Classification of Postprandial Glycemic Status with Application to Insulin Dosing in Type 1 Diabetes—An In Silico Proof-of-Concept
In the daily management of type 1 diabetes (T1D), determining the correct insulin dose to be injected at meal-time is fundamental to achieve optimal glycemic control. Wearable sensors, such as continuous glucose monitoring (CGM) devices, are instrumental to achieve this purpose. In this paper, we sh...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 19; no. 14; p. 3168 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
18.07.2019
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s19143168 |
Cover
| Abstract | In the daily management of type 1 diabetes (T1D), determining the correct insulin dose to be injected at meal-time is fundamental to achieve optimal glycemic control. Wearable sensors, such as continuous glucose monitoring (CGM) devices, are instrumental to achieve this purpose. In this paper, we show how CGM data, together with commonly recorded inputs (carbohydrate intake and bolus insulin), can be used to develop an algorithm that allows classifying, at meal-time, the post-prandial glycemic status (i.e., blood glucose concentration being too low, too high, or within target range). Such an outcome can then be used to improve the efficacy of insulin therapy by reducing or increasing the corresponding meal bolus dose. A state-of-the-art T1D simulation environment, including intraday variability and a behavioral model, was used to generate a rich in silico dataset corresponding to 100 subjects over a two-month scenario. Then, an extreme gradient-boosted tree (XGB) algorithm was employed to classify the post-prandial glycemic status. Finally, we demonstrate how the XGB algorithm outcome can be exploited to improve glycemic control in T1D through real-time adjustment of the meal insulin bolus. The proposed XGB algorithm obtained good accuracy at classifying post-prandial glycemic status (AUROC = 0.84 [0.78, 0.87]). Consequently, when used to adjust, in real-time, meal insulin boluses obtained with a bolus calculator, the proposed approach improves glycemic control when compared to the baseline bolus calculator. In particular, percentage time in target [70, 180] mg/dL was improved from 61.98 (±13.89) to 67.00 (±11.54; p < 0.01) without increasing hypoglycemia. |
|---|---|
| AbstractList | In the daily management of type 1 diabetes (T1D), determining the correct insulin dose to be injected at meal-time is fundamental to achieve optimal glycemic control. Wearable sensors, such as continuous glucose monitoring (CGM) devices, are instrumental to achieve this purpose. In this paper, we show how CGM data, together with commonly recorded inputs (carbohydrate intake and bolus insulin), can be used to develop an algorithm that allows classifying, at meal-time, the post-prandial glycemic status (i.e., blood glucose concentration being too low, too high, or within target range). Such an outcome can then be used to improve the efficacy of insulin therapy by reducing or increasing the corresponding meal bolus dose. A state-of-the-art T1D simulation environment, including intraday variability and a behavioral model, was used to generate a rich in silico dataset corresponding to 100 subjects over a two-month scenario. Then, an extreme gradient-boosted tree (XGB) algorithm was employed to classify the post-prandial glycemic status. Finally, we demonstrate how the XGB algorithm outcome can be exploited to improve glycemic control in T1D through real-time adjustment of the meal insulin bolus. The proposed XGB algorithm obtained good accuracy at classifying post-prandial glycemic status (AUROC = 0.84 [0.78, 0.87]). Consequently, when used to adjust, in real-time, meal insulin boluses obtained with a bolus calculator, the proposed approach improves glycemic control when compared to the baseline bolus calculator. In particular, percentage time in target [70, 180] mg/dL was improved from 61.98 (± 13.89) to 67.00 (± 11.54; p < 0.01) without increasing hypoglycemia. In the daily management of type 1 diabetes (T1D), determining the correct insulin dose to be injected at meal-time is fundamental to achieve optimal glycemic control. Wearable sensors, such as continuous glucose monitoring (CGM) devices, are instrumental to achieve this purpose. In this paper, we show how CGM data, together with commonly recorded inputs (carbohydrate intake and bolus insulin), can be used to develop an algorithm that allows classifying, at meal-time, the post-prandial glycemic status (i.e., blood glucose concentration being too low, too high, or within target range). Such an outcome can then be used to improve the efficacy of insulin therapy by reducing or increasing the corresponding meal bolus dose. A state-of-the-art T1D simulation environment, including intraday variability and a behavioral model, was used to generate a rich in silico dataset corresponding to 100 subjects over a two-month scenario. Then, an extreme gradient-boosted tree (XGB) algorithm was employed to classify the post-prandial glycemic status. Finally, we demonstrate how the XGB algorithm outcome can be exploited to improve glycemic control in T1D through real-time adjustment of the meal insulin bolus. The proposed XGB algorithm obtained good accuracy at classifying post-prandial glycemic status (AUROC = 0.84 [0.78, 0.87]). Consequently, when used to adjust, in real-time, meal insulin boluses obtained with a bolus calculator, the proposed approach improves glycemic control when compared to the baseline bolus calculator. In particular, percentage time in target [70, 180] mg/dL was improved from 61.98 (± 13.89) to 67.00 (± 11.54; p < 0.01) without increasing hypoglycemia.In the daily management of type 1 diabetes (T1D), determining the correct insulin dose to be injected at meal-time is fundamental to achieve optimal glycemic control. Wearable sensors, such as continuous glucose monitoring (CGM) devices, are instrumental to achieve this purpose. In this paper, we show how CGM data, together with commonly recorded inputs (carbohydrate intake and bolus insulin), can be used to develop an algorithm that allows classifying, at meal-time, the post-prandial glycemic status (i.e., blood glucose concentration being too low, too high, or within target range). Such an outcome can then be used to improve the efficacy of insulin therapy by reducing or increasing the corresponding meal bolus dose. A state-of-the-art T1D simulation environment, including intraday variability and a behavioral model, was used to generate a rich in silico dataset corresponding to 100 subjects over a two-month scenario. Then, an extreme gradient-boosted tree (XGB) algorithm was employed to classify the post-prandial glycemic status. Finally, we demonstrate how the XGB algorithm outcome can be exploited to improve glycemic control in T1D through real-time adjustment of the meal insulin bolus. The proposed XGB algorithm obtained good accuracy at classifying post-prandial glycemic status (AUROC = 0.84 [0.78, 0.87]). Consequently, when used to adjust, in real-time, meal insulin boluses obtained with a bolus calculator, the proposed approach improves glycemic control when compared to the baseline bolus calculator. In particular, percentage time in target [70, 180] mg/dL was improved from 61.98 (± 13.89) to 67.00 (± 11.54; p < 0.01) without increasing hypoglycemia. In the daily management of type 1 diabetes (T1D), determining the correct insulin dose to be injected at meal-time is fundamental to achieve optimal glycemic control. Wearable sensors, such as continuous glucose monitoring (CGM) devices, are instrumental to achieve this purpose. In this paper, we show how CGM data, together with commonly recorded inputs (carbohydrate intake and bolus insulin), can be used to develop an algorithm that allows classifying, at meal-time, the post-prandial glycemic status (i.e., blood glucose concentration being too low, too high, or within target range). Such an outcome can then be used to improve the efficacy of insulin therapy by reducing or increasing the corresponding meal bolus dose. A state-of-the-art T1D simulation environment, including intraday variability and a behavioral model, was used to generate a rich in silico dataset corresponding to 100 subjects over a two-month scenario. Then, an extreme gradient-boosted tree (XGB) algorithm was employed to classify the post-prandial glycemic status. Finally, we demonstrate how the XGB algorithm outcome can be exploited to improve glycemic control in T1D through real-time adjustment of the meal insulin bolus. The proposed XGB algorithm obtained good accuracy at classifying post-prandial glycemic status (AUROC = 0.84 [0.78, 0.87]). Consequently, when used to adjust, in real-time, meal insulin boluses obtained with a bolus calculator, the proposed approach improves glycemic control when compared to the baseline bolus calculator. In particular, percentage time in target [70, 180] mg/dL was improved from 61.98 (±13.89) to 67.00 (±11.54; p < 0.01) without increasing hypoglycemia. |
| Author | Georgiou, Pantelis Herrero, Pau Cappon, Giacomo Facchinetti, Andrea Sparacino, Giovanni |
| AuthorAffiliation | 1 Department of Information Engineering, University of Padova, 35131 Padova (PD), Italy 2 Department of Electrical and Electronical Engineering, Imperial College London, London W5 5SA, UK |
| AuthorAffiliation_xml | – name: 2 Department of Electrical and Electronical Engineering, Imperial College London, London W5 5SA, UK – name: 1 Department of Information Engineering, University of Padova, 35131 Padova (PD), Italy |
| Author_xml | – sequence: 1 givenname: Giacomo orcidid: 0000-0003-4358-9268 surname: Cappon fullname: Cappon, Giacomo – sequence: 2 givenname: Andrea orcidid: 0000-0001-8041-2280 surname: Facchinetti fullname: Facchinetti, Andrea – sequence: 3 givenname: Giovanni orcidid: 0000-0002-3248-1393 surname: Sparacino fullname: Sparacino, Giovanni – sequence: 4 givenname: Pantelis surname: Georgiou fullname: Georgiou, Pantelis – sequence: 5 givenname: Pau orcidid: 0000-0002-7088-5807 surname: Herrero fullname: Herrero, Pau |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31323886$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kt1qFDEUxwep2A-98AUk4I0KYycfm8ncFJat1oWChdbrkMmcbLNkk3GSseydFz6CT-iTmO22S1tECORw8jt__ifnHBZ7Pngoite4-khpUx1H3GBGMRfPigPMCCsFIdXeg3i_OIxxWVWEUipeFPsUU0KF4AfFr5lTMVpjtUo2eBQMuggx9YPynVUOnbm1hpXV6DKpNEZ0Y9M1mva9uy9IAc19HJ316DRE6xcoR1frHhBGp1a1kCD--fl76jOGLm2uC-hiCMGU-cyC19Cnl8Vzo1yEV3f3UfHt86er2Zfy_OvZfDY9LzXjTSobZloDpMa607QD04gc6IZMlGpYbYjAAHhijKGEYa0qrqBtOTcgFGOiruhRMd_qdkEtZT_YlRrWMigrbxNhWEg1JKsdSCY0Baw0rmrCuNYC-ES3TDAAQ0VHstaHrdboe7W-Uc7tBHElN2ORu7Fk-GQL92O7gk6DT4Nyjxw8fvH2Wi7CD8l53ZAGZ4F3dwJD-D5CTHJlowbnlIcwRpkHiwknE7ox9vYJugzj4PO_ZqrCdT2p6o2jNw8d7azcb0YG3m8BPYQYBzD_be_4Cattul2P3Ix1_6j4C6NA2hY |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3518832 crossref_primary_10_3390_s20113214 crossref_primary_10_1186_s13098_022_00969_9 crossref_primary_10_1111_hepr_13966 crossref_primary_10_1109_TBME_2020_3004031 crossref_primary_10_1109_JBHI_2024_3443137 crossref_primary_10_3390_s21020546 crossref_primary_10_1016_j_arcontrol_2021_10_004 crossref_primary_10_1109_ACCESS_2023_3237992 crossref_primary_10_3390_s20143870 crossref_primary_10_2337_dc19_1675 crossref_primary_10_1016_j_smhl_2024_100457 crossref_primary_10_1002_jgh3_12915 crossref_primary_10_2196_22458 crossref_primary_10_3390_s19194338 crossref_primary_10_3390_s22051843 |
| Cites_doi | 10.1016/j.cmpb.2015.02.003 10.2337/dc15-2716 10.1007/s11517-014-1226-y 10.1088/0967-3334/25/4/010 10.1089/dia.2017.0248 10.3390/s16122093 10.1371/journal.pone.0187754 10.3390/electronics6030065 10.3390/s17010161 10.1177/1932296818774078 10.1177/1932296813514319 10.1177/1932296817698498 10.1089/dia.2014.0192 10.1109/TBME.2017.2746340 10.1109/LCSYS.2018.2844179 10.1177/1932296818777524 10.1097/MED.0b013e32835edb9d 10.1089/dia.2011.0006 10.1109/TBME.2004.839639 10.1177/1932296818759558 10.1002/cnm.2833 10.1109/JBHI.2018.2823763 10.1177/1932296814532906 10.1177/1932296815599177 10.1177/1932296814525826 10.2337/dc18-S015 10.1109/TBME.2017.2652062 |
| ContentType | Journal Article |
| Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
| Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s19143168 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Proquest Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_48c3e1ac107246cc8e65cb484eef38d2 10.3390/s19143168 PMC6679291 31323886 10_3390_s19143168 |
| Genre | Journal Article |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GrantInformation_xml | – fundername: Horizon 2020 Framework Programme grantid: 689810 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IAO IPNFZ ITC RIG UNPAY |
| ID | FETCH-LOGICAL-c469t-94fbfe271cdc3def98cdcc925aa947f281ee15fff3241ca06aebb66fe8a448703 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 19:05:23 EDT 2025 Sun Oct 26 04:16:06 EDT 2025 Tue Sep 30 16:51:44 EDT 2025 Thu Sep 04 16:27:20 EDT 2025 Tue Oct 07 06:36:11 EDT 2025 Wed Feb 19 02:31:43 EST 2025 Thu Apr 24 22:54:36 EDT 2025 Thu Oct 16 04:42:19 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | postprandial glycaemia type 1 diabetes continuous glucose monitoring machine learning gradient boosted trees decision support systems |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-94fbfe271cdc3def98cdcc925aa947f281ee15fff3241ca06aebb66fe8a448703 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4358-9268 0000-0002-3248-1393 0000-0002-7088-5807 0000-0001-8041-2280 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s19143168 |
| PMID | 31323886 |
| PQID | 2301775078 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_48c3e1ac107246cc8e65cb484eef38d2 unpaywall_primary_10_3390_s19143168 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6679291 proquest_miscellaneous_2331262532 proquest_journals_2301775078 pubmed_primary_31323886 crossref_primary_10_3390_s19143168 crossref_citationtrail_10_3390_s19143168 |
| PublicationCentury | 2000 |
| PublicationDate | 20190718 |
| PublicationDateYYYYMMDD | 2019-07-18 |
| PublicationDate_xml | – month: 7 year: 2019 text: 20190718 day: 18 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2019 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Cappon (ref_3) 2018; 13 Aiello (ref_11) 2019; 3 Vettoretti (ref_16) 2018; 65 Contreras (ref_14) 2017; 12 Facchinetti (ref_28) 2015; 53 ref_12 Schmidt (ref_31) 2014; 8 ref_34 Micheletto (ref_17) 2017; 8 Florkowski (ref_25) 2008; 29 Schiavon (ref_13) 2018; 20 Vettoretti (ref_33) 2018; 12 Visentin (ref_29) 2015; 17 Vettoretti (ref_27) 2017; 11 Fabris (ref_30) 2015; 10 Lane (ref_4) 2013; 20 Guerra (ref_20) 2011; 13 Maahs (ref_32) 2016; 39 ref_24 ref_23 Herrero (ref_9) 2015; 19 Gadeleta (ref_10) 2018; 23 ref_1 Cappon (ref_8) 2018; 12 Herrero (ref_18) 2015; 119 ref_2 Lodwig (ref_5) 2014; 8 Walsh (ref_19) 2014; 8 ref_26 Hovorka (ref_21) 2004; 25 Oviedo (ref_7) 2017; 33 Toffanin (ref_15) 2017; 65 ref_6 Willinska (ref_22) 2005; 52 |
| References_xml | – volume: 119 start-page: 1 year: 2015 ident: ref_18 article-title: Method for automatic adjustment of an insulin bolus calculator: In silico robustness evaluation under intra-day variability publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2015.02.003 – volume: 39 start-page: 1175 year: 2016 ident: ref_32 article-title: Outcome measures for artificial pancreas clinical trials: A consensus report publication-title: Diabetes Care doi: 10.2337/dc15-2716 – volume: 53 start-page: 1259 year: 2015 ident: ref_28 article-title: Model of glucose sensor error components: Identification and assessment for new Dexcom G4 generation devices publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-014-1226-y – volume: 25 start-page: 905 year: 2004 ident: ref_21 article-title: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes publication-title: Physiol. Meas. doi: 10.1088/0967-3334/25/4/010 – ident: ref_24 – volume: 20 start-page: 98 year: 2018 ident: ref_13 article-title: Insulin sensitivity index based optimization of insulin to carbohydrate ratio: In silico study shows efficacious protection against hypoglycemic events caused by suboptimal therapy publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2017.0248 – ident: ref_26 – ident: ref_34 doi: 10.3390/s16122093 – volume: 12 start-page: 1 year: 2017 ident: ref_14 article-title: Personalized blood glucose prediction: A hybrid approach using grammatical evolution and physiological models publication-title: PLoS ONE doi: 10.1371/journal.pone.0187754 – ident: ref_6 doi: 10.3390/electronics6030065 – ident: ref_23 doi: 10.3390/s17010161 – volume: 12 start-page: 1064 year: 2018 ident: ref_33 article-title: Continuous glucose monitoring: Current use in diabetes management and possible future applications publication-title: J. Diabetes Sci. Technol. doi: 10.1177/1932296818774078 – volume: 8 start-page: 170 year: 2014 ident: ref_19 article-title: Confusion regarding duraztion if insulin action: A potential source for major insulin dose errors by bolus calculators publication-title: J. Diabetes Sci. Technol. doi: 10.1177/1932296813514319 – volume: 11 start-page: 724 year: 2017 ident: ref_27 article-title: A model of self-monitoring blood glucose measurement error publication-title: J. Diabetes Sci. Technol. doi: 10.1177/1932296817698498 – volume: 17 start-page: 1 year: 2015 ident: ref_29 article-title: Circadian variability of insulin sensitivity: Physiological input for in silico artificial pancreas publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2014.0192 – volume: 65 start-page: 1281 year: 2018 ident: ref_16 article-title: Type-1 diabetes patient decision simulator for in silico testing safety and effectiveness of insulin treatments“ publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2746340 – volume: 3 start-page: 230 year: 2019 ident: ref_11 article-title: Postprandial glucose regulation via KNN meal classification in type 1 diabetes publication-title: IEEE Control Sys. Letters doi: 10.1109/LCSYS.2018.2844179 – volume: 13 start-page: 103 year: 2018 ident: ref_3 article-title: In silico assessment of literature insulin bolus calculation methods accounting for glucose rate of change publication-title: J. Diabetes Sci. Technol. doi: 10.1177/1932296818777524 – volume: 29 start-page: S83 year: 2008 ident: ref_25 article-title: Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: Communicating the performance of diagnostic tests publication-title: Clin. Biochem. Rev. – volume: 20 start-page: 106 year: 2013 ident: ref_4 article-title: Continuous glucose monitors: Current status and future developments publication-title: Curr. Opin. Endocrinol. Diabetes Obes. doi: 10.1097/MED.0b013e32835edb9d – volume: 13 start-page: 843 year: 2011 ident: ref_20 article-title: A dynamic risk measure from continuous glucose monitoring data publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2011.0006 – ident: ref_2 – volume: 19 start-page: 1087 year: 2015 ident: ref_9 article-title: Advanced insulin bolus advisor based on run-to-run control and case-based reasoning publication-title: IEEE J. Biomed. Health Inform. – ident: ref_12 – volume: 52 start-page: 3 year: 2005 ident: ref_22 article-title: Insulin kinetics in type 1 diabetes: Continuous and bolus delivery of rapid acting insulin publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.839639 – volume: 12 start-page: 265 year: 2018 ident: ref_8 article-title: A neural-network-based approach to personalize insulin bolus calculation using continuous glucose monitoring publication-title: J. Diabetes Sci. Technol. doi: 10.1177/1932296818759558 – volume: 33 start-page: e2833 year: 2017 ident: ref_7 article-title: A review of personalized blood glucose prediction strategies for T1DM patients publication-title: Int. J. Number Method Biomed. Eng. doi: 10.1002/cnm.2833 – volume: 23 start-page: 650 year: 2018 ident: ref_10 article-title: Prediction of adverse events from continuous glucose monitoring signal publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2823763 – volume: 8 start-page: 26 year: 2017 ident: ref_17 article-title: The UVa/Padova type 1 diabetes simulator: New features publication-title: J. Diabetes Sci. Technol. – volume: 8 start-page: 1035 year: 2014 ident: ref_31 article-title: Bolus calculators publication-title: J. Diabetes Sci. Technol. doi: 10.1177/1932296814532906 – volume: 10 start-page: 50 year: 2015 ident: ref_30 article-title: Are risk indices derived from CGM interchangeable with SMBG-based indices? publication-title: J. Diabetes Sci. Technol. doi: 10.1177/1932296815599177 – volume: 8 start-page: 390 year: 2014 ident: ref_5 article-title: Current trends in continuous glucose monitoring publication-title: J. Diabetes Sci. Technol. doi: 10.1177/1932296814525826 – ident: ref_1 doi: 10.2337/dc18-S015 – volume: 65 start-page: 479 year: 2017 ident: ref_15 article-title: Towards a run-to-run adaptive artificial pancreas: In silico results publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2652062 |
| SSID | ssj0023338 |
| Score | 2.370533 |
| Snippet | In the daily management of type 1 diabetes (T1D), determining the correct insulin dose to be injected at meal-time is fundamental to achieve optimal glycemic... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 3168 |
| SubjectTerms | Algorithms Blood Glucose - drug effects Blood Glucose Self-Monitoring Classification Clinical trials Computer Simulation continuous glucose monitoring decision support systems Diabetes Diabetes Mellitus, Type 1 - blood Diabetes Mellitus, Type 1 - drug therapy Diabetes Mellitus, Type 1 - pathology Dose-Response Relationship, Drug Glucose Glucose monitoring gradient boosted trees Humans Hyperglycemia Hyperglycemia - blood Hyperglycemia - drug therapy Hyperglycemia - pathology Hypoglycemia Hypoglycemic Agents - administration & dosage Insulin Insulin - administration & dosage Insulin Infusion Systems machine learning Meals Physiology postprandial glycaemia Postprandial Period Proof of Concept Study Sensors type 1 diabetes |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTttAEF0hLoUDaksBl1AtlAMXC6-9Xq-PaSgFJCokQOJmrTezIlJkRyQR4saBT-AL-ZLO2I6bqCAulaLIisfOambWfs-efcPYPmlmqdw4H0wc-9IEzs8dAH4hlnUI0S0QUTz_rU6u5dlNfDPX6otqwmp54Npxh1LbCISxSFNCqazVoGKbSy0BXKT71dU30OmMTDVUK0LmVesIRUjqD8ekYkYtmhbuPpVI_2vI8t8CyQ_TYmQe7s1wOHf3Of7I1hrYyLv1cD-xJSg-s9U5McF19lT1t6TKn8rZvHScOvGO7mjhCh77a_hgqRKeE76cjjk9geXdv--v-aTkp3VlOj8q6RECxy3iqVzwpnBm_PL43C3QjF8O8LiSXyDwdj5-evXyxy_s-vjnVe_Eb3os-BaJ8cRPpcPYhImwfRv1waUaN2waxsakMsFgCQARO-cQeAlrAmUgz5VyoA0SO7xcbLDloixgi3FjgzwM-ikt_pGJwfPKICe9UmcdAjnpsYOZ7zPbCJBTH4xhhkSEwpS1YfLYXms6qlU3XjP6QQFsDUgou_oB0ydr0id7L3081pmFP2tm7zhDWiYShFIJ_sduuxvnHb1MMQWUU7KJRIjkMcJTbNbZ0o6E5DAjrZXHkoU8Whjq4p5icFtpeyuVIGAVHvveZtzbHvj6PzywzVYQBNJKNl_oDlue3E1hB4HWJP9Wzak_HggrMw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QF6QLwJFGQeBy5W48RxnANC29JSkFhVQKXeIsexodIq2e5DqDcO_AR-Ib-EmbzaFQUpiqLEiayMH99nz3wD8JI0s1RhPHcmSbg0oeeFdw5PiGU9QnTriCh-nKjDY_nhJDnZgEkfC0Nulf2Y2AzUZW1pjXwHobJIcXpL9ZvZGaesUbS72qfQMF1qhfJ1IzF2DTYjUsYawebu_uTo00DBYmRkrb5QjGR_Z0HqZpS6aW1WasT7r0KcfztOXl9VM3P-3Uynl2alg1tws4OTbNza_zZsuOoObF0SGbwLP5u8l-QR1BiB1Z5Rht7ZnAJa8N1303NLHvKMcOdqwWhllo0v9rXZsmbvW4919rampQWGV8RfmWCdQ83i949f4wqLsc-n-F7NjhCQe47HXhsWeQ-OD_a_7B3yLvcCt0iYlzyTHm0WpcKWNi6dzzRe2CxKjMlkikYUzonEe4-ATFgTKuOKQinvtEHCh8PIfRhVdeUeAjM2LKKwzCgoSKYGvyvDgnRMvfUI8GQAr_p_n9tOmJzyY0xzJChkpnwwUwDPh6KzVo3jqkK7ZMChAAloNzfq-de864-51DZ2wlhkv5FU1mqnEltILZ3zsS6jALZ78-ddr17kF20wgGfDY-yPtMliKlevqEwsIiSVMX7iQdtahpqQTGastQogXWtHa1Vdf1Kdfms0v5VKEciKAF4MLe7ff-DR_yv_GG4g7KPYNS70NoyW85V7gtBqWTzt-ssffjMotA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLVQ9wA8MD5HYEPm44GXrHHiOM4T6gZjIDFNgkrjKbIde6uokqpNhsYTD_wEfiG_hHuTNLQwJCSkqkqaaydpru1znHuPCXmGmllCK-dbFcc-V4HztbMWvgDLOoDoxiJRfHckDsf87Ul8spLFj2GVQMUnTSeNWVg-jGDBkKWwM8RFloaz3L047-aSgHxEMIBK1P3cEHDWYEA2xkfHo49NUlFXuhUUioDdDxcoZ4bVrA1DjVr_ZRDzz0jJq3UxUxef1XS6MgwdbBK1vIE2-uTTbl3pXfPlN23H_7nDm-RGh1HpqHWqW-SKLW6T6yvKhXfIt2YxTQwzap4sLR3FZX9nc8ySgbKvpxcGw-4pgtl6QXG6l45-vSynVUnftGHw9GWJ8xUUtpAUU0a7KJ3Fj6_fRwWY0fcTKFfSY0D5zofPfptreZeMD1592D_0uwUdfAMsvPJT7sARwoSZ3ES5damEDZOGsVIpT8AzmLUsds4BymNGBUJZrYVwVipgkdA33SODoizsfUKVCXQY5ClmGvFEQb080CiO6owD1Mg98nz5fDPTqZ3johvTDFgPukLWu4JHnvSms1bi4zKjPXSS3gBVuZsfyvlp1jXyjEsTWaYMUOqQC2OkFbHRXHJrXSTz0CPbSxfLuq5ikQEHZAngtgTO8bg_DI0c39yowpY12kQsBKYaQRVbrUf2V4Lam5GUwiPJmq-uXer6kWJy1giJC5EAOmYeedp79d__gQf_ZPWQXANIiXlxPpPbZFDNa7sDsK3Sj7qW-RNkK0Bt priority: 102 providerName: Unpaywall |
| Title | Classification of Postprandial Glycemic Status with Application to Insulin Dosing in Type 1 Diabetes—An In Silico Proof-of-Concept |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31323886 https://www.proquest.com/docview/2301775078 https://www.proquest.com/docview/2331262532 https://pubmed.ncbi.nlm.nih.gov/PMC6679291 https://www.mdpi.com/1424-8220/19/14/3168/pdf?version=1563846819 https://doaj.org/article/48c3e1ac107246cc8e65cb484eef38d2 |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFD7a5QH2gLgTGJW5CPESiBMncR4Q6sa6gbSqAip1T5Hj2mNSlHS9CPrGAz-BX8gv4ZwkDasoSFEUJY5j-djx99nH3wF4TppZUaasa1QYukJ51s2sMXhCLGsRomtDRPG0H50MxYdRONqClVtzU4GzjdSO4kkNp_mrb5fLt9jh3xDjRMr-ekYaZRSA6cXk0qV4UrTu2gTX2IZdHLMSCupwKtr1BT9AZlbrDK3nsDY6VSL-m5Dn3w6U1xbFRC2_qjy_Mjr1bsKNBlaybt0ObsGWKW7D3hWxwTvwo4p_SZ5BlTFYaRlF6p1MaWMLvnucLzV5yjPCn4sZoxla1v2zvs3mJXtfe66zdyVNMTC8Ih7LOGsca2a_vv_sFpiMfbrA90o2QGBuXTwO6-2Rd2HYO_p8eOI2MRhcjcR57ibCou38mOuxDsbGJhIvdOKHSiUiRmNyY3horUVgxrXyImWyLIqskQqJH_5O7sFOURbmATClvcz3xgltDhKxwnyFl5GeqdUWgZ5w4OWq7lPdCJRTnIw8RaJCZkpbMznwtE06qVU5NiU6IAO2CUhIu7pRTs_Tpl-mQurAcKWRBfsi0lqaKNSZkMIYG8ix78D-yvzpqnGmSNt4jFArxm88aR9jv6TFFlWYckFpAu4juQwwi_t1a2lLQnKZgZSRA_FaO1or6vqT4uJLpf0dRTECWu7As7bF_bsGHv6_8I_gOsI_2sPmcrkPO_PpwjxGiDXPOrAdj2I8y95xB3YPjvqDj51quqJT9SO8N-wPume_ARuuMTA |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcEG8CBcxL4hI1ThwnOSC0tJRd-hASrbS31HFsqLRKln2o2hsHfgK_gx_FL2Emr-2Kwq3SahUlE2uUmbG_secB8JJqZslMWdeoMHSF8qybWWPwD7GsRYiuDTmKB4eyfyw-DsPhGvxqc2EorLKdE6uJOi817ZFvIVTmES5vUfx2_M2lrlF0utq20KjVYs8sztBlm74Z7KB8X_n-7vuj7b7bdBVwNbqCMzcRFrnxI65zHeTGJjFe6MQPlUpEhOxxY3horUWowbXypDJZJqU1sUJXBg0Ex70CV0WAcwnaTzRcOngB-nt19aIgSLytKdVOo8ZQK2te1RrgIjz7d1jmxrwYq8WZGo3OrXm7N-FGA1ZZr9auW7Bmittw_VwJwzvwo-qqSfFGlYhZaRn1_x1PKF0G3_0wWmiKv2eEaudTRvu-rLc8NWezkg3qeHi2U9LGBcMr8o4ZZ024zvT395-9AsnY51N8r2SfEO5bF3_bddLlXTi-FBncg_WiLMwDYEp7me_lCaUciUjhuMLLqEqq1Rbho3DgdfvtU92UPafuG6MU3R8SU9qJyYHnHem4rvVxEdE7EmBHQOW5qxvl5EvaWHsqYh0YrjT61r6QWsdGhjoTsTDGBnHuO7DZij9t5oxputRwB551j9Ha6QhHFaacE03AfXRZAxzifq0tHSdUhDOIY-lAtKJHK6yuPilOv1YVxaWMECZzB150GvfvL_Dw_8w_hY3-0cF-uj843HsE1xBgUpacy-NNWJ9N5uYxgrhZ9qSyHAYnl22qfwBz3GGR |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4IN4ECpiX1Eu0eThOckBo6bJ0KVSVoNLeguPYbaVVsmx2Ve2NAz-BX8PP4Zcwk9d2ReFWKYqi2LFGmRn7G3seAC8pZ5ZIpbG1DAKbS8fYqdEab4hlDUJ0pclQ_LQvdg_5h3Ew3oBfbSwMuVW2c2I1UWeFoj3yHkJlN8TlLYx6pnGLOBgM30y_2VRBik5a23IatYjs6eUpmm_l69EAef3K84bvvuzs2k2FAVuhWTi3Y26QMi90Vab8TJs4wgcVe4GUMQ-RVFdrNzDGIOxwlXSE1GkqhNGRRLMGlQXHvQSXQ9-PyZ0wHK-MPR9tvzqTETY6vZLyqFGRqLX1ryoTcB62_dtF8-oin8rlqZxMzqx_w5twowGurF9L2i3Y0PltuH4mneEd-FFV2CTfo4rdrDCMagFPZxQ6g9--nywV-eIzQriLktEeMOuvTtDZvGCj2jeeDQraxGD4RJYyc1njulP-_v6zn2M39vkEvyvYAUJ_Y-O1Uwdg3oXDC-HBPdjMi1w_ACaVk3pOFlP4EQ8ljsudlDKmGmUQSnILttt_n6gmBTpV4pgkaAoRm5KOTRY877pO67wf53V6SwzsOlCq7upFMTtKGs1PeKR87UqFdrbHhVKRFoFKecS1Nn6UeRZstexPmvmjTFbSbsGzrhk1n45zZK6LBfXxXQ_NVx-HuF9LS0cJJeT0o0hYEK7J0Rqp6y35yXGVXVyIECGza8GLTuL-_Qce_p_4p3AFlTT5ONrfewTXEGtSwJztRluwOZ8t9GPEc_P0SaU4DL5etKb-Ab8_ZdQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLVQ9wA8MD5HYEPm44GXrHHiOM4T6gZjIDFNgkrjKbIde6uokqpNhsYTD_wEfiG_hHuTNLQwJCSkqkqaaydpru1znHuPCXmGmllCK-dbFcc-V4HztbMWvgDLOoDoxiJRfHckDsf87Ul8spLFj2GVQMUnTSeNWVg-jGDBkKWwM8RFloaz3L047-aSgHxEMIBK1P3cEHDWYEA2xkfHo49NUlFXuhUUioDdDxcoZ4bVrA1DjVr_ZRDzz0jJq3UxUxef1XS6MgwdbBK1vIE2-uTTbl3pXfPlN23H_7nDm-RGh1HpqHWqW-SKLW6T6yvKhXfIt2YxTQwzap4sLR3FZX9nc8ySgbKvpxcGw-4pgtl6QXG6l45-vSynVUnftGHw9GWJ8xUUtpAUU0a7KJ3Fj6_fRwWY0fcTKFfSY0D5zofPfptreZeMD1592D_0uwUdfAMsvPJT7sARwoSZ3ES5damEDZOGsVIpT8AzmLUsds4BymNGBUJZrYVwVipgkdA33SODoizsfUKVCXQY5ClmGvFEQb080CiO6owD1Mg98nz5fDPTqZ3johvTDFgPukLWu4JHnvSms1bi4zKjPXSS3gBVuZsfyvlp1jXyjEsTWaYMUOqQC2OkFbHRXHJrXSTz0CPbSxfLuq5ikQEHZAngtgTO8bg_DI0c39yowpY12kQsBKYaQRVbrUf2V4Lam5GUwiPJmq-uXer6kWJy1giJC5EAOmYeedp79d__gQf_ZPWQXANIiXlxPpPbZFDNa7sDsK3Sj7qW-RNkK0Bt |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Postprandial+Glycemic+Status+with+Application+to+Insulin+Dosing+in+Type+1+Diabetes%E2%80%94An+In+Silico+Proof-of-Concept&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Cappon%2C+Giacomo&rft.au=Facchinetti%2C+Andrea&rft.au=Sparacino%2C+Giovanni&rft.au=Georgiou%2C+Pantelis&rft.date=2019-07-18&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=19&rft.issue=14&rft_id=info:doi/10.3390%2Fs19143168&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |