Disturbance decoupled fault reconstruction using cascaded sliding mode observers
This paper presents a disturbance decoupled fault reconstruction (DDFR) scheme using cascaded sliding mode observers (SMOs). The processed signals from a SMO are found to be the output of a fictitious system which treats the faults and disturbances as inputs; the ‘outputs’ are then fed into the next...
Saved in:
Published in | Automatica (Oxford) Vol. 48; no. 5; pp. 794 - 799 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.05.2012
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0005-1098 1873-2836 1873-2836 |
DOI | 10.1016/j.automatica.2012.02.005 |
Cover
Summary: | This paper presents a disturbance decoupled fault reconstruction (DDFR) scheme using cascaded sliding mode observers (SMOs). The processed signals from a SMO are found to be the output of a fictitious system which treats the faults and disturbances as inputs; the ‘outputs’ are then fed into the next SMO. This process is repeated until the attainment of a fictitious system which satisfies the conditions that guarantee DDFR. It is found that this scheme is less restrictive and enables DDFR for a wider class of systems compared to previous work when only one or two SMOs were used. This paper also presents a systematic routine to check for the feasibility of the scheme and to calculate the required number of SMOs from the outset and also to design the DDFR scheme. A design example verifies its effectiveness. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0005-1098 1873-2836 1873-2836 |
DOI: | 10.1016/j.automatica.2012.02.005 |