Quantifying conformational changes in the TCR:pMHC-I binding interface

T cells form one of the key pillars of adaptive immunity. Using their surface bound T cell antigen receptors (TCRs), these cells screen millions of antigens presented by major histocompatibility complex (MHC) or MHC-like molecules. In other protein families, the dynamics of protein-protein interacti...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in immunology Vol. 15; p. 1491656
Main Authors McMaster, Benjamin, Thorpe, Christopher J., Rossjohn, Jamie, Deane, Charlotte M., Koohy, Hashem
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 02.12.2024
Subjects
Online AccessGet full text
ISSN1664-3224
1664-3224
DOI10.3389/fimmu.2024.1491656

Cover

Abstract T cells form one of the key pillars of adaptive immunity. Using their surface bound T cell antigen receptors (TCRs), these cells screen millions of antigens presented by major histocompatibility complex (MHC) or MHC-like molecules. In other protein families, the dynamics of protein-protein interactions have important implications for protein function. Case studies of TCR:class I peptide-MHCs (pMHC-Is) structures have reported mixed results on whether the binding interfaces undergo conformational change during engagement and no robust statistical quantification has been done to generalise these results. Thus, it remains an open question of whether movement occurs in the binding interface that enables the recognition and activation of T cells. In this work, we quantify the conformational changes in the TCR:pMHC-I binding interface by creating a dataset of 391 structures, comprising 22 TCRs, 19 MHC alleles, and 79 peptide structures in both unbound (apo) and bound (holo) conformations. In support of some case studies, we demonstrate that all complementarity determining region (CDR) loops move to a certain extent but only CDR3α and CDR3β loops modify their shape when binding pMHC-Is. We also map the contacts between TCRs and pMHC-Is, generating a novel fingerprint of TCRs on MHC molecules and show that the CDR3α tends to bind the N-terminus of the peptide and the CDR3β tends to bind the C-terminus of the peptide. Finally, we show that the presented peptides can undergo conformational changes when engaged by TCRs, as has been reported in past literature, but novelly show these changes depend on how the peptides are anchored in the MHC binding groove. Our work has implications in understanding the behaviour of TCR:pMHC-I interactions and providing insights that can be used for modelling Tcell antigen specificity, an ongoing grand challenge in immunology.
AbstractList T cells form one of the key pillars of adaptive immunity. Using their surface bound T cell antigen receptors (TCRs), these cells screen millions of antigens presented by major histocompatibility complex (MHC) or MHC-like molecules. In other protein families, the dynamics of protein-protein interactions have important implications for protein function. Case studies of TCR:class I peptide-MHCs (pMHC-Is) structures have reported mixed results on whether the binding interfaces undergo conformational change during engagement and no robust statistical quantification has been done to generalise these results. Thus, it remains an open question of whether movement occurs in the binding interface that enables the recognition and activation of T cells.BackgroundT cells form one of the key pillars of adaptive immunity. Using their surface bound T cell antigen receptors (TCRs), these cells screen millions of antigens presented by major histocompatibility complex (MHC) or MHC-like molecules. In other protein families, the dynamics of protein-protein interactions have important implications for protein function. Case studies of TCR:class I peptide-MHCs (pMHC-Is) structures have reported mixed results on whether the binding interfaces undergo conformational change during engagement and no robust statistical quantification has been done to generalise these results. Thus, it remains an open question of whether movement occurs in the binding interface that enables the recognition and activation of T cells.In this work, we quantify the conformational changes in the TCR:pMHC-I binding interface by creating a dataset of 391 structures, comprising 22 TCRs, 19 MHC alleles, and 79 peptide structures in both unbound (apo) and bound (holo) conformations.MethodsIn this work, we quantify the conformational changes in the TCR:pMHC-I binding interface by creating a dataset of 391 structures, comprising 22 TCRs, 19 MHC alleles, and 79 peptide structures in both unbound (apo) and bound (holo) conformations.In support of some case studies, we demonstrate that all complementarity determining region (CDR) loops move to a certain extent but only CDR3α and CDR3β loops modify their shape when binding pMHC-Is. We also map the contacts between TCRs and pMHC-Is, generating a novel fingerprint of TCRs on MHC molecules and show that the CDR3α tends to bind the N-terminus of the peptide and the CDR3β tends to bind the C-terminus of the peptide. Finally, we show that the presented peptides can undergo conformational changes when engaged by TCRs, as has been reported in past literature, but novelly show these changes depend on how the peptides are anchored in the MHC binding groove.ResultsIn support of some case studies, we demonstrate that all complementarity determining region (CDR) loops move to a certain extent but only CDR3α and CDR3β loops modify their shape when binding pMHC-Is. We also map the contacts between TCRs and pMHC-Is, generating a novel fingerprint of TCRs on MHC molecules and show that the CDR3α tends to bind the N-terminus of the peptide and the CDR3β tends to bind the C-terminus of the peptide. Finally, we show that the presented peptides can undergo conformational changes when engaged by TCRs, as has been reported in past literature, but novelly show these changes depend on how the peptides are anchored in the MHC binding groove.Our work has implications in understanding the behaviour of TCR:pMHC-I interactions and providing insights that can be used for modelling Tcell antigen specificity, an ongoing grand challenge in immunology.ConclusionsOur work has implications in understanding the behaviour of TCR:pMHC-I interactions and providing insights that can be used for modelling Tcell antigen specificity, an ongoing grand challenge in immunology.
T cells form one of the key pillars of adaptive immunity. Using their surface bound T cell antigen receptors (TCRs), these cells screen millions of antigens presented by major histocompatibility complex (MHC) or MHC-like molecules. In other protein families, the dynamics of protein-protein interactions have important implications for protein function. Case studies of TCR:class I peptide-MHCs (pMHC-Is) structures have reported mixed results on whether the binding interfaces undergo conformational change during engagement and no robust statistical quantification has been done to generalise these results. Thus, it remains an open question of whether movement occurs in the binding interface that enables the recognition and activation of T cells. In this work, we quantify the conformational changes in the TCR:pMHC-I binding interface by creating a dataset of 391 structures, comprising 22 TCRs, 19 MHC alleles, and 79 peptide structures in both unbound (apo) and bound (holo) conformations. In support of some case studies, we demonstrate that all complementarity determining region (CDR) loops move to a certain extent but only CDR3α and CDR3β loops modify their shape when binding pMHC-Is. We also map the contacts between TCRs and pMHC-Is, generating a novel fingerprint of TCRs on MHC molecules and show that the CDR3α tends to bind the N-terminus of the peptide and the CDR3β tends to bind the C-terminus of the peptide. Finally, we show that the presented peptides can undergo conformational changes when engaged by TCRs, as has been reported in past literature, but novelly show these changes depend on how the peptides are anchored in the MHC binding groove. Our work has implications in understanding the behaviour of TCR:pMHC-I interactions and providing insights that can be used for modelling Tcell antigen specificity, an ongoing grand challenge in immunology.
BackgroundT cells form one of the key pillars of adaptive immunity. Using their surface bound T cell antigen receptors (TCRs), these cells screen millions of antigens presented by major histocompatibility complex (MHC) or MHC-like molecules. In other protein families, the dynamics of protein-protein interactions have important implications for protein function. Case studies of TCR:class I peptide-MHCs (pMHC-Is) structures have reported mixed results on whether the binding interfaces undergo conformational change during engagement and no robust statistical quantification has been done to generalise these results. Thus, it remains an open question of whether movement occurs in the binding interface that enables the recognition and activation of T cells.MethodsIn this work, we quantify the conformational changes in the TCR:pMHC-I binding interface by creating a dataset of 391 structures, comprising 22 TCRs, 19 MHC alleles, and 79 peptide structures in both unbound (apo) and bound (holo) conformations.ResultsIn support of some case studies, we demonstrate that all complementarity determining region (CDR) loops move to a certain extent but only CDR3α and CDR3β loops modify their shape when binding pMHC-Is. We also map the contacts between TCRs and pMHC-Is, generating a novel fingerprint of TCRs on MHC molecules and show that the CDR3α tends to bind the N-terminus of the peptide and the CDR3β tends to bind the C-terminus of the peptide. Finally, we show that the presented peptides can undergo conformational changes when engaged by TCRs, as has been reported in past literature, but novelly show these changes depend on how the peptides are anchored in the MHC binding groove.ConclusionsOur work has implications in understanding the behaviour of TCR:pMHC-I interactions and providing insights that can be used for modelling Tcell antigen specificity, an ongoing grand challenge in immunology.
Author McMaster, Benjamin
Koohy, Hashem
Thorpe, Christopher J.
Deane, Charlotte M.
Rossjohn, Jamie
AuthorAffiliation 4 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus , Hinxton , United Kingdom
3 Open Targets, Wellcome Genome Campus , Hinxton , United Kingdom
2 Oxford Protein Informatics Group, Department of Statistics, University of Oxford , Oxford , United Kingdom
5 Rossjohn Lab, Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University , Melbourne, VIC , Australia
1 Koohy Lab, Medical Research Council Translational Immune Discovery Unit (MRC TIDU), Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, University of Oxford , Oxford , United Kingdom
6 Rossjohn Lab, Institute of Infection and Immunity, School of Medicine, Cardiff University , Cardiff , United Kingdom
AuthorAffiliation_xml – name: 3 Open Targets, Wellcome Genome Campus , Hinxton , United Kingdom
– name: 4 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus , Hinxton , United Kingdom
– name: 5 Rossjohn Lab, Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University , Melbourne, VIC , Australia
– name: 1 Koohy Lab, Medical Research Council Translational Immune Discovery Unit (MRC TIDU), Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, University of Oxford , Oxford , United Kingdom
– name: 6 Rossjohn Lab, Institute of Infection and Immunity, School of Medicine, Cardiff University , Cardiff , United Kingdom
– name: 2 Oxford Protein Informatics Group, Department of Statistics, University of Oxford , Oxford , United Kingdom
Author_xml – sequence: 1
  givenname: Benjamin
  surname: McMaster
  fullname: McMaster, Benjamin
– sequence: 2
  givenname: Christopher J.
  surname: Thorpe
  fullname: Thorpe, Christopher J.
– sequence: 3
  givenname: Jamie
  surname: Rossjohn
  fullname: Rossjohn, Jamie
– sequence: 4
  givenname: Charlotte M.
  surname: Deane
  fullname: Deane, Charlotte M.
– sequence: 5
  givenname: Hashem
  surname: Koohy
  fullname: Koohy, Hashem
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39687625$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vFSEYhYmpsbX2D7gws3Qzt8PHMODGmBtrb1JjNHVNXhi4l2YGrsA06b937keb1oVsIC_nPCdw3qKTEINF6D1uFpQKeen8OE4L0hC2wExi3vJX6AxzzmpKCDt5dj5FFznfNfNiklLavkGnVHLRcdKeoaufE4Ti3YMP68rE4GIaofgYYKjMBsLa5sqHqmxsdbv89Wn7_XpZryrtQ78z-FBscmDsO_TawZDtxXE_R7-vvt4ur-ubH99Wyy83tWFcllpKxoluALTh0LEOXAO8xZj0XGNKjaWsawkIQxkVRjgsiJbW6pYZ1wlt6TlaHbh9hDu1TX6E9KAieLUfxLRWkIo3g1WEUtxT0_ZESKbnP7LQY00kNhqwxN3M-nxgbSc92t7YUBIML6Avb4LfqHW8VxhzxkXLZ8LHIyHFP5PNRY0-GzsMEGycsqJ4fjWWtNlJPzwPe0p5bGIWiIPApJhzsk4ZX_ZNzNl-ULhRu97Vvne1610de5-t5B_rI_0_pr8quLFS
CitedBy_id crossref_primary_10_1038_s42003_025_07708_6
Cites_doi 10.1016/s1074-7613(02)00513-7
10.1038/s41577-023-00835-3
10.1016/s0969-2126(02)00878-x
10.1042/BJ20080850
10.1038/s42003-023-04927-7
10.3389/fimmu.2023.1223802
10.1093/bioinformatics/btv552
10.1146/annurev.immunol.23.021704.115658
10.1038/s41467-023-42163-z
10.1016/s1074-7613(02)00288-1
10.1021/acs.jcim.5b00511
10.4049/jimmunol.1200952
10.1038/nri3279
10.1080/19420862.2024.2322533
10.1101/2024.06.04.597418
10.1074/jbc.C400128200
10.3389/fimmu.2024.1352703
10.4049/jimmunol.1900915
10.1074/jbc.M117.809624
10.3390/ijms22010068
10.1038/ni1155
10.1016/j.sbi.2004.01.005
10.1080/07391102.2019.1708795
10.1101/2023.05.22.541406
10.1038/nri1977
10.1038/s41592-024-02240-7
10.1126/science.279.5354.1166
10.1186/s12865-022-00510-7
10.1038/nature22976
10.1016/j.jmb.2007.12.009
10.5281/zenodo.7158824
10.1016/S1097-2765(03)00474-X
10.21105/joss.00205
10.1074/jbc.M113.490664
10.1101/2024.05.20.594960
10.1038/s41586-021-03819-2
10.1084/jem.20042323
10.1093/nar/gkx971
10.1101/2024.05.20.594940
10.3390/cells11040668
10.3389/fimmu.2022.1080596
10.48550/arXiv.2404.12565
10.4049/jimmunol.1302953
10.1093/nar/gkac965
10.1016/j.jmb.2010.10.030
10.1038/ni1432
10.3389/fimmu.2019.02454
10.1101/2024.01.25.577228
10.1016/S0145-305X(02)00039-3
10.3389/fimmu.2020.01440
10.3390/cells9040942
10.1080/19336918.2020.1810939
10.1038/ni891
10.1371/journal.pcbi.1002404
10.3390/cells8070720
ContentType Journal Article
Copyright Copyright © 2024 McMaster, Thorpe, Rossjohn, Deane and Koohy.
Copyright © 2024 McMaster, Thorpe, Rossjohn, Deane and Koohy 2024 McMaster, Thorpe, Rossjohn, Deane and Koohy
Copyright_xml – notice: Copyright © 2024 McMaster, Thorpe, Rossjohn, Deane and Koohy.
– notice: Copyright © 2024 McMaster, Thorpe, Rossjohn, Deane and Koohy 2024 McMaster, Thorpe, Rossjohn, Deane and Koohy
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3389/fimmu.2024.1491656
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-3224
ExternalDocumentID oai_doaj_org_article_2331d3c5d2894b149ead1b291cba1917
PMC11646856
39687625
10_3389_fimmu_2024_1491656
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c469t-99462b0aabc6a747af0a65112d6b133ce34752a8c3438c8f182b9eeb54cf78be3
IEDL.DBID M48
ISSN 1664-3224
IngestDate Wed Aug 27 01:31:11 EDT 2025
Thu Aug 21 18:29:21 EDT 2025
Fri Sep 05 13:18:54 EDT 2025
Sun Mar 30 02:11:42 EDT 2025
Tue Jul 01 04:07:17 EDT 2025
Thu Apr 24 23:08:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords TCR
peptide
T cell antigen specificity
MHC
conformational changes
structural biology
HLA
Language English
License Copyright © 2024 McMaster, Thorpe, Rossjohn, Deane and Koohy.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-99462b0aabc6a747af0a65112d6b133ce34752a8c3438c8f182b9eeb54cf78be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Brian G. Pierce, University of Maryland, College Park, United States
Cory Ayres, University of Notre Dame, United States
Edited by: Jonathan S. Duke-Cohan, Dana–Farber Cancer Institute, United States
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fimmu.2024.1491656
PMID 39687625
PQID 3146919306
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_2331d3c5d2894b149ead1b291cba1917
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11646856
proquest_miscellaneous_3146919306
pubmed_primary_39687625
crossref_citationtrail_10_3389_fimmu_2024_1491656
crossref_primary_10_3389_fimmu_2024_1491656
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-02
PublicationDateYYYYMMDD 2024-12-02
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-02
  day: 02
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in immunology
PublicationTitleAlternate Front Immunol
PublicationYear 2024
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Gupta (B30) 2024
Raybould (B17) 2024; 43
Reboul (B42) 2012; 8
Karch (B46) 2019; 8
Garcia (B6) 1998; 279
Ortega (B32) 2024
Hawse (B39) 2012; 188
Krogsgaard (B13) 2003; 12
Raybould (B23) 2023; 13
Rudolph (B1) 2006; 24
Tripathi (B40) 2021; 39
Liu (B5) 2024; 16
Jumper (B26) 2021; 596
Hudson (B31) 2023; 23
Reiser (B10) 2003; 4
Alba (B45) 2022; 11
Knapp (B43) 2016; 56
Meert (B54) 2022
Tynan (B12) 2007; 8
Turner (B2) 2006; 6
Tomasiak (B44) 2022; 23
Armstrong (B14) 2008; 415
Gupta (B52) 2023; 14
North (B51) 2011; 406
Tadros (B56) 2023; 51
Dunbar (B50) 2016; 32
Chen (B11) 2005; 201
Kjer-Nielsen (B9) 2003; 18
Hawse (B35) 2014; 192
Pöhlmann (B41) 2004; 279
Goh (B4) 2004; 14
Henderson (B24) 2024
Szeto (B25) 2021; 22
Greenshields-Watson (B49) 2024; 15
McInnes (B55) 2017; 2
Sewell (B48) 2012; 12
Guloglu (B33) 2023; 14
Hawse (B36) 2013; 288
Abanades (B28) 2023; 6
McMaster (B27) 2024; 21
B16
Glanville (B29) 2017; 547
Quast (B20) 2024
Coles (B22) 2020; 204
Borg (B21) 2005; 6
Ali (B3) 2020; 14
van Hateren (B37) 2017; 292
Wong (B53) 2019; 10
Lefranc (B19) 2003; 27
Alba (B47) 2020; 9
Kjer-Nielsen (B8) 2002; 10
Fabian (B38) 2008; 376
Fernández-Quintero (B34) 2020; 11
Reiser (B7) 2002; 16
Leem (B15) 2018; 46
Xue (B18) 2023
References_xml – volume: 18
  start-page: 53
  year: 2003
  ident: B9
  article-title: A structural basis for the selection of dominant alphabeta T cell receptors in antiviral immunity
  publication-title: Immunity
  doi: 10.1016/s1074-7613(02)00513-7
– volume: 23
  year: 2023
  ident: B31
  article-title: Can we predict T cell specificity with digital biology and machine learning
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-023-00835-3
– volume: 10
  year: 2002
  ident: B8
  article-title: The 1.5 A crystal structure of a highly selected antiviral T cell receptor provides evidence for a structural basis of immunodominance
  publication-title: Struct (London England: 1993)
  doi: 10.1016/s0969-2126(02)00878-x
– volume: 415
  year: 2008
  ident: B14
  article-title: Conformational changes and flexibility in T-cell receptor recognition of peptide–MHC complexes
  publication-title: Biochem J
  doi: 10.1042/BJ20080850
– volume: 6
  start-page: 1
  year: 2023
  ident: B28
  article-title: ImmuneBuilder: Deep-learning models for predicting the structures of immune proteins
  publication-title: Commun Biol
  doi: 10.1038/s42003-023-04927-7
– volume: 14
  year: 2023
  ident: B33
  article-title: Specific attributes of the VL domain influence both the structure and structural variability of CDR-H3 through steric effects
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2023.1223802
– volume: 32
  start-page: 298
  year: 2016
  ident: B50
  article-title: ANARCI: Antigen receptor numbering and receptor classification
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv552
– volume: 24
  year: 2006
  ident: B1
  article-title: How TCRs bind MHCs, peptides, and coreceptors
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.23.021704.115658
– volume: 14
  start-page: 6349
  year: 2023
  ident: B52
  article-title: HLA3DB: Comprehensive annotation of peptide/HLA complexes enables blind structure prediction of T cell epitopes
  publication-title: Nat Comm
  doi: 10.1038/s41467-023-42163-z
– volume: 16
  year: 2002
  ident: B7
  article-title: A T cell receptor CDR3beta loop undergoes conformational changes of unprecedented magnitude upon binding to a peptide/MHC class I complex
  publication-title: Immunity
  doi: 10.1016/s1074-7613(02)00288-1
– volume: 56
  start-page: 46
  year: 2016
  ident: B43
  article-title: T-cell receptor binding affects the dynamics of the peptide/MHC-I complex
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.5b00511
– volume: 188
  year: 2012
  ident: B39
  article-title: Cutting edge: evidence for a dynamically driven T cell signaling mechanism
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1200952
– volume: 12
  year: 2012
  ident: B48
  article-title: Why must T cells be cross-reactive
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3279
– volume: 16
  year: 2024
  ident: B5
  article-title: Do antibody CDR loops change conformation upon binding
  publication-title: mAbs
  doi: 10.1080/19420862.2024.2322533
– year: 2024
  ident: B30
  article-title: A structure-guided approach to predict MHC-I restriction of T cell receptors for public antigens
  doi: 10.1101/2024.06.04.597418
– ident: B16
– volume: 279
  year: 2004
  ident: B41
  article-title: Differential peptide dynamics is linked to major histocompatibility complex polymorphism *
  publication-title: J Biol Chem
  doi: 10.1074/jbc.C400128200
– volume: 15
  year: 2024
  ident: B49
  article-title: Investigating the ability of deep learning-based structure prediction to extrapolate and/or enrich the set of antibody CDR canonical forms
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2024.1352703
– volume: 204
  year: 2020
  ident: B22
  article-title: TCRs with distinct specificity profiles use different binding modes to engage an identical peptide–HLA complex
  publication-title: J Immunol Author Choice
  doi: 10.4049/jimmunol.1900915
– volume: 292
  year: 2017
  ident: B37
  article-title: Direct evidence for conformational dynamics in major histocompatibility complex class I molecules
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M117.809624
– volume: 22
  year: 2021
  ident: B25
  article-title: TCR recognition of peptide–MHC-I: rule makers and breakers
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22010068
– volume: 6
  year: 2005
  ident: B21
  article-title: The CDR3 regions of an immunodominant T cell receptor dictate the ‘energetic landscape’ of peptide-MHC recognition
  publication-title: Nat Immunol
  doi: 10.1038/ni1155
– volume: 14
  year: 2004
  ident: B4
  article-title: Conformational changes associated with protein–protein interactions
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2004.01.005
– volume: 39
  start-page: 188
  year: 2021
  ident: B40
  article-title: Exploring the different states of wild-type T-cell receptor and mutant conformational changes towards understanding the antigen recognition
  publication-title: J Biomol Struct Dyn
  doi: 10.1080/07391102.2019.1708795
– year: 2023
  ident: B18
  article-title: Disease associated human TCR characterization by deep-learning framework TCR-DeepInsight
  doi: 10.1101/2023.05.22.541406
– volume: 6
  year: 2006
  ident: B2
  article-title: Structural determinants of T-cell receptor bias in immunity
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri1977
– volume: 21
  year: 2024
  ident: B27
  article-title: Can AlphaFold’s breakthrough in protein structure help decode the fundamental principles of adaptive cellular immunity
  publication-title: Nat Methods
  doi: 10.1038/s41592-024-02240-7
– volume: 279
  year: 1998
  ident: B6
  article-title: Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen
  publication-title: Science
  doi: 10.1126/science.279.5354.1166
– volume: 23
  start-page: 36
  year: 2022
  ident: B44
  article-title: Conformational flexibility of a free and TCR-bound pMHC-I protein investigated by long-term molecular dynamics simulations
  publication-title: BMC Immunol
  doi: 10.1186/s12865-022-00510-7
– volume: 547
  year: 2017
  ident: B29
  article-title: Identifying specificity groups in the T cell receptor repertoire
  publication-title: Nature
  doi: 10.1038/nature22976
– volume: 376
  start-page: 798
  year: 2008
  ident: B38
  article-title: HLA-B27 subtypes differentially associated with disease exhibit conformational differences in solution
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2007.12.009
– year: 2022
  ident: B54
  article-title: Dtaidistance
  doi: 10.5281/zenodo.7158824
– volume: 12
  year: 2003
  ident: B13
  article-title: Evidence that Structural Rearrangements and/or Flexibility during TCR Binding Can Contribute to T Cell Activation
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(03)00474-X
– volume: 2
  start-page: 205
  year: 2017
  ident: B55
  article-title: hdbscan: Hierarchical density based clustering
  publication-title: J Open Source Softw
  doi: 10.21105/joss.00205
– volume: 288
  year: 2013
  ident: B36
  article-title: Peptide modulation of class I major histocompatibility complex protein molecular flexibility and the implications for immune recognition *
  publication-title: Front Immunol
  doi: 10.1074/jbc.M113.490664
– volume: 43
  start-page: 114704
  year: 2024
  ident: B17
  article-title: The observed t cell receptor space database enables paired-chain repertoire mining, coherence analysis and language modelling
  publication-title: bioRxiv
  doi: 10.1101/2024.05.20.594960
– volume: 596
  year: 2021
  ident: B26
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 201
  year: 2005
  ident: B11
  article-title: Structural and kinetic basis for heightened immunogenicity of T cell vaccines
  publication-title: J Exp Med
  doi: 10.1084/jem.20042323
– volume: 46
  year: 2018
  ident: B15
  article-title: STCRDab: the structural t-cell receptor database
  publication-title: Mol Cell
  doi: 10.1093/nar/gkx971
– year: 2024
  ident: B20
  article-title: T-cell receptor structures and predictive models reveal comparable alpha and beta chain structural diversity despite differing genetic complexity
  doi: 10.1101/2024.05.20.594940
– volume: 11
  year: 2022
  ident: B45
  article-title: The full model of the pMHC-TCR-CD3 complex: A structural and dynamical characterization of bound and unbound states
  publication-title: Cells
  doi: 10.3390/cells11040668
– volume: 13
  year: 2023
  ident: B23
  article-title: Computationally profiling peptide:MHC recognition by T-cell receptors and T-cell receptor-mimetic antibodies
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2022.1080596
– year: 2024
  ident: B24
  article-title: Limits on inferring T-cell specificity from partial information
  doi: 10.48550/arXiv.2404.12565
– volume: 192
  year: 2014
  ident: B35
  article-title: TCR scanning of peptide/MHC through complementary matching of receptor and ligand molecular flexibility
  publication-title: J Immunol (Baltimore Md.: 1950)
  doi: 10.4049/jimmunol.1302953
– volume: 51
  year: 2023
  ident: B56
  article-title: The MHC Motif Atlas: A database of MHC binding specificities and ligands
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkac965
– volume: 406
  year: 2011
  ident: B51
  article-title: A new clustering of antibody CDR loop conformations
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2010.10.030
– volume: 8
  year: 2007
  ident: B12
  article-title: A T cell receptor flattens a bulged antigenic peptide presented by a major histocompatibility complex class I molecule
  publication-title: Nat Immunol
  doi: 10.1038/ni1432
– volume: 10
  year: 2019
  ident: B53
  article-title: Comparative analysis of the CDR loops of antigen receptors
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.02454
– year: 2024
  ident: B32
  article-title: Learning predictive signatures of HLA type from t-cell repertoires
  doi: 10.1101/2024.01.25.577228
– volume: 27
  start-page: 55
  year: 2003
  ident: B19
  article-title: IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains
  publication-title: Dev Comp Immunol
  doi: 10.1016/S0145-305X(02)00039-3
– volume: 11
  year: 2020
  ident: B34
  article-title: T-cell receptor CDR3 loop conformations in solution shift the relative Vα-Vβ Domain distributions
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2020.01440
– volume: 9
  year: 2020
  ident: B47
  article-title: Molecular dynamics simulations reveal canonical conformations in different pMHC/TCR interactions
  publication-title: Cells
  doi: 10.3390/cells9040942
– volume: 14
  year: 2020
  ident: B3
  article-title: The functions of kinesin and kinesin-related proteins in eukaryotes
  publication-title: Cell Adhes Migr
  doi: 10.1080/19336918.2020.1810939
– volume: 4
  year: 2003
  ident: B10
  article-title: CDR3 loop flexibility contributes to the degeneracy of TCR recognition
  publication-title: Nat Immunol
  doi: 10.1038/ni891
– volume: 8
  start-page: e1002404
  year: 2012
  ident: B42
  article-title: Epitope flexibility and dynamic footprint revealed by molecular dynamics of a pMHC-TCR complex
  publication-title: PloS Comput Biol
  doi: 10.1371/journal.pcbi.1002404
– volume: 8
  year: 2019
  ident: B46
  article-title: Intramolecular domain movements of free and bound pMHC and TCR proteins: A molecular dynamics simulation study
  publication-title: Cells
  doi: 10.3390/cells8070720
SSID ssj0000493335
Score 2.3975751
Snippet T cells form one of the key pillars of adaptive immunity. Using their surface bound T cell antigen receptors (TCRs), these cells screen millions of antigens...
BackgroundT cells form one of the key pillars of adaptive immunity. Using their surface bound T cell antigen receptors (TCRs), these cells screen millions of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1491656
SubjectTerms Binding Sites
Complementarity Determining Regions - chemistry
Complementarity Determining Regions - immunology
Complementarity Determining Regions - metabolism
conformational changes
Histocompatibility Antigens Class I - chemistry
Histocompatibility Antigens Class I - immunology
Histocompatibility Antigens Class I - metabolism
HLA
Humans
Immunology
MHC
Models, Molecular
peptide
Peptides - chemistry
Peptides - immunology
Peptides - metabolism
Protein Binding
Protein Conformation
Receptors, Antigen, T-Cell - chemistry
Receptors, Antigen, T-Cell - immunology
Receptors, Antigen, T-Cell - metabolism
T cell antigen specificity
T-Lymphocytes - immunology
T-Lymphocytes - metabolism
TCR
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS-QwEA4iCL6Iv-5cPaWCb0exza9t7k0Xl1VQ8FDwLWSSFFe0iu4-3H9_M01ddo9DX3xtkyadmSbfR2e-MHYkeM21Cj7XWsZcliHkTpoi5wYq4FXNpaLa4csrPbqVF3fqbu6oL8oJS_LAyXDHXIgyCK8CMgMJiOfx1UvgpvTgiGvQ6luYYo5MPSTcK4RQqUoGWZg5rsdPT1Pkg1zi4mBIc2ZhJ2oF-_-HMv9NlpzbfYbrbK2DjdlJmu4GW4rNJltJB0n-2WLD66mjrB-qWcqQ4c5KErFPKu19y8ZNhmAvuxn8_vVyORrk5xmM25KWjCQjXmvn4za7HZ7dDEZ5d0JC7pHWTnJjpOZQOAdeOyQGri6cJggVNCD59FHIvuKu8kKKylc1kgkwMYKSvu5XEMU3ttw8N3GHZbyGEAw-IRgtfQDj-x7hi-DghCkl9Fj5bi3rO_lwOsXi0SKNIAvb1sKWLGw7C_fYz1mflySe8WHrU3LCrCUJX7cXMBxsFw72s3DoscN3F1r8UOjvh2vi8_TNCtwTDMLVAgf6nlw6G0oYTbuC6rFqwdkLc1m804zvWzHukgTaKqV3v2L2e2yVLNKmy_AfbHnyOo37CHomcNDG91-qqf8A
  priority: 102
  providerName: Directory of Open Access Journals
Title Quantifying conformational changes in the TCR:pMHC-I binding interface
URI https://www.ncbi.nlm.nih.gov/pubmed/39687625
https://www.proquest.com/docview/3146919306
https://pubmed.ncbi.nlm.nih.gov/PMC11646856
https://doaj.org/article/2331d3c5d2894b149ead1b291cba1917
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9NAEB6VVqC-IMpRwlEZiTdkiPeKFwkhiJoGpCKBGilvq73cBrVOySHRf8_M2olI1fbFD_bu2p7Z8X6fdw6At5xVTMngc6VEzEURQm6F7uZMu9KxsmJCUuzw8Q81HInvYzneglW5o1aA8xupHdWTGs3O3__9c_UZDf4TMU5cbz9Uk4uLJVI9JtDuNaWTuQc7ab-IXPlauP-7QcOcc9nEztzSdRcecK3oGyE3lqqU0f8mGHrdm_K_5WnwCB62uDL70kyEPdiK9WO431SavHoCg59LS25BFNSUIQVexyxinyb2d55N6gzRYHbS__Xx8njYz79lbpJiXjLKKTGrrI9PYTQ4POkP87aEQu6R9y5yrYVirmut88oic7BV1yrCWEE5ZKc-ctGTzJaeC176skK24XSMTgpf9UoX-TPYrqd1fA4Zq1wIGkcIWgkfnPY9j_iGM2e5LoTrQLGSlvFtfnEqc3FukGeQsE0StiFhm1bYHXi37nPZZNe4s_VXUsK6JWXGTiems1PTGpphnBeBexmQSQqHPdFUCsd04Z0lbtqBNysVGrQk2h6xdZwu54bjoqERz3bxRvuNSte3Wk2JDpQbyt54ls0r9eQsZesuKINbKdWLWwd9Cbv0mslJhr2C7cVsGV8j1Fm4g_SLAI9H4-IgzeV_hiX80Q
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+conformational+changes+in+the+TCR%3ApMHC-I+binding+interface&rft.jtitle=Frontiers+in+immunology&rft.au=McMaster%2C+Benjamin&rft.au=Thorpe%2C+Christopher+J&rft.au=Rossjohn%2C+Jamie&rft.au=Deane%2C+Charlotte+M&rft.date=2024-12-02&rft.eissn=1664-3224&rft.volume=15&rft.spage=1491656&rft_id=info:doi/10.3389%2Ffimmu.2024.1491656&rft_id=info%3Apmid%2F39687625&rft.externalDocID=39687625
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon