Efficient Detection of Malicious Traffic Using a Decision Tree-Based Proximal Policy Optimisation Algorithm: A Deep Reinforcement Learning Malicious Traffic Detection Model Incorporating Entropy

With the popularity of the Internet and the increase in the level of information technology, cyber attacks have become an increasingly serious problem. They pose a great threat to the security of individuals, enterprises, and the state. This has made network intrusion detection technology critically...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 26; no. 8; p. 648
Main Authors Zhao, Yuntao, Ma, Deao, Liu, Wei
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 30.07.2024
MDPI
Subjects
Online AccessGet full text
ISSN1099-4300
1099-4300
DOI10.3390/e26080648

Cover

Abstract With the popularity of the Internet and the increase in the level of information technology, cyber attacks have become an increasingly serious problem. They pose a great threat to the security of individuals, enterprises, and the state. This has made network intrusion detection technology critically important. In this paper, a malicious traffic detection model is constructed based on a decision tree classifier of entropy and a proximal policy optimisation algorithm (PPO) of deep reinforcement learning. Firstly, the decision tree idea in machine learning is used to make a preliminary classification judgement on the dataset based on the information entropy. The importance score of each feature in the classification work is calculated and the features with lower contributions are removed. Then, it is handed over to the PPO algorithm model for detection. An entropy regularity term is introduced in the process of the PPO algorithm update. Finally, the deep reinforcement learning algorithm is used to continuously train and update the parameters during the detection process, and finally, the detection model with higher accuracy is obtained. Experiments show that the binary classification accuracy of the malicious traffic detection model based on the deep reinforcement learning PPO algorithm can reach 99.17% under the CIC-IDS2017 dataset used in this paper.
AbstractList With the popularity of the Internet and the increase in the level of information technology, cyber attacks have become an increasingly serious problem. They pose a great threat to the security of individuals, enterprises, and the state. This has made network intrusion detection technology critically important. In this paper, a malicious traffic detection model is constructed based on a decision tree classifier of entropy and a proximal policy optimisation algorithm (PPO) of deep reinforcement learning. Firstly, the decision tree idea in machine learning is used to make a preliminary classification judgement on the dataset based on the information entropy. The importance score of each feature in the classification work is calculated and the features with lower contributions are removed. Then, it is handed over to the PPO algorithm model for detection. An entropy regularity term is introduced in the process of the PPO algorithm update. Finally, the deep reinforcement learning algorithm is used to continuously train and update the parameters during the detection process, and finally, the detection model with higher accuracy is obtained. Experiments show that the binary classification accuracy of the malicious traffic detection model based on the deep reinforcement learning PPO algorithm can reach 99.17% under the CIC-IDS2017 dataset used in this paper.
With the popularity of the Internet and the increase in the level of information technology, cyber attacks have become an increasingly serious problem. They pose a great threat to the security of individuals, enterprises, and the state. This has made network intrusion detection technology critically important. In this paper, a malicious traffic detection model is constructed based on a decision tree classifier of entropy and a proximal policy optimisation algorithm (PPO) of deep reinforcement learning. Firstly, the decision tree idea in machine learning is used to make a preliminary classification judgement on the dataset based on the information entropy. The importance score of each feature in the classification work is calculated and the features with lower contributions are removed. Then, it is handed over to the PPO algorithm model for detection. An entropy regularity term is introduced in the process of the PPO algorithm update. Finally, the deep reinforcement learning algorithm is used to continuously train and update the parameters during the detection process, and finally, the detection model with higher accuracy is obtained. Experiments show that the binary classification accuracy of the malicious traffic detection model based on the deep reinforcement learning PPO algorithm can reach 99.17% under the CIC-IDS2017 dataset used in this paper.With the popularity of the Internet and the increase in the level of information technology, cyber attacks have become an increasingly serious problem. They pose a great threat to the security of individuals, enterprises, and the state. This has made network intrusion detection technology critically important. In this paper, a malicious traffic detection model is constructed based on a decision tree classifier of entropy and a proximal policy optimisation algorithm (PPO) of deep reinforcement learning. Firstly, the decision tree idea in machine learning is used to make a preliminary classification judgement on the dataset based on the information entropy. The importance score of each feature in the classification work is calculated and the features with lower contributions are removed. Then, it is handed over to the PPO algorithm model for detection. An entropy regularity term is introduced in the process of the PPO algorithm update. Finally, the deep reinforcement learning algorithm is used to continuously train and update the parameters during the detection process, and finally, the detection model with higher accuracy is obtained. Experiments show that the binary classification accuracy of the malicious traffic detection model based on the deep reinforcement learning PPO algorithm can reach 99.17% under the CIC-IDS2017 dataset used in this paper.
Audience Academic
Author Ma, Deao
Liu, Wei
Zhao, Yuntao
AuthorAffiliation School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, China; zhaoyuntao2014@163.com (Y.Z.); deaoma_9810@163.com (D.M.)
AuthorAffiliation_xml – name: School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, China; zhaoyuntao2014@163.com (Y.Z.); deaoma_9810@163.com (D.M.)
Author_xml – sequence: 1
  givenname: Yuntao
  orcidid: 0000-0002-2627-8276
  surname: Zhao
  fullname: Zhao, Yuntao
– sequence: 2
  givenname: Deao
  surname: Ma
  fullname: Ma, Deao
– sequence: 3
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39202118$$D View this record in MEDLINE/PubMed
BookMark eNp9kttuEzEQhleoiB7gghdAlrgBpBQf9uTeoFACRErVCqXXK689Th3t2ot3A-T1eDJmmxJakJAvbI2_-ed4nBz44CFJnjN6KoSkb4HntKR5Wj5KjhiVcpIKSg_uvQ-T475fU8oFZ_mT5FBITjlj5VHyc2at0w78QD7AAHpwwZNgyYVq0Bw2PVlGNSLkund-RRRi2vUjtYwAk_eqB0OuYvjhWtWQq4BuW3LZDa51vbpVmzarEN1w056RKXpDR76A8zZEDe0YdwEq-lH735h_UroIBhoy9zrELkQURn7mhxi67dPksVVND8_u7pPk-uNsef55srj8ND-fLiY6zeUwUZTWDEqRy0wAGF4zLqzgRQnClkqXXIvSqFro1NQ1rY0waC1sBnUpgTIlTpL5TtcEta66iAXHbRWUq24NIa4qFQenG6i0zDMp0jS1tUyNVVLXucit1VnOWGE0ar3ZaW18p7bfVdPsBRmtxqFW-6Ei_G4Hd5u6BaOxaVE1DzJ4-OPdTbUK3yrGRCbKrECFV3cKMXzdQD9UOB0NTaM8YL8rgYtSSJ5lHNGXf6HrsIkeGztShWQZL0bqdEetFJY7ThMDazwGWqdxO61D-7SkRcqzgo8ZvLhfwz7535uIwOsdoGPo-wj2Pw35BfPn8Mk
Cites_doi 10.1109/TNNLS.2021.3084827
10.1109/ICCIC.2017.8524381
10.1016/j.comnet.2019.05.013
10.1007/978-3-319-70139-4_87
10.1007/978-981-13-1056-0_48
10.1109/SMARTCOMP.2017.7946998
10.1109/ICACCI.2015.7275914
10.1007/978-3-319-67180-2_53
10.1016/j.eswa.2021.114885
10.1109/MALWARE.2012.6461004
10.1007/s10462-011-9272-4
10.1126/science.aaa8415
10.1109/ACCESS.2017.2762418
10.1007/978-3-642-24797-2
10.1016/j.pisc.2016.05.010
10.1109/IDAACS-SWS.2018.8525522
10.1109/ACCESS.2024.3390722
10.1038/nature14236
10.1007/s10766-021-00715-0
10.1007/978-3-319-18305-3_1
10.1109/ICAIBD51990.2021.9459006
10.3390/app132011275
10.1016/j.cose.2008.08.003
10.1016/j.protcy.2012.05.017
10.3390/electronics11070977
10.1109/CloudNet51028.2020.9335796
10.1109/ICACCI.2017.8126009
10.1109/COMSNETS48256.2020.9027452
10.1109/ACCESS.2017.2780250
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/e26080648
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
Publicly Available Content Database
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_c96593444fb94dfa9cb636ffc56117dc
10.3390/e26080648
PMC11353857
A807425727
39202118
10_3390_e26080648
Genre Journal Article
GrantInformation_xml – fundername: Shenyang Ligong University
  grantid: 2023JH2/101300203
– fundername: Liaoning Province Applied Basic Research Program
  grantid: 2023JH2/101300203
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
C1A
CH8
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c469t-a00b1e836953eed2b123f3278e3f8ac82c38dab3c4dbb0bd3d8ac7f5eb89e01a3
IEDL.DBID DOA
ISSN 1099-4300
IngestDate Fri Oct 03 12:18:43 EDT 2025
Sun Oct 26 04:15:41 EDT 2025
Tue Sep 30 17:09:21 EDT 2025
Fri Sep 05 14:20:43 EDT 2025
Fri Jul 25 12:01:27 EDT 2025
Mon Oct 20 16:50:47 EDT 2025
Thu Jan 02 22:32:53 EST 2025
Thu Oct 16 04:29:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords entropy
deep reinforcement learning
network security
malicious traffic detection
decision tree proximal policy optimisation
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-a00b1e836953eed2b123f3278e3f8ac82c38dab3c4dbb0bd3d8ac7f5eb89e01a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2627-8276
OpenAccessLink https://doaj.org/article/c96593444fb94dfa9cb636ffc56117dc
PMID 39202118
PQID 3097915272
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_c96593444fb94dfa9cb636ffc56117dc
unpaywall_primary_10_3390_e26080648
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11353857
proquest_miscellaneous_3099792552
proquest_journals_3097915272
gale_infotracacademiconefile_A807425727
pubmed_primary_39202118
crossref_primary_10_3390_e26080648
PublicationCentury 2000
PublicationDate 20240730
PublicationDateYYYYMMDD 2024-07-30
PublicationDate_xml – month: 7
  year: 2024
  text: 20240730
  day: 30
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Mukherjee (ref_8) 2012; 4
Yin (ref_19) 2017; 5
(ref_3) 2009; 28
Mnih (ref_38) 2015; 518
ref_12
ref_34
Powers (ref_35) 2011; 2
ref_11
ref_33
ref_10
ref_32
Li (ref_21) 2019; 40
Naqash (ref_1) 2022; 50
ref_18
ref_17
ref_15
ref_37
Vasan (ref_7) 2016; 8
Li (ref_36) 2021; 33
Dong (ref_13) 2021; 176
Kotsiantis (ref_31) 2013; 39
Carro (ref_28) 2020; 141
Jordan (ref_4) 2015; 349
Wei (ref_14) 2016; 1
Wang (ref_16) 2017; 6
Mesadieu (ref_30) 2024; 12
ref_25
ref_24
ref_23
ref_20
Quan (ref_22) 2022; 58
ref_2
ref_27
ref_26
ref_9
Caminero (ref_29) 2019; 159
ref_5
ref_6
References_xml – volume: 33
  start-page: 6999
  year: 2021
  ident: ref_36
  article-title: A survey of convolutional neural networks: Analysis, applications, and prospects
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3084827
– ident: ref_10
  doi: 10.1109/ICCIC.2017.8524381
– volume: 159
  start-page: 96
  year: 2019
  ident: ref_29
  article-title: Adversarial environment reinforcement learning algorithm for intrusion detection
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2019.05.013
– ident: ref_32
– ident: ref_34
– ident: ref_18
  doi: 10.1007/978-3-319-70139-4_87
– ident: ref_11
  doi: 10.1007/978-981-13-1056-0_48
– ident: ref_17
  doi: 10.1109/SMARTCOMP.2017.7946998
– ident: ref_9
  doi: 10.1109/ICACCI.2015.7275914
– ident: ref_25
  doi: 10.1007/978-3-319-67180-2_53
– volume: 176
  start-page: 114885
  year: 2021
  ident: ref_13
  article-title: Multi-class SVM algorithm with active learning for network traffic classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114885
– ident: ref_2
  doi: 10.1109/MALWARE.2012.6461004
– volume: 39
  start-page: 261
  year: 2013
  ident: ref_31
  article-title: Decision trees: A recent overview
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-011-9272-4
– volume: 349
  start-page: 255
  year: 2015
  ident: ref_4
  article-title: Machine learning: Trends, perspectives, and prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 5
  start-page: 21954
  year: 2017
  ident: ref_19
  article-title: A deep learning approach for intrusion detection using recurrent neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2762418
– ident: ref_37
  doi: 10.1007/978-3-642-24797-2
– volume: 8
  start-page: 510
  year: 2016
  ident: ref_7
  article-title: Dimensionality reduction using principal component analysis for network intrusion detection
  publication-title: Perspect. Sci.
  doi: 10.1016/j.pisc.2016.05.010
– ident: ref_12
  doi: 10.1109/IDAACS-SWS.2018.8525522
– volume: 12
  start-page: 63381
  year: 2024
  ident: ref_30
  article-title: Leveraging Deep Reinforcement Learning Technique for Intrusion Detection in SCADA Infrastructure
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3390722
– volume: 40
  start-page: 24
  year: 2019
  ident: ref_21
  article-title: HTTP malicious traffic detection method based on hybrid structure deep neural networks
  publication-title: J. Commun.
– volume: 518
  start-page: 529
  year: 2015
  ident: ref_38
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 58
  start-page: 89
  year: 2022
  ident: ref_22
  article-title: A twin neural network based approach for malicious traffic detection
  publication-title: J. Comput. Eng. Appl.
– volume: 50
  start-page: 89
  year: 2022
  ident: ref_1
  article-title: Statistical analysis based intrusion detection system for ultra-high-speed software defined network
  publication-title: Int. J. Parallel Program.
  doi: 10.1007/s10766-021-00715-0
– ident: ref_6
– volume: 141
  start-page: 1
  year: 2020
  ident: ref_28
  article-title: Sanchez-Esguevillas, A. Application of deep reinforcement learning to intrusion detection for supervised problems
  publication-title: Expert Syst. Appl.
– ident: ref_5
  doi: 10.1007/978-3-319-18305-3_1
– ident: ref_23
  doi: 10.1109/ICAIBD51990.2021.9459006
– ident: ref_24
  doi: 10.3390/app132011275
– volume: 28
  start-page: 18
  year: 2009
  ident: ref_3
  article-title: Anomaly-based network intrusion detection: Techniques, systems, and challenges
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2008.08.003
– volume: 4
  start-page: 119
  year: 2012
  ident: ref_8
  article-title: Intrusion detection using naive Bayes classifier with feature reduction
  publication-title: Procedia Technol.
  doi: 10.1016/j.protcy.2012.05.017
– ident: ref_33
– ident: ref_20
  doi: 10.3390/electronics11070977
– volume: 1
  start-page: 62
  year: 2016
  ident: ref_14
  article-title: Network traffic prediction model based on deep belief networks
  publication-title: Shanxi Electron.
– ident: ref_27
  doi: 10.1109/CloudNet51028.2020.9335796
– ident: ref_15
  doi: 10.1109/ICACCI.2017.8126009
– ident: ref_26
  doi: 10.1109/COMSNETS48256.2020.9027452
– volume: 2
  start-page: 37
  year: 2011
  ident: ref_35
  article-title: Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation
  publication-title: J. Mach. Learn. Technol.
– volume: 6
  start-page: 1792
  year: 2017
  ident: ref_16
  article-title: HAST-IDS: Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2780250
SSID ssj0023216
Score 2.365101
Snippet With the popularity of the Internet and the increase in the level of information technology, cyber attacks have become an increasingly serious problem. They...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 648
SubjectTerms Accuracy
Algorithms
Classification
Cybersecurity
Cyberterrorism
Data mining
Datasets
Decision making
decision tree proximal policy optimisation
Decision trees
Deep learning
deep reinforcement learning
Denial of service attacks
Efficiency
Entropy
Entropy (Information theory)
False alarms
Feature selection
Internet
Intrusion detection systems
Machine learning
malicious traffic detection
Malware
Mathematical optimization
network security
Neural networks
Optimization
Safety and security measures
Support vector machines
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9NAEF6V9AFeUBGXoaDlkHiyau_6WCMhlECqgtRQVVTqm7VnWimxTZoK-vf4ZcysjzZcD3nxjuPxznguj78h5HVUsEzGTIZaR1GYGOVCGTkbMitMarjLI4WlgcNZdnCSfD5NT7fIrP8WBtsqe5voDbWpNdbI93hU5AXOYGXvm28hTo3Ct6v9CA3ZjVYw7zzE2C2yzRAZa0S2J9PZ0fGQgnEWZy2-EIdkf89CNC_AKYsNr-TB-_800Td81O_9k7cvq0ZefZeLxQ3ntL9D7nZRJR23anCPbNnqPvk59fAQcDb9aNe-5aqitaOHEHprbH2l4KiQhPq-ASqBrB24AwvWhhNwcIYereof50v48xZBmH4BG7PseoDoeDGHPVqfLd_SMZxtG3psPRSr9lVH2qG3zv9yzWuWcBzbgn5CQE0Pqoz0U2ygb64ekJP96dcPB2E3siHUkGevQc6Riq3gWZFy8L5MgWN0nOXCciekFkxzYaTiGrRCRcpwA0dzl1olChvFkj8ko6qu7GNCbYI1rsQkKoOfscpAcFqoJAWTEUubBuRlL7KyaZE5SshoUK7lINeATFCYAwGCafsD9Wpeds9mqRFUkSdJ4hRcz8lCq4xnzmmILePc6IC8QVUocf9A3lp2Xy4AnwieVY4RUAhMH8sDsttrS9nZgovyWnMD8mJYBknhqxlZWdh7pAEiSO-A5lGrXAPPEMFCIBbDvYgNtdu4qc2V6vzMI4XHONVEpMDXq0FD_71ZT_7P_VNyBxhJfGE72iWj9erSPoOIbK2ed4_ZL1P9PFQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gAXCuLRpQW5gMQpxYmdxOGWwlYFqaVCrFROkZ_tit3sqmSFys_jlzHjZLe75SEOucSTZOz54hnb48-EvGRFkqk4UZExjEXCah8p5l2UOGlTy33ONE4NHJ9kR0Px4Sw92yB7i70wK-v3HIbjrx3E2xLcprxFNrMUwu0e2RyenJZfwipmUUSCM9YyBq3Lr_mZQMf_e6e74nVuZkTentczdfVdjccr7uZw63rTTptl8nV_3uh98-MGh-M_a3KP3O2CTVq26LhPNlz9gPwcBNYIUIG-c03IxKrp1NNjiMgNZsRS8F8oQkM6AVUg1p7DAwXORQfg9yw9BcVGE3h5SyxMP0LXM-lSg2g5Pp9ejpqLyRtawtNuRj-5wNBqwmQk7Uhdz__wzWuV8JS2MX2PPJuBaxnlB5hXP7t6SIaHg89vj6LuJIfIwPC7AfMzHTvJsyLl4JQTDf7S8ySXjnupjEwMl1ZpbgAsmmnLLdzNfeq0LByLFX9EevW0dtuEOoFTX8IKncFlnbYQsxZaADZ4rFzaJ88Xdq9mLWFHBQMdNEG1NEGfHCAilgLIsR1ugMGq7petDHItciGE1_A9rwqjM555byDkjHNr-uQV4qnC9gPQGNVtaAA9kVOrKpFnCHrEJO-T3QXkqq6L-FZxVuQFHiqc9MneshgshSs2qnbQ9igDQjDqA5nHLUKXOkNgC_FZDHWRa9hdq9R6ST26CATiMR52IlPQ68US5n9vrCf_JbVD7oA-Ikx7s13Say7n7inEa41-1v2xvwAZWUEY
  priority: 102
  providerName: Unpaywall
Title Efficient Detection of Malicious Traffic Using a Decision Tree-Based Proximal Policy Optimisation Algorithm: A Deep Reinforcement Learning Malicious Traffic Detection Model Incorporating Entropy
URI https://www.ncbi.nlm.nih.gov/pubmed/39202118
https://www.proquest.com/docview/3097915272
https://www.proquest.com/docview/3099792552
https://pubmed.ncbi.nlm.nih.gov/PMC11353857
https://doi.org/10.3390/e26080648
https://doaj.org/article/c96593444fb94dfa9cb636ffc56117dc
UnpaywallVersion publishedVersion
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: HH5
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: KQ8
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: GX1
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: 8FG
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BOcAFgXi5lGh5SJysrr1re80tgaQFqSGqiBRO1j7bSIkThVTQv8cvY2bthISHuHBIDrvjZDwznsdm8g0hr1iZ5ipJVWwMY7Gw2seKeRenTtrMcl8wjUcDZ8P8dCw-TLLJzqgv7Alr4IEbwR0bRLzjQgivS2G9Ko3Oee69gcCfFNag92Wy3BRTbanF0yRvcIQ4FPXHDrJ2CcFX7kWfANL_uyveiUW_9knevqqX6vqrms12gtDgHrnbZo-023B9n9xw9QPyvR9gIOBq-s6tQ2tVTReenkGKbbDFlUJAQhIa-gOoArJmsA5sOBf3IJBZOlotvk3n8OENUjD9CL5k3vb60O7sYrGari_nb2gXrnZLeu4C5KoJp4u0RWm9-MN3_mQJx67N6HsEzgzgyUjfx0b55fVDMh70P709jdvRDLGBenoN-mQ6cZLnZcYhyqYaAqDnaSEd91IZmRourdLcgPY105ZbWC185rQsHUsUf0QO6kXtnhDqBJ5lCSt0Di_rtIUktNQiA9eQKJdF5MVGZdWyQeCooHJBvVZbvUakh8rcEiBodlgAU6paU6r-ZUoReY2mUKH8QN9Gtf9QAD4RJKvqInAQuLi0iMjRxlqq9pn_UnFWFiVOCU4j8ny7DZrCn2BU7UD2SANEUMYBzePGuLY8Q6YKCVcC9yL3zG7vpvZ36ullQARPcHqJzICvl1sL_buwDv-HsJ6SO8CuCMfc7IgcrFdX7hnkZ2vdITfl4KRDbvX6w9F5JzyY8H4ySWBtPBx1P_8A5rZEDg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF5RONBL1aqvtNBuX-rJwt5dvyqhKilBSSEpQiBxM_tyQEqcEIJo_lwP_WWdWTuG9HXj4It3bM_u7M5jPfsNIe_9lEUyYNLT2vc9YVTuST-3HrOJCQ3PY1_h1kCvH3WOxdeT8GSF_FichcG0yoVOdIrajDXukW9xP41TrMHKPk8uPKwahX9XFyU0ZFVawWw7iLHqYMeenV9DCHe53d0BeX9gbLd99KXjVVUGPA2h4QxY81VgEx6lIQeDwRTo8pyzOLE8T6ROmOaJkYpr6IjyleEG7sZ5aFWSWj-QHN57j6wJLlII_tZa7f7BYR3ycRZEJZ4R56m_ZSF6SMAJSJasoCsW8KdJuGUTf8_XXL8qJnJ-LYfDW8Zw9yF5UHmxtFlOu0dkxRaPyc-2g6OAp-mOnbkUr4KOc9oDV19jqi0Fw4gk1OUpUAlkZYEfaLDWa4FBNfRgOv5-PoKXl4jF9BvotFGVc0SbwwHIZHY2-kSb8LSd0EProF-12-WkFVrs4C_fvGEJy78NaRcBPB2IM9K3MWF_Mn9Cju9EeE_JajEu7HNCrcA9NWGEiuAyVhlwhlMlQlBRgbRhg7xdiCyblEggGURQKNeslmuDtFCYNQGCd7sb4-kgq3RBphHEkQshcgXfy2WqVcSjPNfgywax0Q3yEadChuMH8tayOikBfCJYV9ZEACNQtSxukI3FbMkq3XOZ3ayUBnlTN4Ok8FeQLCyMPdIAEYSTQPOsnFw1z-Axg-MXQF-SpWm31KnlluL8zCGTB1hFJQmBr3f1DP33YL34P_evyXrnqLef7Xf7ey_JfWBKuE11f4OszqZXdhO8wZl6VS05Sk7vepX_Ak1Mezo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgEXBOIVKLC8xMmKvevHGgmhlCQ0lJYKUak3d59ppcQJaaqSv8aRX8bM2nEbXrcefPGO7dmd2ZnZ9ew3hLwMc5bKiMlA6zAMYqNcIENnA2aFSQx3Wahwa2BnN93ajz8eJAdr5MfyLAymVS5tojfUZqJxj7zNwzzLsQYra7s6LWKv2383_RZgBSn807osp1GpyLZdnMHy7eTtoAuyfsVYv_f1_VZQVxgINCwL58BWqCIreJonHJwFU2DHHWeZsNwJqQXTXBipuIZOqFAZbuBu5hKrRG7DSHJ47xVyNUMUdzyl3v_QLPY4i9IKyYjzPGxbWDcIcP9ixf_5MgF_OoML3vD3TM3rp-VULs7kaHTBDfZvkZt1_Eo7lcLdJmu2vEN-9jwQBTxNu3buk7tKOnF0B4J8jUm2FFwiklCfoUAlkFWlfaDB2mATXKmhe7PJ9-MxvLzCKqafwZqN62wj2hkNQQLzo_Eb2oGn7ZR-sR70Vfv9TVrjxA7_8s1zlrDw24gOELrTwzcjfQ9T9aeLu2T_UkR3j6yXk9I-INTGuJsWm1ilcBmrDITBuYoTME6RtEmLPF-KrJhWGCAFrJ1QrkUj1xbZRGE2BAjb7W9MZsOitgKFRvhGHsexU_A9J3OtUp46pyGKjTKjW-Q1qkKB4wfy1rI-IwF8IkxX0UHoIjCyLGuRjaW2FLXVOSnO50iLPGuaQVL4E0iWFsYeaYAIFpJAc79SroZniJUh5IugL2JF7VY6tdpSHh95TPII66eIBPh60Wjovwfr4f-5f0quwdwuPg12tx-RG8BT7HfTww2yPp-d2scQBs7VEz_fKDm87An-CxGCeNQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gAXCuLRpQW5gMQpxYmdxOGWwlYFqaVCrFROkZ_tit3sqmSFys_jlzHjZLe75SEOucSTZOz54hnb48-EvGRFkqk4UZExjEXCah8p5l2UOGlTy33ONE4NHJ9kR0Px4Sw92yB7i70wK-v3HIbjrx3E2xLcprxFNrMUwu0e2RyenJZfwipmUUSCM9YyBq3Lr_mZQMf_e6e74nVuZkTentczdfVdjccr7uZw63rTTptl8nV_3uh98-MGh-M_a3KP3O2CTVq26LhPNlz9gPwcBNYIUIG-c03IxKrp1NNjiMgNZsRS8F8oQkM6AVUg1p7DAwXORQfg9yw9BcVGE3h5SyxMP0LXM-lSg2g5Pp9ejpqLyRtawtNuRj-5wNBqwmQk7Uhdz__wzWuV8JS2MX2PPJuBaxnlB5hXP7t6SIaHg89vj6LuJIfIwPC7AfMzHTvJsyLl4JQTDf7S8ySXjnupjEwMl1ZpbgAsmmnLLdzNfeq0LByLFX9EevW0dtuEOoFTX8IKncFlnbYQsxZaADZ4rFzaJ88Xdq9mLWFHBQMdNEG1NEGfHCAilgLIsR1ugMGq7petDHItciGE1_A9rwqjM555byDkjHNr-uQV4qnC9gPQGNVtaAA9kVOrKpFnCHrEJO-T3QXkqq6L-FZxVuQFHiqc9MneshgshSs2qnbQ9igDQjDqA5nHLUKXOkNgC_FZDHWRa9hdq9R6ST26CATiMR52IlPQ68US5n9vrCf_JbVD7oA-Ikx7s13Say7n7inEa41-1v2xvwAZWUEY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Detection+of+Malicious+Traffic+Using+a+Decision+Tree-Based+Proximal+Policy+Optimisation+Algorithm%3A+A+Deep+Reinforcement+Learning+Malicious+Traffic+Detection+Model+Incorporating+Entropy&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Zhao%2C+Yuntao&rft.au=Ma%2C+Deao&rft.au=Liu%2C+Wei&rft.date=2024-07-30&rft.eissn=1099-4300&rft.volume=26&rft.issue=8&rft_id=info:doi/10.3390%2Fe26080648&rft_id=info%3Apmid%2F39202118&rft.externalDocID=39202118
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon