Optimal Sampling and Problematic Likelihood Functions in a Simple Population Model

Markov chains provide excellent statistical models for studying many natural phenomena that evolve with time. One particular class of continuous-time Markov chain, called birth-death processes, can be used for modelling population dynamics in fields such as ecology and microbiology. The challenge fo...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental modeling & assessment Vol. 14; no. 6; pp. 759 - 767
Main Authors Pagendam, D. E, Pollett, P. K
Format Journal Article
LanguageEnglish
Published Dordrecht Dordrecht : Springer Netherlands 01.12.2009
Springer Netherlands
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1420-2026
1573-2967
DOI10.1007/s10666-008-9159-1

Cover

Abstract Markov chains provide excellent statistical models for studying many natural phenomena that evolve with time. One particular class of continuous-time Markov chain, called birth-death processes, can be used for modelling population dynamics in fields such as ecology and microbiology. The challenge for the practitioner when fitting these models is to take measurements of a population size over time in order to estimate the model parameters, such as per capita birth and death rates. In many biological contexts, it is impractical to follow the fate of each individual in a population continuously in time, so the researcher is often limited to a fixed number of measurements of population size over the duration of the study. We show that, for a simple birth-death process, with positive Malthusian growth rate, subject to common practical constraints, there is an optimal schedule for measuring the population size that minimises the expected confidence region of the parameter estimates. Throughout our exposition of the optimal experimental design, we compare it to a simpler equidistant design, where the population is sampled at regular intervals. This is an experimental design worthy of comparison since it can represent a much simpler design to implement in practice. In order to find optimal experimental designs for our population model, we make use of a combination of useful statistical machinery. Firstly, we use a Gaussian diffusion approximation of the underlying discrete-state Markov process, which allows us to obtain analytical expressions for Fisher's information matrix (FIM), which is crucial to optimising the experimental design. We also make use of the cross-entropy method of stochastic optimisation for the purpose of maximising the determinant of FIM to obtain the optimal experimental designs. Our results show that the optimal schedule devised by others for a simple model of population growth without death can be extended, for large populations, to the two-parameter model that incorporates both birth and death. For the simple birth-death process, we find that the likelihood surface is also problematic and poses serious problems for point estimation and easily defining confidence regions. A Bayesian approach to inference is proposed as a way in which these problems could be circumvented.
AbstractList Markov chains provide excellent statistical models for studying many natural phenomena that evolve with time. One particular class of continuous-time Markov chain, called birth-death processes, can be used for modelling population dynamics in fields such as ecology and microbiology. The challenge for the practitioner when fitting these models is to take measurements of a population size over time in order to estimate the model parameters, such as per capita birth and death rates. In many biological contexts, it is impractical to follow the fate of each individual in a population continuously in time, so the researcher is often limited to a fixed number of measurements of population size over the duration of the study. We show that, for a simple birth-death process, with positive Malthusian growth rate, subject to common practical constraints, there is an optimal schedule for measuring the population size that minimises the expected confidence region of the parameter estimates. Throughout our exposition of the optimal experimental design, we compare it to a simpler equidistant design, where the population is sampled at regular intervals. This is an experimental design worthy of comparison since it can represent a much simpler design to implement in practice. In order to find optimal experimental designs for our population model, we make use of a combination of useful statistical machinery. Firstly, we use a Gaussian diffusion approximation of the underlying discrete-state Markov process, which allows us to obtain analytical expressions for Fisher's information matrix (FIM), which is crucial to optimising the experimental design. We also make use of the cross-entropy method of stochastic optimisation for the purpose of maximising the determinant of FIM to obtain the optimal experimental designs. Our results show that the optimal schedule devised by others for a simple model of population growth without death can be extended, for large populations, to the two-parameter model that incorporates both birth and death. For the simple birth-death process, we find that the likelihood surface is also problematic and poses serious problems for point estimation and easily defining confidence regions. A Bayesian approach to inference is proposed as a way in which these problems could be circumvented.
Markov chains provide excellent statistical models for studying many natural phenomena that evolve with time. One particular class of continuous-time Markov chain, called birth-death processes, can be used for modelling population dynamics in fields such as ecology and microbiology. The challenge for the practitioner when fitting these models is to take measurements of a population size over time in order to estimate the model parameters, such as per capita birth and death rates. In many biological contexts, it is impractical to follow the fate of each individual in a population continuously in time, so the researcher is often limited to a fixed number of measurements of population size over the duration of the study. We show that, for a simple birth-death process, with positive Malthusian growth rate, subject to common practical constraints, there is an optimal schedule for measuring the population size that minimises the expected confidence region of the parameter estimates. Throughout our exposition of the optimal experimental design, we compare it to a simpler equidistant design, where the population is sampled at regular intervals. This is an experimental design worthy of comparison since it can represent a much simpler design to implement in practice. In order to find optimal experimental designs for our population model, we make use of a combination of useful statistical machinery. Firstly, we use a Gaussian diffusion approximation of the underlying discrete-state Markov process, which allows us to obtain analytical expressions for Fisher's information matrix (FIM), which is crucial to optimising the experimental design. We also make use of the cross-entropy method of stochastic optimisation for the purpose of maximising the determinant of FIM to obtain the optimal experimental designs. Our results show that the optimal schedule devised by others for a simple model of population growth without death can be extended, for large populations, to the two-parameter model that incorporates both birth and death. For the simple birth-death process, we find that the likelihood surface is also problematic and poses serious problems for point estimation and easily defining confidence regions. A Bayesian approach to inference is proposed as a way in which these problems could be circumvented. [PUBLICATION ABSTRACT]
Author Pagendam, D. E
Pollett, P. K
Author_xml – sequence: 1
  fullname: Pagendam, D. E
– sequence: 2
  fullname: Pollett, P. K
BookMark eNp9kUFvFCEUxyemJrarH8CTxIPxMvoe7MBwNE1rm6xp49ozAYZZqSysMHPw28t2TEx62BMv5PeD997_ojmLKbqmeYvwCQHE54LAOW8B-lZiJ1t80ZxjJ1hLJRdntV5TaClQ_qq5KOURoOLQnTff7w6T3-tAtnp_CD7uiI4Duc_JBLfXk7dk43-54H-mNJDrOdrJp1iIj0STra-KI_fpMAd9vCff0uDC6-blqENxb_6dq-bh-urH5U27uft6e_ll09o1l1MrezRCCjFaY3ivgTFmJAxm3Q2u5wOlXA4Oue2oHu0TYAZuhKE4CkulYavmw_LuIaffsyuT2vtiXQg6ujQXRZGxruNQwY8nQeyBIXa9lBV9_wx9THOOdQxFKWIvjm2uGlwgm1Mp2Y3qkOsO8x-FoI5pqCUNVdNQxzQUVkc8c6yfnpY2Ze3DSZMuZqm_xJ3L_1s6Jb1bpFEnpXfZF_WwpYAMUAAg5-wvrqSokw
CitedBy_id crossref_primary_10_1016_j_ecolmodel_2012_07_007
crossref_primary_10_1177_0962280211430663
crossref_primary_10_1016_j_jtbi_2009_09_014
crossref_primary_10_1515_scid_2018_0005
crossref_primary_10_1007_s11134_014_9421_y
crossref_primary_10_1080_03610926_2014_978024
crossref_primary_10_1098_rspa_2022_0453
crossref_primary_10_1111_biom_12081
crossref_primary_10_1016_j_ecolmodel_2010_02_018
crossref_primary_10_1016_j_jspi_2012_09_011
crossref_primary_10_1016_j_tpb_2012_03_001
crossref_primary_10_1111_rssc_12084
crossref_primary_10_3390_stats4020020
crossref_primary_10_1002_asmb_2559
Cites_doi 10.1093/biomet/43.1-2.23
10.1016/S0304-3800(01)00416-1
10.1007/978-1-4757-4321-0
10.2307/1426436
10.1109/78.403374
10.1111/j.2517-6161.1953.tb00138.x
10.1214/aos/1176343062
10.1093/oso/9780198522546.001.0001
10.1016/j.tpb.2006.08.001
ContentType Journal Article
Copyright Springer Science+Business Media B.V. 2008
Springer Science+Business Media B.V. 2009
Copyright_xml – notice: Springer Science+Business Media B.V. 2008
– notice: Springer Science+Business Media B.V. 2009
DBID FBQ
AAYXX
CITATION
3V.
7SC
7ST
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BEZIV
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PATMY
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s10666-008-9159-1
DatabaseName AGRIS
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Environment Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection (ProQuest)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Science Database (ProQuest)
Engineering Database (Proquest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Agricultural & Environmental Science Collection
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA



ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
Ecology
EISSN 1573-2967
EndPage 767
ExternalDocumentID 11801491
1894459501
10_1007_s10666_008_9159_1
US201301700166
Genre Feature
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5GY
5QI
5VS
67M
67Z
6NX
7WY
7XC
88I
8AO
8FE
8FG
8FH
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AAMRO
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZAB
ABBBX
ABBXA
ABDZT
ABECU
ABEOS
ABFGW
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
FBQ
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IEP
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
L8X
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
ML.
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
PATMY
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
ZMTXR
~A9
~EX
~KM
AACDK
AAHBH
AAJBT
AASML
AAYZH
ABAKF
ABQSL
ACAOD
ACDTI
ACPIV
ACZOJ
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AGRTI
AIGIU
BSONS
H13
ITC
PQBZA
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7ST
7XB
8AL
8FD
8FK
C1K
FR3
JQ2
KR7
L.-
L.0
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c469t-981b7977fcbb68a0333b90db45de86d2269de16c52afc68a03bd6b7b21f7c29b3
IEDL.DBID AGYKE
ISSN 1420-2026
IngestDate Fri Sep 05 07:37:39 EDT 2025
Thu Sep 04 20:35:32 EDT 2025
Fri Jul 25 19:47:43 EDT 2025
Thu Apr 24 23:01:03 EDT 2025
Wed Oct 01 01:33:45 EDT 2025
Fri Feb 21 02:37:50 EST 2025
Wed Dec 27 19:14:59 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Markov chain
Sampling
Population model
Optimal design
Birth–death process
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-981b7977fcbb68a0333b90db45de86d2269de16c52afc68a03bd6b7b21f7c29b3
Notes http://dx.doi.org/10.1007/s10666-008-9159-1
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
PQID 221187033
PQPubID 25741
PageCount 9
ParticipantIDs proquest_miscellaneous_21335560
proquest_miscellaneous_1803115899
proquest_journals_221187033
crossref_primary_10_1007_s10666_008_9159_1
crossref_citationtrail_10_1007_s10666_008_9159_1
springer_journals_10_1007_s10666_008_9159_1
fao_agris_US201301700166
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-12-01
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Environmental modeling & assessment
PublicationTitleAbbrev Environ Model Assess
PublicationYear 2009
Publisher Dordrecht : Springer Netherlands
Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Dordrecht : Springer Netherlands
– name: Springer Netherlands
– name: Springer Nature B.V
References AtkinsonA. C.DonevA. N.Optimum experimental design1992OxfordOxford University Press
MoranP. A. P.The estimation of the parameters of a birth and death processJournal of the Royal Statistical Society, Series B1953152241245
PoratB.On the fisher information for the mean of a Gaussian processIEEE Transactions on Signal Processing19954382033203510.1109/78.403374
Pollett, P. K. (2001). Modelling and Simulation Society of Australia and New Zealand. In F. Ghasssemi (Ed.), Proceedings of the international congress on modelling and simulation (Vol.2, pp. 843–848). Australia.
KeidingN.Maximum likelihood estimation in the birth-and-death processThe Annals of Statistics19753236337210.1214/aos/1176343062
RossJ. V.TaimreT.PollettP. K.On parameter estimation in population modelsTheoretical Population Biology20067049851010.1016/j.tpb.2006.08.0011:STN:280:DC%2BD28notlKrug%3D%3D
DarwinJ. H.The behaviour of an estimator for a simple birth and death processBiometrika1956431–22331
BeckerG.KerstingG.Design problems for the pure birth processAdvances in Applied Probability198315225527310.2307/1426436
RubinsteinR. Y.KroeseD. P.The cross-entropy method: A unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning2004New YorkSpringer-Verlag
GivensG. H.PooleD.Problematic likelihood functions from sensible population dynamics models: a case studyEcological Modelling200215110912410.1016/S0304-3800(01)00416-1
G. Becker (9159_CR2) 1983; 15
9159_CR7
R. Y. Rubinstein (9159_CR10) 2004
B. Porat (9159_CR8) 1995; 43
N. Keiding (9159_CR5) 1975; 3
J. V. Ross (9159_CR9) 2006; 70
A. C. Atkinson (9159_CR1) 1992
G. H. Givens (9159_CR4) 2002; 151
J. H. Darwin (9159_CR3) 1956; 43
P. A. P. Moran (9159_CR6) 1953; 15
References_xml – reference: AtkinsonA. C.DonevA. N.Optimum experimental design1992OxfordOxford University Press
– reference: GivensG. H.PooleD.Problematic likelihood functions from sensible population dynamics models: a case studyEcological Modelling200215110912410.1016/S0304-3800(01)00416-1
– reference: MoranP. A. P.The estimation of the parameters of a birth and death processJournal of the Royal Statistical Society, Series B1953152241245
– reference: Pollett, P. K. (2001). Modelling and Simulation Society of Australia and New Zealand. In F. Ghasssemi (Ed.), Proceedings of the international congress on modelling and simulation (Vol.2, pp. 843–848). Australia.
– reference: DarwinJ. H.The behaviour of an estimator for a simple birth and death processBiometrika1956431–22331
– reference: PoratB.On the fisher information for the mean of a Gaussian processIEEE Transactions on Signal Processing19954382033203510.1109/78.403374
– reference: KeidingN.Maximum likelihood estimation in the birth-and-death processThe Annals of Statistics19753236337210.1214/aos/1176343062
– reference: RossJ. V.TaimreT.PollettP. K.On parameter estimation in population modelsTheoretical Population Biology20067049851010.1016/j.tpb.2006.08.0011:STN:280:DC%2BD28notlKrug%3D%3D
– reference: BeckerG.KerstingG.Design problems for the pure birth processAdvances in Applied Probability198315225527310.2307/1426436
– reference: RubinsteinR. Y.KroeseD. P.The cross-entropy method: A unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning2004New YorkSpringer-Verlag
– volume: 43
  start-page: 23
  issue: 1–2
  year: 1956
  ident: 9159_CR3
  publication-title: Biometrika
  doi: 10.1093/biomet/43.1-2.23
– volume: 151
  start-page: 109
  year: 2002
  ident: 9159_CR4
  publication-title: Ecological Modelling
  doi: 10.1016/S0304-3800(01)00416-1
– volume-title: The cross-entropy method: A unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning
  year: 2004
  ident: 9159_CR10
  doi: 10.1007/978-1-4757-4321-0
– volume: 15
  start-page: 255
  issue: 2
  year: 1983
  ident: 9159_CR2
  publication-title: Advances in Applied Probability
  doi: 10.2307/1426436
– volume: 43
  start-page: 2033
  issue: 8
  year: 1995
  ident: 9159_CR8
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/78.403374
– volume: 15
  start-page: 241
  issue: 2
  year: 1953
  ident: 9159_CR6
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1953.tb00138.x
– volume: 3
  start-page: 363
  issue: 2
  year: 1975
  ident: 9159_CR5
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176343062
– ident: 9159_CR7
– volume-title: Optimum experimental design
  year: 1992
  ident: 9159_CR1
  doi: 10.1093/oso/9780198522546.001.0001
– volume: 70
  start-page: 498
  year: 2006
  ident: 9159_CR9
  publication-title: Theoretical Population Biology
  doi: 10.1016/j.tpb.2006.08.001
SSID ssj0006605
Score 1.9171278
Snippet Markov chains provide excellent statistical models for studying many natural phenomena that evolve with time. One particular class of continuous-time Markov...
SourceID proquest
crossref
springer
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 759
SubjectTerms Applications of Mathematics
Approximation
Bayesian theory
Birth-death process
Births
Censuses
death
Design optimization
Diffusion
Earth and Environmental Science
Ecology
Environment
Experimental design
Growth rate
Machinery
Markov analysis
Markov chain
Markov chains
Markov processes
Math. Appl. in Environmental Science
Mathematical Modeling and Industrial Mathematics
Mathematical models
Microbiology
Mortality
Operations Research/Decision Theory
Optimal design
Parameter estimation
Per capita
Population
Population biology
Population dynamics
Population growth
Population model
Population number
population size
Probability
Q1
sampling
Statistical analysis
Statistical models
Studies
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB612wsXVB5VQ6EYiRMoInYSb3xAqKBdVYiWVctKvVl-Viu22cJu_z8zea2K1F5jR7E89vibjOf7AN5HZaNBnJyaWEQMUKJNlfJVKmXpc1VWTnKqdz47l6fz4vtVebUDZ30tDF2r7H1i46j9ytE_8k9CkDB2ludfbv-kJBpFydVeQcN0ygr-c8Mwtgt7goixRrD3dXI-uxhcs2wLJXmBMRNG_bJPc7a1dIjkU7oNoPCIT_m9g2o3mtU9DPpf2rQ5jab78LSDkeyktfsz2An1cziYbKvWsLHbtusXcPETHcMNPTJ0gby-Zqb2bNZqyRBlK_ux-B2WC6I4ZlM86ZrFyBY1M-xyQfzBbDYIfTGST1u-hPl08uvbadqJKaQOI-BNqhCfjhHsRWetrAxOZG5V5m1R-lBJjyhM-cClK4WJrulgvbRjK3gcO6FsfgCjelWHQ2CeG-7zrHCxcoUKShnc2RS4qCBiyGwCWT9z2nVM4yR4sdRbjmSabE0KmDTZmifwYXjltqXZeKzzIZpDm2t0g3p-KSj5SjSDXMoEjnob6W4zrvWwdBJ4N7TiLqLUiKnD6m6teZUR7RAGnwm8faCPwHC-RICYwMfe-NtvPDjYV4-O6AieiE6QIuOvYbT5exfeIMrZ2ONu7f4Dvt72yw
  priority: 102
  providerName: ProQuest
Title Optimal Sampling and Problematic Likelihood Functions in a Simple Population Model
URI https://link.springer.com/article/10.1007/s10666-008-9159-1
https://www.proquest.com/docview/221187033
https://www.proquest.com/docview/1803115899
https://www.proquest.com/docview/21335560
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-2967
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006605
  issn: 1420-2026
  databaseCode: AFBBN
  dateStart: 19970601
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-2967
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0006605
  issn: 1420-2026
  databaseCode: BENPR
  dateStart: 19970601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-2967
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0006605
  issn: 1420-2026
  databaseCode: 8FG
  dateStart: 19970601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-2967
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006605
  issn: 1420-2026
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-2967
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006605
  issn: 1420-2026
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6VcOmlb4QLpVupp1ZG3rW98R7TKgH1QSMgEj1Z-0QRwama5MKv74wfSUGlEidLu2N7n7PfaHa-AXgflAkacXKsQxbQQAkmVsoVsZS5S1VeWMkp3vn7iTyeZF8u8os2jnvR3XbvXJK1pv4r2A2hdkzueoVncIwmz3ZNt9WD7cHRz6_DtQKWTTgkz9AyQtteds7Mf33k1nG0FfT8FtK84xytz5zRUzjvWttcNbk6XC3Nob25Q-T4wO48gyctBmWDZtE8h0e-egE7w03IG1a2e37xEk5_oFa5piJNt8-rS6Yrx8ZNIhrie2Xfpld-NiV-ZDbCY7JeyWxaMc3OpkQ-zMbrLGGMcq_NXsFkNDz_fBy3mRhii-bzMlYIbvuIFIM1RhY6SdPUqMSZLHe-kA4hnHKeS5sLHWwtYJw0fSN46FuhTLoDvWpe-V1gjmvu0iSzobCZ8kppVAtk9Sgvgk9MBEk3IaVtacopW8as3BAs08iVlD6TRq7kEXxYv_Kr4ej4n_AuznKpL1GHlpMzQZ5b4ijkUkaw10192e7kRSkEJWTHHkfwbl2LW5D8Krry89Wi5EVCnEVouUbw9h4ZwVNEdjKJ4GO3HDb_uLexrx8kvQePRZvdIuH70Fv-Xvk3CJmW5gC2itHRQbtR8PlpeDI-xdKJGPwBC2kNqw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFL3axwO8IAZMCwNmJHgBRcRO4sYPE2LQqmNdqbZV2ltmx_ZUUdJBOyF-HP-Ne_PRakjb214TN4n8cX1Or-85AG-8Ml4jTg61TzwSFG9CpWwWSpnaWKVZITnVOx8PZX-cfD1Pz9fgb1sLQ8cq25hYBWo7K-g_8g9CkDF2FMcfr36GZBpFydXWQUM3zgp2v1IYa-o6jtyf38jg5vuHX3C43wrR65597oeNyUBYIDNchApxWwdBkC-MkZnGF8RGRdYkqXWZtIhOlHVcFqnQvqgaGCtNxwjuO4VQJsbnrsNmEicKud_mQXc4OlluBbIuzOQJcjSBbKdNq9a1e8gcQjp9oBBShPzGxrju9ewG5v0vTVvtfr3H8KiBrexTPc-2YM2VT2C7u6qSw5tNmJg_hZNvGIh-0CVNB9bLS6ZLy0a1dw1JxLLB5LubTkhSmfVwZ60mP5uUTLPTCekVs9HSWIyRXdv0GYzvpV-3YaOclW4HmOWa2zhKCp8ViXJKaYwkRJSUE95FJoCo7bm8aJTNyWBjmq80mamzc3LcpM7OeQDvlj-5qmU97mq8g8OR60sMu_n4VFCyl2QNuZQB7LZjlDeLf54vp2oAr5d3cdVSKkaXbnY9z3kWkcwRkt0A9m5pI3iMYFBGAbxvB3_1jls_9vmdX7QHD_pnx4N8cDg82oWHojHDiPgL2Fj8unYvEWEtzKtmHjO4uO-l8w8RUjR0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61RUJcEK-qoUCNBBdQ1NhJvPEBIUQbWlrKirJSb8HPasU227JbIX4a_46ZPHZVpPbWa-w8ZI_H32Q83wfwKigTNOLkWIcsYIASTKyUK2Ipc5eqvLCSU73zlyO5N8o-n-QnK_C3r4WhY5W9T2wctZta-ke-LQQJYydpuh26UxHDnfL9-UVMAlKUaO3VNFoLOfB_fmP0Nnu3v4NT_VqIcvf7x724ExiILUaF81ghZhsgAArWGFlofHhqVOJMljtfSIfIRDnPpc2FDrbpYJw0AyN4GFihTIrPXYU7AyJxpyL18tNiE5BtSSbPMDoTGOf0CdW2ag9jhpjOHSgEEzG_siWuBj29gnb_S9A2-175AO53gJV9aC3sIaz4-hGs7y7r47CxcxCzx_DtK7qgM7qk6ah6fcp07diwVa0hclh2OP7pJ2MiU2Yl7qmN2bNxzTQ7HhNTMRsuJMUYCbVNnsDoVkZ1Hdbqae03gDmuuUuTzIbCZsorpdGHUIikvAg-MREk_chVtuM0J2mNSbVkY6bBrkhrkwa74hG8Wdxy3hJ63NR5A6ej0qfocKvRsaA0LxEacikj2OznqOqW_axaGGkELxetuF4pCaNrP72cVbxIiOAIw9wItq7pI3iKMFAmEbztJ3_5jms_9umNX7QFd3HBVIf7RwebcE90KhgJfwZr81-X_jlCq7l50Rgxgx-3vWr-AZB0Mg4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Sampling+and+Problematic+Likelihood+Functions+in+a+Simple+Population+Model&rft.jtitle=Environmental+modeling+%26+assessment&rft.au=Pagendam%2C+D.+E.&rft.au=Pollett%2C+P.+K.&rft.date=2009-12-01&rft.pub=Springer+Netherlands&rft.issn=1420-2026&rft.eissn=1573-2967&rft.volume=14&rft.issue=6&rft_id=info:doi/10.1007%2Fs10666-008-9159-1&rft.externalDocID=10_1007_s10666_008_9159_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-2026&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-2026&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-2026&client=summon