Efficient Detection of Malicious Traffic Using a Decision Tree-Based Proximal Policy Optimisation Algorithm: A Deep Reinforcement Learning Malicious Traffic Detection Model Incorporating Entropy
With the popularity of the Internet and the increase in the level of information technology, cyber attacks have become an increasingly serious problem. They pose a great threat to the security of individuals, enterprises, and the state. This has made network intrusion detection technology critically...
Saved in:
| Published in | Entropy (Basel, Switzerland) Vol. 26; no. 8; p. 648 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
30.07.2024
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1099-4300 1099-4300 |
| DOI | 10.3390/e26080648 |
Cover
| Abstract | With the popularity of the Internet and the increase in the level of information technology, cyber attacks have become an increasingly serious problem. They pose a great threat to the security of individuals, enterprises, and the state. This has made network intrusion detection technology critically important. In this paper, a malicious traffic detection model is constructed based on a decision tree classifier of entropy and a proximal policy optimisation algorithm (PPO) of deep reinforcement learning. Firstly, the decision tree idea in machine learning is used to make a preliminary classification judgement on the dataset based on the information entropy. The importance score of each feature in the classification work is calculated and the features with lower contributions are removed. Then, it is handed over to the PPO algorithm model for detection. An entropy regularity term is introduced in the process of the PPO algorithm update. Finally, the deep reinforcement learning algorithm is used to continuously train and update the parameters during the detection process, and finally, the detection model with higher accuracy is obtained. Experiments show that the binary classification accuracy of the malicious traffic detection model based on the deep reinforcement learning PPO algorithm can reach 99.17% under the CIC-IDS2017 dataset used in this paper. |
|---|---|
| AbstractList | With the popularity of the Internet and the increase in the level of information technology, cyber attacks have become an increasingly serious problem. They pose a great threat to the security of individuals, enterprises, and the state. This has made network intrusion detection technology critically important. In this paper, a malicious traffic detection model is constructed based on a decision tree classifier of entropy and a proximal policy optimisation algorithm (PPO) of deep reinforcement learning. Firstly, the decision tree idea in machine learning is used to make a preliminary classification judgement on the dataset based on the information entropy. The importance score of each feature in the classification work is calculated and the features with lower contributions are removed. Then, it is handed over to the PPO algorithm model for detection. An entropy regularity term is introduced in the process of the PPO algorithm update. Finally, the deep reinforcement learning algorithm is used to continuously train and update the parameters during the detection process, and finally, the detection model with higher accuracy is obtained. Experiments show that the binary classification accuracy of the malicious traffic detection model based on the deep reinforcement learning PPO algorithm can reach 99.17% under the CIC-IDS2017 dataset used in this paper. With the popularity of the Internet and the increase in the level of information technology, cyber attacks have become an increasingly serious problem. They pose a great threat to the security of individuals, enterprises, and the state. This has made network intrusion detection technology critically important. In this paper, a malicious traffic detection model is constructed based on a decision tree classifier of entropy and a proximal policy optimisation algorithm (PPO) of deep reinforcement learning. Firstly, the decision tree idea in machine learning is used to make a preliminary classification judgement on the dataset based on the information entropy. The importance score of each feature in the classification work is calculated and the features with lower contributions are removed. Then, it is handed over to the PPO algorithm model for detection. An entropy regularity term is introduced in the process of the PPO algorithm update. Finally, the deep reinforcement learning algorithm is used to continuously train and update the parameters during the detection process, and finally, the detection model with higher accuracy is obtained. Experiments show that the binary classification accuracy of the malicious traffic detection model based on the deep reinforcement learning PPO algorithm can reach 99.17% under the CIC-IDS2017 dataset used in this paper.With the popularity of the Internet and the increase in the level of information technology, cyber attacks have become an increasingly serious problem. They pose a great threat to the security of individuals, enterprises, and the state. This has made network intrusion detection technology critically important. In this paper, a malicious traffic detection model is constructed based on a decision tree classifier of entropy and a proximal policy optimisation algorithm (PPO) of deep reinforcement learning. Firstly, the decision tree idea in machine learning is used to make a preliminary classification judgement on the dataset based on the information entropy. The importance score of each feature in the classification work is calculated and the features with lower contributions are removed. Then, it is handed over to the PPO algorithm model for detection. An entropy regularity term is introduced in the process of the PPO algorithm update. Finally, the deep reinforcement learning algorithm is used to continuously train and update the parameters during the detection process, and finally, the detection model with higher accuracy is obtained. Experiments show that the binary classification accuracy of the malicious traffic detection model based on the deep reinforcement learning PPO algorithm can reach 99.17% under the CIC-IDS2017 dataset used in this paper. |
| Audience | Academic |
| Author | Ma, Deao Liu, Wei Zhao, Yuntao |
| AuthorAffiliation | School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, China; zhaoyuntao2014@163.com (Y.Z.); deaoma_9810@163.com (D.M.) |
| AuthorAffiliation_xml | – name: School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, China; zhaoyuntao2014@163.com (Y.Z.); deaoma_9810@163.com (D.M.) |
| Author_xml | – sequence: 1 givenname: Yuntao orcidid: 0000-0002-2627-8276 surname: Zhao fullname: Zhao, Yuntao – sequence: 2 givenname: Deao surname: Ma fullname: Ma, Deao – sequence: 3 givenname: Wei surname: Liu fullname: Liu, Wei |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39202118$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kttuEzEQhleoiB7gghdAlrgBpBQf9uTeoFACRErVCqXXK689Th3t2ot3A-T1eDJmmxJakJAvbI2_-ed4nBz44CFJnjN6KoSkb4HntKR5Wj5KjhiVcpIKSg_uvQ-T475fU8oFZ_mT5FBITjlj5VHyc2at0w78QD7AAHpwwZNgyYVq0Bw2PVlGNSLkund-RRRi2vUjtYwAk_eqB0OuYvjhWtWQq4BuW3LZDa51vbpVmzarEN1w056RKXpDR76A8zZEDe0YdwEq-lH735h_UroIBhoy9zrELkQURn7mhxi67dPksVVND8_u7pPk-uNsef55srj8ND-fLiY6zeUwUZTWDEqRy0wAGF4zLqzgRQnClkqXXIvSqFro1NQ1rY0waC1sBnUpgTIlTpL5TtcEta66iAXHbRWUq24NIa4qFQenG6i0zDMp0jS1tUyNVVLXucit1VnOWGE0ar3ZaW18p7bfVdPsBRmtxqFW-6Ei_G4Hd5u6BaOxaVE1DzJ4-OPdTbUK3yrGRCbKrECFV3cKMXzdQD9UOB0NTaM8YL8rgYtSSJ5lHNGXf6HrsIkeGztShWQZL0bqdEetFJY7ThMDazwGWqdxO61D-7SkRcqzgo8ZvLhfwz7535uIwOsdoGPo-wj2Pw35BfPn8Mk |
| Cites_doi | 10.1109/TNNLS.2021.3084827 10.1109/ICCIC.2017.8524381 10.1016/j.comnet.2019.05.013 10.1007/978-3-319-70139-4_87 10.1007/978-981-13-1056-0_48 10.1109/SMARTCOMP.2017.7946998 10.1109/ICACCI.2015.7275914 10.1007/978-3-319-67180-2_53 10.1016/j.eswa.2021.114885 10.1109/MALWARE.2012.6461004 10.1007/s10462-011-9272-4 10.1126/science.aaa8415 10.1109/ACCESS.2017.2762418 10.1007/978-3-642-24797-2 10.1016/j.pisc.2016.05.010 10.1109/IDAACS-SWS.2018.8525522 10.1109/ACCESS.2024.3390722 10.1038/nature14236 10.1007/s10766-021-00715-0 10.1007/978-3-319-18305-3_1 10.1109/ICAIBD51990.2021.9459006 10.3390/app132011275 10.1016/j.cose.2008.08.003 10.1016/j.protcy.2012.05.017 10.3390/electronics11070977 10.1109/CloudNet51028.2020.9335796 10.1109/ICACCI.2017.8126009 10.1109/COMSNETS48256.2020.9027452 10.1109/ACCESS.2017.2780250 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/e26080648 |
| DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1099-4300 |
| ExternalDocumentID | oai_doaj_org_article_c96593444fb94dfa9cb636ffc56117dc 10.3390/e26080648 PMC11353857 A807425727 39202118 10_3390_e26080648 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Shenyang Ligong University grantid: 2023JH2/101300203 – fundername: Liaoning Province Applied Basic Research Program grantid: 2023JH2/101300203 |
| GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM ADTOC C1A CH8 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c469t-a00b1e836953eed2b123f3278e3f8ac82c38dab3c4dbb0bd3d8ac7f5eb89e01a3 |
| IEDL.DBID | DOA |
| ISSN | 1099-4300 |
| IngestDate | Fri Oct 03 12:18:43 EDT 2025 Sun Oct 26 04:15:41 EDT 2025 Tue Sep 30 17:09:21 EDT 2025 Fri Sep 05 14:20:43 EDT 2025 Fri Jul 25 12:01:27 EDT 2025 Mon Oct 20 16:50:47 EDT 2025 Thu Jan 02 22:32:53 EST 2025 Thu Oct 16 04:29:18 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | entropy deep reinforcement learning network security malicious traffic detection decision tree proximal policy optimisation |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-a00b1e836953eed2b123f3278e3f8ac82c38dab3c4dbb0bd3d8ac7f5eb89e01a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2627-8276 |
| OpenAccessLink | https://doaj.org/article/c96593444fb94dfa9cb636ffc56117dc |
| PMID | 39202118 |
| PQID | 3097915272 |
| PQPubID | 2032401 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c96593444fb94dfa9cb636ffc56117dc unpaywall_primary_10_3390_e26080648 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11353857 proquest_miscellaneous_3099792552 proquest_journals_3097915272 gale_infotracacademiconefile_A807425727 pubmed_primary_39202118 crossref_primary_10_3390_e26080648 |
| PublicationCentury | 2000 |
| PublicationDate | 20240730 |
| PublicationDateYYYYMMDD | 2024-07-30 |
| PublicationDate_xml | – month: 7 year: 2024 text: 20240730 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Entropy (Basel, Switzerland) |
| PublicationTitleAlternate | Entropy (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Mukherjee (ref_8) 2012; 4 Yin (ref_19) 2017; 5 (ref_3) 2009; 28 Mnih (ref_38) 2015; 518 ref_12 ref_34 Powers (ref_35) 2011; 2 ref_11 ref_33 ref_10 ref_32 Li (ref_21) 2019; 40 Naqash (ref_1) 2022; 50 ref_18 ref_17 ref_15 ref_37 Vasan (ref_7) 2016; 8 Li (ref_36) 2021; 33 Dong (ref_13) 2021; 176 Kotsiantis (ref_31) 2013; 39 Carro (ref_28) 2020; 141 Jordan (ref_4) 2015; 349 Wei (ref_14) 2016; 1 Wang (ref_16) 2017; 6 Mesadieu (ref_30) 2024; 12 ref_25 ref_24 ref_23 ref_20 Quan (ref_22) 2022; 58 ref_2 ref_27 ref_26 ref_9 Caminero (ref_29) 2019; 159 ref_5 ref_6 |
| References_xml | – volume: 33 start-page: 6999 year: 2021 ident: ref_36 article-title: A survey of convolutional neural networks: Analysis, applications, and prospects publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3084827 – ident: ref_10 doi: 10.1109/ICCIC.2017.8524381 – volume: 159 start-page: 96 year: 2019 ident: ref_29 article-title: Adversarial environment reinforcement learning algorithm for intrusion detection publication-title: Comput. Netw. doi: 10.1016/j.comnet.2019.05.013 – ident: ref_32 – ident: ref_34 – ident: ref_18 doi: 10.1007/978-3-319-70139-4_87 – ident: ref_11 doi: 10.1007/978-981-13-1056-0_48 – ident: ref_17 doi: 10.1109/SMARTCOMP.2017.7946998 – ident: ref_9 doi: 10.1109/ICACCI.2015.7275914 – ident: ref_25 doi: 10.1007/978-3-319-67180-2_53 – volume: 176 start-page: 114885 year: 2021 ident: ref_13 article-title: Multi-class SVM algorithm with active learning for network traffic classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114885 – ident: ref_2 doi: 10.1109/MALWARE.2012.6461004 – volume: 39 start-page: 261 year: 2013 ident: ref_31 article-title: Decision trees: A recent overview publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-011-9272-4 – volume: 349 start-page: 255 year: 2015 ident: ref_4 article-title: Machine learning: Trends, perspectives, and prospects publication-title: Science doi: 10.1126/science.aaa8415 – volume: 5 start-page: 21954 year: 2017 ident: ref_19 article-title: A deep learning approach for intrusion detection using recurrent neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2762418 – ident: ref_37 doi: 10.1007/978-3-642-24797-2 – volume: 8 start-page: 510 year: 2016 ident: ref_7 article-title: Dimensionality reduction using principal component analysis for network intrusion detection publication-title: Perspect. Sci. doi: 10.1016/j.pisc.2016.05.010 – ident: ref_12 doi: 10.1109/IDAACS-SWS.2018.8525522 – volume: 12 start-page: 63381 year: 2024 ident: ref_30 article-title: Leveraging Deep Reinforcement Learning Technique for Intrusion Detection in SCADA Infrastructure publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3390722 – volume: 40 start-page: 24 year: 2019 ident: ref_21 article-title: HTTP malicious traffic detection method based on hybrid structure deep neural networks publication-title: J. Commun. – volume: 518 start-page: 529 year: 2015 ident: ref_38 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 58 start-page: 89 year: 2022 ident: ref_22 article-title: A twin neural network based approach for malicious traffic detection publication-title: J. Comput. Eng. Appl. – volume: 50 start-page: 89 year: 2022 ident: ref_1 article-title: Statistical analysis based intrusion detection system for ultra-high-speed software defined network publication-title: Int. J. Parallel Program. doi: 10.1007/s10766-021-00715-0 – ident: ref_6 – volume: 141 start-page: 1 year: 2020 ident: ref_28 article-title: Sanchez-Esguevillas, A. Application of deep reinforcement learning to intrusion detection for supervised problems publication-title: Expert Syst. Appl. – ident: ref_5 doi: 10.1007/978-3-319-18305-3_1 – ident: ref_23 doi: 10.1109/ICAIBD51990.2021.9459006 – ident: ref_24 doi: 10.3390/app132011275 – volume: 28 start-page: 18 year: 2009 ident: ref_3 article-title: Anomaly-based network intrusion detection: Techniques, systems, and challenges publication-title: Comput. Secur. doi: 10.1016/j.cose.2008.08.003 – volume: 4 start-page: 119 year: 2012 ident: ref_8 article-title: Intrusion detection using naive Bayes classifier with feature reduction publication-title: Procedia Technol. doi: 10.1016/j.protcy.2012.05.017 – ident: ref_33 – ident: ref_20 doi: 10.3390/electronics11070977 – volume: 1 start-page: 62 year: 2016 ident: ref_14 article-title: Network traffic prediction model based on deep belief networks publication-title: Shanxi Electron. – ident: ref_27 doi: 10.1109/CloudNet51028.2020.9335796 – ident: ref_15 doi: 10.1109/ICACCI.2017.8126009 – ident: ref_26 doi: 10.1109/COMSNETS48256.2020.9027452 – volume: 2 start-page: 37 year: 2011 ident: ref_35 article-title: Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation publication-title: J. Mach. Learn. Technol. – volume: 6 start-page: 1792 year: 2017 ident: ref_16 article-title: HAST-IDS: Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2780250 |
| SSID | ssj0023216 |
| Score | 2.365101 |
| Snippet | With the popularity of the Internet and the increase in the level of information technology, cyber attacks have become an increasingly serious problem. They... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 648 |
| SubjectTerms | Accuracy Algorithms Classification Cybersecurity Cyberterrorism Data mining Datasets Decision making decision tree proximal policy optimisation Decision trees Deep learning deep reinforcement learning Denial of service attacks Efficiency Entropy Entropy (Information theory) False alarms Feature selection Internet Intrusion detection systems Machine learning malicious traffic detection Malware Mathematical optimization network security Neural networks Optimization Safety and security measures Support vector machines |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9NAEF6V9AFeUBGXoaDlkHiyau_6WCMhlECqgtRQVVTqm7VnWimxTZoK-vf4ZcysjzZcD3nxjuPxznguj78h5HVUsEzGTIZaR1GYGOVCGTkbMitMarjLI4WlgcNZdnCSfD5NT7fIrP8WBtsqe5voDbWpNdbI93hU5AXOYGXvm28hTo3Ct6v9CA3ZjVYw7zzE2C2yzRAZa0S2J9PZ0fGQgnEWZy2-EIdkf89CNC_AKYsNr-TB-_800Td81O_9k7cvq0ZefZeLxQ3ntL9D7nZRJR23anCPbNnqPvk59fAQcDb9aNe-5aqitaOHEHprbH2l4KiQhPq-ASqBrB24AwvWhhNwcIYereof50v48xZBmH4BG7PseoDoeDGHPVqfLd_SMZxtG3psPRSr9lVH2qG3zv9yzWuWcBzbgn5CQE0Pqoz0U2ygb64ekJP96dcPB2E3siHUkGevQc6Riq3gWZFy8L5MgWN0nOXCciekFkxzYaTiGrRCRcpwA0dzl1olChvFkj8ko6qu7GNCbYI1rsQkKoOfscpAcFqoJAWTEUubBuRlL7KyaZE5SshoUK7lINeATFCYAwGCafsD9Wpeds9mqRFUkSdJ4hRcz8lCq4xnzmmILePc6IC8QVUocf9A3lp2Xy4AnwieVY4RUAhMH8sDsttrS9nZgovyWnMD8mJYBknhqxlZWdh7pAEiSO-A5lGrXAPPEMFCIBbDvYgNtdu4qc2V6vzMI4XHONVEpMDXq0FD_71ZT_7P_VNyBxhJfGE72iWj9erSPoOIbK2ed4_ZL1P9PFQ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gAXCuLRpQW5gMQpxYmdxOGWwlYFqaVCrFROkZ_tit3sqmSFys_jlzHjZLe75SEOucSTZOz54hnb48-EvGRFkqk4UZExjEXCah8p5l2UOGlTy33ONE4NHJ9kR0Px4Sw92yB7i70wK-v3HIbjrx3E2xLcprxFNrMUwu0e2RyenJZfwipmUUSCM9YyBq3Lr_mZQMf_e6e74nVuZkTentczdfVdjccr7uZw63rTTptl8nV_3uh98-MGh-M_a3KP3O2CTVq26LhPNlz9gPwcBNYIUIG-c03IxKrp1NNjiMgNZsRS8F8oQkM6AVUg1p7DAwXORQfg9yw9BcVGE3h5SyxMP0LXM-lSg2g5Pp9ejpqLyRtawtNuRj-5wNBqwmQk7Uhdz__wzWuV8JS2MX2PPJuBaxnlB5hXP7t6SIaHg89vj6LuJIfIwPC7AfMzHTvJsyLl4JQTDf7S8ySXjnupjEwMl1ZpbgAsmmnLLdzNfeq0LByLFX9EevW0dtuEOoFTX8IKncFlnbYQsxZaADZ4rFzaJ88Xdq9mLWFHBQMdNEG1NEGfHCAilgLIsR1ugMGq7petDHItciGE1_A9rwqjM555byDkjHNr-uQV4qnC9gPQGNVtaAA9kVOrKpFnCHrEJO-T3QXkqq6L-FZxVuQFHiqc9MneshgshSs2qnbQ9igDQjDqA5nHLUKXOkNgC_FZDHWRa9hdq9R6ST26CATiMR52IlPQ68US5n9vrCf_JbVD7oA-Ikx7s13Say7n7inEa41-1v2xvwAZWUEY priority: 102 providerName: Unpaywall |
| Title | Efficient Detection of Malicious Traffic Using a Decision Tree-Based Proximal Policy Optimisation Algorithm: A Deep Reinforcement Learning Malicious Traffic Detection Model Incorporating Entropy |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39202118 https://www.proquest.com/docview/3097915272 https://www.proquest.com/docview/3099792552 https://pubmed.ncbi.nlm.nih.gov/PMC11353857 https://doi.org/10.3390/e26080648 https://doaj.org/article/c96593444fb94dfa9cb636ffc56117dc |
| UnpaywallVersion | publishedVersion |
| Volume | 26 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: HH5 dateStart: 19990101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: KQ8 dateStart: 19990101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: GX1 dateStart: 19990101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: RPM dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: 8FG dateStart: 19990301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BOcAFgXi5lGh5SJysrr1re80tgaQFqSGqiBRO1j7bSIkThVTQv8cvY2bthISHuHBIDrvjZDwznsdm8g0hr1iZ5ipJVWwMY7Gw2seKeRenTtrMcl8wjUcDZ8P8dCw-TLLJzqgv7Alr4IEbwR0bRLzjQgivS2G9Ko3Oee69gcCfFNag92Wy3BRTbanF0yRvcIQ4FPXHDrJ2CcFX7kWfANL_uyveiUW_9knevqqX6vqrms12gtDgHrnbZo-023B9n9xw9QPyvR9gIOBq-s6tQ2tVTReenkGKbbDFlUJAQhIa-gOoArJmsA5sOBf3IJBZOlotvk3n8OENUjD9CL5k3vb60O7sYrGari_nb2gXrnZLeu4C5KoJp4u0RWm9-MN3_mQJx67N6HsEzgzgyUjfx0b55fVDMh70P709jdvRDLGBenoN-mQ6cZLnZcYhyqYaAqDnaSEd91IZmRourdLcgPY105ZbWC185rQsHUsUf0QO6kXtnhDqBJ5lCSt0Di_rtIUktNQiA9eQKJdF5MVGZdWyQeCooHJBvVZbvUakh8rcEiBodlgAU6paU6r-ZUoReY2mUKH8QN9Gtf9QAD4RJKvqInAQuLi0iMjRxlqq9pn_UnFWFiVOCU4j8ny7DZrCn2BU7UD2SANEUMYBzePGuLY8Q6YKCVcC9yL3zG7vpvZ36ullQARPcHqJzICvl1sL_buwDv-HsJ6SO8CuCMfc7IgcrFdX7hnkZ2vdITfl4KRDbvX6w9F5JzyY8H4ySWBtPBx1P_8A5rZEDg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF5RONBL1aqvtNBuX-rJwt5dvyqhKilBSSEpQiBxM_tyQEqcEIJo_lwP_WWdWTuG9HXj4It3bM_u7M5jPfsNIe_9lEUyYNLT2vc9YVTuST-3HrOJCQ3PY1_h1kCvH3WOxdeT8GSF_FichcG0yoVOdIrajDXukW9xP41TrMHKPk8uPKwahX9XFyU0ZFVawWw7iLHqYMeenV9DCHe53d0BeX9gbLd99KXjVVUGPA2h4QxY81VgEx6lIQeDwRTo8pyzOLE8T6ROmOaJkYpr6IjyleEG7sZ5aFWSWj-QHN57j6wJLlII_tZa7f7BYR3ycRZEJZ4R56m_ZSF6SMAJSJasoCsW8KdJuGUTf8_XXL8qJnJ-LYfDW8Zw9yF5UHmxtFlOu0dkxRaPyc-2g6OAp-mOnbkUr4KOc9oDV19jqi0Fw4gk1OUpUAlkZYEfaLDWa4FBNfRgOv5-PoKXl4jF9BvotFGVc0SbwwHIZHY2-kSb8LSd0EProF-12-WkFVrs4C_fvGEJy78NaRcBPB2IM9K3MWF_Mn9Cju9EeE_JajEu7HNCrcA9NWGEiuAyVhlwhlMlQlBRgbRhg7xdiCyblEggGURQKNeslmuDtFCYNQGCd7sb4-kgq3RBphHEkQshcgXfy2WqVcSjPNfgywax0Q3yEadChuMH8tayOikBfCJYV9ZEACNQtSxukI3FbMkq3XOZ3ayUBnlTN4Ok8FeQLCyMPdIAEYSTQPOsnFw1z-Axg-MXQF-SpWm31KnlluL8zCGTB1hFJQmBr3f1DP33YL34P_evyXrnqLef7Xf7ey_JfWBKuE11f4OszqZXdhO8wZl6VS05Sk7vepX_Ak1Mezo |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgEXBOIVKLC8xMmKvevHGgmhlCQ0lJYKUak3d59ppcQJaaqSv8aRX8bM2nEbXrcefPGO7dmd2ZnZ9ew3hLwMc5bKiMlA6zAMYqNcIENnA2aFSQx3Wahwa2BnN93ajz8eJAdr5MfyLAymVS5tojfUZqJxj7zNwzzLsQYra7s6LWKv2383_RZgBSn807osp1GpyLZdnMHy7eTtoAuyfsVYv_f1_VZQVxgINCwL58BWqCIreJonHJwFU2DHHWeZsNwJqQXTXBipuIZOqFAZbuBu5hKrRG7DSHJ47xVyNUMUdzyl3v_QLPY4i9IKyYjzPGxbWDcIcP9ixf_5MgF_OoML3vD3TM3rp-VULs7kaHTBDfZvkZt1_Eo7lcLdJmu2vEN-9jwQBTxNu3buk7tKOnF0B4J8jUm2FFwiklCfoUAlkFWlfaDB2mATXKmhe7PJ9-MxvLzCKqafwZqN62wj2hkNQQLzo_Eb2oGn7ZR-sR70Vfv9TVrjxA7_8s1zlrDw24gOELrTwzcjfQ9T9aeLu2T_UkR3j6yXk9I-INTGuJsWm1ilcBmrDITBuYoTME6RtEmLPF-KrJhWGCAFrJ1QrkUj1xbZRGE2BAjb7W9MZsOitgKFRvhGHsexU_A9J3OtUp46pyGKjTKjW-Q1qkKB4wfy1rI-IwF8IkxX0UHoIjCyLGuRjaW2FLXVOSnO50iLPGuaQVL4E0iWFsYeaYAIFpJAc79SroZniJUh5IugL2JF7VY6tdpSHh95TPII66eIBPh60Wjovwfr4f-5f0quwdwuPg12tx-RG8BT7HfTww2yPp-d2scQBs7VEz_fKDm87An-CxGCeNQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gAXCuLRpQW5gMQpxYmdxOGWwlYFqaVCrFROkZ_tit3sqmSFys_jlzHjZLe75SEOucSTZOz54hnb48-EvGRFkqk4UZExjEXCah8p5l2UOGlTy33ONE4NHJ9kR0Px4Sw92yB7i70wK-v3HIbjrx3E2xLcprxFNrMUwu0e2RyenJZfwipmUUSCM9YyBq3Lr_mZQMf_e6e74nVuZkTentczdfVdjccr7uZw63rTTptl8nV_3uh98-MGh-M_a3KP3O2CTVq26LhPNlz9gPwcBNYIUIG-c03IxKrp1NNjiMgNZsRS8F8oQkM6AVUg1p7DAwXORQfg9yw9BcVGE3h5SyxMP0LXM-lSg2g5Pp9ejpqLyRtawtNuRj-5wNBqwmQk7Uhdz__wzWuV8JS2MX2PPJuBaxnlB5hXP7t6SIaHg89vj6LuJIfIwPC7AfMzHTvJsyLl4JQTDf7S8ySXjnupjEwMl1ZpbgAsmmnLLdzNfeq0LByLFX9EevW0dtuEOoFTX8IKncFlnbYQsxZaADZ4rFzaJ88Xdq9mLWFHBQMdNEG1NEGfHCAilgLIsR1ugMGq7petDHItciGE1_A9rwqjM555byDkjHNr-uQV4qnC9gPQGNVtaAA9kVOrKpFnCHrEJO-T3QXkqq6L-FZxVuQFHiqc9MneshgshSs2qnbQ9igDQjDqA5nHLUKXOkNgC_FZDHWRa9hdq9R6ST26CATiMR52IlPQ68US5n9vrCf_JbVD7oA-Ikx7s13Say7n7inEa41-1v2xvwAZWUEY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Detection+of+Malicious+Traffic+Using+a+Decision+Tree-Based+Proximal+Policy+Optimisation+Algorithm%3A+A+Deep+Reinforcement+Learning+Malicious+Traffic+Detection+Model+Incorporating+Entropy&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Zhao%2C+Yuntao&rft.au=Ma%2C+Deao&rft.au=Liu%2C+Wei&rft.date=2024-07-30&rft.eissn=1099-4300&rft.volume=26&rft.issue=8&rft_id=info:doi/10.3390%2Fe26080648&rft_id=info%3Apmid%2F39202118&rft.externalDocID=39202118 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |