Using Deep Learning to Recognize Therapeutic Effects of Music Based on Emotions
Music is important in everyday life, and music therapy can help treat a variety of health issues. Music listening is a technique used by music therapists in various clinical treatments. As a result, music therapists must have an intelligent system at their disposal to assist and support them in sele...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 23; no. 2; p. 986 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
14.01.2023
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s23020986 |
Cover
| Abstract | Music is important in everyday life, and music therapy can help treat a variety of health issues. Music listening is a technique used by music therapists in various clinical treatments. As a result, music therapists must have an intelligent system at their disposal to assist and support them in selecting the most appropriate music for each patient. Previous research has not thoroughly addressed the relationship between music features and their effects on patients. The current paper focuses on identifying and predicting whether music has therapeutic benefits. A machine learning model is developed, using a multi-class neural network to classify emotions into four categories and then predict the output. The neural network developed has three layers: (i) an input layer with multiple features; (ii) a deep connected hidden layer; (iii) an output layer. K-Fold Cross Validation was used to assess the estimator. The experiment aims to create a machine-learning model that can predict whether a specific song has therapeutic effects on a specific person. The model considers a person’s musical and emotional characteristics but is also trained to consider solfeggio frequencies. During the training phase, a subset of the Million Dataset is used. The user selects their favorite type of music and their current mood to allow the model to make a prediction. If the selected song is inappropriate, the application, using Machine Learning, recommends another type of music that may be useful for that specific user. An ongoing study is underway to validate the Machine Learning model. The developed system has been tested on many individuals. Because it achieved very good performance indicators, the proposed solution can be used by music therapists or even patients to select the appropriate song for their treatment. |
|---|---|
| AbstractList | Music is important in everyday life, and music therapy can help treat a variety of health issues. Music listening is a technique used by music therapists in various clinical treatments. As a result, music therapists must have an intelligent system at their disposal to assist and support them in selecting the most appropriate music for each patient. Previous research has not thoroughly addressed the relationship between music features and their effects on patients. The current paper focuses on identifying and predicting whether music has therapeutic benefits. A machine learning model is developed, using a multi-class neural network to classify emotions into four categories and then predict the output. The neural network developed has three layers: (i) an input layer with multiple features; (ii) a deep connected hidden layer; (iii) an output layer. K-Fold Cross Validation was used to assess the estimator. The experiment aims to create a machine-learning model that can predict whether a specific song has therapeutic effects on a specific person. The model considers a person’s musical and emotional characteristics but is also trained to consider solfeggio frequencies. During the training phase, a subset of the Million Dataset is used. The user selects their favorite type of music and their current mood to allow the model to make a prediction. If the selected song is inappropriate, the application, using Machine Learning, recommends another type of music that may be useful for that specific user. An ongoing study is underway to validate the Machine Learning model. The developed system has been tested on many individuals. Because it achieved very good performance indicators, the proposed solution can be used by music therapists or even patients to select the appropriate song for their treatment. Music is important in everyday life, and music therapy can help treat a variety of health issues. Music listening is a technique used by music therapists in various clinical treatments. As a result, music therapists must have an intelligent system at their disposal to assist and support them in selecting the most appropriate music for each patient. Previous research has not thoroughly addressed the relationship between music features and their effects on patients. The current paper focuses on identifying and predicting whether music has therapeutic benefits. A machine learning model is developed, using a multi-class neural network to classify emotions into four categories and then predict the output. The neural network developed has three layers: (i) an input layer with multiple features; (ii) a deep connected hidden layer; (iii) an output layer. K-Fold Cross Validation was used to assess the estimator. The experiment aims to create a machine-learning model that can predict whether a specific song has therapeutic effects on a specific person. The model considers a person's musical and emotional characteristics but is also trained to consider solfeggio frequencies. During the training phase, a subset of the Million Dataset is used. The user selects their favorite type of music and their current mood to allow the model to make a prediction. If the selected song is inappropriate, the application, using Machine Learning, recommends another type of music that may be useful for that specific user. An ongoing study is underway to validate the Machine Learning model. The developed system has been tested on many individuals. Because it achieved very good performance indicators, the proposed solution can be used by music therapists or even patients to select the appropriate song for their treatment.Music is important in everyday life, and music therapy can help treat a variety of health issues. Music listening is a technique used by music therapists in various clinical treatments. As a result, music therapists must have an intelligent system at their disposal to assist and support them in selecting the most appropriate music for each patient. Previous research has not thoroughly addressed the relationship between music features and their effects on patients. The current paper focuses on identifying and predicting whether music has therapeutic benefits. A machine learning model is developed, using a multi-class neural network to classify emotions into four categories and then predict the output. The neural network developed has three layers: (i) an input layer with multiple features; (ii) a deep connected hidden layer; (iii) an output layer. K-Fold Cross Validation was used to assess the estimator. The experiment aims to create a machine-learning model that can predict whether a specific song has therapeutic effects on a specific person. The model considers a person's musical and emotional characteristics but is also trained to consider solfeggio frequencies. During the training phase, a subset of the Million Dataset is used. The user selects their favorite type of music and their current mood to allow the model to make a prediction. If the selected song is inappropriate, the application, using Machine Learning, recommends another type of music that may be useful for that specific user. An ongoing study is underway to validate the Machine Learning model. The developed system has been tested on many individuals. Because it achieved very good performance indicators, the proposed solution can be used by music therapists or even patients to select the appropriate song for their treatment. |
| Author | Modran, Horia Alexandru Hedeșiu, Horia Ursuțiu, Doru Chamunorwa, Tinashe Samoilă, Cornel |
| AuthorAffiliation | 2 Romanian Academy of Scientists, 050044 Bucharest, Romania 1 Faculty of Electrical Engineering and Computer Science, Transilvania University of Brasov, 500036 Brasov, Romania 3 Romanian Academy of Technical Sciences, 010413 Bucharest, Romania 4 Electrical Machines and Drives Department, Technical University of Cluj Napoca, 400027 Cluj-Napoca, Romania |
| AuthorAffiliation_xml | – name: 2 Romanian Academy of Scientists, 050044 Bucharest, Romania – name: 3 Romanian Academy of Technical Sciences, 010413 Bucharest, Romania – name: 4 Electrical Machines and Drives Department, Technical University of Cluj Napoca, 400027 Cluj-Napoca, Romania – name: 1 Faculty of Electrical Engineering and Computer Science, Transilvania University of Brasov, 500036 Brasov, Romania |
| Author_xml | – sequence: 1 givenname: Horia Alexandru orcidid: 0000-0002-2356-7566 surname: Modran fullname: Modran, Horia Alexandru – sequence: 2 givenname: Tinashe orcidid: 0000-0001-5850-4162 surname: Chamunorwa fullname: Chamunorwa, Tinashe – sequence: 3 givenname: Doru orcidid: 0000-0003-0157-0331 surname: Ursuțiu fullname: Ursuțiu, Doru – sequence: 4 givenname: Cornel orcidid: 0000-0002-4706-1033 surname: Samoilă fullname: Samoilă, Cornel – sequence: 5 givenname: Horia orcidid: 0000-0001-6886-7346 surname: Hedeșiu fullname: Hedeșiu, Horia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36679783$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kV1rFDEUhoNU7Ide-AdkwBsV1uZrMsmNoHXVwkpB2uuQyZxss8wmYzKj1F9vxq1LW_Qqyclz3rx5zzE6CDEAQs8JfsuYwqeZMkyxkuIROiKc8oWkFB_c2R-i45w3GFPGmHyCDpkQjWokO0IXV9mHdfURYKhWYFKYT2OsvoGN6-B_QXV5DckMMI3eVkvnwI65iq76OuVS-GAydFUM1XIbRx9DfooeO9NneHa7nqCrT8vLsy-L1cXn87P3q4XlQo0LxZyyABg6xh1lzkojaWOVo5Jg3jFgjtSu5dhJ14KTwnaula2sO1uD6Dg7Qec73S6ajR6S35p0o6Px-k8hprU2qVjuQTOMubVWNC0lvG1raaiSNTeynGirbNF6s9OawmBufpq-3wsSrOeE9T7hAr_bwcPUbqGzEMZk-nsO7t8Ef63X8YcuzQTXpAi8uhVI8fsEedRbny30vQkQp6xpI8rIREPmt14-QDdxSqHkOlMNVYILVqgXdx3trfwdcgFOd4BNMecETls_mnlcxaDv__nJ1w86_h_IbxZ7xVs |
| CitedBy_id | crossref_primary_10_3389_fcvm_2024_1536829 crossref_primary_10_2478_amns_2025_0692 crossref_primary_10_1051_itmconf_20246701046 crossref_primary_10_1007_s11042_023_17290_w crossref_primary_10_3389_fcomp_2023_1305413 crossref_primary_10_1177_07334648251318781 crossref_primary_10_1016_j_bspc_2023_105876 crossref_primary_10_57197_JDR_2024_0017 crossref_primary_10_3389_fnbot_2023_1267561 crossref_primary_10_15406_ijcam_2023_16_00639 crossref_primary_10_7717_peerj_cs_1589 crossref_primary_10_3390_healthcare12030411 crossref_primary_10_1016_j_bbr_2023_114461 |
| Cites_doi | 10.1093/jmt/thx011 10.7717/peerj-cs.785 10.1016/j.explore.2019.04.001 10.1109/ICATCCT.2016.7911976 10.1155/2016/5965894 10.4172/2155-6105.1000335 10.1145/3343031.3350867 10.3233/JAD-190361 10.1109/79.911197 10.1109/SLT.2018.8639633 10.1109/ACCESS.2021.3091169 10.1371/journal.pone.0187363 10.1016/j.cmpb.2019.105160 10.1093/bioinformatics/btaa243 10.3389/frai.2020.497864 10.4236/health.2018.109088 |
| ContentType | Journal Article |
| Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s23020986 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Music |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_3004ccc67b214bb58a29854a814b2b9c 10.3390/s23020986 PMC9861051 36679783 10_3390_s23020986 |
| Genre | Journal Article |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c469t-93f9cee0ed34f23fc8a827c9f28104d3e3f15fb40f8fbef86cdfb8b85dc5e6d43 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:41:17 EDT 2025 Sun Oct 26 02:52:18 EDT 2025 Tue Sep 30 17:16:35 EDT 2025 Fri Sep 05 08:50:01 EDT 2025 Tue Oct 07 07:20:48 EDT 2025 Wed Feb 19 02:26:17 EST 2025 Thu Oct 16 04:33:43 EDT 2025 Thu Apr 24 23:07:40 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | deep learning python music therapy artificial intelligence neural networks |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-93f9cee0ed34f23fc8a827c9f28104d3e3f15fb40f8fbef86cdfb8b85dc5e6d43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2356-7566 0000-0002-4706-1033 0000-0003-0157-0331 0000-0001-5850-4162 0000-0001-6886-7346 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23020986 |
| PMID | 36679783 |
| PQID | 2767296463 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3004ccc67b214bb58a29854a814b2b9c unpaywall_primary_10_3390_s23020986 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9861051 proquest_miscellaneous_2768226716 proquest_journals_2767296463 pubmed_primary_36679783 crossref_citationtrail_10_3390_s23020986 crossref_primary_10_3390_s23020986 |
| PublicationCentury | 2000 |
| PublicationDate | 20230114 |
| PublicationDateYYYYMMDD | 2023-01-14 |
| PublicationDate_xml | – month: 1 year: 2023 text: 20230114 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Kern (ref_7) 2017; 54 Hoang (ref_22) 2021; 9 ref_14 ref_13 ref_12 ref_11 ref_10 ref_32 ref_30 Xu (ref_20) 2021; 7 ref_19 ref_17 ref_16 ref_15 Raymaekers (ref_31) 2020; 36 Williams (ref_9) 2020; 3 Akimoto (ref_24) 2018; 10 Kim (ref_18) 2010; 86 Cowie (ref_21) 2001; 18 ref_23 Spruit (ref_5) 2019; 14 ref_1 Raglio (ref_3) 2020; 185 Cunha (ref_4) 2019; 70 ref_2 ref_29 ref_28 ref_26 ref_8 Babayi (ref_27) 2017; 8 Nakajima (ref_25) 2016; 2016 ref_6 |
| References_xml | – ident: ref_28 – ident: ref_30 – ident: ref_32 – volume: 54 start-page: 255 year: 2017 ident: ref_7 article-title: Music Therapy Practice Status and Trends Worldwide: An International Survey Study publication-title: J. Music. Ther. doi: 10.1093/jmt/thx011 – volume: 7 start-page: e785 year: 2021 ident: ref_20 article-title: Using machine learning analysis to interpret the relationship between music emotion and lyric features publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.785 – ident: ref_26 doi: 10.1016/j.explore.2019.04.001 – volume: 14 start-page: 294 year: 2019 ident: ref_5 article-title: Effects of Music Interventions on Stress-Related Outcomes: A Systematic Review and Two Meta-Analyses publication-title: Health Psychol Rev. – ident: ref_11 – ident: ref_2 doi: 10.1109/ICATCCT.2016.7911976 – ident: ref_16 – volume: 2016 start-page: 1 year: 2016 ident: ref_25 article-title: Stress Recovery Effects of High- and Low-Frequency Amplified Music on Heart Rate Variability publication-title: Behav. Neurol. doi: 10.1155/2016/5965894 – ident: ref_14 – volume: 8 start-page: 1 year: 2017 ident: ref_27 article-title: The Effects of 528 Hz Sound Wave to Reduce Cell Death in Human Astrocyte Primary Cell Culture Treated with Ethanol publication-title: J. Addict. Res. Ther. doi: 10.4172/2155-6105.1000335 – ident: ref_1 – ident: ref_17 doi: 10.1145/3343031.3350867 – volume: 70 start-page: 433 year: 2019 ident: ref_4 article-title: Preferred Music Listening Intervention in Nursing Home Residents with Cognitive Impairment: A Randomized Intervention Study publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-190361 – volume: 18 start-page: 32 year: 2001 ident: ref_21 article-title: Emotion recognition in human-computer interaction, 2001 publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.911197 – ident: ref_8 – ident: ref_29 – ident: ref_23 doi: 10.1109/SLT.2018.8639633 – volume: 9 start-page: 90465 year: 2021 ident: ref_22 article-title: Context-Aware Emotion Recognition Based on Visual Relationship Detection publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3091169 – ident: ref_6 doi: 10.1371/journal.pone.0187363 – ident: ref_12 – ident: ref_10 – volume: 86 start-page: 937 year: 2010 ident: ref_18 article-title: Music emotion recognition: A state of the art review publication-title: Proc. Ismir. – ident: ref_15 – volume: 185 start-page: 105160 year: 2020 ident: ref_3 article-title: Machine learning techniques to predict the effectiveness of music therapy: A randomized controlled trial publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.105160 – ident: ref_13 – ident: ref_19 – volume: 36 start-page: 849 year: 2020 ident: ref_31 article-title: Pooled variable scaling for cluster analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa243 – volume: 3 start-page: 497864 year: 2020 ident: ref_9 article-title: On the use of AI for Generation of Functional Music to Improve Mental Health publication-title: Front. Artif. Intell. doi: 10.3389/frai.2020.497864 – volume: 10 start-page: 1159 year: 2018 ident: ref_24 article-title: Effect of 528 Hz Music on the Endocrine System and Autonomic Nervous System publication-title: Health doi: 10.4236/health.2018.109088 |
| SSID | ssj0023338 |
| Score | 2.5075328 |
| Snippet | Music is important in everyday life, and music therapy can help treat a variety of health issues. Music listening is a technique used by music therapists in... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 986 |
| SubjectTerms | Algorithms Artificial intelligence Classification Datasets Deep Learning Emotions Harmony (Music) Humans Information retrieval Listening Machine Learning Melody Mental health Music Music therapy Musical performances neural networks Neural Networks, Computer python Signal processing Stress |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VXFoOqA8eKVC5wIFLRGInjn3kqVUlQEIgcYtsxwakVbLq7qqCX884zoZdsVUvPTqegzMee-bz2N8AHAjJpUlSETsraZxxy2KJe2IssFlRW6RG-_OOyys-uMt-3ef3c6W-_J2wQA8cFHfkGaGMMbzQNM20zoWiUuSZEtiiWhq_-yZCzsBUB7UYIq_AI8QQ1B-NMdCmifQPpue8T0vSvyyyfH9B8uO0HqnnP2o4nPM-F59hrQsbyXEY7hf4YOuvsDpHJvgNrtvsPzmzdkQ61tQHMmnITbgi9GLJ7dtbKxJYi8ekcaQt9UxO0J1VpKnJeSjsM16Hu4vz29NB3JVLiA1i3EksmZPo8hJbscxR5oxQghZGOioQc1XMMpfmTmeJE05bJ7ipnBZa5JXJLa8ytgErdVPbLSDUJQoDG6MkRnTCJ8-KJHFGocvLhWY0gsOZGkvTcYn7khbDEjGF13jZazyCvV50FAg0lgmd-LnoBTzndfsBLaHsLKH8lyVEsDObybJbiOOSFrzwmWXOIvjZd-MS8nkRVdtm2spgmMQROUawGSa-HwnjvPCnYxEUCyaxMNTFnvrpsaXpxv_C4DWNYL83nr9r4Pv_0MA2fKJo-_6EKM12YGXye2p3MWaa6B_t8ngFjMMTlw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QF6QOXVBgoyjwOXqImdOPYBoS5sVSGxoKqVeov8LEirZOnuCrW_nnFe3RWFo-M5ODNjz8PjbwDeCcmlSVIReydpnHHHYolnYixwaKkrUqNDvuPrlJ-cZ18u8ostmPZvYUJZZX8mNge1rU3IkR_SghfhipCzj_NfcegaFW5X-xYaqmutYD80EGP3YJsGZKwRbI8n0--nQwjGMCJr8YUYBvuHC3TAaSLDQ-o1q9SA99_lcf5dOHl_Vc3V9W81m61ZpeNdeNi5k-Solf8j2HLVY9hZAxl8At-aqgDy2bk56dBUL8myJqdt6dCNI2e3b7BIi2a8ILUnTQtoMkYzZ0ldkUnb8GfxFM6PJ2efTuKujUJsMPZdxpJ5iaYwcZZlnjJvhBK0MNJTgbGYZY75NPc6S7zw2nnBjfVaaJFbkztuM_YMRlVduX0g1CcKHR6jJHp6IlyqFUnijUJTmAvNaATvezaWpsMYD60uZiXGGoHj5cDxCN4MpPMWWOMuonGQxUAQsLCbD_XVZdltrTJghhljeKFpmmmdC0WlyDMlcES1NBEc9JIsuw26KG_VKYLXwzRurXBfoipXrxoadJ84RpQR7LWCH1bCOC9C1iyCYkMlNpa6OVP9_NHAd-N_oVObRvB2UJ5_c-D5_xf_Ah5Q1OqQE0qzAxgtr1buJXpJS_2qU_0_jyESEA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gA98C4ECjKPA5c0iZ049gm10KpCoiDUlcopih27VF0lqyYLor-eceINu1AkxNHJRLIzY8834_FngFdCcqnjRITWSBqm3LBQ4poYCmxW1OSJVi7f8eGIH07T9yfZiU-4tb6sEkPxs36RdqewQvRgcURZRCMpeDSv7JtvPpPkCuhdmoGz67DBM8TiE9iYHn3a_dIfKfLfDnRCDGP7qEW8TWPpzk2vOKGeq_8qgPlnneSNRT0vf3wvZ7MVJ3RwG4pl94fak_OdRad29OVvzI7_P747cMvjU7I7GNRduGbqe7C5wlp4Hz72ZQbknTFz4ulZT0nXkM9DLdKlIce_DnWRgR65JY0l_Z3SZA_9ZkWamuwPNwi1D2B6sH_89jD09zKEGoPpLpTMSvStsalYaimzWpSC5lpaKjC4q5hhNsmsSmMrrDJWcF1ZJZTIKp0ZXqVsCyZ1U5tHQKiNS0RQupQIHYXbpcvj2OoSfWsmFKMBvF4qqtCetNzdnTErMHhxOi1GnQbwYhSdD0wdVwntOW2PAo5cu3_QXJwWfq4WjoRMa81zRZNUqUyUVIosLQW2qJI6gO2lrRR-xrcFzXnutrA5C-D5-BrnqtuAKWvTLHoZ1DbHEDWAh4NpjT1hnOcuDRdAvmZ0a11df1Offe35wHFciJKTAF6O5vn3P_D4n6SewE2KaM7lmpJ0GybdxcI8RfTVqWd-iv0EMzAozA priority: 102 providerName: Unpaywall |
| Title | Using Deep Learning to Recognize Therapeutic Effects of Music Based on Emotions |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36679783 https://www.proquest.com/docview/2767296463 https://www.proquest.com/docview/2768226716 https://pubmed.ncbi.nlm.nih.gov/PMC9861051 https://www.mdpi.com/1424-8220/23/2/986/pdf?version=1674090363 https://doaj.org/article/3004ccc67b214bb58a29854a814b2b9c |
| UnpaywallVersion | publishedVersion |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IUE5IN4Eyso8DlxSEjtx7ANCXdilQupSVV1pOUWxYxekVbLsQ1B-PeO8aMRy4RLJ9ihKZsaZl_MNwCshudRBKHxrJPUjbpgv8ZvoCxzm1CShVi7fcTrhJ9Po0yye7UDbY7Nh4GpraOf6SU2X86Of36_e4YZ_6yJODNnfrNCNpoEUfBf20UBJ18HhNOqKCZRhGFaDCvXJD-AG4zxxyY-eVarA-7d5nH8fnLy5KRbZ1Y9sPr9mlcZ34HbjTpLjWv53YccU9-DWNZDB-_C5OhVAPhizIA2a6iVZl-S8Pjr0y5CLP_9gkRrNeEVKS6oW0GSIZi4nZUFGdcOf1QOYjkcX70_8po2CrzH2XfuSWYmmMDA5iyxlVotM0ERLSwXGYjkzzIaxVVFghVXGCq5zq4QSca5jw_OIPYS9oizMYyDUBhk6PDqT6OkJV1RLgsDqDE1hLBSjHrxu2ZjqBmPctbqYpxhrOOanHfM9eNGRLmpgjW1EQyeLjsBhYVcT5fIybbZW6jDDtNY8UTSMlIpFRqWIo0zgiCqpPThsJZm2-pXShCeu4syZB8-7Zdxarl6SFabcVDToPnGMKD14VAu-e5JWcTxIeirRe9T-SvHtawXfje-FTm3owctOef7NgSf_ff-ncEBR9126KIwOYW-93Jhn6ECt1QB2k1mCVzH-OID94Whydj6okhGDauPg3HRydvzlN4qbIEs |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcEG8CLZiXxCVqYieOfagqSltt6QMJbaW9pbFjF6RVsjS7qsqP4jd2nNfuisKtx8RW5IxnPE9_A_BBSC51EArfGkn9iBvmSzwTfYGPOTVJqJWLdxyf8MFp9HUUj1bgT3cXxpVVdmdifVDnpXYx8k2a8MSlCDnbnvzyXdcol13tWmg0bHFori7RZau2DnZxfz9Sur83_DLw264CvkZXcOpLZiVqhsDkLLKUWS0yQRMtLRXomuTMMBvGVkWBFVYZK7jOrRJKxLmODc8jht-9A3cjhmcJyk8ymjt4DP29Br2IMRlsVmje00C6a9oLOq9uDXCTPft3WebarJhkV5fZeLyg8_YfwoPWWCWfG-56BCumeAz3FyAMn8C3uuaA7BozIS1W6zmZluR7U5j025Dh_IYXabCSK1JaUjeYJjuoRHNSFmSvaSdUPYXTWyHnM1gtysK8AEJtkKE5pTOJdqRwKbskCKzOUNHGQjHqwaeOjKluEcxdI41xip6Mo3jaU9yDd_3USQPbcdOkHbcX_QSHtF2_KC_O01ZwU4dIprXmiaJhpFQsMipFHGUCn6iS2oP1bifTVvyrdM6sHrzth1FwXTYmK0w5q-egccbRX_XgebPx_UoY54mLyXmQLLHE0lKXR4qfP2pwcPwvNJlDD973zPNvCrz8_-LfwNpgeHyUHh2cHL6CexQ53EWfwmgdVqcXM7OB9thUva6FgMDZbUvdNc7NSw0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4IN4ECpiXxCXaxE78OCBE2a5aCgWhVtpbiB27IK2SpdlVVX4av45xks3uisKtx8SjyBnP0x5_A_BSKq5MFMvQWUXDhFsWKrSJocTHgloRG-33Oz4d8N2j5MM4HW_A78VdGF9WubCJjaEuKuP3yAdUcOGPCDkbuK4s4stw9Hb6M_QdpPxJ66KdRisi-_bsFNO3-s3eENf6FaWjncP3u2HXYSA0mBbOQsWcQi8R2YIljjJnZC6pMMpRiWlKwSxzcep0EjnptHWSm8JpqWVamNTyImH43UtwWTCmfDmhGC-TPYa5X4tkhIPRoMZQn0bKX9le8X9Nm4DzYtu_SzSvzstpfnaaTyYr_m90E250gSt510raLdiw5W24vgJneAc-N_UHZGjtlHS4rcdkVpGvbZHSL0sOl7e9SIubXJPKkabZNNlGh1qQqiQ7bWuh-i4cXQg778FmWZX2ARDqohxDK5MrjCmlP74TUeRMjk43lZrRAF4v2JiZDs3cN9WYZJjVeI5nPccDeN6TTlsIj_OItv1a9AQedbt5UZ0cZ50SZx6dzBjDhaZxonUqc6pkmuQSn6hWJoCtxUpmnSmos6XgBvCsH0Yl9iczeWmreUODgRrH3DWA--3C9zNhnAu_PxeAWBOJtamuj5Q_vjdA4fhfGD7HAbzoheffHHj4_8k_hSuob9nHvYP9R3CNooD7jag42YLN2cncPsbQbKafNDpA4NtFK90fLg5PUA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gA98C4ECjKPA5c0iZ049gm10KpCoiDUlcopih27VF0lqyYLor-eceINu1AkxNHJRLIzY8834_FngFdCcqnjRITWSBqm3LBQ4poYCmxW1OSJVi7f8eGIH07T9yfZiU-4tb6sEkPxs36RdqewQvRgcURZRCMpeDSv7JtvPpPkCuhdmoGz67DBM8TiE9iYHn3a_dIfKfLfDnRCDGP7qEW8TWPpzk2vOKGeq_8qgPlnneSNRT0vf3wvZ7MVJ3RwG4pl94fak_OdRad29OVvzI7_P747cMvjU7I7GNRduGbqe7C5wlp4Hz72ZQbknTFz4ulZT0nXkM9DLdKlIce_DnWRgR65JY0l_Z3SZA_9ZkWamuwPNwi1D2B6sH_89jD09zKEGoPpLpTMSvStsalYaimzWpSC5lpaKjC4q5hhNsmsSmMrrDJWcF1ZJZTIKp0ZXqVsCyZ1U5tHQKiNS0RQupQIHYXbpcvj2OoSfWsmFKMBvF4qqtCetNzdnTErMHhxOi1GnQbwYhSdD0wdVwntOW2PAo5cu3_QXJwWfq4WjoRMa81zRZNUqUyUVIosLQW2qJI6gO2lrRR-xrcFzXnutrA5C-D5-BrnqtuAKWvTLHoZ1DbHEDWAh4NpjT1hnOcuDRdAvmZ0a11df1Offe35wHFciJKTAF6O5vn3P_D4n6SewE2KaM7lmpJ0GybdxcI8RfTVqWd-iv0EMzAozA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Deep+Learning+to+Recognize+Therapeutic+Effects+of+Music+Based+on+Emotions&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Modran%2C+Horia+Alexandru&rft.au=Chamunorwa%2C+Tinashe&rft.au=Ursu%C8%9Biu%2C+Doru&rft.au=Samoil%C4%83%2C+Cornel&rft.date=2023-01-14&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=23&rft.issue=2&rft_id=info:doi/10.3390%2Fs23020986&rft_id=info%3Apmid%2F36679783&rft.externalDocID=PMC9861051 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |