Optimal Sampling and Problematic Likelihood Functions in a Simple Population Model
Markov chains provide excellent statistical models for studying many natural phenomena that evolve with time. One particular class of continuous-time Markov chain, called birth-death processes, can be used for modelling population dynamics in fields such as ecology and microbiology. The challenge fo...
Saved in:
| Published in | Environmental modeling & assessment Vol. 14; no. 6; pp. 759 - 767 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Dordrecht : Springer Netherlands
01.12.2009
Springer Netherlands Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1420-2026 1573-2967 |
| DOI | 10.1007/s10666-008-9159-1 |
Cover
| Abstract | Markov chains provide excellent statistical models for studying many natural phenomena that evolve with time. One particular class of continuous-time Markov chain, called birth-death processes, can be used for modelling population dynamics in fields such as ecology and microbiology. The challenge for the practitioner when fitting these models is to take measurements of a population size over time in order to estimate the model parameters, such as per capita birth and death rates. In many biological contexts, it is impractical to follow the fate of each individual in a population continuously in time, so the researcher is often limited to a fixed number of measurements of population size over the duration of the study. We show that, for a simple birth-death process, with positive Malthusian growth rate, subject to common practical constraints, there is an optimal schedule for measuring the population size that minimises the expected confidence region of the parameter estimates. Throughout our exposition of the optimal experimental design, we compare it to a simpler equidistant design, where the population is sampled at regular intervals. This is an experimental design worthy of comparison since it can represent a much simpler design to implement in practice. In order to find optimal experimental designs for our population model, we make use of a combination of useful statistical machinery. Firstly, we use a Gaussian diffusion approximation of the underlying discrete-state Markov process, which allows us to obtain analytical expressions for Fisher's information matrix (FIM), which is crucial to optimising the experimental design. We also make use of the cross-entropy method of stochastic optimisation for the purpose of maximising the determinant of FIM to obtain the optimal experimental designs. Our results show that the optimal schedule devised by others for a simple model of population growth without death can be extended, for large populations, to the two-parameter model that incorporates both birth and death. For the simple birth-death process, we find that the likelihood surface is also problematic and poses serious problems for point estimation and easily defining confidence regions. A Bayesian approach to inference is proposed as a way in which these problems could be circumvented. |
|---|---|
| AbstractList | Markov chains provide excellent statistical models for studying many natural phenomena that evolve with time. One particular class of continuous-time Markov chain, called birth-death processes, can be used for modelling population dynamics in fields such as ecology and microbiology. The challenge for the practitioner when fitting these models is to take measurements of a population size over time in order to estimate the model parameters, such as per capita birth and death rates. In many biological contexts, it is impractical to follow the fate of each individual in a population continuously in time, so the researcher is often limited to a fixed number of measurements of population size over the duration of the study. We show that, for a simple birth-death process, with positive Malthusian growth rate, subject to common practical constraints, there is an optimal schedule for measuring the population size that minimises the expected confidence region of the parameter estimates. Throughout our exposition of the optimal experimental design, we compare it to a simpler equidistant design, where the population is sampled at regular intervals. This is an experimental design worthy of comparison since it can represent a much simpler design to implement in practice. In order to find optimal experimental designs for our population model, we make use of a combination of useful statistical machinery. Firstly, we use a Gaussian diffusion approximation of the underlying discrete-state Markov process, which allows us to obtain analytical expressions for Fisher's information matrix (FIM), which is crucial to optimising the experimental design. We also make use of the cross-entropy method of stochastic optimisation for the purpose of maximising the determinant of FIM to obtain the optimal experimental designs. Our results show that the optimal schedule devised by others for a simple model of population growth without death can be extended, for large populations, to the two-parameter model that incorporates both birth and death. For the simple birth-death process, we find that the likelihood surface is also problematic and poses serious problems for point estimation and easily defining confidence regions. A Bayesian approach to inference is proposed as a way in which these problems could be circumvented. Markov chains provide excellent statistical models for studying many natural phenomena that evolve with time. One particular class of continuous-time Markov chain, called birth-death processes, can be used for modelling population dynamics in fields such as ecology and microbiology. The challenge for the practitioner when fitting these models is to take measurements of a population size over time in order to estimate the model parameters, such as per capita birth and death rates. In many biological contexts, it is impractical to follow the fate of each individual in a population continuously in time, so the researcher is often limited to a fixed number of measurements of population size over the duration of the study. We show that, for a simple birth-death process, with positive Malthusian growth rate, subject to common practical constraints, there is an optimal schedule for measuring the population size that minimises the expected confidence region of the parameter estimates. Throughout our exposition of the optimal experimental design, we compare it to a simpler equidistant design, where the population is sampled at regular intervals. This is an experimental design worthy of comparison since it can represent a much simpler design to implement in practice. In order to find optimal experimental designs for our population model, we make use of a combination of useful statistical machinery. Firstly, we use a Gaussian diffusion approximation of the underlying discrete-state Markov process, which allows us to obtain analytical expressions for Fisher's information matrix (FIM), which is crucial to optimising the experimental design. We also make use of the cross-entropy method of stochastic optimisation for the purpose of maximising the determinant of FIM to obtain the optimal experimental designs. Our results show that the optimal schedule devised by others for a simple model of population growth without death can be extended, for large populations, to the two-parameter model that incorporates both birth and death. For the simple birth-death process, we find that the likelihood surface is also problematic and poses serious problems for point estimation and easily defining confidence regions. A Bayesian approach to inference is proposed as a way in which these problems could be circumvented. [PUBLICATION ABSTRACT] |
| Author | Pagendam, D. E Pollett, P. K |
| Author_xml | – sequence: 1 fullname: Pagendam, D. E – sequence: 2 fullname: Pollett, P. K |
| BookMark | eNp9kUFvFCEUxyemJrarH8CTxIPxMvoe7MBwNE1rm6xp49ozAYZZqSysMHPw28t2TEx62BMv5PeD997_ojmLKbqmeYvwCQHE54LAOW8B-lZiJ1t80ZxjJ1hLJRdntV5TaClQ_qq5KOURoOLQnTff7w6T3-tAtnp_CD7uiI4Duc_JBLfXk7dk43-54H-mNJDrOdrJp1iIj0STra-KI_fpMAd9vCff0uDC6-blqENxb_6dq-bh-urH5U27uft6e_ll09o1l1MrezRCCjFaY3ivgTFmJAxm3Q2u5wOlXA4Oue2oHu0TYAZuhKE4CkulYavmw_LuIaffsyuT2vtiXQg6ujQXRZGxruNQwY8nQeyBIXa9lBV9_wx9THOOdQxFKWIvjm2uGlwgm1Mp2Y3qkOsO8x-FoI5pqCUNVdNQxzQUVkc8c6yfnpY2Ze3DSZMuZqm_xJ3L_1s6Jb1bpFEnpXfZF_WwpYAMUAAg5-wvrqSokw |
| CitedBy_id | crossref_primary_10_1016_j_ecolmodel_2012_07_007 crossref_primary_10_1177_0962280211430663 crossref_primary_10_1016_j_jtbi_2009_09_014 crossref_primary_10_1515_scid_2018_0005 crossref_primary_10_1007_s11134_014_9421_y crossref_primary_10_1080_03610926_2014_978024 crossref_primary_10_1098_rspa_2022_0453 crossref_primary_10_1111_biom_12081 crossref_primary_10_1016_j_ecolmodel_2010_02_018 crossref_primary_10_1016_j_jspi_2012_09_011 crossref_primary_10_1016_j_tpb_2012_03_001 crossref_primary_10_1111_rssc_12084 crossref_primary_10_3390_stats4020020 crossref_primary_10_1002_asmb_2559 |
| Cites_doi | 10.1093/biomet/43.1-2.23 10.1016/S0304-3800(01)00416-1 10.1007/978-1-4757-4321-0 10.2307/1426436 10.1109/78.403374 10.1111/j.2517-6161.1953.tb00138.x 10.1214/aos/1176343062 10.1093/oso/9780198522546.001.0001 10.1016/j.tpb.2006.08.001 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media B.V. 2008 Springer Science+Business Media B.V. 2009 |
| Copyright_xml | – notice: Springer Science+Business Media B.V. 2008 – notice: Springer Science+Business Media B.V. 2009 |
| DBID | FBQ AAYXX CITATION 3V. 7SC 7ST 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BEZIV BGLVJ BHPHI C1K CCPQU DWQXO FR3 FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- KR7 L.- L.0 L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PATMY PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U SOI 7S9 L.6 |
| DOI | 10.1007/s10666-008-9159-1 |
| DatabaseName | AGRIS CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Environment Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) SciTech Premium Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection (ProQuest) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database Science Database (ProQuest) Engineering Database (Proquest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea Agricultural & Environmental Science Collection Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences Ecology |
| EISSN | 1573-2967 |
| EndPage | 767 |
| ExternalDocumentID | 11801491 1894459501 10_1007_s10666_008_9159_1 US201301700166 |
| Genre | Feature |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5GY 5QI 5VS 67M 67Z 6NX 7WY 7XC 88I 8AO 8FE 8FG 8FH 8FL 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AAMRO AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZAB ABBBX ABBXA ABDZT ABECU ABEOS ABFGW ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDH EIOEI EJD ESBYG FBQ FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IEP IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V L8X LAK LLZTM M0C M0N M2P M4Y M7S MA- ML. N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 PATMY PF0 PQBIZ PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 ZMTXR ~A9 ~EX ~KM AACDK AAHBH AAJBT AASML AAYZH ABAKF ABQSL ACAOD ACDTI ACPIV ACZOJ AEFQL AEMSY AEUYN AFBBN AGQEE AGRTI AIGIU BSONS H13 ITC PQBZA AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7ST 7XB 8AL 8FD 8FK C1K FR3 JQ2 KR7 L.- L.0 L7M L~C L~D PKEHL PQEST PQUKI Q9U SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c469t-981b7977fcbb68a0333b90db45de86d2269de16c52afc68a03bd6b7b21f7c29b3 |
| IEDL.DBID | AGYKE |
| ISSN | 1420-2026 |
| IngestDate | Fri Sep 05 07:37:39 EDT 2025 Thu Sep 04 20:35:32 EDT 2025 Fri Jul 25 19:47:43 EDT 2025 Thu Apr 24 23:01:03 EDT 2025 Wed Oct 01 01:33:45 EDT 2025 Fri Feb 21 02:37:50 EST 2025 Wed Dec 27 19:14:59 EST 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Markov chain Sampling Population model Optimal design Birth–death process |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-981b7977fcbb68a0333b90db45de86d2269de16c52afc68a03bd6b7b21f7c29b3 |
| Notes | http://dx.doi.org/10.1007/s10666-008-9159-1 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
| PQID | 221187033 |
| PQPubID | 25741 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_21335560 proquest_miscellaneous_1803115899 proquest_journals_221187033 crossref_primary_10_1007_s10666_008_9159_1 crossref_citationtrail_10_1007_s10666_008_9159_1 springer_journals_10_1007_s10666_008_9159_1 fao_agris_US201301700166 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2009-12-01 |
| PublicationDateYYYYMMDD | 2009-12-01 |
| PublicationDate_xml | – month: 12 year: 2009 text: 2009-12-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationTitle | Environmental modeling & assessment |
| PublicationTitleAbbrev | Environ Model Assess |
| PublicationYear | 2009 |
| Publisher | Dordrecht : Springer Netherlands Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Dordrecht : Springer Netherlands – name: Springer Netherlands – name: Springer Nature B.V |
| References | AtkinsonA. C.DonevA. N.Optimum experimental design1992OxfordOxford University Press MoranP. A. P.The estimation of the parameters of a birth and death processJournal of the Royal Statistical Society, Series B1953152241245 PoratB.On the fisher information for the mean of a Gaussian processIEEE Transactions on Signal Processing19954382033203510.1109/78.403374 Pollett, P. K. (2001). Modelling and Simulation Society of Australia and New Zealand. In F. Ghasssemi (Ed.), Proceedings of the international congress on modelling and simulation (Vol.2, pp. 843–848). Australia. KeidingN.Maximum likelihood estimation in the birth-and-death processThe Annals of Statistics19753236337210.1214/aos/1176343062 RossJ. V.TaimreT.PollettP. K.On parameter estimation in population modelsTheoretical Population Biology20067049851010.1016/j.tpb.2006.08.0011:STN:280:DC%2BD28notlKrug%3D%3D DarwinJ. H.The behaviour of an estimator for a simple birth and death processBiometrika1956431–22331 BeckerG.KerstingG.Design problems for the pure birth processAdvances in Applied Probability198315225527310.2307/1426436 RubinsteinR. Y.KroeseD. P.The cross-entropy method: A unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning2004New YorkSpringer-Verlag GivensG. H.PooleD.Problematic likelihood functions from sensible population dynamics models: a case studyEcological Modelling200215110912410.1016/S0304-3800(01)00416-1 G. Becker (9159_CR2) 1983; 15 9159_CR7 R. Y. Rubinstein (9159_CR10) 2004 B. Porat (9159_CR8) 1995; 43 N. Keiding (9159_CR5) 1975; 3 J. V. Ross (9159_CR9) 2006; 70 A. C. Atkinson (9159_CR1) 1992 G. H. Givens (9159_CR4) 2002; 151 J. H. Darwin (9159_CR3) 1956; 43 P. A. P. Moran (9159_CR6) 1953; 15 |
| References_xml | – reference: AtkinsonA. C.DonevA. N.Optimum experimental design1992OxfordOxford University Press – reference: GivensG. H.PooleD.Problematic likelihood functions from sensible population dynamics models: a case studyEcological Modelling200215110912410.1016/S0304-3800(01)00416-1 – reference: MoranP. A. P.The estimation of the parameters of a birth and death processJournal of the Royal Statistical Society, Series B1953152241245 – reference: Pollett, P. K. (2001). Modelling and Simulation Society of Australia and New Zealand. In F. Ghasssemi (Ed.), Proceedings of the international congress on modelling and simulation (Vol.2, pp. 843–848). Australia. – reference: DarwinJ. H.The behaviour of an estimator for a simple birth and death processBiometrika1956431–22331 – reference: PoratB.On the fisher information for the mean of a Gaussian processIEEE Transactions on Signal Processing19954382033203510.1109/78.403374 – reference: KeidingN.Maximum likelihood estimation in the birth-and-death processThe Annals of Statistics19753236337210.1214/aos/1176343062 – reference: RossJ. V.TaimreT.PollettP. K.On parameter estimation in population modelsTheoretical Population Biology20067049851010.1016/j.tpb.2006.08.0011:STN:280:DC%2BD28notlKrug%3D%3D – reference: BeckerG.KerstingG.Design problems for the pure birth processAdvances in Applied Probability198315225527310.2307/1426436 – reference: RubinsteinR. Y.KroeseD. P.The cross-entropy method: A unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning2004New YorkSpringer-Verlag – volume: 43 start-page: 23 issue: 1–2 year: 1956 ident: 9159_CR3 publication-title: Biometrika doi: 10.1093/biomet/43.1-2.23 – volume: 151 start-page: 109 year: 2002 ident: 9159_CR4 publication-title: Ecological Modelling doi: 10.1016/S0304-3800(01)00416-1 – volume-title: The cross-entropy method: A unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning year: 2004 ident: 9159_CR10 doi: 10.1007/978-1-4757-4321-0 – volume: 15 start-page: 255 issue: 2 year: 1983 ident: 9159_CR2 publication-title: Advances in Applied Probability doi: 10.2307/1426436 – volume: 43 start-page: 2033 issue: 8 year: 1995 ident: 9159_CR8 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/78.403374 – volume: 15 start-page: 241 issue: 2 year: 1953 ident: 9159_CR6 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1953.tb00138.x – volume: 3 start-page: 363 issue: 2 year: 1975 ident: 9159_CR5 publication-title: The Annals of Statistics doi: 10.1214/aos/1176343062 – ident: 9159_CR7 – volume-title: Optimum experimental design year: 1992 ident: 9159_CR1 doi: 10.1093/oso/9780198522546.001.0001 – volume: 70 start-page: 498 year: 2006 ident: 9159_CR9 publication-title: Theoretical Population Biology doi: 10.1016/j.tpb.2006.08.001 |
| SSID | ssj0006605 |
| Score | 1.9171278 |
| Snippet | Markov chains provide excellent statistical models for studying many natural phenomena that evolve with time. One particular class of continuous-time Markov... |
| SourceID | proquest crossref springer fao |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 759 |
| SubjectTerms | Applications of Mathematics Approximation Bayesian theory Birth-death process Births Censuses death Design optimization Diffusion Earth and Environmental Science Ecology Environment Experimental design Growth rate Machinery Markov analysis Markov chain Markov chains Markov processes Math. Appl. in Environmental Science Mathematical Modeling and Industrial Mathematics Mathematical models Microbiology Mortality Operations Research/Decision Theory Optimal design Parameter estimation Per capita Population Population biology Population dynamics Population growth Population model Population number population size Probability Q1 sampling Statistical analysis Statistical models Studies |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB612wsXVB5VQ6EYiRMoInYSb3xAqKBdVYiWVctKvVl-Viu22cJu_z8zea2K1F5jR7E89vibjOf7AN5HZaNBnJyaWEQMUKJNlfJVKmXpc1VWTnKqdz47l6fz4vtVebUDZ30tDF2r7H1i46j9ytE_8k9CkDB2ludfbv-kJBpFydVeQcN0ygr-c8Mwtgt7goixRrD3dXI-uxhcs2wLJXmBMRNG_bJPc7a1dIjkU7oNoPCIT_m9g2o3mtU9DPpf2rQ5jab78LSDkeyktfsz2An1cziYbKvWsLHbtusXcPETHcMNPTJ0gby-Zqb2bNZqyRBlK_ux-B2WC6I4ZlM86ZrFyBY1M-xyQfzBbDYIfTGST1u-hPl08uvbadqJKaQOI-BNqhCfjhHsRWetrAxOZG5V5m1R-lBJjyhM-cClK4WJrulgvbRjK3gcO6FsfgCjelWHQ2CeG-7zrHCxcoUKShnc2RS4qCBiyGwCWT9z2nVM4yR4sdRbjmSabE0KmDTZmifwYXjltqXZeKzzIZpDm2t0g3p-KSj5SjSDXMoEjnob6W4zrvWwdBJ4N7TiLqLUiKnD6m6teZUR7RAGnwm8faCPwHC-RICYwMfe-NtvPDjYV4-O6AieiE6QIuOvYbT5exfeIMrZ2ONu7f4Dvt72yw priority: 102 providerName: ProQuest |
| Title | Optimal Sampling and Problematic Likelihood Functions in a Simple Population Model |
| URI | https://link.springer.com/article/10.1007/s10666-008-9159-1 https://www.proquest.com/docview/221187033 https://www.proquest.com/docview/1803115899 https://www.proquest.com/docview/21335560 |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-2967 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006605 issn: 1420-2026 databaseCode: AFBBN dateStart: 19970601 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-2967 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0006605 issn: 1420-2026 databaseCode: BENPR dateStart: 19970601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-2967 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0006605 issn: 1420-2026 databaseCode: 8FG dateStart: 19970601 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-2967 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006605 issn: 1420-2026 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-2967 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006605 issn: 1420-2026 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6VcOmlb4QLpVupp1ZG3rW98R7TKgH1QSMgEj1Z-0QRwama5MKv74wfSUGlEidLu2N7n7PfaHa-AXgflAkacXKsQxbQQAkmVsoVsZS5S1VeWMkp3vn7iTyeZF8u8os2jnvR3XbvXJK1pv4r2A2hdkzueoVncIwmz3ZNt9WD7cHRz6_DtQKWTTgkz9AyQtteds7Mf33k1nG0FfT8FtK84xytz5zRUzjvWttcNbk6XC3Nob25Q-T4wO48gyctBmWDZtE8h0e-egE7w03IG1a2e37xEk5_oFa5piJNt8-rS6Yrx8ZNIhrie2Xfpld-NiV-ZDbCY7JeyWxaMc3OpkQ-zMbrLGGMcq_NXsFkNDz_fBy3mRhii-bzMlYIbvuIFIM1RhY6SdPUqMSZLHe-kA4hnHKeS5sLHWwtYJw0fSN46FuhTLoDvWpe-V1gjmvu0iSzobCZ8kppVAtk9Sgvgk9MBEk3IaVtacopW8as3BAs08iVlD6TRq7kEXxYv_Kr4ej4n_AuznKpL1GHlpMzQZ5b4ijkUkaw10192e7kRSkEJWTHHkfwbl2LW5D8Krry89Wi5EVCnEVouUbw9h4ZwVNEdjKJ4GO3HDb_uLexrx8kvQePRZvdIuH70Fv-Xvk3CJmW5gC2itHRQbtR8PlpeDI-xdKJGPwBC2kNqw |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFL3axwO8IAZMCwNmJHgBRcRO4sYPE2LQqmNdqbZV2ltmx_ZUUdJBOyF-HP-Ne_PRakjb214TN4n8cX1Or-85AG-8Ml4jTg61TzwSFG9CpWwWSpnaWKVZITnVOx8PZX-cfD1Pz9fgb1sLQ8cq25hYBWo7K-g_8g9CkDF2FMcfr36GZBpFydXWQUM3zgp2v1IYa-o6jtyf38jg5vuHX3C43wrR65597oeNyUBYIDNchApxWwdBkC-MkZnGF8RGRdYkqXWZtIhOlHVcFqnQvqgaGCtNxwjuO4VQJsbnrsNmEicKud_mQXc4OlluBbIuzOQJcjSBbKdNq9a1e8gcQjp9oBBShPzGxrju9ewG5v0vTVvtfr3H8KiBrexTPc-2YM2VT2C7u6qSw5tNmJg_hZNvGIh-0CVNB9bLS6ZLy0a1dw1JxLLB5LubTkhSmfVwZ60mP5uUTLPTCekVs9HSWIyRXdv0GYzvpV-3YaOclW4HmOWa2zhKCp8ViXJKaYwkRJSUE95FJoCo7bm8aJTNyWBjmq80mamzc3LcpM7OeQDvlj-5qmU97mq8g8OR60sMu_n4VFCyl2QNuZQB7LZjlDeLf54vp2oAr5d3cdVSKkaXbnY9z3kWkcwRkt0A9m5pI3iMYFBGAbxvB3_1jls_9vmdX7QHD_pnx4N8cDg82oWHojHDiPgL2Fj8unYvEWEtzKtmHjO4uO-l8w8RUjR0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61RUJcEK-qoUCNBBdQ1NhJvPEBIUQbWlrKirJSb8HPasU227JbIX4a_46ZPHZVpPbWa-w8ZI_H32Q83wfwKigTNOLkWIcsYIASTKyUK2Ipc5eqvLCSU73zlyO5N8o-n-QnK_C3r4WhY5W9T2wctZta-ke-LQQJYydpuh26UxHDnfL9-UVMAlKUaO3VNFoLOfB_fmP0Nnu3v4NT_VqIcvf7x724ExiILUaF81ghZhsgAArWGFlofHhqVOJMljtfSIfIRDnPpc2FDrbpYJw0AyN4GFihTIrPXYU7AyJxpyL18tNiE5BtSSbPMDoTGOf0CdW2ag9jhpjOHSgEEzG_siWuBj29gnb_S9A2-175AO53gJV9aC3sIaz4-hGs7y7r47CxcxCzx_DtK7qgM7qk6ah6fcp07diwVa0hclh2OP7pJ2MiU2Yl7qmN2bNxzTQ7HhNTMRsuJMUYCbVNnsDoVkZ1Hdbqae03gDmuuUuTzIbCZsorpdGHUIikvAg-MREk_chVtuM0J2mNSbVkY6bBrkhrkwa74hG8Wdxy3hJ63NR5A6ej0qfocKvRsaA0LxEacikj2OznqOqW_axaGGkELxetuF4pCaNrP72cVbxIiOAIw9wItq7pI3iKMFAmEbztJ3_5jms_9umNX7QFd3HBVIf7RwebcE90KhgJfwZr81-X_jlCq7l50Rgxgx-3vWr-AZB0Mg4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Sampling+and+Problematic+Likelihood+Functions+in+a+Simple+Population+Model&rft.jtitle=Environmental+modeling+%26+assessment&rft.au=Pagendam%2C+D.+E.&rft.au=Pollett%2C+P.+K.&rft.date=2009-12-01&rft.pub=Springer+Netherlands&rft.issn=1420-2026&rft.eissn=1573-2967&rft.volume=14&rft.issue=6&rft_id=info:doi/10.1007%2Fs10666-008-9159-1&rft.externalDocID=10_1007_s10666_008_9159_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-2026&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-2026&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-2026&client=summon |