Respiration Based Non-Invasive Approach for Emotion Recognition Using Impulse Radio Ultra Wide Band Radar and Machine Learning

Emotion recognition gained increasingly prominent attraction from a multitude of fields recently due to their wide use in human-computer interaction interface, therapy, and advanced robotics, etc. Human speech, gestures, facial expressions, and physiological signals can be used to recognize differen...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 24; p. 8336
Main Authors Siddiqui, Hafeez Ur Rehman, Shahzad, Hina Fatima, Saleem, Adil Ali, Khan Khakwani, Abdul Baqi, Rustam, Furqan, Lee, Ernesto, Ashraf, Imran, Dudley, Sandra
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 13.12.2021
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s21248336

Cover

Abstract Emotion recognition gained increasingly prominent attraction from a multitude of fields recently due to their wide use in human-computer interaction interface, therapy, and advanced robotics, etc. Human speech, gestures, facial expressions, and physiological signals can be used to recognize different emotions. Despite the discriminating properties to recognize emotions, the first three methods have been regarded as ineffective as the probability of human’s voluntary and involuntary concealing the real emotions can not be ignored. Physiological signals, on the other hand, are capable of providing more objective, and reliable emotion recognition. Based on physiological signals, several methods have been introduced for emotion recognition, yet, predominantly such approaches are invasive involving the placement of on-body sensors. The efficacy and accuracy of these approaches are hindered by the sensor malfunctioning and erroneous data due to human limbs movement. This study presents a non-invasive approach where machine learning complements the impulse radio ultra-wideband (IR-UWB) signals for emotion recognition. First, the feasibility of using IR-UWB for emotion recognition is analyzed followed by determining the state of emotions into happiness, disgust, and fear. These emotions are triggered using carefully selected video clips to human subjects involving both males and females. The convincing evidence that different breathing patterns are linked with different emotions has been leveraged to discriminate between different emotions. Chest movement of thirty-five subjects is obtained using IR-UWB radar while watching the video clips in solitude. Extensive signal processing is applied to the obtained chest movement signals to estimate respiration rate per minute (RPM). The RPM estimated by the algorithm is validated by repeated measurements by a commercially available Pulse Oximeter. A dataset is maintained comprising gender, RPM, age, and associated emotions which are further used with several machine learning algorithms for automatic recognition of human emotions. Experiments reveal that IR-UWB possesses the potential to differentiate between different human emotions with a decent accuracy of 76% without placing any on-body sensors. Separate analysis for male and female participants reveals that males experience high arousal for happiness while females experience intense fear emotions. For disgust emotion, no large difference is found for male and female participants. To the best of the authors’ knowledge, this study presents the first non-invasive approach using the IR-UWB radar for emotion recognition.
AbstractList Emotion recognition gained increasingly prominent attraction from a multitude of fields recently due to their wide use in human-computer interaction interface, therapy, and advanced robotics, etc. Human speech, gestures, facial expressions, and physiological signals can be used to recognize different emotions. Despite the discriminating properties to recognize emotions, the first three methods have been regarded as ineffective as the probability of human’s voluntary and involuntary concealing the real emotions can not be ignored. Physiological signals, on the other hand, are capable of providing more objective, and reliable emotion recognition. Based on physiological signals, several methods have been introduced for emotion recognition, yet, predominantly such approaches are invasive involving the placement of on-body sensors. The efficacy and accuracy of these approaches are hindered by the sensor malfunctioning and erroneous data due to human limbs movement. This study presents a non-invasive approach where machine learning complements the impulse radio ultra-wideband (IR-UWB) signals for emotion recognition. First, the feasibility of using IR-UWB for emotion recognition is analyzed followed by determining the state of emotions into happiness, disgust, and fear. These emotions are triggered using carefully selected video clips to human subjects involving both males and females. The convincing evidence that different breathing patterns are linked with different emotions has been leveraged to discriminate between different emotions. Chest movement of thirty-five subjects is obtained using IR-UWB radar while watching the video clips in solitude. Extensive signal processing is applied to the obtained chest movement signals to estimate respiration rate per minute (RPM). The RPM estimated by the algorithm is validated by repeated measurements by a commercially available Pulse Oximeter. A dataset is maintained comprising gender, RPM, age, and associated emotions which are further used with several machine learning algorithms for automatic recognition of human emotions. Experiments reveal that IR-UWB possesses the potential to differentiate between different human emotions with a decent accuracy of 76% without placing any on-body sensors. Separate analysis for male and female participants reveals that males experience high arousal for happiness while females experience intense fear emotions. For disgust emotion, no large difference is found for male and female participants. To the best of the authors’ knowledge, this study presents the first non-invasive approach using the IR-UWB radar for emotion recognition.
Emotion recognition gained increasingly prominent attraction from a multitude of fields recently due to their wide use in human-computer interaction interface, therapy, and advanced robotics, etc. Human speech, gestures, facial expressions, and physiological signals can be used to recognize different emotions. Despite the discriminating properties to recognize emotions, the first three methods have been regarded as ineffective as the probability of human's voluntary and involuntary concealing the real emotions can not be ignored. Physiological signals, on the other hand, are capable of providing more objective, and reliable emotion recognition. Based on physiological signals, several methods have been introduced for emotion recognition, yet, predominantly such approaches are invasive involving the placement of on-body sensors. The efficacy and accuracy of these approaches are hindered by the sensor malfunctioning and erroneous data due to human limbs movement. This study presents a non-invasive approach where machine learning complements the impulse radio ultra-wideband (IR-UWB) signals for emotion recognition. First, the feasibility of using IR-UWB for emotion recognition is analyzed followed by determining the state of emotions into happiness, disgust, and fear. These emotions are triggered using carefully selected video clips to human subjects involving both males and females. The convincing evidence that different breathing patterns are linked with different emotions has been leveraged to discriminate between different emotions. Chest movement of thirty-five subjects is obtained using IR-UWB radar while watching the video clips in solitude. Extensive signal processing is applied to the obtained chest movement signals to estimate respiration rate per minute (RPM). The RPM estimated by the algorithm is validated by repeated measurements by a commercially available Pulse Oximeter. A dataset is maintained comprising gender, RPM, age, and associated emotions which are further used with several machine learning algorithms for automatic recognition of human emotions. Experiments reveal that IR-UWB possesses the potential to differentiate between different human emotions with a decent accuracy of 76% without placing any on-body sensors. Separate analysis for male and female participants reveals that males experience high arousal for happiness while females experience intense fear emotions. For disgust emotion, no large difference is found for male and female participants. To the best of the authors' knowledge, this study presents the first non-invasive approach using the IR-UWB radar for emotion recognition.Emotion recognition gained increasingly prominent attraction from a multitude of fields recently due to their wide use in human-computer interaction interface, therapy, and advanced robotics, etc. Human speech, gestures, facial expressions, and physiological signals can be used to recognize different emotions. Despite the discriminating properties to recognize emotions, the first three methods have been regarded as ineffective as the probability of human's voluntary and involuntary concealing the real emotions can not be ignored. Physiological signals, on the other hand, are capable of providing more objective, and reliable emotion recognition. Based on physiological signals, several methods have been introduced for emotion recognition, yet, predominantly such approaches are invasive involving the placement of on-body sensors. The efficacy and accuracy of these approaches are hindered by the sensor malfunctioning and erroneous data due to human limbs movement. This study presents a non-invasive approach where machine learning complements the impulse radio ultra-wideband (IR-UWB) signals for emotion recognition. First, the feasibility of using IR-UWB for emotion recognition is analyzed followed by determining the state of emotions into happiness, disgust, and fear. These emotions are triggered using carefully selected video clips to human subjects involving both males and females. The convincing evidence that different breathing patterns are linked with different emotions has been leveraged to discriminate between different emotions. Chest movement of thirty-five subjects is obtained using IR-UWB radar while watching the video clips in solitude. Extensive signal processing is applied to the obtained chest movement signals to estimate respiration rate per minute (RPM). The RPM estimated by the algorithm is validated by repeated measurements by a commercially available Pulse Oximeter. A dataset is maintained comprising gender, RPM, age, and associated emotions which are further used with several machine learning algorithms for automatic recognition of human emotions. Experiments reveal that IR-UWB possesses the potential to differentiate between different human emotions with a decent accuracy of 76% without placing any on-body sensors. Separate analysis for male and female participants reveals that males experience high arousal for happiness while females experience intense fear emotions. For disgust emotion, no large difference is found for male and female participants. To the best of the authors' knowledge, this study presents the first non-invasive approach using the IR-UWB radar for emotion recognition.
Author Dudley, Sandra
Shahzad, Hina Fatima
Lee, Ernesto
Saleem, Adil Ali
Rustam, Furqan
Khan Khakwani, Abdul Baqi
Ashraf, Imran
Siddiqui, Hafeez Ur Rehman
AuthorAffiliation 2 Management and Information Technology, Jubail Industrial College, Al Jubail 35718, Saudi Arabia; khan_ab@jic.edu.sa
1 Department of Computer Science, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan; siddiqov@gmail.com (H.U.R.S.); hinafatimashahzad@gmail.com (H.F.S.); adilalisaleem@gmail.com (A.A.S.); furqan.rustam1@gmail.com (F.R.)
5 School of Engineering, London South Bank University, London SE1 0AA, UK; dudleyms@lsbu.ac.uk
3 Department of Computer Science, Broward College, Broward County, FL 33301, USA
4 Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Korea
AuthorAffiliation_xml – name: 5 School of Engineering, London South Bank University, London SE1 0AA, UK; dudleyms@lsbu.ac.uk
– name: 2 Management and Information Technology, Jubail Industrial College, Al Jubail 35718, Saudi Arabia; khan_ab@jic.edu.sa
– name: 1 Department of Computer Science, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan; siddiqov@gmail.com (H.U.R.S.); hinafatimashahzad@gmail.com (H.F.S.); adilalisaleem@gmail.com (A.A.S.); furqan.rustam1@gmail.com (F.R.)
– name: 3 Department of Computer Science, Broward College, Broward County, FL 33301, USA
– name: 4 Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Korea
Author_xml – sequence: 1
  givenname: Hafeez Ur Rehman
  orcidid: 0000-0003-0671-2060
  surname: Siddiqui
  fullname: Siddiqui, Hafeez Ur Rehman
– sequence: 2
  givenname: Hina Fatima
  orcidid: 0000-0001-6151-3713
  surname: Shahzad
  fullname: Shahzad, Hina Fatima
– sequence: 3
  givenname: Adil Ali
  orcidid: 0000-0003-2468-8471
  surname: Saleem
  fullname: Saleem, Adil Ali
– sequence: 4
  givenname: Abdul Baqi
  surname: Khan Khakwani
  fullname: Khan Khakwani, Abdul Baqi
– sequence: 5
  givenname: Furqan
  orcidid: 0000-0001-8403-1047
  surname: Rustam
  fullname: Rustam, Furqan
– sequence: 6
  givenname: Ernesto
  orcidid: 0000-0002-1209-8565
  surname: Lee
  fullname: Lee, Ernesto
– sequence: 7
  givenname: Imran
  orcidid: 0000-0002-8271-6496
  surname: Ashraf
  fullname: Ashraf, Imran
– sequence: 8
  givenname: Sandra
  surname: Dudley
  fullname: Dudley, Sandra
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34960430$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1v1DAQhi1URD_gwB9AlrgAUqi_kjgXpFIVWGkBacWKo-U4k61XiZ3ayaJe-O14d8uqreA0o_Ezr17PzCk6ct4BQi8pec95Rc4jo0xIzosn6IQKJjLJGDm6lx-j0xjXhDDOuXyGjrmoCiI4OUG_FxAHG_RovcMfdYQGf_Mum7mNjnYD-GIYgtfmGrc-4Kve77gFGL9ydpcvo3UrPOuHqYuAF7qxHi-7MWj80zaQJF2zreqAt9nXJGUd4Dno4FLjc_S01anxxV08Q8tPVz8uv2Tz759nlxfzzIiiGrOqzTlpiOamzltKCkpYU4icNKYVlIqCG1ILU7WaEA5SlqJMtJQtYUIUdU34GZrtdRuv12oIttfhVnlt1a7gw0rpMFrTgeJAAZjIqc5LIcqyMoa00MiUc51i0nq315rcoG9_6a47CFKitgtRh4Uk-MMeHqa6h8aAS6PpHjh4-OLstVr5jZIlKTllSeDNnUDwNxPEUfU2Gug67cBPUbGC5pQyVoqEvn6Erv0UXJrrlmIyL9I0EvXqvqODlb83kYDzPWCCjzFAq4wddweSDNrun598-6jj_wP5A2aE1Dg
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3312948
crossref_primary_10_3390_electronics11223817
crossref_primary_10_3390_app13095475
crossref_primary_10_3390_s23187756
crossref_primary_10_3390_s23239570
crossref_primary_10_1177_00202940221101667
crossref_primary_10_3390_s24051420
crossref_primary_10_3390_s22124403
crossref_primary_10_1109_JIOT_2024_3379393
crossref_primary_10_3390_nano14221826
crossref_primary_10_1007_s11042_022_13716_z
crossref_primary_10_3389_fpsyg_2024_1275142
crossref_primary_10_1007_s00530_024_01302_2
crossref_primary_10_1007_s10586_024_04804_w
crossref_primary_10_1016_j_engappai_2024_109808
crossref_primary_10_3390_electronics11182875
crossref_primary_10_3390_info14120625
crossref_primary_10_1007_s11042_022_14091_5
crossref_primary_10_1016_j_isci_2022_105625
crossref_primary_10_1109_TIM_2025_3548782
crossref_primary_10_12677_ap_2024_148567
crossref_primary_10_1109_ACCESS_2024_3482690
crossref_primary_10_1016_j_apergo_2023_104059
crossref_primary_10_3390_s22124556
crossref_primary_10_3390_s22207824
Cites_doi 10.4324/9781315129563
10.1109/ACCESS.2021.3083638
10.3390/app8020274
10.1016/j.ijhcs.2009.03.005
10.1109/ACCESS.2020.3041822
10.1002/9780470060490
10.1016/j.enbuild.2017.02.004
10.1088/1361-6579/ab299e
10.1109/ICETAS.2017.8277912
10.1109/ICUWB.2017.8250971
10.1016/j.inffus.2020.01.011
10.1016/j.medengphy.2017.09.003
10.1109/SITIS.2015.31
10.1007/s11571-018-9516-y
10.1109/ICFSP.2017.8097053
10.1177/0539018405058216
10.1038/srep37212
10.1037/0022-3514.53.4.712
10.3389/fpsyg.2020.01980
10.2139/ssrn.3645402
10.1109/34.954607
10.1016/j.ascom.2020.100404
10.3390/s20030592
10.1016/S0301-0511(98)00025-8
10.1080/02699939208411068
10.1007/s13246-019-00825-7
10.1378/chest.125.2.683
10.1109/JBHI.2019.2895589
10.3390/s21144833
10.1109/MMSP.2016.7813349
10.3390/s20010324
10.1007/BF00952248
10.1109/ICSIGSYS.2018.8373573
10.1016/j.proeng.2012.06.298
10.1109/CADIAG.2017.8075660
10.3390/s19173805
10.1155/2021/6621607
10.1016/j.biopsycho.2010.03.010
10.1145/2702123.2702200
10.1109/RCAR.2016.7784015
10.1016/j.neulet.2012.05.047
10.1109/IPTC.2010.60
10.1088/1361-6579/ab310a
10.1515/cdbme-2015-0012
10.1145/3321289.3321315
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s21248336
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef
MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_3e1ee2451a5744779cc0fed84473aed8
10.3390/s21248336
PMC8707312
34960430
10_3390_s21248336
Genre Journal Article
GrantInformation_xml – fundername: Florida Center for Advanced Analytics and Data Science funded by Ernesto.Net (under the Algorithms for Good Grant)
  grantid: N/A
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c469t-9f530d0a3cb5f106102d6450dcf411463c0b4c9fa003e887470d088f02446bb03
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:20:44 EDT 2025
Sun Oct 26 04:15:54 EDT 2025
Tue Sep 30 16:52:26 EDT 2025
Fri Sep 05 10:35:49 EDT 2025
Tue Oct 07 07:38:49 EDT 2025
Wed Feb 19 02:27:49 EST 2025
Thu Apr 24 22:57:25 EDT 2025
Thu Oct 16 04:35:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords ultra-wide band
non-invasive emotion recognition
physiological signals
machine learning
respiration rate
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-9f530d0a3cb5f106102d6450dcf411463c0b4c9fa003e887470d088f02446bb03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0671-2060
0000-0001-8403-1047
0000-0002-1209-8565
0000-0003-2468-8471
0000-0001-6151-3713
0000-0002-8271-6496
OpenAccessLink https://www.proquest.com/docview/2612856446?pq-origsite=%requestingapplication%&accountid=15518
PMID 34960430
PQID 2612856446
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_3e1ee2451a5744779cc0fed84473aed8
unpaywall_primary_10_3390_s21248336
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8707312
proquest_miscellaneous_2615112274
proquest_journals_2612856446
pubmed_primary_34960430
crossref_citationtrail_10_3390_s21248336
crossref_primary_10_3390_s21248336
PublicationCentury 2000
PublicationDate 20211213
PublicationDateYYYYMMDD 2021-12-13
PublicationDate_xml – month: 12
  year: 2021
  text: 20211213
  day: 13
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Jerath (ref_23) 2020; 11
Ahmed (ref_52) 1982; 50
Zhang (ref_14) 2020; 59
Yasuma (ref_24) 2004; 125
Reshi (ref_57) 2021; 2021
Chanel (ref_9) 2009; 67
ref_13
ref_12
ref_11
ref_55
ref_53
Rustam (ref_59) 2020; 32
ref_17
Rupapara (ref_58) 2021; 9
Masaoka (ref_27) 2012; 521
Goshvarpour (ref_19) 2019; 13
Quintana (ref_51) 2016; 6
Picard (ref_15) 2001; 23
ref_21
ref_20
Ekman (ref_7) 1987; 53
Kreibig (ref_26) 2010; 84
Ekman (ref_6) 1992; 6
ref_29
ref_28
Chenchah (ref_10) 2015; 6
Brown (ref_40) 2017; 141
ref_36
ref_35
ref_34
ref_33
Liu (ref_30) 2019; 40
ref_32
Gateau (ref_50) 2017; 50
Goshvarpour (ref_18) 2020; 43
ref_31
Lee (ref_49) 2018; 8
ref_38
ref_37
Yamuza (ref_39) 2019; 23
ref_47
ref_46
ref_45
ref_44
Valderas (ref_25) 2019; 40
ref_43
ref_42
Kircher (ref_54) 2015; 1
ref_41
ref_1
ref_3
ref_2
Scherer (ref_8) 2005; 44
Boiten (ref_22) 1998; 49
ref_48
Rustam (ref_56) 2020; 8
ref_5
Kumar (ref_16) 2012; 38
ref_4
References_xml – ident: ref_4
  doi: 10.4324/9781315129563
– volume: 9
  start-page: 78621
  year: 2021
  ident: ref_58
  article-title: Impact of SMOTE on Imbalanced Text Features for Toxic Comments Classification using RVVC Model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3083638
– ident: ref_1
  doi: 10.3390/app8020274
– ident: ref_5
– ident: ref_55
– volume: 67
  start-page: 607
  year: 2009
  ident: ref_9
  article-title: Short-term emotion assessment in a recall paradigm
  publication-title: Int. J.-Hum.-Comput. Stud.
  doi: 10.1016/j.ijhcs.2009.03.005
– volume: 8
  start-page: 218898
  year: 2020
  ident: ref_56
  article-title: Sensor-based human activity recognition using deep stacked multilayered perceptron model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3041822
– ident: ref_41
  doi: 10.1002/9780470060490
– volume: 141
  start-page: 134
  year: 2017
  ident: ref_40
  article-title: Occupancy based household energy disaggregation using ultra wideband radar and electrical signature profiles
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.02.004
– volume: 40
  start-page: 07TR01
  year: 2019
  ident: ref_30
  article-title: Recent development of respiratory rate measurement technologies
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ab299e
– ident: ref_34
  doi: 10.1109/ICETAS.2017.8277912
– ident: ref_42
  doi: 10.1109/ICUWB.2017.8250971
– ident: ref_35
– volume: 59
  start-page: 103
  year: 2020
  ident: ref_14
  article-title: Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.01.011
– volume: 6
  start-page: 1
  year: 2015
  ident: ref_10
  article-title: Acoustic emotion recognition using linear and nonlinear cepstral coefficients
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 50
  start-page: 96
  year: 2017
  ident: ref_50
  article-title: Non-contact and through-clothing measurement of the heart rate using ultrasound vibrocardiography
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2017.09.003
– ident: ref_12
  doi: 10.1109/SITIS.2015.31
– volume: 13
  start-page: 161
  year: 2019
  ident: ref_19
  article-title: EEG spectral powers and source localization in depressing, sad, and fun music videos focusing on gender differences
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-018-9516-y
– ident: ref_36
  doi: 10.1109/ICFSP.2017.8097053
– volume: 44
  start-page: 695
  year: 2005
  ident: ref_8
  article-title: What are emotions? And how can they be measured?
  publication-title: Soc. Sci. Inf.
  doi: 10.1177/0539018405058216
– volume: 6
  start-page: 1
  year: 2016
  ident: ref_51
  article-title: Resting-state high-frequency heart rate variability is related to respiratory frequency in individuals with severe mental illness but not healthy controls
  publication-title: Sci. Rep.
  doi: 10.1038/srep37212
– volume: 53
  start-page: 712
  year: 1987
  ident: ref_7
  article-title: Universals and cultural differences in the judgments of facial expressions of emotion
  publication-title: J. Personal. Soc. Psychol.
  doi: 10.1037/0022-3514.53.4.712
– volume: 11
  start-page: 1980
  year: 2020
  ident: ref_23
  article-title: Respiratory Rhythm, Autonomic Modulation, and the Spectrum of Emotions: The Future of Emotion Recognition and Modulation
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2020.01980
– ident: ref_48
– ident: ref_21
  doi: 10.2139/ssrn.3645402
– volume: 23
  start-page: 1175
  year: 2001
  ident: ref_15
  article-title: Toward machine emotional intelligence: Analysis of affective physiological state
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.954607
– ident: ref_45
– volume: 32
  start-page: 100404
  year: 2020
  ident: ref_59
  article-title: Predicting pulsar stars using a random tree boosting voting classifier (RTB-VC)
  publication-title: Astron. Comput.
  doi: 10.1016/j.ascom.2020.100404
– ident: ref_20
  doi: 10.3390/s20030592
– volume: 49
  start-page: 29
  year: 1998
  ident: ref_22
  article-title: The effects of emotional behaviour on components of the respiratory cycle
  publication-title: Biol. Psychol.
  doi: 10.1016/S0301-0511(98)00025-8
– volume: 6
  start-page: 169
  year: 1992
  ident: ref_6
  article-title: An argument for basic emotions
  publication-title: Cogn. Emot.
  doi: 10.1080/02699939208411068
– ident: ref_28
– ident: ref_53
– volume: 43
  start-page: 119
  year: 2020
  ident: ref_18
  article-title: The potential of photoplethysmogram and galvanic skin response in emotion recognition using nonlinear features
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-019-00825-7
– volume: 125
  start-page: 683
  year: 2004
  ident: ref_24
  article-title: Respiratory sinus arrhythmia: Why does the heartbeat synchronize with respiratory rhythm?
  publication-title: Chest
  doi: 10.1378/chest.125.2.683
– ident: ref_3
– volume: 23
  start-page: 2446
  year: 2019
  ident: ref_39
  article-title: Human emotion characterization by heart rate variability analysis guided by respiration
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2895589
– ident: ref_11
– ident: ref_44
  doi: 10.3390/s21144833
– ident: ref_33
  doi: 10.1109/MMSP.2016.7813349
– volume: 8
  start-page: 1
  year: 2018
  ident: ref_49
  article-title: A novel non-contact heart rate monitor using impulse-radio ultra-wideband (IR-UWB) radar technology
  publication-title: Sci. Rep.
– ident: ref_47
  doi: 10.3390/s20010324
– volume: 50
  start-page: 95
  year: 1982
  ident: ref_52
  article-title: Respiratory control of heart rate
  publication-title: Eur. J. Appl. Physiol. Occup. Physiol.
  doi: 10.1007/BF00952248
– ident: ref_37
  doi: 10.1109/ICSIGSYS.2018.8373573
– volume: 38
  start-page: 2525
  year: 2012
  ident: ref_16
  article-title: Analysis of Electroencephalography (EEG) signals and its categorization—A study
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2012.06.298
– ident: ref_13
  doi: 10.1109/CADIAG.2017.8075660
– ident: ref_17
  doi: 10.3390/s19173805
– volume: 2021
  start-page: 6621607
  year: 2021
  ident: ref_57
  article-title: An Efficient CNN Model for COVID-19 Disease Detection Based on X-Ray Image Classification
  publication-title: Complexity
  doi: 10.1155/2021/6621607
– volume: 84
  start-page: 394
  year: 2010
  ident: ref_26
  article-title: Autonomic nervous system activity in emotion: A review
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2010.03.010
– ident: ref_31
  doi: 10.1145/2702123.2702200
– ident: ref_32
  doi: 10.1109/RCAR.2016.7784015
– ident: ref_2
– volume: 521
  start-page: 98
  year: 2012
  ident: ref_27
  article-title: Remembering the past with slow breathing associated with activity in the parahippocampus and amygdala
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2012.05.047
– ident: ref_46
– ident: ref_29
  doi: 10.1109/IPTC.2010.60
– ident: ref_43
– volume: 40
  start-page: 084001
  year: 2019
  ident: ref_25
  article-title: Mutual information between heart rate variability and respiration for emotion characterization
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ab310a
– volume: 1
  start-page: 46
  year: 2015
  ident: ref_54
  article-title: Separating the effect of respiration from the heart rate variability for cases of constant harmonic breathing
  publication-title: Curr. Dir. Biomed. Eng.
  doi: 10.1515/cdbme-2015-0012
– ident: ref_38
  doi: 10.1145/3321289.3321315
SSID ssj0023338
Score 2.4944563
Snippet Emotion recognition gained increasingly prominent attraction from a multitude of fields recently due to their wide use in human-computer interaction interface,...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 8336
SubjectTerms Accuracy
Artificial intelligence
Autism
Brain research
Electrocardiography
Electroencephalography
Electromyography
Emotions
Female
Happiness
Heart rate
Humans
Machine Learning
Male
Nervous system
non-invasive emotion recognition
physiological signals
Physiology
Radar
Respiration
respiration rate
Sensors
Signal Processing, Computer-Assisted
Skin
ultra-wide band
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLm0PFaWvUIrcx6EXiyS218kRKhAglcOqq3KL_EpZafGuYJeKC7-9M4433VWpuHCKFY-Sycx4HvLkMyFfwAFCmOCWIZAME1JZpgtrGIQDBQkzIsLFBtmzwfFInJ7L85WjvrAnrIMH7gS3x33hfSlkoaUSQqna2rz1roIx13BF75tX9bKYSqUWh8qrwxHiUNTvXYODFhWPOMx_o08E6b8vs_y3QfLpIsz07W89maxEn6NN8iKljXS_Y_cleeLDFnm-Aib4itwN0645SJoeQHBy9Gwa2Em40diiTvcTejiFNJUedqf30OGyfwjGsXuAnlzOFhAu6VC78ZSOJsAZ_Tl2Hh4ZHN7VVxRH32MXpqcJoPXXazI6Ovzx7Zil0xWYhZJ4zupW8tzlmlsjWywM89INhMydbQX-qsxtboStWw3r3oMrEgqoq6oFLYqBMTl_QzbCNPh3hBqoyHXdmhJ4EK2VRlTeCQ7ZXKlA5yIjX5dSb2yCHscTMCYNlCCooKZXUEY-9aSzDm_jPqIDVF1PgBDZ8QYYTpMMp3nIcDKys1R8k9btdYOAapWEHBHe8bGfhhWH2yg6-Oki0mCWWuJ3ve3spOcE4fcRRS0jas2C1lhdnwnji4jqDY5T8aLMyOfe1v4vge3HkMB78qzEDp2iZAXfIRvzq4X_ACnW3OzG1fQHC4ojSA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N7gH2gMbXFhiT-XjgxVoSO036gKYVddqQqFBFxd4ix3ZGpZKUrgXxwt_OneNkqzZ4iuWcokvufB_x-XcAb9EAopsQmhOQDJdJqrmKdMHRHaQYMBMinCuQHffPpvLjRXKxBeP2LAyVVbY20RlqU2v6R35EUFdZgt67f7z4walrFO2uti00lG-tYN47iLF7sB0TMlYPtoej8edJl4IJzMgafCGByf7RFVLJTDh85muv5MD774o4bxdO3l9XC_X7l5rPb3il01146MNJdtLI_xFs2eox7NwAGXwCfyZ-Nx0lwIbotAwb1xU_r34qKl1nJx5VnGH4ykZNVx82aeuKcOyqCtj598Ua3SibKDOr2XSOnLGvM2PxkZWhWbVkNPrkqjMt88Ctl09hejr68uGM-64LXGOqvOKDMhGhCZXQRVJSwhjGpi-T0OhS0hFmocNC6kGp0B5YNFEyReosK1G6sl8UoXgGvaqu7D6wAjN1NSiLGHmQpU4KmVkjBUZ5cYq6IAN41371XHtIcuqMMc8xNSEB5Z2AAnjdkS4aHI67iIYkuo6AoLPdRL28zP1KzIWNrI1lEqkklTJNB1qHpTUZjoXCawAHreBzv56v8mvtC-BVdxtXIm2vqMrWa0dD0WtM77XX6EnHCcHyE7paAOmGBm2wunmnmn1zaN9oUFMRxQG86XTt31_g-f-ZfwEPYqrJiWIeiQPorZZr-xKDqlVx6FfKX6riISE
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLegOwAHvgeBgczHgUuWxHbq5IQ6tGlDokIVFeMU-SujoiRV1wzBgb-d9xI3amFISJxixS-Onfz8PpLnnwl5CQoQzAQ3IRLJhCKVJlSJ0SGYAwkOMzLCtQmy4-HxVLw9TU83VvFjWiWE4rNWSeMqrBAsWByxJGIiyjgfRgtbvr7w35LAmciFlDKXV8nOMIXGB2RnOn4_-tQuKvJXd4RCHKL76Bw0tcBmtsxQy9Z_mYv5Z6bktaZaqO_f1Hy-YYaObhG1HkCXffJlv1npffPjN27H_xnhbXLT-6h01IHqDrniqrvkxgZz4T3yc-J_0cPV9AAsoaXjugpPqguF-fB05KnKKfjE9LDbKohO1slKUG5TFejJ10UDtplOlJ3VdDqH0dOPM-ugycriWbWkWHrXpnw66tlgz-6T6dHhhzfHod_KITQQf6_CvEx5bGPFjU5LjEJjZocija0pBa6L5ibWwuSlAiXjQO8JCdJZVgJkxFDrmO-SQVVX7iGhGsJ_lZeaQR9EaVItMmcFB9eRSQCYCMir9ZstjOc5x-025gXEOwiCogdBQJ73oouO3OMyoQOERy-AfNztiXp5VvjpXXCXOMdEmqhUCnhfuTFx6WwGZa7gGJC9NbgKryTOC2Rvy1JwSOEez_pqmN74z0ZVrm5aGXSJGY7rQYfFvifI9Y-UbQGRWyjd6up2TTX73FKIg5aWPGEBedHj-e9P4NE_ST0m1xnm-yQsTPgeGayWjXsCDttKP_Vz8hcx6jjY
  priority: 102
  providerName: Unpaywall
Title Respiration Based Non-Invasive Approach for Emotion Recognition Using Impulse Radio Ultra Wide Band Radar and Machine Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/34960430
https://www.proquest.com/docview/2612856446
https://www.proquest.com/docview/2615112274
https://pubmed.ncbi.nlm.nih.gov/PMC8707312
https://www.mdpi.com/1424-8220/21/24/8336/pdf?version=1639477797
https://doaj.org/article/3e1ee2451a5744779cc0fed84473aed8
UnpaywallVersion publishedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9NAEB71IUE5IN41lGh5HLi42N511j4glKCEFqlRFWERTtZ6vS6RXDukCdALv50Zv9SI9GKv1iN7vTM7D-_4G4C3qADRTHBtE5CMLXypbeXqxEZzINFhJkS4KkF20j-JxJeZP9uBtsZmM4FXW0M7qicVLfPjPz-vP-KC_0ARJ4bs769Q_YqA8_4u7KOBCqmCw5noNhM8jmFYDSq0SX4AdwgunVCvNqxSBd6_zeP8P3Hy7rpYqOvfKs9vWKXxA7jfuJNsUPP_IeyY4hHcuwEy-Bj-TpvddOQAG6LRStmkLOzT4pei1HU2aFDFGbqvbFRX9WHTNq8I21VWATu9XKzRjLKpSucli3IcGfs2Tw3eskipVy0Ztc6q7EzDGuDWiycQjUdfP53YTdUFW2OovLLDzOdO6iiuEz-jgNHx0r7wnVRngn5h5tpJhA4zhfrAoIoSEqmDIEPuin6SOPwp7BVlYQ6BJRipqzBLPByDyLSfiMCkONuB70mUBWHBu3bWY91AklNljDzG0IR4FXe8suB1R7qocTi2EQ2JdR0BQWdXHeXyIm5WYsyNa4wnfFf5UggpQ62dzKQBtrnCswVHLePjVhxjAloLfPQd8Rmvusu4Eml7RRWmXFc05L169F7PajnpRtLKmQVyQ4I2hrp5pZj_qNC-UaFK7noWvOlk7fYZeH7rk1_AgUfpOK5nu_wI9lbLtXmJ_tQq6cGunEk8BuPPPdgfjibn0171baJXrSPsiybng-__ADgHIdc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigcEG8MBZaXxMWqvY_YPiDUQquEtjlEjcjNXa_XJVKwQx5UvfCT-I3M-JVGFG49ZWWPrMnO2zv-BuAtOkAME8K4BCTjShUYV_smcTEcBJgwEyJc2SDb73SH8stIjTbgd_MtDLVVNj6xdNRpYegd-Q5BXYUKo3fn4_SHS1Oj6HS1GaFRqcWhvTjHkm3-ofcZ5fuO84P9k09dt54q4BosBRdulCnhpZ4WJlEZFUQeTztSeanJJH2iK4yXSBNlGvXdognKAKnDMEPuZSdJPIHPvQE3pUBfgvYTjFYFnsB6r0IvEiLyduYYFmQoSvTnVcwrRwNclc_-3Za5tcyn-uJcTyaXYt7BXbhTJ6tst9Kue7Bh8_tw-xKE4QP4NajP6lG-bA9DYsr6Re728p-aGuPZbo1ZzjA5ZvvVzCA2aLqWcF32LLDe9-kSgzQb6HRcsOEEOWNfx6nFR-YpXdUzRqvjsvfTshoW9uwhDK9l9x_BZl7k9gmwxCZCR1nCkQeZGZXI0KYollDxADVNOvC-2fXY1IDnNHdjEmPhQwKKWwE58LolnVYoH1cR7ZHoWgIC5i4vFLOzuLbzWFjfWi6Vr1UgZRBExniZTUNcC42_Dmw3go9rbzGPV7rtwKv2Nto5Hd7o3BbLkoZyY07_63GlJy0nBPpP2G0OBGsatMbq-p18_K3EEkd3HQifO_Cm1bV_78DT_zP_Era6J8dH8VGvf_gMbnHq_vG564tt2FzMlvY5pm-L5EVpMwxOr9tI_wAEjVV6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIvE4IN4YCiwvicsqtnedtQ8ItbRRQyFCERG5mfV6XSIFO-RB1Qs_jF_HjF9pROHWk1fekbXeeXvH3wC8RAOIbkIYTkAyXAbKcO2ZhKM7UBgwEyJcWSA76B6O5PtxMN6C382_MFRW2djE0lCnhaFv5B2CugoD9N7dTlaXRXza772d_eDUQYpOWpt2GpWIHNnTE0zfFm_6-8jrV77fO_j87pDXHQa4wbRwyaMsEG7qamGSIKPkyPXTrgzc1GSSftcVxk2kiTKNsm9RHaVC6jDM8E1kN0lcgc-9BJeVEBGVE6rxOtkTmPtVSEY46XYW6CJkKEok6LX_K9sEnBfb_l2ieXWVz_TpiZ5Oz_i_3k24UQeubLeStFuwZfPbcP0MnOEd-DWsz-2R12wP3WPKBkXO-_lPTUXybLfGL2cYKLODqn8QGzYVTDgu6xdY__tshQ6bDXU6KdhoiitjXyapxUfmKd3Vc0ajj2UdqGU1ROzxXRhdyO7fg-28yO0DYIlNhI6yxMc1yMwEiQxtKgXGk75CqZMOvG52PTY1-Dn14JjGmAQRg-KWQQ48b0lnFeLHeUR7xLqWgEC6yxvF_DiudT4W1rPWl4GnAyWlUpExbmbTEMdC49WBnYbxcW05FvFazh141k6jztNBjs5tsSppKE726b3uV3LSroQaABCOmwNqQ4I2lro5k0--lbjiaLqV8HwHXrSy9u8dePj_xT-FK6ie8Yf-4OgRXPOpEMjzuSd2YHs5X9nHGMktkyelyjD4etE6-gckY1m9
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLegOwAHvgeBgczHgUuWxHbq5IQ6tGlDokIVFeMU-SujoiRV1wzBgb-d9xI3amFISJxixS-Onfz8PpLnnwl5CQoQzAQ3IRLJhCKVJlSJ0SGYAwkOMzLCtQmy4-HxVLw9TU83VvFjWiWE4rNWSeMqrBAsWByxJGIiyjgfRgtbvr7w35LAmciFlDKXV8nOMIXGB2RnOn4_-tQuKvJXd4RCHKL76Bw0tcBmtsxQy9Z_mYv5Z6bktaZaqO_f1Hy-YYaObhG1HkCXffJlv1npffPjN27H_xnhbXLT-6h01IHqDrniqrvkxgZz4T3yc-J_0cPV9AAsoaXjugpPqguF-fB05KnKKfjE9LDbKohO1slKUG5TFejJ10UDtplOlJ3VdDqH0dOPM-ugycriWbWkWHrXpnw66tlgz-6T6dHhhzfHod_KITQQf6_CvEx5bGPFjU5LjEJjZocija0pBa6L5ibWwuSlAiXjQO8JCdJZVgJkxFDrmO-SQVVX7iGhGsJ_lZeaQR9EaVItMmcFB9eRSQCYCMir9ZstjOc5x-025gXEOwiCogdBQJ73oouO3OMyoQOERy-AfNztiXp5VvjpXXCXOMdEmqhUCnhfuTFx6WwGZa7gGJC9NbgKryTOC2Rvy1JwSOEez_pqmN74z0ZVrm5aGXSJGY7rQYfFvifI9Y-UbQGRWyjd6up2TTX73FKIg5aWPGEBedHj-e9P4NE_ST0m1xnm-yQsTPgeGayWjXsCDttKP_Vz8hcx6jjY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Respiration+Based+Non-Invasive+Approach+for+Emotion+Recognition+Using+Impulse+Radio+Ultra+Wide+Band+Radar+and+Machine+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Siddiqui%2C+Hafeez+Ur+Rehman&rft.au=Shahzad%2C+Hina+Fatima&rft.au=Saleem%2C+Adil+Ali&rft.au=Khan+Khakwani%2C+Abdul+Baqi&rft.date=2021-12-13&rft.eissn=1424-8220&rft.volume=21&rft.issue=24&rft_id=info:doi/10.3390%2Fs21248336&rft_id=info%3Apmid%2F34960430&rft.externalDocID=34960430
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon