Respiration Based Non-Invasive Approach for Emotion Recognition Using Impulse Radio Ultra Wide Band Radar and Machine Learning
Emotion recognition gained increasingly prominent attraction from a multitude of fields recently due to their wide use in human-computer interaction interface, therapy, and advanced robotics, etc. Human speech, gestures, facial expressions, and physiological signals can be used to recognize differen...
        Saved in:
      
    
          | Published in | Sensors (Basel, Switzerland) Vol. 21; no. 24; p. 8336 | 
|---|---|
| Main Authors | , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Switzerland
          MDPI AG
    
        13.12.2021
     MDPI  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1424-8220 1424-8220  | 
| DOI | 10.3390/s21248336 | 
Cover
| Abstract | Emotion recognition gained increasingly prominent attraction from a multitude of fields recently due to their wide use in human-computer interaction interface, therapy, and advanced robotics, etc. Human speech, gestures, facial expressions, and physiological signals can be used to recognize different emotions. Despite the discriminating properties to recognize emotions, the first three methods have been regarded as ineffective as the probability of human’s voluntary and involuntary concealing the real emotions can not be ignored. Physiological signals, on the other hand, are capable of providing more objective, and reliable emotion recognition. Based on physiological signals, several methods have been introduced for emotion recognition, yet, predominantly such approaches are invasive involving the placement of on-body sensors. The efficacy and accuracy of these approaches are hindered by the sensor malfunctioning and erroneous data due to human limbs movement. This study presents a non-invasive approach where machine learning complements the impulse radio ultra-wideband (IR-UWB) signals for emotion recognition. First, the feasibility of using IR-UWB for emotion recognition is analyzed followed by determining the state of emotions into happiness, disgust, and fear. These emotions are triggered using carefully selected video clips to human subjects involving both males and females. The convincing evidence that different breathing patterns are linked with different emotions has been leveraged to discriminate between different emotions. Chest movement of thirty-five subjects is obtained using IR-UWB radar while watching the video clips in solitude. Extensive signal processing is applied to the obtained chest movement signals to estimate respiration rate per minute (RPM). The RPM estimated by the algorithm is validated by repeated measurements by a commercially available Pulse Oximeter. A dataset is maintained comprising gender, RPM, age, and associated emotions which are further used with several machine learning algorithms for automatic recognition of human emotions. Experiments reveal that IR-UWB possesses the potential to differentiate between different human emotions with a decent accuracy of 76% without placing any on-body sensors. Separate analysis for male and female participants reveals that males experience high arousal for happiness while females experience intense fear emotions. For disgust emotion, no large difference is found for male and female participants. To the best of the authors’ knowledge, this study presents the first non-invasive approach using the IR-UWB radar for emotion recognition. | 
    
|---|---|
| AbstractList | Emotion recognition gained increasingly prominent attraction from a multitude of fields recently due to their wide use in human-computer interaction interface, therapy, and advanced robotics, etc. Human speech, gestures, facial expressions, and physiological signals can be used to recognize different emotions. Despite the discriminating properties to recognize emotions, the first three methods have been regarded as ineffective as the probability of human’s voluntary and involuntary concealing the real emotions can not be ignored. Physiological signals, on the other hand, are capable of providing more objective, and reliable emotion recognition. Based on physiological signals, several methods have been introduced for emotion recognition, yet, predominantly such approaches are invasive involving the placement of on-body sensors. The efficacy and accuracy of these approaches are hindered by the sensor malfunctioning and erroneous data due to human limbs movement. This study presents a non-invasive approach where machine learning complements the impulse radio ultra-wideband (IR-UWB) signals for emotion recognition. First, the feasibility of using IR-UWB for emotion recognition is analyzed followed by determining the state of emotions into happiness, disgust, and fear. These emotions are triggered using carefully selected video clips to human subjects involving both males and females. The convincing evidence that different breathing patterns are linked with different emotions has been leveraged to discriminate between different emotions. Chest movement of thirty-five subjects is obtained using IR-UWB radar while watching the video clips in solitude. Extensive signal processing is applied to the obtained chest movement signals to estimate respiration rate per minute (RPM). The RPM estimated by the algorithm is validated by repeated measurements by a commercially available Pulse Oximeter. A dataset is maintained comprising gender, RPM, age, and associated emotions which are further used with several machine learning algorithms for automatic recognition of human emotions. Experiments reveal that IR-UWB possesses the potential to differentiate between different human emotions with a decent accuracy of 76% without placing any on-body sensors. Separate analysis for male and female participants reveals that males experience high arousal for happiness while females experience intense fear emotions. For disgust emotion, no large difference is found for male and female participants. To the best of the authors’ knowledge, this study presents the first non-invasive approach using the IR-UWB radar for emotion recognition. Emotion recognition gained increasingly prominent attraction from a multitude of fields recently due to their wide use in human-computer interaction interface, therapy, and advanced robotics, etc. Human speech, gestures, facial expressions, and physiological signals can be used to recognize different emotions. Despite the discriminating properties to recognize emotions, the first three methods have been regarded as ineffective as the probability of human's voluntary and involuntary concealing the real emotions can not be ignored. Physiological signals, on the other hand, are capable of providing more objective, and reliable emotion recognition. Based on physiological signals, several methods have been introduced for emotion recognition, yet, predominantly such approaches are invasive involving the placement of on-body sensors. The efficacy and accuracy of these approaches are hindered by the sensor malfunctioning and erroneous data due to human limbs movement. This study presents a non-invasive approach where machine learning complements the impulse radio ultra-wideband (IR-UWB) signals for emotion recognition. First, the feasibility of using IR-UWB for emotion recognition is analyzed followed by determining the state of emotions into happiness, disgust, and fear. These emotions are triggered using carefully selected video clips to human subjects involving both males and females. The convincing evidence that different breathing patterns are linked with different emotions has been leveraged to discriminate between different emotions. Chest movement of thirty-five subjects is obtained using IR-UWB radar while watching the video clips in solitude. Extensive signal processing is applied to the obtained chest movement signals to estimate respiration rate per minute (RPM). The RPM estimated by the algorithm is validated by repeated measurements by a commercially available Pulse Oximeter. A dataset is maintained comprising gender, RPM, age, and associated emotions which are further used with several machine learning algorithms for automatic recognition of human emotions. Experiments reveal that IR-UWB possesses the potential to differentiate between different human emotions with a decent accuracy of 76% without placing any on-body sensors. Separate analysis for male and female participants reveals that males experience high arousal for happiness while females experience intense fear emotions. For disgust emotion, no large difference is found for male and female participants. To the best of the authors' knowledge, this study presents the first non-invasive approach using the IR-UWB radar for emotion recognition.Emotion recognition gained increasingly prominent attraction from a multitude of fields recently due to their wide use in human-computer interaction interface, therapy, and advanced robotics, etc. Human speech, gestures, facial expressions, and physiological signals can be used to recognize different emotions. Despite the discriminating properties to recognize emotions, the first three methods have been regarded as ineffective as the probability of human's voluntary and involuntary concealing the real emotions can not be ignored. Physiological signals, on the other hand, are capable of providing more objective, and reliable emotion recognition. Based on physiological signals, several methods have been introduced for emotion recognition, yet, predominantly such approaches are invasive involving the placement of on-body sensors. The efficacy and accuracy of these approaches are hindered by the sensor malfunctioning and erroneous data due to human limbs movement. This study presents a non-invasive approach where machine learning complements the impulse radio ultra-wideband (IR-UWB) signals for emotion recognition. First, the feasibility of using IR-UWB for emotion recognition is analyzed followed by determining the state of emotions into happiness, disgust, and fear. These emotions are triggered using carefully selected video clips to human subjects involving both males and females. The convincing evidence that different breathing patterns are linked with different emotions has been leveraged to discriminate between different emotions. Chest movement of thirty-five subjects is obtained using IR-UWB radar while watching the video clips in solitude. Extensive signal processing is applied to the obtained chest movement signals to estimate respiration rate per minute (RPM). The RPM estimated by the algorithm is validated by repeated measurements by a commercially available Pulse Oximeter. A dataset is maintained comprising gender, RPM, age, and associated emotions which are further used with several machine learning algorithms for automatic recognition of human emotions. Experiments reveal that IR-UWB possesses the potential to differentiate between different human emotions with a decent accuracy of 76% without placing any on-body sensors. Separate analysis for male and female participants reveals that males experience high arousal for happiness while females experience intense fear emotions. For disgust emotion, no large difference is found for male and female participants. To the best of the authors' knowledge, this study presents the first non-invasive approach using the IR-UWB radar for emotion recognition.  | 
    
| Author | Dudley, Sandra Shahzad, Hina Fatima Lee, Ernesto Saleem, Adil Ali Rustam, Furqan Khan Khakwani, Abdul Baqi Ashraf, Imran Siddiqui, Hafeez Ur Rehman  | 
    
| AuthorAffiliation | 2 Management and Information Technology, Jubail Industrial College, Al Jubail 35718, Saudi Arabia; khan_ab@jic.edu.sa 1 Department of Computer Science, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan; siddiqov@gmail.com (H.U.R.S.); hinafatimashahzad@gmail.com (H.F.S.); adilalisaleem@gmail.com (A.A.S.); furqan.rustam1@gmail.com (F.R.) 5 School of Engineering, London South Bank University, London SE1 0AA, UK; dudleyms@lsbu.ac.uk 3 Department of Computer Science, Broward College, Broward County, FL 33301, USA 4 Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Korea  | 
    
| AuthorAffiliation_xml | – name: 5 School of Engineering, London South Bank University, London SE1 0AA, UK; dudleyms@lsbu.ac.uk – name: 2 Management and Information Technology, Jubail Industrial College, Al Jubail 35718, Saudi Arabia; khan_ab@jic.edu.sa – name: 1 Department of Computer Science, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan; siddiqov@gmail.com (H.U.R.S.); hinafatimashahzad@gmail.com (H.F.S.); adilalisaleem@gmail.com (A.A.S.); furqan.rustam1@gmail.com (F.R.) – name: 3 Department of Computer Science, Broward College, Broward County, FL 33301, USA – name: 4 Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Korea  | 
    
| Author_xml | – sequence: 1 givenname: Hafeez Ur Rehman orcidid: 0000-0003-0671-2060 surname: Siddiqui fullname: Siddiqui, Hafeez Ur Rehman – sequence: 2 givenname: Hina Fatima orcidid: 0000-0001-6151-3713 surname: Shahzad fullname: Shahzad, Hina Fatima – sequence: 3 givenname: Adil Ali orcidid: 0000-0003-2468-8471 surname: Saleem fullname: Saleem, Adil Ali – sequence: 4 givenname: Abdul Baqi surname: Khan Khakwani fullname: Khan Khakwani, Abdul Baqi – sequence: 5 givenname: Furqan orcidid: 0000-0001-8403-1047 surname: Rustam fullname: Rustam, Furqan – sequence: 6 givenname: Ernesto orcidid: 0000-0002-1209-8565 surname: Lee fullname: Lee, Ernesto – sequence: 7 givenname: Imran orcidid: 0000-0002-8271-6496 surname: Ashraf fullname: Ashraf, Imran – sequence: 8 givenname: Sandra surname: Dudley fullname: Dudley, Sandra  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34960430$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp1kk1v1DAQhi1URD_gwB9AlrgAUqi_kjgXpFIVWGkBacWKo-U4k61XiZ3ayaJe-O14d8uqreA0o_Ezr17PzCk6ct4BQi8pec95Rc4jo0xIzosn6IQKJjLJGDm6lx-j0xjXhDDOuXyGjrmoCiI4OUG_FxAHG_RovcMfdYQGf_Mum7mNjnYD-GIYgtfmGrc-4Kve77gFGL9ydpcvo3UrPOuHqYuAF7qxHi-7MWj80zaQJF2zreqAt9nXJGUd4Dno4FLjc_S01anxxV08Q8tPVz8uv2Tz759nlxfzzIiiGrOqzTlpiOamzltKCkpYU4icNKYVlIqCG1ILU7WaEA5SlqJMtJQtYUIUdU34GZrtdRuv12oIttfhVnlt1a7gw0rpMFrTgeJAAZjIqc5LIcqyMoa00MiUc51i0nq315rcoG9_6a47CFKitgtRh4Uk-MMeHqa6h8aAS6PpHjh4-OLstVr5jZIlKTllSeDNnUDwNxPEUfU2Gug67cBPUbGC5pQyVoqEvn6Erv0UXJrrlmIyL9I0EvXqvqODlb83kYDzPWCCjzFAq4wddweSDNrun598-6jj_wP5A2aE1Dg | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3312948 crossref_primary_10_3390_electronics11223817 crossref_primary_10_3390_app13095475 crossref_primary_10_3390_s23187756 crossref_primary_10_3390_s23239570 crossref_primary_10_1177_00202940221101667 crossref_primary_10_3390_s24051420 crossref_primary_10_3390_s22124403 crossref_primary_10_1109_JIOT_2024_3379393 crossref_primary_10_3390_nano14221826 crossref_primary_10_1007_s11042_022_13716_z crossref_primary_10_3389_fpsyg_2024_1275142 crossref_primary_10_1007_s00530_024_01302_2 crossref_primary_10_1007_s10586_024_04804_w crossref_primary_10_1016_j_engappai_2024_109808 crossref_primary_10_3390_electronics11182875 crossref_primary_10_3390_info14120625 crossref_primary_10_1007_s11042_022_14091_5 crossref_primary_10_1016_j_isci_2022_105625 crossref_primary_10_1109_TIM_2025_3548782 crossref_primary_10_12677_ap_2024_148567 crossref_primary_10_1109_ACCESS_2024_3482690 crossref_primary_10_1016_j_apergo_2023_104059 crossref_primary_10_3390_s22124556 crossref_primary_10_3390_s22207824  | 
    
| Cites_doi | 10.4324/9781315129563 10.1109/ACCESS.2021.3083638 10.3390/app8020274 10.1016/j.ijhcs.2009.03.005 10.1109/ACCESS.2020.3041822 10.1002/9780470060490 10.1016/j.enbuild.2017.02.004 10.1088/1361-6579/ab299e 10.1109/ICETAS.2017.8277912 10.1109/ICUWB.2017.8250971 10.1016/j.inffus.2020.01.011 10.1016/j.medengphy.2017.09.003 10.1109/SITIS.2015.31 10.1007/s11571-018-9516-y 10.1109/ICFSP.2017.8097053 10.1177/0539018405058216 10.1038/srep37212 10.1037/0022-3514.53.4.712 10.3389/fpsyg.2020.01980 10.2139/ssrn.3645402 10.1109/34.954607 10.1016/j.ascom.2020.100404 10.3390/s20030592 10.1016/S0301-0511(98)00025-8 10.1080/02699939208411068 10.1007/s13246-019-00825-7 10.1378/chest.125.2.683 10.1109/JBHI.2019.2895589 10.3390/s21144833 10.1109/MMSP.2016.7813349 10.3390/s20010324 10.1007/BF00952248 10.1109/ICSIGSYS.2018.8373573 10.1016/j.proeng.2012.06.298 10.1109/CADIAG.2017.8075660 10.3390/s19173805 10.1155/2021/6621607 10.1016/j.biopsycho.2010.03.010 10.1145/2702123.2702200 10.1109/RCAR.2016.7784015 10.1016/j.neulet.2012.05.047 10.1109/IPTC.2010.60 10.1088/1361-6579/ab310a 10.1515/cdbme-2015-0012 10.1145/3321289.3321315  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021  | 
    
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/s21248336 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1424-8220 | 
    
| ExternalDocumentID | oai_doaj_org_article_3e1ee2451a5744779cc0fed84473aed8 10.3390/s21248336 PMC8707312 34960430 10_3390_s21248336  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: Florida Center for Advanced Analytics and Data Science funded by Ernesto.Net (under the Algorithms for Good Grant) grantid: N/A  | 
    
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c469t-9f530d0a3cb5f106102d6450dcf411463c0b4c9fa003e887470d088f02446bb03 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1424-8220 | 
    
| IngestDate | Fri Oct 03 12:20:44 EDT 2025 Sun Oct 26 04:15:54 EDT 2025 Tue Sep 30 16:52:26 EDT 2025 Fri Sep 05 10:35:49 EDT 2025 Tue Oct 07 07:38:49 EDT 2025 Wed Feb 19 02:27:49 EST 2025 Thu Apr 24 22:57:25 EDT 2025 Thu Oct 16 04:35:08 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 24 | 
    
| Keywords | ultra-wide band non-invasive emotion recognition physiological signals machine learning respiration rate  | 
    
| Language | English | 
    
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c469t-9f530d0a3cb5f106102d6450dcf411463c0b4c9fa003e887470d088f02446bb03 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-0671-2060 0000-0001-8403-1047 0000-0002-1209-8565 0000-0003-2468-8471 0000-0001-6151-3713 0000-0002-8271-6496  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2612856446?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PMID | 34960430 | 
    
| PQID | 2612856446 | 
    
| PQPubID | 2032333 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3e1ee2451a5744779cc0fed84473aed8 unpaywall_primary_10_3390_s21248336 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8707312 proquest_miscellaneous_2615112274 proquest_journals_2612856446 pubmed_primary_34960430 crossref_citationtrail_10_3390_s21248336 crossref_primary_10_3390_s21248336  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20211213 | 
    
| PublicationDateYYYYMMDD | 2021-12-13 | 
    
| PublicationDate_xml | – month: 12 year: 2021 text: 20211213 day: 13  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland – name: Basel  | 
    
| PublicationTitle | Sensors (Basel, Switzerland) | 
    
| PublicationTitleAlternate | Sensors (Basel) | 
    
| PublicationYear | 2021 | 
    
| Publisher | MDPI AG MDPI  | 
    
| Publisher_xml | – name: MDPI AG – name: MDPI  | 
    
| References | Jerath (ref_23) 2020; 11 Ahmed (ref_52) 1982; 50 Zhang (ref_14) 2020; 59 Yasuma (ref_24) 2004; 125 Reshi (ref_57) 2021; 2021 Chanel (ref_9) 2009; 67 ref_13 ref_12 ref_11 ref_55 ref_53 Rustam (ref_59) 2020; 32 ref_17 Rupapara (ref_58) 2021; 9 Masaoka (ref_27) 2012; 521 Goshvarpour (ref_19) 2019; 13 Quintana (ref_51) 2016; 6 Picard (ref_15) 2001; 23 ref_21 ref_20 Ekman (ref_7) 1987; 53 Kreibig (ref_26) 2010; 84 Ekman (ref_6) 1992; 6 ref_29 ref_28 Chenchah (ref_10) 2015; 6 Brown (ref_40) 2017; 141 ref_36 ref_35 ref_34 ref_33 Liu (ref_30) 2019; 40 ref_32 Gateau (ref_50) 2017; 50 Goshvarpour (ref_18) 2020; 43 ref_31 Lee (ref_49) 2018; 8 ref_38 ref_37 Yamuza (ref_39) 2019; 23 ref_47 ref_46 ref_45 ref_44 Valderas (ref_25) 2019; 40 ref_43 ref_42 Kircher (ref_54) 2015; 1 ref_41 ref_1 ref_3 ref_2 Scherer (ref_8) 2005; 44 Boiten (ref_22) 1998; 49 ref_48 Rustam (ref_56) 2020; 8 ref_5 Kumar (ref_16) 2012; 38 ref_4  | 
    
| References_xml | – ident: ref_4 doi: 10.4324/9781315129563 – volume: 9 start-page: 78621 year: 2021 ident: ref_58 article-title: Impact of SMOTE on Imbalanced Text Features for Toxic Comments Classification using RVVC Model publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3083638 – ident: ref_1 doi: 10.3390/app8020274 – ident: ref_5 – ident: ref_55 – volume: 67 start-page: 607 year: 2009 ident: ref_9 article-title: Short-term emotion assessment in a recall paradigm publication-title: Int. J.-Hum.-Comput. Stud. doi: 10.1016/j.ijhcs.2009.03.005 – volume: 8 start-page: 218898 year: 2020 ident: ref_56 article-title: Sensor-based human activity recognition using deep stacked multilayered perceptron model publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3041822 – ident: ref_41 doi: 10.1002/9780470060490 – volume: 141 start-page: 134 year: 2017 ident: ref_40 article-title: Occupancy based household energy disaggregation using ultra wideband radar and electrical signature profiles publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.02.004 – volume: 40 start-page: 07TR01 year: 2019 ident: ref_30 article-title: Recent development of respiratory rate measurement technologies publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ab299e – ident: ref_34 doi: 10.1109/ICETAS.2017.8277912 – ident: ref_42 doi: 10.1109/ICUWB.2017.8250971 – ident: ref_35 – volume: 59 start-page: 103 year: 2020 ident: ref_14 article-title: Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.01.011 – volume: 6 start-page: 1 year: 2015 ident: ref_10 article-title: Acoustic emotion recognition using linear and nonlinear cepstral coefficients publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 50 start-page: 96 year: 2017 ident: ref_50 article-title: Non-contact and through-clothing measurement of the heart rate using ultrasound vibrocardiography publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2017.09.003 – ident: ref_12 doi: 10.1109/SITIS.2015.31 – volume: 13 start-page: 161 year: 2019 ident: ref_19 article-title: EEG spectral powers and source localization in depressing, sad, and fun music videos focusing on gender differences publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-018-9516-y – ident: ref_36 doi: 10.1109/ICFSP.2017.8097053 – volume: 44 start-page: 695 year: 2005 ident: ref_8 article-title: What are emotions? And how can they be measured? publication-title: Soc. Sci. Inf. doi: 10.1177/0539018405058216 – volume: 6 start-page: 1 year: 2016 ident: ref_51 article-title: Resting-state high-frequency heart rate variability is related to respiratory frequency in individuals with severe mental illness but not healthy controls publication-title: Sci. Rep. doi: 10.1038/srep37212 – volume: 53 start-page: 712 year: 1987 ident: ref_7 article-title: Universals and cultural differences in the judgments of facial expressions of emotion publication-title: J. Personal. Soc. Psychol. doi: 10.1037/0022-3514.53.4.712 – volume: 11 start-page: 1980 year: 2020 ident: ref_23 article-title: Respiratory Rhythm, Autonomic Modulation, and the Spectrum of Emotions: The Future of Emotion Recognition and Modulation publication-title: Front. Psychol. doi: 10.3389/fpsyg.2020.01980 – ident: ref_48 – ident: ref_21 doi: 10.2139/ssrn.3645402 – volume: 23 start-page: 1175 year: 2001 ident: ref_15 article-title: Toward machine emotional intelligence: Analysis of affective physiological state publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.954607 – ident: ref_45 – volume: 32 start-page: 100404 year: 2020 ident: ref_59 article-title: Predicting pulsar stars using a random tree boosting voting classifier (RTB-VC) publication-title: Astron. Comput. doi: 10.1016/j.ascom.2020.100404 – ident: ref_20 doi: 10.3390/s20030592 – volume: 49 start-page: 29 year: 1998 ident: ref_22 article-title: The effects of emotional behaviour on components of the respiratory cycle publication-title: Biol. Psychol. doi: 10.1016/S0301-0511(98)00025-8 – volume: 6 start-page: 169 year: 1992 ident: ref_6 article-title: An argument for basic emotions publication-title: Cogn. Emot. doi: 10.1080/02699939208411068 – ident: ref_28 – ident: ref_53 – volume: 43 start-page: 119 year: 2020 ident: ref_18 article-title: The potential of photoplethysmogram and galvanic skin response in emotion recognition using nonlinear features publication-title: Phys. Eng. Sci. Med. doi: 10.1007/s13246-019-00825-7 – volume: 125 start-page: 683 year: 2004 ident: ref_24 article-title: Respiratory sinus arrhythmia: Why does the heartbeat synchronize with respiratory rhythm? publication-title: Chest doi: 10.1378/chest.125.2.683 – ident: ref_3 – volume: 23 start-page: 2446 year: 2019 ident: ref_39 article-title: Human emotion characterization by heart rate variability analysis guided by respiration publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2019.2895589 – ident: ref_11 – ident: ref_44 doi: 10.3390/s21144833 – ident: ref_33 doi: 10.1109/MMSP.2016.7813349 – volume: 8 start-page: 1 year: 2018 ident: ref_49 article-title: A novel non-contact heart rate monitor using impulse-radio ultra-wideband (IR-UWB) radar technology publication-title: Sci. Rep. – ident: ref_47 doi: 10.3390/s20010324 – volume: 50 start-page: 95 year: 1982 ident: ref_52 article-title: Respiratory control of heart rate publication-title: Eur. J. Appl. Physiol. Occup. Physiol. doi: 10.1007/BF00952248 – ident: ref_37 doi: 10.1109/ICSIGSYS.2018.8373573 – volume: 38 start-page: 2525 year: 2012 ident: ref_16 article-title: Analysis of Electroencephalography (EEG) signals and its categorization—A study publication-title: Procedia Eng. doi: 10.1016/j.proeng.2012.06.298 – ident: ref_13 doi: 10.1109/CADIAG.2017.8075660 – ident: ref_17 doi: 10.3390/s19173805 – volume: 2021 start-page: 6621607 year: 2021 ident: ref_57 article-title: An Efficient CNN Model for COVID-19 Disease Detection Based on X-Ray Image Classification publication-title: Complexity doi: 10.1155/2021/6621607 – volume: 84 start-page: 394 year: 2010 ident: ref_26 article-title: Autonomic nervous system activity in emotion: A review publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2010.03.010 – ident: ref_31 doi: 10.1145/2702123.2702200 – ident: ref_32 doi: 10.1109/RCAR.2016.7784015 – ident: ref_2 – volume: 521 start-page: 98 year: 2012 ident: ref_27 article-title: Remembering the past with slow breathing associated with activity in the parahippocampus and amygdala publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2012.05.047 – ident: ref_46 – ident: ref_29 doi: 10.1109/IPTC.2010.60 – ident: ref_43 – volume: 40 start-page: 084001 year: 2019 ident: ref_25 article-title: Mutual information between heart rate variability and respiration for emotion characterization publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ab310a – volume: 1 start-page: 46 year: 2015 ident: ref_54 article-title: Separating the effect of respiration from the heart rate variability for cases of constant harmonic breathing publication-title: Curr. Dir. Biomed. Eng. doi: 10.1515/cdbme-2015-0012 – ident: ref_38 doi: 10.1145/3321289.3321315  | 
    
| SSID | ssj0023338 | 
    
| Score | 2.4944563 | 
    
| Snippet | Emotion recognition gained increasingly prominent attraction from a multitude of fields recently due to their wide use in human-computer interaction interface,... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 8336 | 
    
| SubjectTerms | Accuracy Artificial intelligence Autism Brain research Electrocardiography Electroencephalography Electromyography Emotions Female Happiness Heart rate Humans Machine Learning Male Nervous system non-invasive emotion recognition physiological signals Physiology Radar Respiration respiration rate Sensors Signal Processing, Computer-Assisted Skin ultra-wide band  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLm0PFaWvUIrcx6EXiyS218kRKhAglcOqq3KL_EpZafGuYJeKC7-9M4433VWpuHCKFY-Sycx4HvLkMyFfwAFCmOCWIZAME1JZpgtrGIQDBQkzIsLFBtmzwfFInJ7L85WjvrAnrIMH7gS3x33hfSlkoaUSQqna2rz1roIx13BF75tX9bKYSqUWh8qrwxHiUNTvXYODFhWPOMx_o08E6b8vs_y3QfLpIsz07W89maxEn6NN8iKljXS_Y_cleeLDFnm-Aib4itwN0645SJoeQHBy9Gwa2Em40diiTvcTejiFNJUedqf30OGyfwjGsXuAnlzOFhAu6VC78ZSOJsAZ_Tl2Hh4ZHN7VVxRH32MXpqcJoPXXazI6Ovzx7Zil0xWYhZJ4zupW8tzlmlsjWywM89INhMydbQX-qsxtboStWw3r3oMrEgqoq6oFLYqBMTl_QzbCNPh3hBqoyHXdmhJ4EK2VRlTeCQ7ZXKlA5yIjX5dSb2yCHscTMCYNlCCooKZXUEY-9aSzDm_jPqIDVF1PgBDZ8QYYTpMMp3nIcDKys1R8k9btdYOAapWEHBHe8bGfhhWH2yg6-Oki0mCWWuJ3ve3spOcE4fcRRS0jas2C1lhdnwnji4jqDY5T8aLMyOfe1v4vge3HkMB78qzEDp2iZAXfIRvzq4X_ACnW3OzG1fQHC4ojSA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N7gH2gMbXFhiT-XjgxVoSO036gKYVddqQqFBFxd4ix3ZGpZKUrgXxwt_OneNkqzZ4iuWcokvufB_x-XcAb9EAopsQmhOQDJdJqrmKdMHRHaQYMBMinCuQHffPpvLjRXKxBeP2LAyVVbY20RlqU2v6R35EUFdZgt67f7z4walrFO2uti00lG-tYN47iLF7sB0TMlYPtoej8edJl4IJzMgafCGByf7RFVLJTDh85muv5MD774o4bxdO3l9XC_X7l5rPb3il01146MNJdtLI_xFs2eox7NwAGXwCfyZ-Nx0lwIbotAwb1xU_r34qKl1nJx5VnGH4ykZNVx82aeuKcOyqCtj598Ua3SibKDOr2XSOnLGvM2PxkZWhWbVkNPrkqjMt88Ctl09hejr68uGM-64LXGOqvOKDMhGhCZXQRVJSwhjGpi-T0OhS0hFmocNC6kGp0B5YNFEyReosK1G6sl8UoXgGvaqu7D6wAjN1NSiLGHmQpU4KmVkjBUZ5cYq6IAN41371XHtIcuqMMc8xNSEB5Z2AAnjdkS4aHI67iIYkuo6AoLPdRL28zP1KzIWNrI1lEqkklTJNB1qHpTUZjoXCawAHreBzv56v8mvtC-BVdxtXIm2vqMrWa0dD0WtM77XX6EnHCcHyE7paAOmGBm2wunmnmn1zaN9oUFMRxQG86XTt31_g-f-ZfwEPYqrJiWIeiQPorZZr-xKDqlVx6FfKX6riISE priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLegOwAHvgeBgczHgUuWxHbq5IQ6tGlDokIVFeMU-SujoiRV1wzBgb-d9xI3amFISJxixS-Onfz8PpLnnwl5CQoQzAQ3IRLJhCKVJlSJ0SGYAwkOMzLCtQmy4-HxVLw9TU83VvFjWiWE4rNWSeMqrBAsWByxJGIiyjgfRgtbvr7w35LAmciFlDKXV8nOMIXGB2RnOn4_-tQuKvJXd4RCHKL76Bw0tcBmtsxQy9Z_mYv5Z6bktaZaqO_f1Hy-YYaObhG1HkCXffJlv1npffPjN27H_xnhbXLT-6h01IHqDrniqrvkxgZz4T3yc-J_0cPV9AAsoaXjugpPqguF-fB05KnKKfjE9LDbKohO1slKUG5TFejJ10UDtplOlJ3VdDqH0dOPM-ugycriWbWkWHrXpnw66tlgz-6T6dHhhzfHod_KITQQf6_CvEx5bGPFjU5LjEJjZocija0pBa6L5ibWwuSlAiXjQO8JCdJZVgJkxFDrmO-SQVVX7iGhGsJ_lZeaQR9EaVItMmcFB9eRSQCYCMir9ZstjOc5x-025gXEOwiCogdBQJ73oouO3OMyoQOERy-AfNztiXp5VvjpXXCXOMdEmqhUCnhfuTFx6WwGZa7gGJC9NbgKryTOC2Rvy1JwSOEez_pqmN74z0ZVrm5aGXSJGY7rQYfFvifI9Y-UbQGRWyjd6up2TTX73FKIg5aWPGEBedHj-e9P4NE_ST0m1xnm-yQsTPgeGayWjXsCDttKP_Vz8hcx6jjY priority: 102 providerName: Unpaywall  | 
    
| Title | Respiration Based Non-Invasive Approach for Emotion Recognition Using Impulse Radio Ultra Wide Band Radar and Machine Learning | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34960430 https://www.proquest.com/docview/2612856446 https://www.proquest.com/docview/2615112274 https://pubmed.ncbi.nlm.nih.gov/PMC8707312 https://www.mdpi.com/1424-8220/21/24/8336/pdf?version=1639477797 https://doaj.org/article/3e1ee2451a5744779cc0fed84473aed8  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 21 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9NAEB71IUE5IN41lGh5HLi42N511j4glKCEFqlRFWERTtZ6vS6RXDukCdALv50Zv9SI9GKv1iN7vTM7D-_4G4C3qADRTHBtE5CMLXypbeXqxEZzINFhJkS4KkF20j-JxJeZP9uBtsZmM4FXW0M7qicVLfPjPz-vP-KC_0ARJ4bs769Q_YqA8_4u7KOBCqmCw5noNhM8jmFYDSq0SX4AdwgunVCvNqxSBd6_zeP8P3Hy7rpYqOvfKs9vWKXxA7jfuJNsUPP_IeyY4hHcuwEy-Bj-TpvddOQAG6LRStmkLOzT4pei1HU2aFDFGbqvbFRX9WHTNq8I21VWATu9XKzRjLKpSucli3IcGfs2Tw3eskipVy0Ztc6q7EzDGuDWiycQjUdfP53YTdUFW2OovLLDzOdO6iiuEz-jgNHx0r7wnVRngn5h5tpJhA4zhfrAoIoSEqmDIEPuin6SOPwp7BVlYQ6BJRipqzBLPByDyLSfiMCkONuB70mUBWHBu3bWY91AklNljDzG0IR4FXe8suB1R7qocTi2EQ2JdR0BQWdXHeXyIm5WYsyNa4wnfFf5UggpQ62dzKQBtrnCswVHLePjVhxjAloLfPQd8Rmvusu4Eml7RRWmXFc05L169F7PajnpRtLKmQVyQ4I2hrp5pZj_qNC-UaFK7noWvOlk7fYZeH7rk1_AgUfpOK5nu_wI9lbLtXmJ_tQq6cGunEk8BuPPPdgfjibn0171baJXrSPsiybng-__ADgHIdc | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigcEG8MBZaXxMWqvY_YPiDUQquEtjlEjcjNXa_XJVKwQx5UvfCT-I3M-JVGFG49ZWWPrMnO2zv-BuAtOkAME8K4BCTjShUYV_smcTEcBJgwEyJc2SDb73SH8stIjTbgd_MtDLVVNj6xdNRpYegd-Q5BXYUKo3fn4_SHS1Oj6HS1GaFRqcWhvTjHkm3-ofcZ5fuO84P9k09dt54q4BosBRdulCnhpZ4WJlEZFUQeTztSeanJJH2iK4yXSBNlGvXdognKAKnDMEPuZSdJPIHPvQE3pUBfgvYTjFYFnsB6r0IvEiLyduYYFmQoSvTnVcwrRwNclc_-3Za5tcyn-uJcTyaXYt7BXbhTJ6tst9Kue7Bh8_tw-xKE4QP4NajP6lG-bA9DYsr6Re728p-aGuPZbo1ZzjA5ZvvVzCA2aLqWcF32LLDe9-kSgzQb6HRcsOEEOWNfx6nFR-YpXdUzRqvjsvfTshoW9uwhDK9l9x_BZl7k9gmwxCZCR1nCkQeZGZXI0KYollDxADVNOvC-2fXY1IDnNHdjEmPhQwKKWwE58LolnVYoH1cR7ZHoWgIC5i4vFLOzuLbzWFjfWi6Vr1UgZRBExniZTUNcC42_Dmw3go9rbzGPV7rtwKv2Nto5Hd7o3BbLkoZyY07_63GlJy0nBPpP2G0OBGsatMbq-p18_K3EEkd3HQifO_Cm1bV_78DT_zP_Era6J8dH8VGvf_gMbnHq_vG564tt2FzMlvY5pm-L5EVpMwxOr9tI_wAEjVV6 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIvE4IN4YCiwvicsqtnedtQ8ItbRRQyFCERG5mfV6XSIFO-RB1Qs_jF_HjF9pROHWk1fekbXeeXvH3wC8RAOIbkIYTkAyXAbKcO2ZhKM7UBgwEyJcWSA76B6O5PtxMN6C382_MFRW2djE0lCnhaFv5B2CugoD9N7dTlaXRXza772d_eDUQYpOWpt2GpWIHNnTE0zfFm_6-8jrV77fO_j87pDXHQa4wbRwyaMsEG7qamGSIKPkyPXTrgzc1GSSftcVxk2kiTKNsm9RHaVC6jDM8E1kN0lcgc-9BJeVEBGVE6rxOtkTmPtVSEY46XYW6CJkKEok6LX_K9sEnBfb_l2ieXWVz_TpiZ5Oz_i_3k24UQeubLeStFuwZfPbcP0MnOEd-DWsz-2R12wP3WPKBkXO-_lPTUXybLfGL2cYKLODqn8QGzYVTDgu6xdY__tshQ6bDXU6KdhoiitjXyapxUfmKd3Vc0ajj2UdqGU1ROzxXRhdyO7fg-28yO0DYIlNhI6yxMc1yMwEiQxtKgXGk75CqZMOvG52PTY1-Dn14JjGmAQRg-KWQQ48b0lnFeLHeUR7xLqWgEC6yxvF_DiudT4W1rPWl4GnAyWlUpExbmbTEMdC49WBnYbxcW05FvFazh141k6jztNBjs5tsSppKE726b3uV3LSroQaABCOmwNqQ4I2lro5k0--lbjiaLqV8HwHXrSy9u8dePj_xT-FK6ie8Yf-4OgRXPOpEMjzuSd2YHs5X9nHGMktkyelyjD4etE6-gckY1m9 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLegOwAHvgeBgczHgUuWxHbq5IQ6tGlDokIVFeMU-SujoiRV1wzBgb-d9xI3amFISJxixS-Onfz8PpLnnwl5CQoQzAQ3IRLJhCKVJlSJ0SGYAwkOMzLCtQmy4-HxVLw9TU83VvFjWiWE4rNWSeMqrBAsWByxJGIiyjgfRgtbvr7w35LAmciFlDKXV8nOMIXGB2RnOn4_-tQuKvJXd4RCHKL76Bw0tcBmtsxQy9Z_mYv5Z6bktaZaqO_f1Hy-YYaObhG1HkCXffJlv1npffPjN27H_xnhbXLT-6h01IHqDrniqrvkxgZz4T3yc-J_0cPV9AAsoaXjugpPqguF-fB05KnKKfjE9LDbKohO1slKUG5TFejJ10UDtplOlJ3VdDqH0dOPM-ugycriWbWkWHrXpnw66tlgz-6T6dHhhzfHod_KITQQf6_CvEx5bGPFjU5LjEJjZocija0pBa6L5ibWwuSlAiXjQO8JCdJZVgJkxFDrmO-SQVVX7iGhGsJ_lZeaQR9EaVItMmcFB9eRSQCYCMir9ZstjOc5x-025gXEOwiCogdBQJ73oouO3OMyoQOERy-AfNztiXp5VvjpXXCXOMdEmqhUCnhfuTFx6WwGZa7gGJC9NbgKryTOC2Rvy1JwSOEez_pqmN74z0ZVrm5aGXSJGY7rQYfFvifI9Y-UbQGRWyjd6up2TTX73FKIg5aWPGEBedHj-e9P4NE_ST0m1xnm-yQsTPgeGayWjXsCDttKP_Vz8hcx6jjY | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Respiration+Based+Non-Invasive+Approach+for+Emotion+Recognition+Using+Impulse+Radio+Ultra+Wide+Band+Radar+and+Machine+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Siddiqui%2C+Hafeez+Ur+Rehman&rft.au=Shahzad%2C+Hina+Fatima&rft.au=Saleem%2C+Adil+Ali&rft.au=Khan+Khakwani%2C+Abdul+Baqi&rft.date=2021-12-13&rft.eissn=1424-8220&rft.volume=21&rft.issue=24&rft_id=info:doi/10.3390%2Fs21248336&rft_id=info%3Apmid%2F34960430&rft.externalDocID=34960430 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |