Using Deep Learning to Recognize Therapeutic Effects of Music Based on Emotions

Music is important in everyday life, and music therapy can help treat a variety of health issues. Music listening is a technique used by music therapists in various clinical treatments. As a result, music therapists must have an intelligent system at their disposal to assist and support them in sele...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 2; p. 986
Main Authors Modran, Horia Alexandru, Chamunorwa, Tinashe, Ursuțiu, Doru, Samoilă, Cornel, Hedeșiu, Horia
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 14.01.2023
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23020986

Cover

Abstract Music is important in everyday life, and music therapy can help treat a variety of health issues. Music listening is a technique used by music therapists in various clinical treatments. As a result, music therapists must have an intelligent system at their disposal to assist and support them in selecting the most appropriate music for each patient. Previous research has not thoroughly addressed the relationship between music features and their effects on patients. The current paper focuses on identifying and predicting whether music has therapeutic benefits. A machine learning model is developed, using a multi-class neural network to classify emotions into four categories and then predict the output. The neural network developed has three layers: (i) an input layer with multiple features; (ii) a deep connected hidden layer; (iii) an output layer. K-Fold Cross Validation was used to assess the estimator. The experiment aims to create a machine-learning model that can predict whether a specific song has therapeutic effects on a specific person. The model considers a person’s musical and emotional characteristics but is also trained to consider solfeggio frequencies. During the training phase, a subset of the Million Dataset is used. The user selects their favorite type of music and their current mood to allow the model to make a prediction. If the selected song is inappropriate, the application, using Machine Learning, recommends another type of music that may be useful for that specific user. An ongoing study is underway to validate the Machine Learning model. The developed system has been tested on many individuals. Because it achieved very good performance indicators, the proposed solution can be used by music therapists or even patients to select the appropriate song for their treatment.
AbstractList Music is important in everyday life, and music therapy can help treat a variety of health issues. Music listening is a technique used by music therapists in various clinical treatments. As a result, music therapists must have an intelligent system at their disposal to assist and support them in selecting the most appropriate music for each patient. Previous research has not thoroughly addressed the relationship between music features and their effects on patients. The current paper focuses on identifying and predicting whether music has therapeutic benefits. A machine learning model is developed, using a multi-class neural network to classify emotions into four categories and then predict the output. The neural network developed has three layers: (i) an input layer with multiple features; (ii) a deep connected hidden layer; (iii) an output layer. K-Fold Cross Validation was used to assess the estimator. The experiment aims to create a machine-learning model that can predict whether a specific song has therapeutic effects on a specific person. The model considers a person’s musical and emotional characteristics but is also trained to consider solfeggio frequencies. During the training phase, a subset of the Million Dataset is used. The user selects their favorite type of music and their current mood to allow the model to make a prediction. If the selected song is inappropriate, the application, using Machine Learning, recommends another type of music that may be useful for that specific user. An ongoing study is underway to validate the Machine Learning model. The developed system has been tested on many individuals. Because it achieved very good performance indicators, the proposed solution can be used by music therapists or even patients to select the appropriate song for their treatment.
Music is important in everyday life, and music therapy can help treat a variety of health issues. Music listening is a technique used by music therapists in various clinical treatments. As a result, music therapists must have an intelligent system at their disposal to assist and support them in selecting the most appropriate music for each patient. Previous research has not thoroughly addressed the relationship between music features and their effects on patients. The current paper focuses on identifying and predicting whether music has therapeutic benefits. A machine learning model is developed, using a multi-class neural network to classify emotions into four categories and then predict the output. The neural network developed has three layers: (i) an input layer with multiple features; (ii) a deep connected hidden layer; (iii) an output layer. K-Fold Cross Validation was used to assess the estimator. The experiment aims to create a machine-learning model that can predict whether a specific song has therapeutic effects on a specific person. The model considers a person's musical and emotional characteristics but is also trained to consider solfeggio frequencies. During the training phase, a subset of the Million Dataset is used. The user selects their favorite type of music and their current mood to allow the model to make a prediction. If the selected song is inappropriate, the application, using Machine Learning, recommends another type of music that may be useful for that specific user. An ongoing study is underway to validate the Machine Learning model. The developed system has been tested on many individuals. Because it achieved very good performance indicators, the proposed solution can be used by music therapists or even patients to select the appropriate song for their treatment.Music is important in everyday life, and music therapy can help treat a variety of health issues. Music listening is a technique used by music therapists in various clinical treatments. As a result, music therapists must have an intelligent system at their disposal to assist and support them in selecting the most appropriate music for each patient. Previous research has not thoroughly addressed the relationship between music features and their effects on patients. The current paper focuses on identifying and predicting whether music has therapeutic benefits. A machine learning model is developed, using a multi-class neural network to classify emotions into four categories and then predict the output. The neural network developed has three layers: (i) an input layer with multiple features; (ii) a deep connected hidden layer; (iii) an output layer. K-Fold Cross Validation was used to assess the estimator. The experiment aims to create a machine-learning model that can predict whether a specific song has therapeutic effects on a specific person. The model considers a person's musical and emotional characteristics but is also trained to consider solfeggio frequencies. During the training phase, a subset of the Million Dataset is used. The user selects their favorite type of music and their current mood to allow the model to make a prediction. If the selected song is inappropriate, the application, using Machine Learning, recommends another type of music that may be useful for that specific user. An ongoing study is underway to validate the Machine Learning model. The developed system has been tested on many individuals. Because it achieved very good performance indicators, the proposed solution can be used by music therapists or even patients to select the appropriate song for their treatment.
Author Modran, Horia Alexandru
Hedeșiu, Horia
Ursuțiu, Doru
Chamunorwa, Tinashe
Samoilă, Cornel
AuthorAffiliation 2 Romanian Academy of Scientists, 050044 Bucharest, Romania
1 Faculty of Electrical Engineering and Computer Science, Transilvania University of Brasov, 500036 Brasov, Romania
3 Romanian Academy of Technical Sciences, 010413 Bucharest, Romania
4 Electrical Machines and Drives Department, Technical University of Cluj Napoca, 400027 Cluj-Napoca, Romania
AuthorAffiliation_xml – name: 2 Romanian Academy of Scientists, 050044 Bucharest, Romania
– name: 3 Romanian Academy of Technical Sciences, 010413 Bucharest, Romania
– name: 4 Electrical Machines and Drives Department, Technical University of Cluj Napoca, 400027 Cluj-Napoca, Romania
– name: 1 Faculty of Electrical Engineering and Computer Science, Transilvania University of Brasov, 500036 Brasov, Romania
Author_xml – sequence: 1
  givenname: Horia Alexandru
  orcidid: 0000-0002-2356-7566
  surname: Modran
  fullname: Modran, Horia Alexandru
– sequence: 2
  givenname: Tinashe
  orcidid: 0000-0001-5850-4162
  surname: Chamunorwa
  fullname: Chamunorwa, Tinashe
– sequence: 3
  givenname: Doru
  orcidid: 0000-0003-0157-0331
  surname: Ursuțiu
  fullname: Ursuțiu, Doru
– sequence: 4
  givenname: Cornel
  orcidid: 0000-0002-4706-1033
  surname: Samoilă
  fullname: Samoilă, Cornel
– sequence: 5
  givenname: Horia
  orcidid: 0000-0001-6886-7346
  surname: Hedeșiu
  fullname: Hedeșiu, Horia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36679783$$D View this record in MEDLINE/PubMed
BookMark eNp1kV1rFDEUhoNU7Ide-AdkwBsV1uZrMsmNoHXVwkpB2uuQyZxss8wmYzKj1F9vxq1LW_Qqyclz3rx5zzE6CDEAQs8JfsuYwqeZMkyxkuIROiKc8oWkFB_c2R-i45w3GFPGmHyCDpkQjWokO0IXV9mHdfURYKhWYFKYT2OsvoGN6-B_QXV5DckMMI3eVkvnwI65iq76OuVS-GAydFUM1XIbRx9DfooeO9NneHa7nqCrT8vLsy-L1cXn87P3q4XlQo0LxZyyABg6xh1lzkojaWOVo5Jg3jFgjtSu5dhJ14KTwnaula2sO1uD6Dg7Qec73S6ajR6S35p0o6Px-k8hprU2qVjuQTOMubVWNC0lvG1raaiSNTeynGirbNF6s9OawmBufpq-3wsSrOeE9T7hAr_bwcPUbqGzEMZk-nsO7t8Ef63X8YcuzQTXpAi8uhVI8fsEedRbny30vQkQp6xpI8rIREPmt14-QDdxSqHkOlMNVYILVqgXdx3trfwdcgFOd4BNMecETls_mnlcxaDv__nJ1w86_h_IbxZ7xVs
CitedBy_id crossref_primary_10_3389_fcvm_2024_1536829
crossref_primary_10_2478_amns_2025_0692
crossref_primary_10_1051_itmconf_20246701046
crossref_primary_10_1007_s11042_023_17290_w
crossref_primary_10_3389_fcomp_2023_1305413
crossref_primary_10_1177_07334648251318781
crossref_primary_10_1016_j_bspc_2023_105876
crossref_primary_10_57197_JDR_2024_0017
crossref_primary_10_3389_fnbot_2023_1267561
crossref_primary_10_15406_ijcam_2023_16_00639
crossref_primary_10_7717_peerj_cs_1589
crossref_primary_10_3390_healthcare12030411
crossref_primary_10_1016_j_bbr_2023_114461
Cites_doi 10.1093/jmt/thx011
10.7717/peerj-cs.785
10.1016/j.explore.2019.04.001
10.1109/ICATCCT.2016.7911976
10.1155/2016/5965894
10.4172/2155-6105.1000335
10.1145/3343031.3350867
10.3233/JAD-190361
10.1109/79.911197
10.1109/SLT.2018.8639633
10.1109/ACCESS.2021.3091169
10.1371/journal.pone.0187363
10.1016/j.cmpb.2019.105160
10.1093/bioinformatics/btaa243
10.3389/frai.2020.497864
10.4236/health.2018.109088
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s23020986
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Music
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_3004ccc67b214bb58a29854a814b2b9c
10.3390/s23020986
PMC9861051
36679783
10_3390_s23020986
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c469t-93f9cee0ed34f23fc8a827c9f28104d3e3f15fb40f8fbef86cdfb8b85dc5e6d43
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:41:17 EDT 2025
Sun Oct 26 02:52:18 EDT 2025
Tue Sep 30 17:16:35 EDT 2025
Fri Sep 05 08:50:01 EDT 2025
Tue Oct 07 07:20:48 EDT 2025
Wed Feb 19 02:26:17 EST 2025
Thu Oct 16 04:33:43 EDT 2025
Thu Apr 24 23:07:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords deep learning
python
music therapy
artificial intelligence
neural networks
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-93f9cee0ed34f23fc8a827c9f28104d3e3f15fb40f8fbef86cdfb8b85dc5e6d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2356-7566
0000-0002-4706-1033
0000-0003-0157-0331
0000-0001-5850-4162
0000-0001-6886-7346
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23020986
PMID 36679783
PQID 2767296463
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_3004ccc67b214bb58a29854a814b2b9c
unpaywall_primary_10_3390_s23020986
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9861051
proquest_miscellaneous_2768226716
proquest_journals_2767296463
pubmed_primary_36679783
crossref_citationtrail_10_3390_s23020986
crossref_primary_10_3390_s23020986
PublicationCentury 2000
PublicationDate 20230114
PublicationDateYYYYMMDD 2023-01-14
PublicationDate_xml – month: 1
  year: 2023
  text: 20230114
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Kern (ref_7) 2017; 54
Hoang (ref_22) 2021; 9
ref_14
ref_13
ref_12
ref_11
ref_10
ref_32
ref_30
Xu (ref_20) 2021; 7
ref_19
ref_17
ref_16
ref_15
Raymaekers (ref_31) 2020; 36
Williams (ref_9) 2020; 3
Akimoto (ref_24) 2018; 10
Kim (ref_18) 2010; 86
Cowie (ref_21) 2001; 18
ref_23
Spruit (ref_5) 2019; 14
ref_1
Raglio (ref_3) 2020; 185
Cunha (ref_4) 2019; 70
ref_2
ref_29
ref_28
ref_26
ref_8
Babayi (ref_27) 2017; 8
Nakajima (ref_25) 2016; 2016
ref_6
References_xml – ident: ref_28
– ident: ref_30
– ident: ref_32
– volume: 54
  start-page: 255
  year: 2017
  ident: ref_7
  article-title: Music Therapy Practice Status and Trends Worldwide: An International Survey Study
  publication-title: J. Music. Ther.
  doi: 10.1093/jmt/thx011
– volume: 7
  start-page: e785
  year: 2021
  ident: ref_20
  article-title: Using machine learning analysis to interpret the relationship between music emotion and lyric features
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.785
– ident: ref_26
  doi: 10.1016/j.explore.2019.04.001
– volume: 14
  start-page: 294
  year: 2019
  ident: ref_5
  article-title: Effects of Music Interventions on Stress-Related Outcomes: A Systematic Review and Two Meta-Analyses
  publication-title: Health Psychol Rev.
– ident: ref_11
– ident: ref_2
  doi: 10.1109/ICATCCT.2016.7911976
– ident: ref_16
– volume: 2016
  start-page: 1
  year: 2016
  ident: ref_25
  article-title: Stress Recovery Effects of High- and Low-Frequency Amplified Music on Heart Rate Variability
  publication-title: Behav. Neurol.
  doi: 10.1155/2016/5965894
– ident: ref_14
– volume: 8
  start-page: 1
  year: 2017
  ident: ref_27
  article-title: The Effects of 528 Hz Sound Wave to Reduce Cell Death in Human Astrocyte Primary Cell Culture Treated with Ethanol
  publication-title: J. Addict. Res. Ther.
  doi: 10.4172/2155-6105.1000335
– ident: ref_1
– ident: ref_17
  doi: 10.1145/3343031.3350867
– volume: 70
  start-page: 433
  year: 2019
  ident: ref_4
  article-title: Preferred Music Listening Intervention in Nursing Home Residents with Cognitive Impairment: A Randomized Intervention Study
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-190361
– volume: 18
  start-page: 32
  year: 2001
  ident: ref_21
  article-title: Emotion recognition in human-computer interaction, 2001
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.911197
– ident: ref_8
– ident: ref_29
– ident: ref_23
  doi: 10.1109/SLT.2018.8639633
– volume: 9
  start-page: 90465
  year: 2021
  ident: ref_22
  article-title: Context-Aware Emotion Recognition Based on Visual Relationship Detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3091169
– ident: ref_6
  doi: 10.1371/journal.pone.0187363
– ident: ref_12
– ident: ref_10
– volume: 86
  start-page: 937
  year: 2010
  ident: ref_18
  article-title: Music emotion recognition: A state of the art review
  publication-title: Proc. Ismir.
– ident: ref_15
– volume: 185
  start-page: 105160
  year: 2020
  ident: ref_3
  article-title: Machine learning techniques to predict the effectiveness of music therapy: A randomized controlled trial
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.105160
– ident: ref_13
– ident: ref_19
– volume: 36
  start-page: 849
  year: 2020
  ident: ref_31
  article-title: Pooled variable scaling for cluster analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa243
– volume: 3
  start-page: 497864
  year: 2020
  ident: ref_9
  article-title: On the use of AI for Generation of Functional Music to Improve Mental Health
  publication-title: Front. Artif. Intell.
  doi: 10.3389/frai.2020.497864
– volume: 10
  start-page: 1159
  year: 2018
  ident: ref_24
  article-title: Effect of 528 Hz Music on the Endocrine System and Autonomic Nervous System
  publication-title: Health
  doi: 10.4236/health.2018.109088
SSID ssj0023338
Score 2.5075328
Snippet Music is important in everyday life, and music therapy can help treat a variety of health issues. Music listening is a technique used by music therapists in...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 986
SubjectTerms Algorithms
Artificial intelligence
Classification
Datasets
Deep Learning
Emotions
Harmony (Music)
Humans
Information retrieval
Listening
Machine Learning
Melody
Mental health
Music
Music therapy
Musical performances
neural networks
Neural Networks, Computer
python
Signal processing
Stress
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VXFoOqA8eKVC5wIFLRGInjn3kqVUlQEIgcYtsxwakVbLq7qqCX884zoZdsVUvPTqegzMee-bz2N8AHAjJpUlSETsraZxxy2KJe2IssFlRW6RG-_OOyys-uMt-3ef3c6W-_J2wQA8cFHfkGaGMMbzQNM20zoWiUuSZEtiiWhq_-yZCzsBUB7UYIq_AI8QQ1B-NMdCmifQPpue8T0vSvyyyfH9B8uO0HqnnP2o4nPM-F59hrQsbyXEY7hf4YOuvsDpHJvgNrtvsPzmzdkQ61tQHMmnITbgi9GLJ7dtbKxJYi8ekcaQt9UxO0J1VpKnJeSjsM16Hu4vz29NB3JVLiA1i3EksmZPo8hJbscxR5oxQghZGOioQc1XMMpfmTmeJE05bJ7ipnBZa5JXJLa8ytgErdVPbLSDUJQoDG6MkRnTCJ8-KJHFGocvLhWY0gsOZGkvTcYn7khbDEjGF13jZazyCvV50FAg0lgmd-LnoBTzndfsBLaHsLKH8lyVEsDObybJbiOOSFrzwmWXOIvjZd-MS8nkRVdtm2spgmMQROUawGSa-HwnjvPCnYxEUCyaxMNTFnvrpsaXpxv_C4DWNYL83nr9r4Pv_0MA2fKJo-_6EKM12YGXye2p3MWaa6B_t8ngFjMMTlw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QF6QOXVBgoyjwOXqImdOPYBoS5sVSGxoKqVeov8LEirZOnuCrW_nnFe3RWFo-M5ODNjz8PjbwDeCcmlSVIReydpnHHHYolnYixwaKkrUqNDvuPrlJ-cZ18u8ostmPZvYUJZZX8mNge1rU3IkR_SghfhipCzj_NfcegaFW5X-xYaqmutYD80EGP3YJsGZKwRbI8n0--nQwjGMCJr8YUYBvuHC3TAaSLDQ-o1q9SA99_lcf5dOHl_Vc3V9W81m61ZpeNdeNi5k-Solf8j2HLVY9hZAxl8At-aqgDy2bk56dBUL8myJqdt6dCNI2e3b7BIi2a8ILUnTQtoMkYzZ0ldkUnb8GfxFM6PJ2efTuKujUJsMPZdxpJ5iaYwcZZlnjJvhBK0MNJTgbGYZY75NPc6S7zw2nnBjfVaaJFbkztuM_YMRlVduX0g1CcKHR6jJHp6IlyqFUnijUJTmAvNaATvezaWpsMYD60uZiXGGoHj5cDxCN4MpPMWWOMuonGQxUAQsLCbD_XVZdltrTJghhljeKFpmmmdC0WlyDMlcES1NBEc9JIsuw26KG_VKYLXwzRurXBfoipXrxoadJ84RpQR7LWCH1bCOC9C1iyCYkMlNpa6OVP9_NHAd-N_oVObRvB2UJ5_c-D5_xf_Ah5Q1OqQE0qzAxgtr1buJXpJS_2qU_0_jyESEA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gA98C4ECjKPA5c0iZ049gm10KpCoiDUlcopih27VF0lqyYLor-eceINu1AkxNHJRLIzY8834_FngFdCcqnjRITWSBqm3LBQ4poYCmxW1OSJVi7f8eGIH07T9yfZiU-4tb6sEkPxs36RdqewQvRgcURZRCMpeDSv7JtvPpPkCuhdmoGz67DBM8TiE9iYHn3a_dIfKfLfDnRCDGP7qEW8TWPpzk2vOKGeq_8qgPlnneSNRT0vf3wvZ7MVJ3RwG4pl94fak_OdRad29OVvzI7_P747cMvjU7I7GNRduGbqe7C5wlp4Hz72ZQbknTFz4ulZT0nXkM9DLdKlIce_DnWRgR65JY0l_Z3SZA_9ZkWamuwPNwi1D2B6sH_89jD09zKEGoPpLpTMSvStsalYaimzWpSC5lpaKjC4q5hhNsmsSmMrrDJWcF1ZJZTIKp0ZXqVsCyZ1U5tHQKiNS0RQupQIHYXbpcvj2OoSfWsmFKMBvF4qqtCetNzdnTErMHhxOi1GnQbwYhSdD0wdVwntOW2PAo5cu3_QXJwWfq4WjoRMa81zRZNUqUyUVIosLQW2qJI6gO2lrRR-xrcFzXnutrA5C-D5-BrnqtuAKWvTLHoZ1DbHEDWAh4NpjT1hnOcuDRdAvmZ0a11df1Offe35wHFciJKTAF6O5vn3P_D4n6SewE2KaM7lmpJ0GybdxcI8RfTVqWd-iv0EMzAozA
  priority: 102
  providerName: Unpaywall
Title Using Deep Learning to Recognize Therapeutic Effects of Music Based on Emotions
URI https://www.ncbi.nlm.nih.gov/pubmed/36679783
https://www.proquest.com/docview/2767296463
https://www.proquest.com/docview/2768226716
https://pubmed.ncbi.nlm.nih.gov/PMC9861051
https://www.mdpi.com/1424-8220/23/2/986/pdf?version=1674090363
https://doaj.org/article/3004ccc67b214bb58a29854a814b2b9c
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IUE5IN4Eyso8DlxSEjtx7ANCXdilQupSVV1pOUWxYxekVbLsQ1B-PeO8aMRy4RLJ9ihKZsaZl_MNwCshudRBKHxrJPUjbpgv8ZvoCxzm1CShVi7fcTrhJ9Po0yye7UDbY7Nh4GpraOf6SU2X86Of36_e4YZ_6yJODNnfrNCNpoEUfBf20UBJ18HhNOqKCZRhGFaDCvXJD-AG4zxxyY-eVarA-7d5nH8fnLy5KRbZ1Y9sPr9mlcZ34HbjTpLjWv53YccU9-DWNZDB-_C5OhVAPhizIA2a6iVZl-S8Pjr0y5CLP_9gkRrNeEVKS6oW0GSIZi4nZUFGdcOf1QOYjkcX70_8po2CrzH2XfuSWYmmMDA5iyxlVotM0ERLSwXGYjkzzIaxVVFghVXGCq5zq4QSca5jw_OIPYS9oizMYyDUBhk6PDqT6OkJV1RLgsDqDE1hLBSjHrxu2ZjqBmPctbqYpxhrOOanHfM9eNGRLmpgjW1EQyeLjsBhYVcT5fIybbZW6jDDtNY8UTSMlIpFRqWIo0zgiCqpPThsJZm2-pXShCeu4syZB8-7Zdxarl6SFabcVDToPnGMKD14VAu-e5JWcTxIeirRe9T-SvHtawXfje-FTm3owctOef7NgSf_ff-ncEBR9126KIwOYW-93Jhn6ECt1QB2k1mCVzH-OID94Whydj6okhGDauPg3HRydvzlN4qbIEs
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcEG8CLZiXxCVqYieOfagqSltt6QMJbaW9pbFjF6RVsjS7qsqP4jd2nNfuisKtx8RW5IxnPE9_A_BBSC51EArfGkn9iBvmSzwTfYGPOTVJqJWLdxyf8MFp9HUUj1bgT3cXxpVVdmdifVDnpXYx8k2a8MSlCDnbnvzyXdcol13tWmg0bHFori7RZau2DnZxfz9Sur83_DLw264CvkZXcOpLZiVqhsDkLLKUWS0yQRMtLRXomuTMMBvGVkWBFVYZK7jOrRJKxLmODc8jht-9A3cjhmcJyk8ymjt4DP29Br2IMRlsVmje00C6a9oLOq9uDXCTPft3WebarJhkV5fZeLyg8_YfwoPWWCWfG-56BCumeAz3FyAMn8C3uuaA7BozIS1W6zmZluR7U5j025Dh_IYXabCSK1JaUjeYJjuoRHNSFmSvaSdUPYXTWyHnM1gtysK8AEJtkKE5pTOJdqRwKbskCKzOUNHGQjHqwaeOjKluEcxdI41xip6Mo3jaU9yDd_3USQPbcdOkHbcX_QSHtF2_KC_O01ZwU4dIprXmiaJhpFQsMipFHGUCn6iS2oP1bifTVvyrdM6sHrzth1FwXTYmK0w5q-egccbRX_XgebPx_UoY54mLyXmQLLHE0lKXR4qfP2pwcPwvNJlDD973zPNvCrz8_-LfwNpgeHyUHh2cHL6CexQ53EWfwmgdVqcXM7OB9thUva6FgMDZbUvdNc7NSw0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4IN4ECpiXxCXaxE78OCBE2a5aCgWhVtpbiB27IK2SpdlVVX4av45xks3uisKtx8SjyBnP0x5_A_BSKq5MFMvQWUXDhFsWKrSJocTHgloRG-33Oz4d8N2j5MM4HW_A78VdGF9WubCJjaEuKuP3yAdUcOGPCDkbuK4s4stw9Hb6M_QdpPxJ66KdRisi-_bsFNO3-s3eENf6FaWjncP3u2HXYSA0mBbOQsWcQi8R2YIljjJnZC6pMMpRiWlKwSxzcep0EjnptHWSm8JpqWVamNTyImH43UtwWTCmfDmhGC-TPYa5X4tkhIPRoMZQn0bKX9le8X9Nm4DzYtu_SzSvzstpfnaaTyYr_m90E250gSt510raLdiw5W24vgJneAc-N_UHZGjtlHS4rcdkVpGvbZHSL0sOl7e9SIubXJPKkabZNNlGh1qQqiQ7bWuh-i4cXQg778FmWZX2ARDqohxDK5MrjCmlP74TUeRMjk43lZrRAF4v2JiZDs3cN9WYZJjVeI5nPccDeN6TTlsIj_OItv1a9AQedbt5UZ0cZ50SZx6dzBjDhaZxonUqc6pkmuQSn6hWJoCtxUpmnSmos6XgBvCsH0Yl9iczeWmreUODgRrH3DWA--3C9zNhnAu_PxeAWBOJtamuj5Q_vjdA4fhfGD7HAbzoheffHHj4_8k_hSuob9nHvYP9R3CNooD7jag42YLN2cncPsbQbKafNDpA4NtFK90fLg5PUA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gA98C4ECjKPA5c0iZ049gm10KpCoiDUlcopih27VF0lqyYLor-eceINu1AkxNHJRLIzY8834_FngFdCcqnjRITWSBqm3LBQ4poYCmxW1OSJVi7f8eGIH07T9yfZiU-4tb6sEkPxs36RdqewQvRgcURZRCMpeDSv7JtvPpPkCuhdmoGz67DBM8TiE9iYHn3a_dIfKfLfDnRCDGP7qEW8TWPpzk2vOKGeq_8qgPlnneSNRT0vf3wvZ7MVJ3RwG4pl94fak_OdRad29OVvzI7_P747cMvjU7I7GNRduGbqe7C5wlp4Hz72ZQbknTFz4ulZT0nXkM9DLdKlIce_DnWRgR65JY0l_Z3SZA_9ZkWamuwPNwi1D2B6sH_89jD09zKEGoPpLpTMSvStsalYaimzWpSC5lpaKjC4q5hhNsmsSmMrrDJWcF1ZJZTIKp0ZXqVsCyZ1U5tHQKiNS0RQupQIHYXbpcvj2OoSfWsmFKMBvF4qqtCetNzdnTErMHhxOi1GnQbwYhSdD0wdVwntOW2PAo5cu3_QXJwWfq4WjoRMa81zRZNUqUyUVIosLQW2qJI6gO2lrRR-xrcFzXnutrA5C-D5-BrnqtuAKWvTLHoZ1DbHEDWAh4NpjT1hnOcuDRdAvmZ0a11df1Offe35wHFciJKTAF6O5vn3P_D4n6SewE2KaM7lmpJ0GybdxcI8RfTVqWd-iv0EMzAozA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Deep+Learning+to+Recognize+Therapeutic+Effects+of+Music+Based+on+Emotions&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Modran%2C+Horia+Alexandru&rft.au=Chamunorwa%2C+Tinashe&rft.au=Ursu%C8%9Biu%2C+Doru&rft.au=Samoil%C4%83%2C+Cornel&rft.date=2023-01-14&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=23&rft.issue=2&rft_id=info:doi/10.3390%2Fs23020986&rft_id=info%3Apmid%2F36679783&rft.externalDocID=PMC9861051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon