; 25
Phan (ref_33) 2019; 27
Peker (ref_9) 2014; 38
ref_24
Eldele (ref_18) 2021; 29
Mousavi (ref_19) 2019; 324
ref_21
ref_40
Supratak (ref_20) 2017; 25
Li (ref_16) 2022; 204
(ref_38) 2018; 142
Lee (ref_42) 2022; 18
Zhu (ref_7) 2014; 18
Phan (ref_25) 2021; 44
Zhu (ref_13) 2022; 25
Kim (ref_26) 2022; 12
ref_5
ref_6
References_xml – volume: 108
  start-page: 10
  year: 2012
  ident: ref_8
  article-title: Automated sleep stage identification system based on time—Frequency analysis of a single EEG channel and random forest classifier
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2011.11.005
– ident: ref_24
  doi: 10.3390/jpm12020136
– volume: 12
  start-page: 628502
  year: 2021
  ident: ref_12
  article-title: Deep learning in automatic sleep staging with a single channel electroencephalography
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2021.628502
– volume: 44
  start-page: 5903
  year: 2021
  ident: ref_25
  article-title: XSleepNet: Multi-view sequential model for automatic sleep staging
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 135
  start-page: 10
  year: 2011
  ident: ref_3
  article-title: Insomnia as a predictor of depression: A meta-analytic evaluation of longitudinal epidemiological studies
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2011.01.011
– ident: ref_5
– ident: ref_14
  doi: 10.3390/ijerph19052845
– volume: 29
  start-page: 809
  year: 2021
  ident: ref_18
  article-title: An Attention-Based Deep Learning Approach for Sleep Stage Classification With Single-Channel EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3076234
– volume: 42
  start-page: 107
  year: 2018
  ident: ref_30
  article-title: A convolutional neural network for sleep stage scoring from raw single-channel EEG
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.12.001
– volume: 324
  start-page: 108312
  year: 2019
  ident: ref_19
  article-title: Deep convolutional neural network for classification of sleep stages from single-channel EEG signals
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2019.108312
– ident: ref_11
– volume: 18
  start-page: 1813
  year: 2014
  ident: ref_7
  article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2014.2303991
– volume: 9
  start-page: 421
  year: 2022
  ident: ref_29
  article-title: A large collection of real-world pediatric sleep studies
  publication-title: Sci. Data
  doi: 10.1038/s41597-022-01545-6
– ident: ref_39
– volume: 142
  start-page: 33
  year: 2018
  ident: ref_38
  article-title: An Optimal Transportation Approach for Assessing Almost Stochastic Order
  publication-title: Math. Uncertain
  doi: 10.1007/978-3-319-73848-2_3
– ident: ref_37
– volume: 294
  start-page: 371
  year: 1987
  ident: ref_2
  article-title: Snoring as a risk factor for ischemic heart disease and stroke in men
  publication-title: Br. Med. J. (Clin. Res. Ed.)
  doi: 10.1136/bmj.294.6568.371-b
– volume: 148
  start-page: 105877
  year: 2022
  ident: ref_31
  article-title: A multi-modal assessment of sleep stages using adaptive Fourier decomposition and machine learning
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105877
– ident: ref_35
– volume: 13
  start-page: 2101
  year: 2021
  ident: ref_27
  article-title: Automatic Sleep Stage Classification of Children with Sleep-Disordered Breathing Using the Modularized Network
  publication-title: Nat. Sci. Sleep
  doi: 10.2147/NSS.S336344
– volume: 17
  start-page: 1835
  year: 2019
  ident: ref_32
  article-title: Deep learning for automated feature discovery and classification of sleep stages
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2019.2912955
– volume: 25
  start-page: 1351
  year: 2018
  ident: ref_36
  article-title: The National Sleep Research Resource: Towards a sleep data commons
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocy064
– ident: ref_40
  doi: 10.1371/journal.pone.0216456
– ident: ref_21
– volume: 204
  start-page: 84
  year: 2022
  ident: ref_16
  article-title: Adversarial learning for semi-supervised pediatric sleep staging with single-EEG channel
  publication-title: Methods
  doi: 10.1016/j.ymeth.2022.03.013
– volume: 101
  start-page: e215
  year: 2000
  ident: ref_28
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 324
  start-page: 108320
  year: 2019
  ident: ref_23
  article-title: An automatic single-channel EEG-based sleep stage scoring method based on hidden Markov Model
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2019.108320
– volume: 7
  start-page: 96495
  year: 2019
  ident: ref_22
  article-title: Pediatric sleep stage classification using multi-domain hybrid neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928129
– ident: ref_17
  doi: 10.3390/ijerph19095199
– volume: 38
  start-page: 18
  year: 2014
  ident: ref_9
  article-title: A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-014-0018-0
– volume: 27
  start-page: 400
  year: 2019
  ident: ref_33
  article-title: SeqSleepNet: End-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2896659
– volume: 8
  start-page: 636
  year: 2003
  ident: ref_1
  article-title: Cardiovascular physiology and sleep
  publication-title: Front. Biosci.-Landmark
  doi: 10.2741/1105
– volume: 25
  start-page: 1883
  year: 2022
  ident: ref_13
  article-title: A lightweight automatic sleep staging method for children using single-channel EEG based on edge artificial intelligence
  publication-title: World Wide Web
  doi: 10.1007/s11280-021-00983-3
– volume: 25
  start-page: 1998
  year: 2017
  ident: ref_20
  article-title: DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2721116
– ident: ref_6
  doi: 10.1016/B978-1-4557-1267-0.00003-5
– ident: ref_15
  doi: 10.3390/diagnostics12051235
– volume: 71
  start-page: 1027
  year: 2010
  ident: ref_4
  article-title: Short and long sleep are positively associated with obesity, diabetes, hypertension, and cardiovascular disease among adults in the United States
  publication-title: Soc. Sci. Med.
  doi: 10.1016/j.socscimed.2010.05.041
– volume: 12
  start-page: 413
  year: 2022
  ident: ref_26
  article-title: Automatic sleep stages classification using multi-level fusion
  publication-title: Biomed. Eng. Lett.
  doi: 10.1007/s13534-022-00244-w
– volume: 18
  start-page: 193
  year: 2022
  ident: ref_42
  article-title: Interrater reliability of sleep stage scoring: A meta-analysis
  publication-title: J. Clin. Sleep Med.
  doi: 10.5664/jcsm.9538
– volume: 16
  start-page: 051001
  year: 2019
  ident: ref_10
  article-title: Deep learning-based electroencephalography analysis: A systematic review
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab260c
– volume: Volume 176
  start-page: 2012
  year: 2012
  ident: ref_41
  article-title: The AASM manual for the scoring of sleep and associated events
  publication-title: Rules, Terminology and Technical Specifications
– volume: 30
  start-page: 5998
  year: 2017
  ident: ref_34
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
SSID ssj0023338
Score 2.4105513
Snippet The electroencephalogram (EEG) signal is a key parameter used to identify the different sleep stages present in an overnight sleep recording. Sleep staging is...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 899
SubjectTerms Accuracy
Adult
Age
Algorithms
Child
Classification
Datasets
Deep learning
EEG
electroencephalogram
Electroencephalography
Electroencephalography - methods
Eye movements
Humans
Infant, Newborn
Machine learning
Neural networks
pediatric
Pediatrics
Reproducibility of Results
Sleep
Sleep disorders
sleep stage scoring
Sleep Stages
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT3BAlN_QUhnEgUvUxHbs5LitthQkENJSqbcotsdtpZBU3ey9x74Cr8eTMJNkwy6qxIVrPLGc8YxnPtv5hrH30srgU4-eVmQ-VlrKOAeh4iTLQIENYiDS_vJVn56pz-fZ-UapL7oTNtADD4o7tBLdwFnQSXAqhdzmucqw_yBMwFzG0-qLYWwNpkaoJRF5DTxCEkH94RITbUEHXFvRpyfpvy-z_PuC5EbEOXnCHo-pIp8NQ9xlD6B5yh5tEAg-Y3ef1jVGeBs4_SnQQM0XfW0bVDivGs9xaaC9ll-3P5d8doGCDcekj3_788cAvUuPFthnDVM38_nH-AiDnOezVdf21K58UQNcc8xQqbYRn9UX7c1Vd_lj-Zydncy_H5_GY22F2CEg7mKrhKkcpJmrqEamrwgouqAhTQqrjDQBtDapS6S3TlvjMxUqmQCiPy_Ap_IF22naBl4xrgsjMMTRLTevBDGXF8oUgOrOwXphI_ZhrfPSjcTjVP-iLhGA0PSU0_RE7N0kej2wbdwndEQTNwkQQXb_AM2mHM2m_JfZRGx_Pe3l6LXLUhiNWCPDpCdib6dm9Dc6RKkaaFe9DOZUtKcQsZeDlUwjkaiywqT4ttmyn62hbrc0V5c9p3eRa-Jye_0_vm2PPRToArRRlIp9ttPdrOANpk6dPei95DfqVhlr
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELZKucAB8d9AQQYhxCWQ2I6dHBDaoi0FqQhpWam3KI4nW6SQbHezEtw48gq8Hk_CTDYJDVpxtSeWNTPOzPjn-xh7Jq0sXOhwpSWR85WW0o9BKD-IIlBgC7EF0j79qE_m6sNZdLbH-mvNnQLXO0s74pOar8qX3y6-v8EF_5oqTizZX60xjRZ0fPV8eeETnxSdu3bkGlfYVYxRgvz9VA3nC0JiZbbFGRqPMIpOLYj_rszz3wuUlyLS8U12o0sl-WRr-1tsD6rb7PolgME77Of7noOE1wWnlwQVlHzWct-gQXhWOY6_DtqL-f3j15pPFihYcUwK-ae_LwroW2qa4ZglDMNMp-_8IwyCjk82Td1Cv_JZCbDkmMES9xGflAtUVHP-dX2XzY-nn9-e-B33gp9jwdz4VgmT5RBGeUYcmi6jQjIvNIRBYpWRpgCtTZgH0tlcW-MiVWQyAKwOnQAXyntsv6orOGBcJ0ZgCKRbcE4JQjZPlEkA1R2DdcJ67EWv8zTvgMmJH6NMsUAh86SDeTz2dBBdbtE4dgkdkeEGAQLQbhvq1SLt1mNqJf5dcws6KHIVQmzjWEXotoUwBabIzmOHvdnT3ilTYTTWIhEmRR57MnTjeqRDlqyCetPKYM5Few4eu7_1kmEmElWWmBC_NiP_GU113FN9OW8xv5NYE9bbg_9P6yG7JtC5aYsoFIdsv1lt4BEmTY193Pr_H8-ZGU4
  priority: 102
  providerName: Scholars Portal
Title Influence of Channel Selection and Subject’s Age on the Performance of the Single Channel EEG-Based Automatic Sleep Staging Algorithms
URI https://www.ncbi.nlm.nih.gov/pubmed/36679711
https://www.proquest.com/docview/2767295181
https://www.proquest.com/docview/2768226907
https://pubmed.ncbi.nlm.nih.gov/PMC9866121
https://doaj.org/article/b3887cbe60fc41e8b88453fdf27f507d
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (Free e-resource, activated by CARLI)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoe4ED4k2grAziwCXqxnbs5IR20W4LUquKpdLeojiebCuFZGmyd478Bf4ev4SZJJt2UcUlh2QcWfPwPGx_w9h7aWXuAoeWFofOV1pKPwKh_HEYggKbiw5I-_RMn1yoL8tw2Rfc6v5Y5XZNbBdqV2VUIz8SRmMcGKJD-rj-4VPXKNpd7Vto7LGDQKAm0U3x-fGQcEnMvzo0IYmp_VGN4bagba4dH9RC9d8VX_57TPKW35k_Yg_7gJFPOgk_ZvegfMIe3IIRfMp-fd52GuFVzum-QAkFX7QdbpDtPC0dxwWCKi5_fv6u-WSFhCXH0I-f39wboLH0aoH_LGD4zWx27E_R1Tk-2TRVC_DKFwXAmmOcSh2O-KRYIaOay-_1M3Yxn337dOL3HRb8DNPixrdKmDSDIMxS6pTpUkoXs1xDMI6tMtLkoLUJsrF0NtPWuFDlqRwD5oBOgAvkc7ZfViW8ZFzHRqCjo7NuTgnCL4-ViQHZHYF1wnrsw5bnSdbDj1MXjCLBNITEkwzi8di7gXTdYW7cRTQlwQ0EBJPdvqiuV0lvdYmVuIZmFvQ4z1QAkY0iFaJy5sLkGAg7jx1uxZ70tlsnN5rmsbfDZ7Q62kpJS6g2LQ1GVlRZ8NiLTkuGmUhkWWwCHG129GdnqrtfyqvLFtk7jjQhur36_7Res_vU9J4KQYE4ZPvN9QbeYGjU2BHbM0szaq1gxA6ms7Pzr6O2zIDPUxX9BQTHFKg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJuFAgaBxCVqYjtxckBoC1t26UNI20p7S-N4skVakqXZFeLGkb_An-BH8UuYyWu7qOLWqz22LM_bj28YeymNzKxnUdMi3zoqkNIJQSjH9X1QYDJRA2kfHAbDY_Vx4k822O_2Lww9q2xtYmWobZHSGfm20AHGgT46pLfzrw5VjaLb1baERi0We_D9G6Zs5ZvRe-TvKyF2B0fvhk5TVcBJMRVcOEYJnaTg-WlC1SFtQilSmgXguZFRWuoMgkB7qSutSQOjra-yRLqAeY8VYD2J815hV5V0FWH168kqwZOY79XoRVJG7naJ4b2ga7U1n1eVBrgonv33WeY5P7d7i91sAlTeryXqNtuA_A67cQ628C77OWorm_Ai4_Q_IYcZH1cVdZDNPMktR4NEJzx_fvwqeX-KhDnHUJN_Wv1ToLHUNMY5Z9BNMxh8cHbQtVreXy6KClCWj2cAc45xMVVU4v3ZFBmzOP1S3mPHl7L399lmXuTwkPEg0gIdK72ts0oQXnqkdAS43SEYK0yPvW73PE4buHOqujGLMe0h9sQde3rsRUc6rzE-LiLaIcZ1BATLXTUUZ9O40fLYSLTZqYHAzVLlQWjCUPmoDJnQGQbetse2WrbHja0o45Vk99jzrhu1nK5ukhyKZUWDkRydZPTYg1pKupVI3LJIezhar8nP2lLXe_LPpxWSeBQGhCD36P_LesauDY8O9uP90eHeY3ZdoKDTIZQnttjm4mwJTzAsW5inlS5wdnLZyvcXy7xNng
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELaWRUJwQPwTWMAgkLhETWwnTg4IddmWLQurlcpKvYU4nnSRSlK2rRA3jrwCr8Lj8CTM5K9btOK212RsWZ5_e_wNY8-lkbn1LWpaHFhXhVK6EQjlekEACkwuaiDtD4fh_rF6NwkmW-x3-xaGyipbm1gZaltmdEbeEzrEODBAh9TLm7KIo73h6_lXlzpI0U1r206jFpED-P4N07fFq9Ee8vqFEMPBxzf7btNhwM0wLVy6RgmdZuAHWUqdIm1K6VKWh-B7sVFa6hzCUPuZJ63JQqNtoPJUeoA5kBVgfYnzXmKXtVSSysn0ZJ3sScz9aiQjKWOvt8BQX9AV24b_q9oEnBfb_luiecbnDW-w602wyvu1dN1kW1DcYtfOQBjeZj9HbZcTXuac3ioUMOPjqrsOspynheVonOi058-PXwvenyJhwTHs5EfrNws0lj6Ncc4ZdNMMBm_dXXSzlvdXy7ICl-XjGcCcY4xM3ZV4fzZFxixPvizusOML2fu7bLsoC7jPeBhrgU6W6uysEoSdHisdA253BMYK47CX7Z4nWQN9Th04ZgmmQMSepGOPw551pPMa7-M8ol1iXEdAEN3Vh_J0mjQanxiJ9jszEHp5pnyITBSpABUjFzrHINw6bKdle9LYjUWylnKHPe1-o8bTNU5aQLmqaDCqo1MNh92rpaRbicQti7WPo_WG_GwsdfNP8fmkQhWPo5DQ5B78f1lP2BVUu-T96PDgIbsqUM7pPMoXO2x7ebqCRxihLc3jShU4-3TRuvcXLo9R2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Channel+Selection+and+Subject%E2%80%99s+Age+on+the+Performance+of+the+Single+Channel+EEG-Based+Automatic+Sleep+Staging+Algorithms&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Nazih%2C+Waleed&rft.au=Shahin%2C+Mostafa&rft.au=Eldesouki%2C+Mohamed+I&rft.au=Ahmed%2C+Beena&rft.date=2023-01-12&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=2&rft.spage=899&rft_id=info:doi/10.3390%2Fs23020899&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon