Learning a Family of Detectors via Multiplicative Kernels

Object detection is challenging when the object class exhibits large within-class variations. In this work, we show that foreground-background classification (detection) and within-class classification of the foreground class (pose estimation) can be jointly learned in a multiplicative form of two k...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 33; no. 3; pp. 514 - 530
Main Authors Quan Yuan, Thangali, Ashwin, Ablavsky, Vitaly, Sclaroff, Stan
Format Journal Article
LanguageEnglish
Published Los Alamitos, CA IEEE 01.03.2011
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
1939-3539
DOI10.1109/TPAMI.2010.117

Cover

Abstract Object detection is challenging when the object class exhibits large within-class variations. In this work, we show that foreground-background classification (detection) and within-class classification of the foreground class (pose estimation) can be jointly learned in a multiplicative form of two kernel functions. Model training is accomplished via standard SVM learning. When the foreground object masks are provided in training, the detectors can also produce object segmentations. A tracking-by-detection framework to recover foreground state in video sequences is also proposed with our model. The advantages of our method are demonstrated on tasks of object detection, view angle estimation, and tracking. Our approach compares favorably to existing methods on hand and vehicle detection tasks. Quantitative tracking results are given on sequences of moving vehicles and human faces.
AbstractList Object detection is challenging when the object class exhibits large within-class variations. In this work, we show that foreground-background classification (detection) and within-class classification of the foreground class (pose estimation) can be jointly learned in a multiplicative form of two kernel functions. Model training is accomplished via standard SVM learning. When the foreground object masks are provided in training, the detectors can also produce object segmentations. A tracking-by-detection framework to recover foreground state in video sequences is also proposed with our model. The advantages of our method are demonstrated on tasks of object detection, view angle estimation, and tracking. Our approach compares favorably to existing methods on hand and vehicle detection tasks. Quantitative tracking results are given on sequences of moving vehicles and human faces.Object detection is challenging when the object class exhibits large within-class variations. In this work, we show that foreground-background classification (detection) and within-class classification of the foreground class (pose estimation) can be jointly learned in a multiplicative form of two kernel functions. Model training is accomplished via standard SVM learning. When the foreground object masks are provided in training, the detectors can also produce object segmentations. A tracking-by-detection framework to recover foreground state in video sequences is also proposed with our model. The advantages of our method are demonstrated on tasks of object detection, view angle estimation, and tracking. Our approach compares favorably to existing methods on hand and vehicle detection tasks. Quantitative tracking results are given on sequences of moving vehicles and human faces.
Object detection is challenging when the object class exhibits large within-class variations. In this work, we show that foreground-background classification (detection) and within-class classification of the foreground class (pose estimation) can be jointly learned in a multiplicative form of two kernel functions. Model training is accomplished via standard SVM learning. When the foreground object masks are provided in training, the detectors can also produce object segmentations. A tracking-by-detection framework to recover foreground state in video sequences is also proposed with our model. The advantages of our method are demonstrated on tasks of object detection, view angle estimation, and tracking. Our approach compares favorably to existing methods on hand and vehicle detection tasks. Quantitative tracking results are given on sequences of moving vehicles and human faces.
Author Thangali, Ashwin
Ablavsky, Vitaly
Sclaroff, Stan
Quan Yuan
Author_xml – sequence: 1
  surname: Quan Yuan
  fullname: Quan Yuan
  email: quan.yuan@am.sony.com
  organization: US Res. Center, Sony Electron., Inc., San Jose, CA, USA
– sequence: 2
  givenname: Ashwin
  surname: Thangali
  fullname: Thangali, Ashwin
  email: tvashwin@cs.bu.edu
  organization: Comput. Sci. Dept., Boston Univ., Boston, MA, USA
– sequence: 3
  givenname: Vitaly
  surname: Ablavsky
  fullname: Ablavsky, Vitaly
  email: ablavsky@cs.bu.edu
  organization: Comput. Sci. Dept., Boston Univ., Boston, MA, USA
– sequence: 4
  givenname: Stan
  surname: Sclaroff
  fullname: Sclaroff, Stan
  email: sclaroffj@cs.bu.edu
  organization: Comput. Sci. Dept., Boston Univ., Boston, MA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23854089$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20548107$$D View this record in MEDLINE/PubMed
BookMark eNqNkd1rFDEUxYNU7Lb11RdBhoL4NGu-Px5LtVrcYh_a55DN3JGUbGZNZgr97810txUKguQhXPidk5tzjtBBGhIg9I7gJSHYfL65Pru6XFL8OKtXaEEMMy0TzBygBSaStlpTfYiOSrnDmHCB2Rt0SLHgmmC1QGYFLqeQfjWuuXCbEB-aoW--wAh-HHJp7oNrrqY4hm0M3o3hHpofkBPEcoJe9y4WeLu_j9Htxdeb8-_t6ue3y_OzVeu5NGPrJAbAwCnXsjPCd7LDvTFCSKkoBabq6STriBBeKbUWnq6l7jvdw9oQrtgx-rTz3ebh9wRltJtQPMToEgxTsVoyzqjS5D9IUnPRdCZPX5B3w5RT_YbVdWuqpJ4f_rCHpvUGOrvNYePyg30KrwIf94Ar3sU-u-RD-csxLTjWpnJ8x_k8lJKhtz6MNcshjdmFaAm2c5f2sUs7d1nn2X75Qvbk_E_B-50gAMAzXJdVgnL2B0bBpTg
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TITS_2013_2264314
crossref_primary_10_1109_TITS_2018_2838132
crossref_primary_10_1109_TCSVT_2014_2358031
crossref_primary_10_1109_MIS_2020_2993557
crossref_primary_10_1177_1729881417692311
crossref_primary_10_3390_s151229838
crossref_primary_10_1049_iet_ipr_2015_0333
crossref_primary_10_1109_TITS_2013_2266661
crossref_primary_10_1587_transfun_E98_A_1727
crossref_primary_10_1109_ACCESS_2021_3093698
crossref_primary_10_1109_TITS_2015_2466109
crossref_primary_10_1016_j_eswa_2015_01_032
crossref_primary_10_1109_TITS_2016_2597299
crossref_primary_10_1109_TITS_2020_3041278
crossref_primary_10_1016_j_image_2018_09_002
crossref_primary_10_1155_2019_3808064
crossref_primary_10_1007_s11042_020_08757_1
crossref_primary_10_1186_s13640_016_0143_4
crossref_primary_10_1109_TITS_2015_2465296
crossref_primary_10_1007_s11042_023_16065_7
crossref_primary_10_3390_su13031210
crossref_primary_10_1109_TITS_2015_2413971
crossref_primary_10_1109_TCSVT_2013_2265571
crossref_primary_10_1109_TVT_2019_2961625
crossref_primary_10_1007_s10043_015_0067_8
crossref_primary_10_1109_TITS_2019_2918227
crossref_primary_10_2478_ttj_2019_0017
crossref_primary_10_1109_TITS_2020_2982804
crossref_primary_10_1109_TITS_2022_3160932
crossref_primary_10_1002_ett_4427
crossref_primary_10_1155_2021_5555121
Cites_doi 10.7551/mitpress/7503.003.0026
10.1109/CVPR.2005.249
10.1007/11736790_8
10.1023/A:1008078328650
10.1109/CVPR.2004.1315241
10.1109/TPAMI.2008.73
10.1007/3-540-45053-X_45
10.1007/978-3-540-76386-4_17
10.1007/3-540-45053-X_3
10.1007/s11263-007-0095-3
10.1109/CVPR.2007.383153
10.1109/CVPR.2007.383129
10.1109/CVPR.2004.1315063
10.1109/CVPR.2008.4587592
10.1109/ICCV.2009.5459346
10.1109/CVPR.2004.1315258
10.1109/CVPR.2003.1211500
10.1109/ICCV.2007.4409006
10.1023/A:1011179004708
10.7551/mitpress/1130.003.0015
10.1023/A:1022627411411
10.1109/TPAMI.2009.167
10.1023/A:1008162616689
10.1109/34.993558
10.1016/j.patrec.2008.08.016
10.1007/s11263-007-0090-8
10.1109/CVPR.2005.177
10.1109/TPAMI.2004.68
10.1007/978-3-540-24670-1_3
10.1007/s11263-008-0137-5
10.1109/ICCV.2007.4408875
10.1109/34.655647
10.1007/3-540-47967-8_8
10.1109/CVPR.2006.169
10.1109/CVPR.2007.383042
10.1109/CVPR.2008.4587583
10.1109/AFGR.2004.1301646
10.1109/CVPR.2006.193
10.1109/AFGR.2008.4813399
10.1109/TPAMI.2007.1011
10.1109/ICCV.2003.1238424
10.1023/B:VISI.0000013087.49260.fb
10.1023/B:VISI.0000042934.15159.49
10.1109/ICCV.2001.937691
10.1109/CVPR.2007.383146
10.1007/978-3-540-88682-2_2
10.1007/BF01421486
10.1109/ICCV.2003.1238467
10.1109/CVPR.2005.335
10.1109/CVPR.1994.323814
10.1126/science.290.5500.2323
10.1109/CVPR.1997.609407
10.1109/CVPRW.2006.114
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2011
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2011
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
DOI 10.1109/TPAMI.2010.117
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1939-3539
EndPage 530
ExternalDocumentID 2246779801
20548107
23854089
10_1109_TPAMI_2010_117
5487524
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
IQODW
RIG
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
ID FETCH-LOGICAL-c469t-a60ee0e42486d95cd6d0f995566722e37373d63d155c777b5c2b68fd8feb91473
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Sat Sep 27 19:49:17 EDT 2025
Thu Oct 02 06:48:26 EDT 2025
Sun Jun 29 16:13:39 EDT 2025
Thu Apr 03 07:10:24 EDT 2025
Mon Jul 21 09:18:28 EDT 2025
Thu Apr 24 22:52:09 EDT 2025
Wed Oct 01 06:42:38 EDT 2025
Tue Aug 26 17:18:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Computer vision
Target tracking
Tracking
Segmentation
Mask
Pattern recognition
Object recognition
Modeling
Kernel method
Posture
Kernel function
Surveillance
Image sequence
Scene analysis
Facies
Object detection
pose estimation
Vector support machine
kernel methods
object tracking
Moving body
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-a60ee0e42486d95cd6d0f995566722e37373d63d155c777b5c2b68fd8feb91473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 20548107
PQID 846927687
PQPubID 85458
PageCount 17
ParticipantIDs proquest_miscellaneous_863432781
ieee_primary_5487524
pubmed_primary_20548107
proquest_miscellaneous_861539821
crossref_primary_10_1109_TPAMI_2010_117
pascalfrancis_primary_23854089
crossref_citationtrail_10_1109_TPAMI_2010_117
proquest_journals_846927687
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2011
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref54
Platt (ref41) 1999
Neidle (ref33) 2003
ref17
ref16
ref19
ref18
Rosales (ref44) 2002
Viola (ref57)
ref51
ref50
ref46
ref45
ref48
ref47
ref42
Nocedal (ref34) 2006
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Rifkin (ref43) 2004
Marszalek (ref31)
ref35
ref37
Osadchy (ref38) 2004
ref36
ref32
ref2
ref1
ref39
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Everingham (ref30) 2006
ref28
ref27
ref29
Zhu (ref63) 2007
ref60
ref62
ref61
Crasborn (ref10) 2004
References_xml – start-page: 101
  year: 2004
  ident: ref43
  article-title: In Defense of One-vs-All Classification
  publication-title: J. Machine Learning Research
– ident: ref5
  doi: 10.7551/mitpress/7503.003.0026
– volume-title: technical report
  year: 2004
  ident: ref10
  article-title: ECHO Data Set for Sign Language of the Netherlands
– ident: ref24
  doi: 10.1109/CVPR.2005.249
– volume-title: Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Textual Entailment
  year: 2006
  ident: ref30
  article-title: The 2005 PASCAL Visual Object Class Challenge
  doi: 10.1007/11736790_8
– ident: ref22
  doi: 10.1023/A:1008078328650
– ident: ref55
  doi: 10.1109/CVPR.2004.1315241
– ident: ref29
  doi: 10.1109/TPAMI.2008.73
– ident: ref51
  doi: 10.1007/3-540-45053-X_45
– ident: ref59
  doi: 10.1007/978-3-540-76386-4_17
– ident: ref16
  doi: 10.1007/3-540-45053-X_3
– ident: ref26
  doi: 10.1007/s11263-007-0095-3
– ident: ref62
  doi: 10.1109/CVPR.2007.383153
– ident: ref6
  doi: 10.1109/CVPR.2007.383129
– ident: ref52
  doi: 10.1109/CVPR.2004.1315063
– ident: ref13
  doi: 10.1109/CVPR.2008.4587592
– ident: ref21
  doi: 10.1109/ICCV.2009.5459346
– ident: ref1
  doi: 10.1109/CVPR.2004.1315258
– ident: ref3
  doi: 10.1109/CVPR.2003.1211500
– ident: ref60
  doi: 10.1109/ICCV.2007.4409006
– volume-title: Advances in Neural Information Processing Systems
  year: 2002
  ident: ref44
  article-title: Learning Body Pose via Specialized Maps
– ident: ref20
  doi: 10.1023/A:1011179004708
– volume-title: SLLRP Signstream Databases
  year: 2003
  ident: ref33
– ident: ref23
  doi: 10.7551/mitpress/1130.003.0015
– ident: ref9
  doi: 10.1023/A:1022627411411
– ident: ref14
  doi: 10.1109/TPAMI.2009.167
– ident: ref39
  doi: 10.1023/A:1008162616689
– ident: ref4
  doi: 10.1109/34.993558
– ident: ref12
  doi: 10.1016/j.patrec.2008.08.016
– ident: ref47
  doi: 10.1007/s11263-007-0090-8
– volume-title: Advances in Neural Information Processing Systems
  year: 2004
  ident: ref38
  article-title: Synergistic Face Detection and Pose Estimation with Energy-Based Model
– ident: ref11
  doi: 10.1109/CVPR.2005.177
– ident: ref28
  doi: 10.1109/TPAMI.2004.68
– ident: ref36
  doi: 10.1007/978-3-540-24670-1_3
– ident: ref18
  doi: 10.1007/s11263-008-0137-5
– volume-title: Numerical Optimization
  year: 2006
  ident: ref34
– ident: ref56
  doi: 10.1109/ICCV.2007.4408875
– ident: ref46
  doi: 10.1109/34.655647
– ident: ref8
  doi: 10.1007/3-540-47967-8_8
– volume-title: Advances in Large Margin Classifiers
  year: 1999
  ident: ref41
  article-title: Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods
– ident: ref53
  doi: 10.1109/CVPR.2006.169
– ident: ref61
  doi: 10.1109/CVPR.2007.383042
– volume-title: Advances in Neural Information Processing Systems
  year: 2007
  ident: ref63
  article-title: Rapid Inference on a Novel and/or Graph: Detection, Segmentation and Parsing of Articulated Deformable Objects in Cluttered Backgrounds
– volume-title: Proc. Visual Recognition Challange Workshop, in Conjunction with IEEE Int’l Conf. Computer Vision
  ident: ref31
  article-title: Learning Object Representations for Visual Object Class Recognition
– ident: ref2
  doi: 10.1109/CVPR.2008.4587583
– ident: ref37
  doi: 10.1109/AFGR.2004.1301646
– ident: ref48
  doi: 10.1109/CVPR.2006.193
– ident: ref17
  doi: 10.1109/AFGR.2008.4813399
– ident: ref19
  doi: 10.1109/TPAMI.2007.1011
– ident: ref49
  doi: 10.1109/ICCV.2003.1238424
– ident: ref58
  doi: 10.1023/B:VISI.0000013087.49260.fb
– ident: ref15
  doi: 10.1023/B:VISI.0000042934.15159.49
– ident: ref27
  doi: 10.1109/ICCV.2001.937691
– ident: ref25
  doi: 10.1109/CVPR.2007.383146
– ident: ref7
  doi: 10.1007/978-3-540-88682-2_2
– ident: ref32
  doi: 10.1007/BF01421486
– volume-title: Proc. IEEE Conf. Computer Vision and Pattern Recognition
  ident: ref57
  article-title: Fast Multi-View Face Detection
– ident: ref54
  doi: 10.1109/ICCV.2003.1238467
– ident: ref42
  doi: 10.1109/CVPR.2005.335
– ident: ref40
  doi: 10.1109/CVPR.1994.323814
– ident: ref45
  doi: 10.1126/science.290.5500.2323
– ident: ref50
  doi: 10.1109/CVPR.1997.609407
– ident: ref35
  doi: 10.1109/CVPRW.2006.114
SSID ssj0014503
Score 2.2953851
Snippet Object detection is challenging when the object class exhibits large within-class variations. In this work, we show that foreground-background classification...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 514
SubjectTerms Algorithms
Applied sciences
Artificial Intelligence
Classification
Computer science; control theory; systems
Computer Simulation
Detectors
Exact sciences and technology
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - instrumentation
Imaging, Three-Dimensional - instrumentation
Kernel
kernel methods
Learning
Markov Chains
Mathematical models
Motion
Motor Vehicles
Numerical Analysis, Computer-Assisted - instrumentation
Object detection
Object recognition
Object segmentation
object tracking
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Phantoms, Imaging
pose estimation
Reproducibility of Results
Sensitivity and Specificity
Subtraction Technique - instrumentation
Support vector machine classification
Support vector machines
Tasks
Tracking
Training
Vehicle detection
Vehicles
Video sequences
Title Learning a Family of Detectors via Multiplicative Kernels
URI https://ieeexplore.ieee.org/document/5487524
https://www.ncbi.nlm.nih.gov/pubmed/20548107
https://www.proquest.com/docview/846927687
https://www.proquest.com/docview/861539821
https://www.proquest.com/docview/863432781
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-3539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBlhbotlD5gMSFbBOv48exAqoCWsShlXqLHHuCEChbdbM99Nd3_NhQEEUol0ge5eHxyN_Y4-8DeE05A00TnSu0kbYQgWyo9RR4znbe8BIt5-E08vyLPLsQny7ryw14O56FQcRYfIbTcBv38v3CrcJS2XFE11xswqbSMp3VGncMRB1VkAnBUIRTGpEJGqvSHJ9_PZl_TFVcVRVU9zjhFF0FBdl7c1EUVwmlkXZJvdMlWYuHcWecf063Yb7-8lR28mO6Gtqpu_2D1PF_f20HnmQgyk7SyHkKG9jvwvZa5IHlmN-Fx_cYC_fAZD7Wb8yypJnBFh17j0Nc_F-ym--WzVONYlwMvEH2Ga97moCfwcXph_N3Z0VWXygcpcxDYWWJWKLgQktvauelLztjasJ_inOcKbq8nHkCJE4p1daOt1J3XnfYmkqo2XPY6hc97gOrtZwJG2h9CJ5J4VuDYbdXKt9qGipuAsXaD43L1ORBIeNnE1OU0jTRhU1wYWAnn8Cb0f4qkXI8aLkX-nq0yt08gaPf3Dy2E4AhCKvNBA7Xfm9yUC8bgmqGU3pGT2VjK0Vj2GKxPS5WZBLws9G8-pdJOMurNJm8SAPq19vzuDz4-1cfwqO0oh0q4F7C1nC9wlcEiYb2KMbCHZBeA2I
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcoAeKLRQlpbiAxIXsk28jmMfq5ZqS5uKw1bqLXLsSYVAWdTN9sCvZ2xn04IoQrlE8igfHo_8xh6_B_CecgaaJhqbKC1NIjzZUO0o8KxpnOYpGs79aeTyQk4vxeer_GoNPg5nYRAxFJ_h2N-GvXw3t0u_VHYQ0DUXj-BxLoTI42mtYc9A5EEHmTAMxTglEj1FY5bqg9mXw_I01nFlmdfd44RUVOY1ZO_NRkFexRdHmgX1TxOFLR5GnmEGOtmEcvXtsfDk23jZ1WP78w9ax__9uefwrIei7DCOnRewhu0WbK5kHlgf9VuwcY-zcBt0z8h6zQyLqhls3rBj7MLy_4LdfjWsjFWKYTnwFtkZ3rQ0Bb-Ey5NPs6Np0usvJJaS5i4xMkVMUXChpNO5ddKljdY5IcCCc5wUdDk5cQRJbFEUdW55LVXjVIO1zkQxeQXr7bzF18ByJSfCeGIfAmhSuFqj3--VhasVDRY7gmTlh8r25OReI-N7FZKUVFfBhZV3oecnH8GHwf5HpOV40HLb9_Vg1XfzCPZ_c_PQThCGQKzSI9hd-b3qw3pREVjTnBI0eiobWike_SaLaXG-JBOPoLXi2b9M_GneQpHJThxQd2_vx-Wbv3_1O3gynZXn1fnpxdkuPI3r274ebg_Wu5slviWA1NX7IS5-AUifBq8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+a+Family+of+Detectors+via+Multiplicative+Kernels&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=QUAN+YUAN&rft.au=THANGALI%2C+Ashwin&rft.au=ABLAVSKY%2C+Vitaly&rft.au=SCLAROFF%2C+Stan&rft.date=2011-03-01&rft.pub=IEEE+Computer+Society&rft.issn=0162-8828&rft.volume=33&rft.issue=3&rft.spage=514&rft.epage=530&rft_id=info:doi/10.1109%2FTPAMI.2010.117&rft.externalDBID=n%2Fa&rft.externalDocID=23854089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon