Enhancing Time-Domain Interference Alignment for Underwater Acoustic Networks with Cross-Layer Design

In exploiting large propagation delays in underwater acoustic (UWA) networks, the time-domain interference alignment (TDIA) mechanism aligns interference signals through delay-aware slot scheduling, creating additional idle time for improved transmission at the medium access control (MAC) layer. How...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 1; p. 68
Main Authors Xiao, Qiao, Bi, Zhicheng, Wang, Chaofeng
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.01.2025
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s25010068

Cover

More Information
Summary:In exploiting large propagation delays in underwater acoustic (UWA) networks, the time-domain interference alignment (TDIA) mechanism aligns interference signals through delay-aware slot scheduling, creating additional idle time for improved transmission at the medium access control (MAC) layer. However, perfect alignment remains challenging due to arbitrary delays. This study enhances TDIA by incorporating power allocation into its transmission scheduling framework across the physical and MAC layers, following the cross-layer design principle. The proposed quasi-interference alignment (QIA) mechanism enables controlled interference on useful signals by jointly optimizing the transmission schedule and power. The formulated optimization problem to maximize network throughput is divided into two sub-problems: one for coarse slot scheduling and another for refining both scheduling and power allocation. The simulation results validate the QIA framework’s superiority over the traditional TDIA and genetic algorithm benchmarks.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s25010068