Classification of Postprandial Glycemic Status with Application to Insulin Dosing in Type 1 Diabetes—An In Silico Proof-of-Concept

In the daily management of type 1 diabetes (T1D), determining the correct insulin dose to be injected at meal-time is fundamental to achieve optimal glycemic control. Wearable sensors, such as continuous glucose monitoring (CGM) devices, are instrumental to achieve this purpose. In this paper, we sh...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 19; no. 14; p. 3168
Main Authors Cappon, Giacomo, Facchinetti, Andrea, Sparacino, Giovanni, Georgiou, Pantelis, Herrero, Pau
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 18.07.2019
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s19143168

Cover

Abstract In the daily management of type 1 diabetes (T1D), determining the correct insulin dose to be injected at meal-time is fundamental to achieve optimal glycemic control. Wearable sensors, such as continuous glucose monitoring (CGM) devices, are instrumental to achieve this purpose. In this paper, we show how CGM data, together with commonly recorded inputs (carbohydrate intake and bolus insulin), can be used to develop an algorithm that allows classifying, at meal-time, the post-prandial glycemic status (i.e., blood glucose concentration being too low, too high, or within target range). Such an outcome can then be used to improve the efficacy of insulin therapy by reducing or increasing the corresponding meal bolus dose. A state-of-the-art T1D simulation environment, including intraday variability and a behavioral model, was used to generate a rich in silico dataset corresponding to 100 subjects over a two-month scenario. Then, an extreme gradient-boosted tree (XGB) algorithm was employed to classify the post-prandial glycemic status. Finally, we demonstrate how the XGB algorithm outcome can be exploited to improve glycemic control in T1D through real-time adjustment of the meal insulin bolus. The proposed XGB algorithm obtained good accuracy at classifying post-prandial glycemic status (AUROC = 0.84 [0.78, 0.87]). Consequently, when used to adjust, in real-time, meal insulin boluses obtained with a bolus calculator, the proposed approach improves glycemic control when compared to the baseline bolus calculator. In particular, percentage time in target [70, 180] mg/dL was improved from 61.98 (±13.89) to 67.00 (±11.54; p < 0.01) without increasing hypoglycemia.
AbstractList In the daily management of type 1 diabetes (T1D), determining the correct insulin dose to be injected at meal-time is fundamental to achieve optimal glycemic control. Wearable sensors, such as continuous glucose monitoring (CGM) devices, are instrumental to achieve this purpose. In this paper, we show how CGM data, together with commonly recorded inputs (carbohydrate intake and bolus insulin), can be used to develop an algorithm that allows classifying, at meal-time, the post-prandial glycemic status (i.e., blood glucose concentration being too low, too high, or within target range). Such an outcome can then be used to improve the efficacy of insulin therapy by reducing or increasing the corresponding meal bolus dose. A state-of-the-art T1D simulation environment, including intraday variability and a behavioral model, was used to generate a rich in silico dataset corresponding to 100 subjects over a two-month scenario. Then, an extreme gradient-boosted tree (XGB) algorithm was employed to classify the post-prandial glycemic status. Finally, we demonstrate how the XGB algorithm outcome can be exploited to improve glycemic control in T1D through real-time adjustment of the meal insulin bolus. The proposed XGB algorithm obtained good accuracy at classifying post-prandial glycemic status (AUROC = 0.84 [0.78, 0.87]). Consequently, when used to adjust, in real-time, meal insulin boluses obtained with a bolus calculator, the proposed approach improves glycemic control when compared to the baseline bolus calculator. In particular, percentage time in target [70, 180] mg/dL was improved from 61.98 (± 13.89) to 67.00 (± 11.54; p < 0.01) without increasing hypoglycemia.
In the daily management of type 1 diabetes (T1D), determining the correct insulin dose to be injected at meal-time is fundamental to achieve optimal glycemic control. Wearable sensors, such as continuous glucose monitoring (CGM) devices, are instrumental to achieve this purpose. In this paper, we show how CGM data, together with commonly recorded inputs (carbohydrate intake and bolus insulin), can be used to develop an algorithm that allows classifying, at meal-time, the post-prandial glycemic status (i.e., blood glucose concentration being too low, too high, or within target range). Such an outcome can then be used to improve the efficacy of insulin therapy by reducing or increasing the corresponding meal bolus dose. A state-of-the-art T1D simulation environment, including intraday variability and a behavioral model, was used to generate a rich in silico dataset corresponding to 100 subjects over a two-month scenario. Then, an extreme gradient-boosted tree (XGB) algorithm was employed to classify the post-prandial glycemic status. Finally, we demonstrate how the XGB algorithm outcome can be exploited to improve glycemic control in T1D through real-time adjustment of the meal insulin bolus. The proposed XGB algorithm obtained good accuracy at classifying post-prandial glycemic status (AUROC = 0.84 [0.78, 0.87]). Consequently, when used to adjust, in real-time, meal insulin boluses obtained with a bolus calculator, the proposed approach improves glycemic control when compared to the baseline bolus calculator. In particular, percentage time in target [70, 180] mg/dL was improved from 61.98 (± 13.89) to 67.00 (± 11.54; p < 0.01) without increasing hypoglycemia.In the daily management of type 1 diabetes (T1D), determining the correct insulin dose to be injected at meal-time is fundamental to achieve optimal glycemic control. Wearable sensors, such as continuous glucose monitoring (CGM) devices, are instrumental to achieve this purpose. In this paper, we show how CGM data, together with commonly recorded inputs (carbohydrate intake and bolus insulin), can be used to develop an algorithm that allows classifying, at meal-time, the post-prandial glycemic status (i.e., blood glucose concentration being too low, too high, or within target range). Such an outcome can then be used to improve the efficacy of insulin therapy by reducing or increasing the corresponding meal bolus dose. A state-of-the-art T1D simulation environment, including intraday variability and a behavioral model, was used to generate a rich in silico dataset corresponding to 100 subjects over a two-month scenario. Then, an extreme gradient-boosted tree (XGB) algorithm was employed to classify the post-prandial glycemic status. Finally, we demonstrate how the XGB algorithm outcome can be exploited to improve glycemic control in T1D through real-time adjustment of the meal insulin bolus. The proposed XGB algorithm obtained good accuracy at classifying post-prandial glycemic status (AUROC = 0.84 [0.78, 0.87]). Consequently, when used to adjust, in real-time, meal insulin boluses obtained with a bolus calculator, the proposed approach improves glycemic control when compared to the baseline bolus calculator. In particular, percentage time in target [70, 180] mg/dL was improved from 61.98 (± 13.89) to 67.00 (± 11.54; p < 0.01) without increasing hypoglycemia.
In the daily management of type 1 diabetes (T1D), determining the correct insulin dose to be injected at meal-time is fundamental to achieve optimal glycemic control. Wearable sensors, such as continuous glucose monitoring (CGM) devices, are instrumental to achieve this purpose. In this paper, we show how CGM data, together with commonly recorded inputs (carbohydrate intake and bolus insulin), can be used to develop an algorithm that allows classifying, at meal-time, the post-prandial glycemic status (i.e., blood glucose concentration being too low, too high, or within target range). Such an outcome can then be used to improve the efficacy of insulin therapy by reducing or increasing the corresponding meal bolus dose. A state-of-the-art T1D simulation environment, including intraday variability and a behavioral model, was used to generate a rich in silico dataset corresponding to 100 subjects over a two-month scenario. Then, an extreme gradient-boosted tree (XGB) algorithm was employed to classify the post-prandial glycemic status. Finally, we demonstrate how the XGB algorithm outcome can be exploited to improve glycemic control in T1D through real-time adjustment of the meal insulin bolus. The proposed XGB algorithm obtained good accuracy at classifying post-prandial glycemic status (AUROC = 0.84 [0.78, 0.87]). Consequently, when used to adjust, in real-time, meal insulin boluses obtained with a bolus calculator, the proposed approach improves glycemic control when compared to the baseline bolus calculator. In particular, percentage time in target [70, 180] mg/dL was improved from 61.98 (±13.89) to 67.00 (±11.54; p < 0.01) without increasing hypoglycemia.
Author Georgiou, Pantelis
Herrero, Pau
Cappon, Giacomo
Facchinetti, Andrea
Sparacino, Giovanni
AuthorAffiliation 1 Department of Information Engineering, University of Padova, 35131 Padova (PD), Italy
2 Department of Electrical and Electronical Engineering, Imperial College London, London W5 5SA, UK
AuthorAffiliation_xml – name: 2 Department of Electrical and Electronical Engineering, Imperial College London, London W5 5SA, UK
– name: 1 Department of Information Engineering, University of Padova, 35131 Padova (PD), Italy
Author_xml – sequence: 1
  givenname: Giacomo
  orcidid: 0000-0003-4358-9268
  surname: Cappon
  fullname: Cappon, Giacomo
– sequence: 2
  givenname: Andrea
  orcidid: 0000-0001-8041-2280
  surname: Facchinetti
  fullname: Facchinetti, Andrea
– sequence: 3
  givenname: Giovanni
  orcidid: 0000-0002-3248-1393
  surname: Sparacino
  fullname: Sparacino, Giovanni
– sequence: 4
  givenname: Pantelis
  surname: Georgiou
  fullname: Georgiou, Pantelis
– sequence: 5
  givenname: Pau
  orcidid: 0000-0002-7088-5807
  surname: Herrero
  fullname: Herrero, Pau
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31323886$$D View this record in MEDLINE/PubMed
BookMark eNp9kt1qFDEUxwep2A-98AUk4I0KYycfm8ncFJat1oWChdbrkMmcbLNkk3GSseydFz6CT-iTmO22S1tECORw8jt__ifnHBZ7Pngoite4-khpUx1H3GBGMRfPigPMCCsFIdXeg3i_OIxxWVWEUipeFPsUU0KF4AfFr5lTMVpjtUo2eBQMuggx9YPynVUOnbm1hpXV6DKpNEZ0Y9M1mva9uy9IAc19HJ316DRE6xcoR1frHhBGp1a1kCD--fl76jOGLm2uC-hiCMGU-cyC19Cnl8Vzo1yEV3f3UfHt86er2Zfy_OvZfDY9LzXjTSobZloDpMa607QD04gc6IZMlGpYbYjAAHhijKGEYa0qrqBtOTcgFGOiruhRMd_qdkEtZT_YlRrWMigrbxNhWEg1JKsdSCY0Baw0rmrCuNYC-ES3TDAAQ0VHstaHrdboe7W-Uc7tBHElN2ORu7Fk-GQL92O7gk6DT4Nyjxw8fvH2Wi7CD8l53ZAGZ4F3dwJD-D5CTHJlowbnlIcwRpkHiwknE7ox9vYJugzj4PO_ZqrCdT2p6o2jNw8d7azcb0YG3m8BPYQYBzD_be_4Cattul2P3Ix1_6j4C6NA2hY
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3518832
crossref_primary_10_3390_s20113214
crossref_primary_10_1186_s13098_022_00969_9
crossref_primary_10_1111_hepr_13966
crossref_primary_10_1109_TBME_2020_3004031
crossref_primary_10_1109_JBHI_2024_3443137
crossref_primary_10_3390_s21020546
crossref_primary_10_1016_j_arcontrol_2021_10_004
crossref_primary_10_1109_ACCESS_2023_3237992
crossref_primary_10_3390_s20143870
crossref_primary_10_2337_dc19_1675
crossref_primary_10_1016_j_smhl_2024_100457
crossref_primary_10_1002_jgh3_12915
crossref_primary_10_2196_22458
crossref_primary_10_3390_s19194338
crossref_primary_10_3390_s22051843
Cites_doi 10.1016/j.cmpb.2015.02.003
10.2337/dc15-2716
10.1007/s11517-014-1226-y
10.1088/0967-3334/25/4/010
10.1089/dia.2017.0248
10.3390/s16122093
10.1371/journal.pone.0187754
10.3390/electronics6030065
10.3390/s17010161
10.1177/1932296818774078
10.1177/1932296813514319
10.1177/1932296817698498
10.1089/dia.2014.0192
10.1109/TBME.2017.2746340
10.1109/LCSYS.2018.2844179
10.1177/1932296818777524
10.1097/MED.0b013e32835edb9d
10.1089/dia.2011.0006
10.1109/TBME.2004.839639
10.1177/1932296818759558
10.1002/cnm.2833
10.1109/JBHI.2018.2823763
10.1177/1932296814532906
10.1177/1932296815599177
10.1177/1932296814525826
10.2337/dc18-S015
10.1109/TBME.2017.2652062
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s19143168
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Proquest Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_48c3e1ac107246cc8e65cb484eef38d2
10.3390/s19143168
PMC6679291
31323886
10_3390_s19143168
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: Horizon 2020 Framework Programme
  grantid: 689810
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IAO
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c469t-94fbfe271cdc3def98cdcc925aa947f281ee15fff3241ca06aebb66fe8a448703
IEDL.DBID M48
ISSN 1424-8220
IngestDate Tue Oct 14 19:05:23 EDT 2025
Sun Oct 26 04:16:06 EDT 2025
Tue Sep 30 16:51:44 EDT 2025
Thu Sep 04 16:27:20 EDT 2025
Tue Oct 07 06:36:11 EDT 2025
Wed Feb 19 02:31:43 EST 2025
Thu Apr 24 22:54:36 EDT 2025
Thu Oct 16 04:42:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords postprandial glycaemia
type 1 diabetes
continuous glucose monitoring
machine learning
gradient boosted trees
decision support systems
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-94fbfe271cdc3def98cdcc925aa947f281ee15fff3241ca06aebb66fe8a448703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4358-9268
0000-0002-3248-1393
0000-0002-7088-5807
0000-0001-8041-2280
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s19143168
PMID 31323886
PQID 2301775078
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_48c3e1ac107246cc8e65cb484eef38d2
unpaywall_primary_10_3390_s19143168
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6679291
proquest_miscellaneous_2331262532
proquest_journals_2301775078
pubmed_primary_31323886
crossref_primary_10_3390_s19143168
crossref_citationtrail_10_3390_s19143168
PublicationCentury 2000
PublicationDate 20190718
PublicationDateYYYYMMDD 2019-07-18
PublicationDate_xml – month: 7
  year: 2019
  text: 20190718
  day: 18
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Cappon (ref_3) 2018; 13
Aiello (ref_11) 2019; 3
Vettoretti (ref_16) 2018; 65
Contreras (ref_14) 2017; 12
Facchinetti (ref_28) 2015; 53
ref_12
Schmidt (ref_31) 2014; 8
ref_34
Micheletto (ref_17) 2017; 8
Florkowski (ref_25) 2008; 29
Schiavon (ref_13) 2018; 20
Vettoretti (ref_33) 2018; 12
Visentin (ref_29) 2015; 17
Vettoretti (ref_27) 2017; 11
Fabris (ref_30) 2015; 10
Lane (ref_4) 2013; 20
Guerra (ref_20) 2011; 13
Maahs (ref_32) 2016; 39
ref_24
ref_23
Herrero (ref_9) 2015; 19
Gadeleta (ref_10) 2018; 23
ref_1
Cappon (ref_8) 2018; 12
Herrero (ref_18) 2015; 119
ref_2
Lodwig (ref_5) 2014; 8
Walsh (ref_19) 2014; 8
ref_26
Hovorka (ref_21) 2004; 25
Oviedo (ref_7) 2017; 33
Toffanin (ref_15) 2017; 65
ref_6
Willinska (ref_22) 2005; 52
References_xml – volume: 119
  start-page: 1
  year: 2015
  ident: ref_18
  article-title: Method for automatic adjustment of an insulin bolus calculator: In silico robustness evaluation under intra-day variability
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2015.02.003
– volume: 39
  start-page: 1175
  year: 2016
  ident: ref_32
  article-title: Outcome measures for artificial pancreas clinical trials: A consensus report
  publication-title: Diabetes Care
  doi: 10.2337/dc15-2716
– volume: 53
  start-page: 1259
  year: 2015
  ident: ref_28
  article-title: Model of glucose sensor error components: Identification and assessment for new Dexcom G4 generation devices
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-014-1226-y
– volume: 25
  start-page: 905
  year: 2004
  ident: ref_21
  article-title: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/25/4/010
– ident: ref_24
– volume: 20
  start-page: 98
  year: 2018
  ident: ref_13
  article-title: Insulin sensitivity index based optimization of insulin to carbohydrate ratio: In silico study shows efficacious protection against hypoglycemic events caused by suboptimal therapy
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/dia.2017.0248
– ident: ref_26
– ident: ref_34
  doi: 10.3390/s16122093
– volume: 12
  start-page: 1
  year: 2017
  ident: ref_14
  article-title: Personalized blood glucose prediction: A hybrid approach using grammatical evolution and physiological models
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0187754
– ident: ref_6
  doi: 10.3390/electronics6030065
– ident: ref_23
  doi: 10.3390/s17010161
– volume: 12
  start-page: 1064
  year: 2018
  ident: ref_33
  article-title: Continuous glucose monitoring: Current use in diabetes management and possible future applications
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/1932296818774078
– volume: 8
  start-page: 170
  year: 2014
  ident: ref_19
  article-title: Confusion regarding duraztion if insulin action: A potential source for major insulin dose errors by bolus calculators
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/1932296813514319
– volume: 11
  start-page: 724
  year: 2017
  ident: ref_27
  article-title: A model of self-monitoring blood glucose measurement error
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/1932296817698498
– volume: 17
  start-page: 1
  year: 2015
  ident: ref_29
  article-title: Circadian variability of insulin sensitivity: Physiological input for in silico artificial pancreas
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/dia.2014.0192
– volume: 65
  start-page: 1281
  year: 2018
  ident: ref_16
  article-title: Type-1 diabetes patient decision simulator for in silico testing safety and effectiveness of insulin treatments“
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2746340
– volume: 3
  start-page: 230
  year: 2019
  ident: ref_11
  article-title: Postprandial glucose regulation via KNN meal classification in type 1 diabetes
  publication-title: IEEE Control Sys. Letters
  doi: 10.1109/LCSYS.2018.2844179
– volume: 13
  start-page: 103
  year: 2018
  ident: ref_3
  article-title: In silico assessment of literature insulin bolus calculation methods accounting for glucose rate of change
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/1932296818777524
– volume: 29
  start-page: S83
  year: 2008
  ident: ref_25
  article-title: Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: Communicating the performance of diagnostic tests
  publication-title: Clin. Biochem. Rev.
– volume: 20
  start-page: 106
  year: 2013
  ident: ref_4
  article-title: Continuous glucose monitors: Current status and future developments
  publication-title: Curr. Opin. Endocrinol. Diabetes Obes.
  doi: 10.1097/MED.0b013e32835edb9d
– volume: 13
  start-page: 843
  year: 2011
  ident: ref_20
  article-title: A dynamic risk measure from continuous glucose monitoring data
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/dia.2011.0006
– ident: ref_2
– volume: 19
  start-page: 1087
  year: 2015
  ident: ref_9
  article-title: Advanced insulin bolus advisor based on run-to-run control and case-based reasoning
  publication-title: IEEE J. Biomed. Health Inform.
– ident: ref_12
– volume: 52
  start-page: 3
  year: 2005
  ident: ref_22
  article-title: Insulin kinetics in type 1 diabetes: Continuous and bolus delivery of rapid acting insulin
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.839639
– volume: 12
  start-page: 265
  year: 2018
  ident: ref_8
  article-title: A neural-network-based approach to personalize insulin bolus calculation using continuous glucose monitoring
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/1932296818759558
– volume: 33
  start-page: e2833
  year: 2017
  ident: ref_7
  article-title: A review of personalized blood glucose prediction strategies for T1DM patients
  publication-title: Int. J. Number Method Biomed. Eng.
  doi: 10.1002/cnm.2833
– volume: 23
  start-page: 650
  year: 2018
  ident: ref_10
  article-title: Prediction of adverse events from continuous glucose monitoring signal
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2823763
– volume: 8
  start-page: 26
  year: 2017
  ident: ref_17
  article-title: The UVa/Padova type 1 diabetes simulator: New features
  publication-title: J. Diabetes Sci. Technol.
– volume: 8
  start-page: 1035
  year: 2014
  ident: ref_31
  article-title: Bolus calculators
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/1932296814532906
– volume: 10
  start-page: 50
  year: 2015
  ident: ref_30
  article-title: Are risk indices derived from CGM interchangeable with SMBG-based indices?
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/1932296815599177
– volume: 8
  start-page: 390
  year: 2014
  ident: ref_5
  article-title: Current trends in continuous glucose monitoring
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/1932296814525826
– ident: ref_1
  doi: 10.2337/dc18-S015
– volume: 65
  start-page: 479
  year: 2017
  ident: ref_15
  article-title: Towards a run-to-run adaptive artificial pancreas: In silico results
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2652062
SSID ssj0023338
Score 2.370533
Snippet In the daily management of type 1 diabetes (T1D), determining the correct insulin dose to be injected at meal-time is fundamental to achieve optimal glycemic...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3168
SubjectTerms Algorithms
Blood Glucose - drug effects
Blood Glucose Self-Monitoring
Classification
Clinical trials
Computer Simulation
continuous glucose monitoring
decision support systems
Diabetes
Diabetes Mellitus, Type 1 - blood
Diabetes Mellitus, Type 1 - drug therapy
Diabetes Mellitus, Type 1 - pathology
Dose-Response Relationship, Drug
Glucose
Glucose monitoring
gradient boosted trees
Humans
Hyperglycemia
Hyperglycemia - blood
Hyperglycemia - drug therapy
Hyperglycemia - pathology
Hypoglycemia
Hypoglycemic Agents - administration & dosage
Insulin
Insulin - administration & dosage
Insulin Infusion Systems
machine learning
Meals
Physiology
postprandial glycaemia
Postprandial Period
Proof of Concept Study
Sensors
type 1 diabetes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTttAEF0hLoUDaksBl1AtlAMXC6-9Xq-PaSgFJCokQOJmrTezIlJkRyQR4saBT-AL-ZLO2I6bqCAulaLIisfOambWfs-efcPYPmlmqdw4H0wc-9IEzs8dAH4hlnUI0S0QUTz_rU6u5dlNfDPX6otqwmp54Npxh1LbCISxSFNCqazVoGKbSy0BXKT71dU30OmMTDVUK0LmVesIRUjqD8ekYkYtmhbuPpVI_2vI8t8CyQ_TYmQe7s1wOHf3Of7I1hrYyLv1cD-xJSg-s9U5McF19lT1t6TKn8rZvHScOvGO7mjhCh77a_hgqRKeE76cjjk9geXdv--v-aTkp3VlOj8q6RECxy3iqVzwpnBm_PL43C3QjF8O8LiSXyDwdj5-evXyxy_s-vjnVe_Eb3os-BaJ8cRPpcPYhImwfRv1waUaN2waxsakMsFgCQARO-cQeAlrAmUgz5VyoA0SO7xcbLDloixgi3FjgzwM-ikt_pGJwfPKICe9UmcdAjnpsYOZ7zPbCJBTH4xhhkSEwpS1YfLYXms6qlU3XjP6QQFsDUgou_oB0ydr0id7L3081pmFP2tm7zhDWiYShFIJ_sduuxvnHb1MMQWUU7KJRIjkMcJTbNbZ0o6E5DAjrZXHkoU8Whjq4p5icFtpeyuVIGAVHvveZtzbHvj6PzywzVYQBNJKNl_oDlue3E1hB4HWJP9Wzak_HggrMw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QF6QLwJFGQeBy5W48RxnANC29JSkFhVQKXeIsexodIq2e5DqDcO_AR-Ib-EmbzaFQUpiqLEiayMH99nz3wD8JI0s1RhPHcmSbg0oeeFdw5PiGU9QnTriCh-nKjDY_nhJDnZgEkfC0Nulf2Y2AzUZW1pjXwHobJIcXpL9ZvZGaesUbS72qfQMF1qhfJ1IzF2DTYjUsYawebu_uTo00DBYmRkrb5QjGR_Z0HqZpS6aW1WasT7r0KcfztOXl9VM3P-3Uynl2alg1tws4OTbNza_zZsuOoObF0SGbwLP5u8l-QR1BiB1Z5Rht7ZnAJa8N1303NLHvKMcOdqwWhllo0v9rXZsmbvW4919rampQWGV8RfmWCdQ83i949f4wqLsc-n-F7NjhCQe47HXhsWeQ-OD_a_7B3yLvcCt0iYlzyTHm0WpcKWNi6dzzRe2CxKjMlkikYUzonEe4-ATFgTKuOKQinvtEHCh8PIfRhVdeUeAjM2LKKwzCgoSKYGvyvDgnRMvfUI8GQAr_p_n9tOmJzyY0xzJChkpnwwUwDPh6KzVo3jqkK7ZMChAAloNzfq-de864-51DZ2wlhkv5FU1mqnEltILZ3zsS6jALZ78-ddr17kF20wgGfDY-yPtMliKlevqEwsIiSVMX7iQdtahpqQTGastQogXWtHa1Vdf1Kdfms0v5VKEciKAF4MLe7ff-DR_yv_GG4g7KPYNS70NoyW85V7gtBqWTzt-ssffjMotA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLVQ9wA8MD5HYEPm44GXrHHiOM4T6gZjIDFNgkrjKbIde6uokqpNhsYTD_wEfiG_hHuTNLQwJCSkqkqaaydpru1znHuPCXmGmllCK-dbFcc-V4HztbMWvgDLOoDoxiJRfHckDsf87Ul8spLFj2GVQMUnTSeNWVg-jGDBkKWwM8RFloaz3L047-aSgHxEMIBK1P3cEHDWYEA2xkfHo49NUlFXuhUUioDdDxcoZ4bVrA1DjVr_ZRDzz0jJq3UxUxef1XS6MgwdbBK1vIE2-uTTbl3pXfPlN23H_7nDm-RGh1HpqHWqW-SKLW6T6yvKhXfIt2YxTQwzap4sLR3FZX9nc8ySgbKvpxcGw-4pgtl6QXG6l45-vSynVUnftGHw9GWJ8xUUtpAUU0a7KJ3Fj6_fRwWY0fcTKFfSY0D5zofPfptreZeMD1592D_0uwUdfAMsvPJT7sARwoSZ3ES5damEDZOGsVIpT8AzmLUsds4BymNGBUJZrYVwVipgkdA33SODoizsfUKVCXQY5ClmGvFEQb080CiO6owD1Mg98nz5fDPTqZ3johvTDFgPukLWu4JHnvSms1bi4zKjPXSS3gBVuZsfyvlp1jXyjEsTWaYMUOqQC2OkFbHRXHJrXSTz0CPbSxfLuq5ikQEHZAngtgTO8bg_DI0c39yowpY12kQsBKYaQRVbrUf2V4Lam5GUwiPJmq-uXer6kWJy1giJC5EAOmYeedp79d__gQf_ZPWQXANIiXlxPpPbZFDNa7sDsK3Sj7qW-RNkK0Bt
  priority: 102
  providerName: Unpaywall
Title Classification of Postprandial Glycemic Status with Application to Insulin Dosing in Type 1 Diabetes—An In Silico Proof-of-Concept
URI https://www.ncbi.nlm.nih.gov/pubmed/31323886
https://www.proquest.com/docview/2301775078
https://www.proquest.com/docview/2331262532
https://pubmed.ncbi.nlm.nih.gov/PMC6679291
https://www.mdpi.com/1424-8220/19/14/3168/pdf?version=1563846819
https://doaj.org/article/48c3e1ac107246cc8e65cb484eef38d2
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFD7a5QH2gLgTGJW5CPESiBMncR4Q6sa6gbSqAip1T5Hj2mNSlHS9CPrGAz-BX8gv4ZwkDasoSFEUJY5j-djx99nH3wF4TppZUaasa1QYukJ51s2sMXhCLGsRomtDRPG0H50MxYdRONqClVtzU4GzjdSO4kkNp_mrb5fLt9jh3xDjRMr-ekYaZRSA6cXk0qV4UrTu2gTX2IZdHLMSCupwKtr1BT9AZlbrDK3nsDY6VSL-m5Dn3w6U1xbFRC2_qjy_Mjr1bsKNBlaybt0ObsGWKW7D3hWxwTvwo4p_SZ5BlTFYaRlF6p1MaWMLvnucLzV5yjPCn4sZoxla1v2zvs3mJXtfe66zdyVNMTC8Ih7LOGsca2a_vv_sFpiMfbrA90o2QGBuXTwO6-2Rd2HYO_p8eOI2MRhcjcR57ibCou38mOuxDsbGJhIvdOKHSiUiRmNyY3horUVgxrXyImWyLIqskQqJH_5O7sFOURbmATClvcz3xgltDhKxwnyFl5GeqdUWgZ5w4OWq7lPdCJRTnIw8RaJCZkpbMznwtE06qVU5NiU6IAO2CUhIu7pRTs_Tpl-mQurAcKWRBfsi0lqaKNSZkMIYG8ix78D-yvzpqnGmSNt4jFArxm88aR9jv6TFFlWYckFpAu4juQwwi_t1a2lLQnKZgZSRA_FaO1or6vqT4uJLpf0dRTECWu7As7bF_bsGHv6_8I_gOsI_2sPmcrkPO_PpwjxGiDXPOrAdj2I8y95xB3YPjvqDj51quqJT9SO8N-wPume_ARuuMTA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcEG8CBcxL4hI1ThwnOSC0tJRd-hASrbS31HFsqLRKln2o2hsHfgK_gx_FL2Emr-2Kwq3SahUlE2uUmbG_secB8JJqZslMWdeoMHSF8qybWWPwD7GsRYiuDTmKB4eyfyw-DsPhGvxqc2EorLKdE6uJOi817ZFvIVTmES5vUfx2_M2lrlF0utq20KjVYs8sztBlm74Z7KB8X_n-7vuj7b7bdBVwNbqCMzcRFrnxI65zHeTGJjFe6MQPlUpEhOxxY3horUWowbXypDJZJqU1sUJXBg0Ex70CV0WAcwnaTzRcOngB-nt19aIgSLytKdVOo8ZQK2te1RrgIjz7d1jmxrwYq8WZGo3OrXm7N-FGA1ZZr9auW7Bmittw_VwJwzvwo-qqSfFGlYhZaRn1_x1PKF0G3_0wWmiKv2eEaudTRvu-rLc8NWezkg3qeHi2U9LGBcMr8o4ZZ024zvT395-9AsnY51N8r2SfEO5bF3_bddLlXTi-FBncg_WiLMwDYEp7me_lCaUciUjhuMLLqEqq1Rbho3DgdfvtU92UPafuG6MU3R8SU9qJyYHnHem4rvVxEdE7EmBHQOW5qxvl5EvaWHsqYh0YrjT61r6QWsdGhjoTsTDGBnHuO7DZij9t5oxputRwB551j9Ha6QhHFaacE03AfXRZAxzifq0tHSdUhDOIY-lAtKJHK6yuPilOv1YVxaWMECZzB150GvfvL_Dw_8w_hY3-0cF-uj843HsE1xBgUpacy-NNWJ9N5uYxgrhZ9qSyHAYnl22qfwBz3GGR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4IN4ECpiX1Eu0eThOckBo6bJ0KVSVoNLeguPYbaVVsmx2Ve2NAz-BX8PP4Zcwk9d2ReFWKYqi2LFGmRn7G3seAC8pZ5ZIpbG1DAKbS8fYqdEab4hlDUJ0pclQ_LQvdg_5h3Ew3oBfbSwMuVW2c2I1UWeFoj3yHkJlN8TlLYx6pnGLOBgM30y_2VRBik5a23IatYjs6eUpmm_l69EAef3K84bvvuzs2k2FAVuhWTi3Y26QMi90Vab8TJs4wgcVe4GUMQ-RVFdrNzDGIOxwlXSE1GkqhNGRRLMGlQXHvQSXQ9-PyZ0wHK-MPR9tvzqTETY6vZLyqFGRqLX1ryoTcB62_dtF8-oin8rlqZxMzqx_w5twowGurF9L2i3Y0PltuH4mneEd-FFV2CTfo4rdrDCMagFPZxQ6g9--nywV-eIzQriLktEeMOuvTtDZvGCj2jeeDQraxGD4RJYyc1njulP-_v6zn2M39vkEvyvYAUJ_Y-O1Uwdg3oXDC-HBPdjMi1w_ACaVk3pOFlP4EQ8ljsudlDKmGmUQSnILttt_n6gmBTpV4pgkaAoRm5KOTRY877pO67wf53V6SwzsOlCq7upFMTtKGs1PeKR87UqFdrbHhVKRFoFKecS1Nn6UeRZstexPmvmjTFbSbsGzrhk1n45zZK6LBfXxXQ_NVx-HuF9LS0cJJeT0o0hYEK7J0Rqp6y35yXGVXVyIECGza8GLTuL-_Qce_p_4p3AFlTT5ONrfewTXEGtSwJztRluwOZ8t9GPEc_P0SaU4DL5etKb-Ab8_ZdQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLVQ9wA8MD5HYEPm44GXrHHiOM4T6gZjIDFNgkrjKbIde6uokqpNhsYTD_wEfiG_hHuTNLQwJCSkqkqaaydpru1znHuPCXmGmllCK-dbFcc-V4HztbMWvgDLOoDoxiJRfHckDsf87Ul8spLFj2GVQMUnTSeNWVg-jGDBkKWwM8RFloaz3L047-aSgHxEMIBK1P3cEHDWYEA2xkfHo49NUlFXuhUUioDdDxcoZ4bVrA1DjVr_ZRDzz0jJq3UxUxef1XS6MgwdbBK1vIE2-uTTbl3pXfPlN23H_7nDm-RGh1HpqHWqW-SKLW6T6yvKhXfIt2YxTQwzap4sLR3FZX9nc8ySgbKvpxcGw-4pgtl6QXG6l45-vSynVUnftGHw9GWJ8xUUtpAUU0a7KJ3Fj6_fRwWY0fcTKFfSY0D5zofPfptreZeMD1592D_0uwUdfAMsvPJT7sARwoSZ3ES5damEDZOGsVIpT8AzmLUsds4BymNGBUJZrYVwVipgkdA33SODoizsfUKVCXQY5ClmGvFEQb080CiO6owD1Mg98nz5fDPTqZ3johvTDFgPukLWu4JHnvSms1bi4zKjPXSS3gBVuZsfyvlp1jXyjEsTWaYMUOqQC2OkFbHRXHJrXSTz0CPbSxfLuq5ikQEHZAngtgTO8bg_DI0c39yowpY12kQsBKYaQRVbrUf2V4Lam5GUwiPJmq-uXer6kWJy1giJC5EAOmYeedp79d__gQf_ZPWQXANIiXlxPpPbZFDNa7sDsK3Sj7qW-RNkK0Bt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Postprandial+Glycemic+Status+with+Application+to+Insulin+Dosing+in+Type+1+Diabetes%E2%80%94An+In+Silico+Proof-of-Concept&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Cappon%2C+Giacomo&rft.au=Facchinetti%2C+Andrea&rft.au=Sparacino%2C+Giovanni&rft.au=Georgiou%2C+Pantelis&rft.date=2019-07-18&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=19&rft.issue=14&rft_id=info:doi/10.3390%2Fs19143168&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon