Mechanomyography Signal Pattern Recognition of Knee and Ankle Movements Using Swarm Intelligence Algorithm-Based Feature Selection Methods
Pattern recognition of lower-limb movements based on mechanomyography (MMG) signals has a certain application value in the study of wearable rehabilitation-training devices. In this paper, MMG feature selection methods based on a chameleon swarm algorithm (CSA) and a grasshopper optimization algorit...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 15; p. 6939 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
04.08.2023
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s23156939 |
Cover
Abstract | Pattern recognition of lower-limb movements based on mechanomyography (MMG) signals has a certain application value in the study of wearable rehabilitation-training devices. In this paper, MMG feature selection methods based on a chameleon swarm algorithm (CSA) and a grasshopper optimization algorithm (GOA) are proposed for the pattern recognition of knee and ankle movements in the sitting and standing positions. Wireless multichannel MMG acquisition systems were designed and used to collect MMG movements from four sites on the subjects thighs. The relationship between the threshold values and classification accuracy was analyzed, and comparatively high recognition rates were obtained after redundant information was eliminated. When the threshold value rose, the recognition rates from the CSA fluctuated within a small range: up to 88.17% (sitting position) and 90.07% (standing position). However, the recognition rates from the GOA drop dramatically when increasing the threshold value. The comparison results demonstrated that using a GOA consumes less time and selects fewer features, while a CSA gives higher recognition rates of knee and ankle movements. |
---|---|
AbstractList | Pattern recognition of lower-limb movements based on mechanomyography (MMG) signals has a certain application value in the study of wearable rehabilitation-training devices. In this paper, MMG feature selection methods based on a chameleon swarm algorithm (CSA) and a grasshopper optimization algorithm (GOA) are proposed for the pattern recognition of knee and ankle movements in the sitting and standing positions. Wireless multichannel MMG acquisition systems were designed and used to collect MMG movements from four sites on the subjects thighs. The relationship between the threshold values and classification accuracy was analyzed, and comparatively high recognition rates were obtained after redundant information was eliminated. When the threshold value rose, the recognition rates from the CSA fluctuated within a small range: up to 88.17% (sitting position) and 90.07% (standing position). However, the recognition rates from the GOA drop dramatically when increasing the threshold value. The comparison results demonstrated that using a GOA consumes less time and selects fewer features, while a CSA gives higher recognition rates of knee and ankle movements. Pattern recognition of lower-limb movements based on mechanomyography (MMG) signals has a certain application value in the study of wearable rehabilitation-training devices. In this paper, MMG feature selection methods based on a chameleon swarm algorithm (CSA) and a grasshopper optimization algorithm (GOA) are proposed for the pattern recognition of knee and ankle movements in the sitting and standing positions. Wireless multichannel MMG acquisition systems were designed and used to collect MMG movements from four sites on the subjects thighs. The relationship between the threshold values and classification accuracy was analyzed, and comparatively high recognition rates were obtained after redundant information was eliminated. When the threshold value rose, the recognition rates from the CSA fluctuated within a small range: up to 88.17% (sitting position) and 90.07% (standing position). However, the recognition rates from the GOA drop dramatically when increasing the threshold value. The comparison results demonstrated that using a GOA consumes less time and selects fewer features, while a CSA gives higher recognition rates of knee and ankle movements.Pattern recognition of lower-limb movements based on mechanomyography (MMG) signals has a certain application value in the study of wearable rehabilitation-training devices. In this paper, MMG feature selection methods based on a chameleon swarm algorithm (CSA) and a grasshopper optimization algorithm (GOA) are proposed for the pattern recognition of knee and ankle movements in the sitting and standing positions. Wireless multichannel MMG acquisition systems were designed and used to collect MMG movements from four sites on the subjects thighs. The relationship between the threshold values and classification accuracy was analyzed, and comparatively high recognition rates were obtained after redundant information was eliminated. When the threshold value rose, the recognition rates from the CSA fluctuated within a small range: up to 88.17% (sitting position) and 90.07% (standing position). However, the recognition rates from the GOA drop dramatically when increasing the threshold value. The comparison results demonstrated that using a GOA consumes less time and selects fewer features, while a CSA gives higher recognition rates of knee and ankle movements. |
Audience | Academic |
Author | Zhou, Jie Zhang, Yue Xia, Chunming Cao, Gangsheng Wu, Qing Sun, Maoxun |
AuthorAffiliation | 1 School of Mechanical Engineering, Nantong University, Nantong 226019, China; yuezhang@ntu.edu.cn (Y.Z.) 3 School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China; cmxia@ecust.edu.cn (C.X.) 2 School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; sunmaoxun@163.com |
AuthorAffiliation_xml | – name: 1 School of Mechanical Engineering, Nantong University, Nantong 226019, China; yuezhang@ntu.edu.cn (Y.Z.) – name: 3 School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China; cmxia@ecust.edu.cn (C.X.) – name: 2 School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; sunmaoxun@163.com |
Author_xml | – sequence: 1 givenname: Yue orcidid: 0000-0003-4285-2167 surname: Zhang fullname: Zhang, Yue – sequence: 2 givenname: Maoxun orcidid: 0000-0003-0276-7347 surname: Sun fullname: Sun, Maoxun – sequence: 3 givenname: Chunming surname: Xia fullname: Xia, Chunming – sequence: 4 givenname: Jie surname: Zhou fullname: Zhou, Jie – sequence: 5 givenname: Gangsheng surname: Cao fullname: Cao, Gangsheng – sequence: 6 givenname: Qing surname: Wu fullname: Wu, Qing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37571722$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkstu1DAUhiNURC-w4AWQJTawSPElcZIVGioKIzoCMXRtOfZJ4iGxB9spmlfgqXE7ZdQiL2wdf_7Pxf9pdmSdhSx7SfA5Yw1-FygjJW9Y8yQ7IQUt8ppSfPTgfJydhrDBmDLG6mfZMavKilSUnmR_VqAGad20c72X22GH1qa3ckTfZIzgLfoOyvXWROMsch36YgGQtBot7M8R0MrdwAQ2BnQdjO3R-rf0E1raCONoerAK0GLsnTdxmPIPMoBGlyDj7AGtYQR1J7uCODgdnmdPOzkGeHG_n2XXlx9_XHzOr75-Wl4srnJV8CbmFdcFr1vOFYCGQncFgIJKl4x1pVQttGkkDZWgVaW0blreatLhFhTBHHDHzrLlXlc7uRFbbybpd8JJI-4CzvdC-mjUCIIWvCOcNKomrGjKVuq2VbhmFaFlKqFKWu_3Wtu5nVLGNAovx0eij2-sGUTvbgTBBaWU06Tw5l7Bu18zhCgmE1Qan7Tg5iBoXWJGGOMkoa__Qzdu9umzbqmiIbThmCfqfE_1MnVgbOdSYpWWhsmoZJzOpPiiSiypMMbpwauHPRyK_2eSBLzdA8q7EDx0B4RgcWtAcTAg-wtsrs82 |
Cites_doi | 10.1142/S0218001417500185 10.1016/j.medntd.2022.100165 10.1177/0954406215588987 10.1109/JSEN.2018.2813434 10.3390/math10224387 10.1016/j.ijleo.2018.09.040 10.1016/j.eswa.2021.114685 10.3390/e22080852 10.3390/s21186147 10.1007/s13246-015-0399-5 10.1016/j.bspc.2021.103048 10.1016/j.bspc.2020.101872 10.1016/j.advengsoft.2017.01.004 10.1016/j.engappai.2021.104210 10.1016/j.bspc.2021.102948 10.1109/LSP.2016.2636320 10.1016/j.bbe.2020.05.003 10.1007/s11517-012-1010-9 10.3390/s23115004 10.3934/mbe.2021177 10.1016/j.measurement.2014.10.023 10.1016/j.eswa.2012.01.102 10.1016/j.irbm.2023.100773 10.1016/j.medengphy.2020.05.009 10.1016/j.eswa.2017.11.049 10.1109/TMRB.2022.3166543 10.1016/j.measurement.2021.110102 10.1016/j.eswa.2022.118282 10.1016/j.measurement.2020.108471 10.1109/JBHI.2020.3009383 10.1109/ACCESS.2020.3008901 10.1142/S0219519419500854 10.1142/S0219519420500542 10.1016/j.bspc.2020.101920 10.1016/j.jelekin.2017.10.010 10.1016/j.bspc.2022.103679 10.1016/j.bspc.2021.102629 10.1016/j.asoc.2021.107394 10.1016/j.bbe.2021.03.004 10.1016/j.future.2019.11.025 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s23156939 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_246f1619c813495badbbc08371258b67 PMC10422262 A760617000 37571722 10_3390_s23156939 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Shanghai University Youth Teacher Training Assistance Scheme grantid: ZZ 202203047 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c469t-76d468b66ceede4df4eece7d533f5acbeb39092aedc7cdd9b6bd1f0bec106e0f3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:04:55 EDT 2025 Tue Sep 30 17:12:16 EDT 2025 Fri Sep 05 11:14:05 EDT 2025 Fri Jul 25 02:59:15 EDT 2025 Tue Jun 10 21:22:11 EDT 2025 Thu Apr 03 07:06:25 EDT 2025 Wed Oct 01 02:02:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | grasshopper optimization algorithm mechanomyography chameleon swarm algorithm feature selection pattern recognition |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-76d468b66ceede4df4eece7d533f5acbeb39092aedc7cdd9b6bd1f0bec106e0f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0276-7347 0000-0003-4285-2167 |
OpenAccessLink | https://www.proquest.com/docview/2849129606?pq-origsite=%requestingapplication% |
PMID | 37571722 |
PQID | 2849129606 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_246f1619c813495badbbc08371258b67 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10422262 proquest_miscellaneous_2850313361 proquest_journals_2849129606 gale_infotracacademiconefile_A760617000 pubmed_primary_37571722 crossref_primary_10_3390_s23156939 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230804 |
PublicationDateYYYYMMDD | 2023-08-04 |
PublicationDate_xml | – month: 8 year: 2023 text: 20230804 day: 4 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Wei (ref_7) 2023; 44 Rostami (ref_24) 2021; 100 Chen (ref_13) 2021; 25 Fariman (ref_38) 2016; 39 Zhang (ref_26) 2020; 81 Wang (ref_14) 2020; 40 ref_35 Shi (ref_4) 2020; 19 Freitas (ref_39) 2020; 59 Gu (ref_22) 2018; 96 Karheily (ref_19) 2022; 210 Yao (ref_3) 2021; 18 Wu (ref_37) 2017; 31 Bittibssi (ref_12) 2021; 70 Ryu (ref_2) 2017; 24 Tuncer (ref_20) 2020; 58 Zhang (ref_11) 2022; 77 Lv (ref_18) 2021; 68 Sui (ref_23) 2019; 176 Dhal (ref_25) 2021; 107 Braik (ref_31) 2021; 174 Chen (ref_29) 2016; 230 Rivela (ref_40) 2018; 18 Sharma (ref_1) 2021; 186 Khomami (ref_33) 2021; 168 Veer (ref_16) 2015; 60 Saremi (ref_32) 2017; 105 Wang (ref_34) 2022; 16 Yu (ref_10) 2020; 20 Xiao (ref_21) 2020; 110 Liu (ref_36) 2022; 4 ref_27 Karnam (ref_15) 2021; 70 Wang (ref_8) 2018; 38 Fatimah (ref_17) 2021; 41 Shi (ref_30) 2013; 51 ref_5 Zhang (ref_9) 2020; 20 Phinyomark (ref_28) 2012; 39 ref_6 |
References_xml | – volume: 31 start-page: 1750018 year: 2017 ident: ref_37 article-title: Upper limb motion recognition based on LLE-ELM method of sEMG publication-title: Int. J. Pattern Recogn. doi: 10.1142/S0218001417500185 – volume: 16 start-page: 100165 year: 2022 ident: ref_34 article-title: Classification of human movements with and without spinal orthosis based on surface electromyogram signals publication-title: Med. Nov. Technol. Devices doi: 10.1016/j.medntd.2022.100165 – volume: 230 start-page: 248 year: 2016 ident: ref_29 article-title: Bispectrum-based sEMG multi-domain joint feature extraction for upper limb motion classification publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. doi: 10.1177/0954406215588987 – volume: 18 start-page: 3714 year: 2018 ident: ref_40 article-title: Analysis and comparison of features and algorithms to classify shoulder movements from sEMG signals publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2813434 – ident: ref_5 doi: 10.3390/math10224387 – volume: 176 start-page: 228 year: 2019 ident: ref_23 article-title: Pattern recognition of SEMG based on wavelet packet transform and improved SVM publication-title: Optik doi: 10.1016/j.ijleo.2018.09.040 – volume: 174 start-page: 114585 year: 2021 ident: ref_31 article-title: Chameleon swarm algorithm: A bio-inspired optimizer for solving engineering design problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114685 – ident: ref_6 doi: 10.3390/e22080852 – ident: ref_27 doi: 10.3390/s21186147 – volume: 39 start-page: 85 year: 2016 ident: ref_38 article-title: Hand movements classification for myoelectric control system using adaptive resonance theory publication-title: Australas. Phys. Eng. Sci. Med. doi: 10.1007/s13246-015-0399-5 – volume: 70 start-page: 103048 year: 2021 ident: ref_12 article-title: sEMG pattern recognition based on recurrent neural publication-title: Biomed. Signal Process. doi: 10.1016/j.bspc.2021.103048 – volume: 58 start-page: 101872 year: 2020 ident: ref_20 article-title: Surface EMG signal classification using ternary pattern and discrete wavelet transform based feature extraction for hand movement recognition publication-title: Biomed. Signal Process. doi: 10.1016/j.bspc.2020.101872 – volume: 105 start-page: 30 year: 2017 ident: ref_32 article-title: Grasshopper optimisation algorithm: Theory and application publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.01.004 – volume: 100 start-page: 104210 year: 2021 ident: ref_24 article-title: Review of swarm intelligence-based feature selection methods publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104210 – volume: 70 start-page: 102948 year: 2021 ident: ref_15 article-title: Classification of sEMG signals of hand gestures based on energy features publication-title: Biomed. Signal Process. doi: 10.1016/j.bspc.2021.102948 – volume: 24 start-page: 154 year: 2017 ident: ref_2 article-title: sEMG signal-based lower limb human motion detection using a top and slope feature extraction algorithm publication-title: IEEE Signal Proc. Lett. doi: 10.1109/LSP.2016.2636320 – volume: 40 start-page: 987 year: 2020 ident: ref_14 article-title: Deep back propagation-long short term-memory network based upper-limb sEMG signal classification for automated rehabilitation publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2020.05.003 – volume: 51 start-page: 417 year: 2013 ident: ref_30 article-title: SEMG-based hand motion recognition using cumulative residual entropy and extreme learning machine publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-012-1010-9 – ident: ref_35 doi: 10.3390/s23115004 – volume: 18 start-page: 3521 year: 2021 ident: ref_3 article-title: Multi-feature gait recognition with DNN based on sEMG signals publication-title: Math. Biosci. Eng. doi: 10.3934/mbe.2021177 – volume: 60 start-page: 283 year: 2015 ident: ref_16 article-title: A technique for classification and decomposition of muscle signal for control of myoelectric prostheses based on wavelet statistical classifier publication-title: Measurement doi: 10.1016/j.measurement.2014.10.023 – volume: 39 start-page: 7420 year: 2012 ident: ref_28 article-title: Feature reduction and selection for EMG signal classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.01.102 – volume: 44 start-page: 100883 year: 2023 ident: ref_7 article-title: sEMG Signal-based Lower Limb movements recognition using Tunable Q-factor wavelet transform and Karskov Entropy publication-title: IRBM doi: 10.1016/j.irbm.2023.100773 – volume: 81 start-page: 97 year: 2020 ident: ref_26 article-title: A preliminary study of classification of upper limb motions and forces based on mechanomyography publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2020.05.009 – volume: 96 start-page: 208 year: 2018 ident: ref_22 article-title: Robust EMG pattern recognition in the presence of confounding factors: Features, classifiers and adaptive learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.11.049 – volume: 4 start-page: 472 year: 2022 ident: ref_36 article-title: Metric learning for robust gait phase recognition for a lower limb exoskeleton robot based on sEMG publication-title: IEEE Trans. Med. Robot. Bionics doi: 10.1109/TMRB.2022.3166543 – volume: 186 start-page: 110102 year: 2021 ident: ref_1 article-title: Decomposition and evaluation of SEMG for hand prostheses control publication-title: Measurement doi: 10.1016/j.measurement.2021.110102 – volume: 210 start-page: 118282 year: 2022 ident: ref_19 article-title: sEMG time-frequency features for hand movements classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118282 – volume: 168 start-page: 108471 year: 2021 ident: ref_33 article-title: Persian sign language recognition using IMU and surface EMG sensors publication-title: Measurement doi: 10.1016/j.measurement.2020.108471 – volume: 25 start-page: 1292 year: 2021 ident: ref_13 article-title: Hand gesture recognition based on surface electromyography using convolutional network with transfer learning method publication-title: IEEE J. Biomed. Health doi: 10.1109/JBHI.2020.3009383 – volume: 19 start-page: 132882 year: 2020 ident: ref_4 article-title: Feature extraction and classification of lower limb motion based on sEMG signals publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3008901 – volume: 20 start-page: 1950085 year: 2020 ident: ref_10 article-title: Study of gait recognition based on fusion of mechanomyography and attitude angel signal publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519419500854 – volume: 20 start-page: 2050054 year: 2020 ident: ref_9 article-title: A pilot study of mechanomygraphy-based hand movements recognition emphasizing on the influence of fabrics between sensors and skin publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519420500542 – volume: 59 start-page: 101920 year: 2020 ident: ref_39 article-title: Feature selection and dimensionality reduction: An extensive comparison in hand gesture classification by sEMG in eight channels armband approach publication-title: Biomed. Signal Process. doi: 10.1016/j.bspc.2020.101920 – volume: 38 start-page: 94 year: 2018 ident: ref_8 article-title: Real-time continuous recognition of knee motion using multi-channel mechanomyography signals detected on clothes publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2017.10.010 – volume: 77 start-page: 103679 year: 2022 ident: ref_11 article-title: Design a wireless mechanomyography acquisition equipment and feature selection for lower limb motion recognition publication-title: Biomed. Signal Process. doi: 10.1016/j.bspc.2022.103679 – volume: 68 start-page: 102629 year: 2021 ident: ref_18 article-title: Hand gesture recognition from surface electromyogram signal based on self-organizing mapping and radial basis function network publication-title: Biomed. Signal Process. doi: 10.1016/j.bspc.2021.102629 – volume: 107 start-page: 107394 year: 2021 ident: ref_25 article-title: A multi-objective feature selection method using Newton’s law based on PSO with GWO publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107394 – volume: 41 start-page: 690 year: 2021 ident: ref_17 article-title: Hand movement recognition from sEMG signals using Fourier decomposition method publication-title: Biocyberne. Biomed. Eng. doi: 10.1016/j.bbe.2021.03.004 – volume: 110 start-page: 1023 year: 2020 ident: ref_21 article-title: Classification of hand movements using variational mode decomposition and composite permutation entropy index with surface electromyogram signals publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.11.025 |
SSID | ssj0023338 |
Score | 2.4104025 |
Snippet | Pattern recognition of lower-limb movements based on mechanomyography (MMG) signals has a certain application value in the study of wearable... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 6939 |
SubjectTerms | Accuracy Algorithms Ankle chameleon swarm algorithm Classification Computational linguistics Deep learning Experiments Feature selection Gait grasshopper optimization algorithm Language processing Machine learning Mathematical optimization mechanomyography Methods Natural language interfaces Optimization algorithms Pattern recognition Rehabilitation Signal processing Swarm intelligence Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hnsoBQfkKtMggJE5RN4njxMctoiqgRYilUm-WHdvtiq6DdrNC_AV-dWec7CorDly4bpzIOx9585TxG4C3ja9sqWudlpkzKfeZTCXicFqYmhsEIFPEKQqzL-Likn-6Kq9Go76oJ6yXB-4Nd5pz4bEqkU1NQnql0daYBuuGCpG5NiKeI0cY25KpgWoVyLx6HaECSf3pGquYUkiaCD5CnyjS__ereIRF-32SI-A5fwgPhoqRTfudPoJ7LhzB_ZGO4GP4M3N0gLdd_h4EqNl8cU03fY3qmYF927YJtYG1nn3GO5kOlk3Dj1vHZm0UDe_WLDYQsPkvvVqyjyOxTja9vW5Xi-5mmZ4h7FlGleNm5dg8jtGhx87iKOr1E7g8__D9_UU6DFlIG2TGXVoJywUaUhBaOm49d65x6MCi8KVuDJJtOZG5RitUjbXSCGMzP0HXI5l0E188hYPQBvccGHI1w40U3gvH8b2liZ9pdD8-0ngzSeDN1vjqZ6-loZCDkIfUzkMJnJFbdgtI_jr-gEGhhqBQ_wqKBN6RUxUlKXqu0cNZA9wnyV2paSWodEM4SOB463c1ZO9aIWRLrINwTQKvd5cx7-hjig6u3dCakmQvC5El8KwPk92ei6pElpznCdR7AbT3p_avhMVN1PbOSJMtF_mL_2GGl3CYYy7EfkV-DAfdauNOsIbqzKuYLnfAtR2R priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7BcoED4k1gQQYhcYq2SRwnPqEuoiygIkRZaW-RHdvdFdtkaVIh_gK_mhnXDamQuMZJZHueXzL-BuBV7QqTq1LFeWJ1zF0iY4lxOM50yTUGIJ35Lgrzz-LklH88y8_CB7culFXufKJ31Kat6Rv5EbpRibEJ8-03Vz9i6hpFf1dDC43rcCNJUZPopPjs_QC4MsRfWzahDKH9UYe5TC4k9QUfxSBP1f-vQx5FpP1qyVH4md2B2yFvZNOtoO_CNdvcg1sjNsH78Htu6Rhvu_oVaKjZ4mJJD33xHJoN-7orFmob1jr2CZ9kqjFs2ny_tGzeeurwvmO-jIAtfqr1in0YUXay6eUSt6Q_X8XHGPwMo_xxs7Zs4Zvp0GvnviF19wBOZ---vT2JQ6uFuEZ83MeFMFyUWgiKmZYbx62tLYoxy1yuao2QW05kqnAXitoYqYU2iZugAiCktBOXPYSDpm3sY2CI2DTXUjgnLEfvpQilKVQCfKV2ehLBy93mV1dbRo0KkQhJqBokFMExiWW4gUiw_YV2vayCTVUpFw4TVlmXxLGYa2W0rjGlLDBpw7UUEbwmoVZkqii5WoUTBzhPIr2qpoWgBA6DQgSHO7lXwYa76q_GRfBiGEbro18qqrHthu7JifwyE0kEj7ZqMsw5K3LEymkaQbmnQHuL2h9pLs49w3dCzGypSJ_8f15P4WaKWu7rEfkhHPTrjX2GOVKvn3tD-AMg7BYe priority: 102 providerName: ProQuest |
Title | Mechanomyography Signal Pattern Recognition of Knee and Ankle Movements Using Swarm Intelligence Algorithm-Based Feature Selection Methods |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37571722 https://www.proquest.com/docview/2849129606 https://www.proquest.com/docview/2850313361 https://pubmed.ncbi.nlm.nih.gov/PMC10422262 https://doaj.org/article/246f1619c813495badbbc08371258b67 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB3txwUOiG8CS2UQEqdAkzhOckCoRVsWUFarLZV6i-zE7la0yW7aCvYv8KuZcZOqERy49NDYUeJ5zpuX2G8A3uQmKkIZSzf0tHK58RI3QR52AxVzhQSkAltFIT0XZxP-dRpOD6CtsdkM4Oqf0o7qSU3qxbtfN7cfccJ_IMWJkv39CnOUUCRBcgjHSEg-gTvlu48JfhDYgta0p8tFPuxvDYa6XTu0ZN37_35G75FUdwHlHiON7sO9JpVkg23sH8CBLh_C3T2DwUfwO9W0s7da3jbO1Gw8n1GnC2urWbLLdv1QVbLKsG_Yk8myYIPyx0KztLJu4usVsysL2PinrJfsy56LJxssZlU9X18t3SHyYcEopdzUmo1tfR06bWprVK8ew2R0-v3TmdtUX3BzlMxrNxIFF7ESgmhU88JwrXONkQ0CE8pcoQpP-okvcRSivCgSJVThmT5iAlWm7pvgCRyVVamfAUMRp7hKhDFCc3ygSRJuEnGBp1RG9R143Q5-dr012chQnFCEsl2EHBhSWHYNyBfb_lHVs6yZZpnPhcEcNsljsl0MlSyUyjHLjDCPw3uJHHhLQc0ITxi5XDabEPA6yQcrG0SCcjrkCQdO2rhnLSoz5PIE8YVtHHi1O4wTkr6yyFJXG2oTkh9mIDwHnm5hsrvmIApRPvu-A3EHQJ2b6h4p51fW9NsjszZf-M__Z6xewB0fcW8XKvITOFrXG_0Sk6e16sFhNI3wNx597sHx8PT84rJnX0T07KT5A-YOHzg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VcgAOiG8MBRYE4mTVsdfr-IBQClQJaSpEWik3s-vdTSsauySOqv4Ffgy_kZmNnTpC4tZrbK92M7Pz5tmzbwDe5jbRsexKP-4Y5XPbSf0UcdiPVJcrBCAVuS4Ko0PRP-ZfJ_FkC_40Z2GorLKJiS5Q6zKnd-S7GEZTxCbMtz-e__KpaxR9XW1aaKzcYmguL5CyLT4MPqN934Xh_pejT32_7irg50gFKz8RmouuEoLgwXBtuTG5wRlHkY1lrpBdpkEaSqPzJNc6VULpjg1wrcieTGAjHPcG3ORRwEmrP5lcEbwI-d5KvSjCMXYXmDvFIqU-5C3Mc60B_gWAFgJuVme24G7_Htyt81TWWznWfdgyxQO401IvfAi_R4aODZezy1r2mo1Pp_TQN6fZWbDvTXFSWbDSsiE-yWShWa_4eWbYqHRS5dWCubIFNr6Q8xkbtCRCWe9siiaoTmb-HoKtZpSvLueGjV3zHhp25BpgLx7B8bUY4TFsF2VhngJDhqi4SoW1wnCMlpJYoUSnwyGVVYEHb5o_PztfKXhkyHzIQtnaQh7skVnWN5DotvuhnE-zeg9nIRcWE-Q075KmY6ykVirHFDbBJBHXknjwnoyaUWhAy-WyPuGA8ySRrayXCEoYEYQ82GnsntUxY5FdebgHr9eXcbfTJxxZmHJJ98QkthmJjgdPVm6ynnOUxMjNw9CD7oYDbSxq80pxeuIUxTukBBeK8Nn_5_UKbvWPRgfZweBw-Bxuh-jxrhaS78B2NV-aF5ifVeql2xQMflz3LvwL-CpXWg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NISF4QON3YIBBIJ6itrHjNA8IdYxqpXSaKJP6FuzY7ibWZPSHpv0L-5P467hzk64VEm97bRLL7p3vuy85fwfwLneJiVVbhXHL6lC4VhqmiMMh122hEYA0910UBofy4Fh8HcWjLfhTn4Whsso6JvpAbcqc3pE3MIymiE2YbzdcVRZxtN_9dP47pA5S9KW1bqexdJG-vbxA-jb72NtHW7-Pou6XH58PwqrDQJgjLZyHiTRCtrWUBBVWGCeszS3OnnMXq1wj00ybaaSsyZPcmFRLbVquietGJmWbjuO4t-B2wgWncrJkdE32OHK_pZIRxzEaM8yjYplST_I1_PNtAv4FgzU03KzUXIO-7g7cr3JW1lk62QPYssVDuLemZPgIrgaWjhCXk8tKApsNT8f00JHX7yzY97pQqSxY6Vgfn2SqMKxT_DqzbFB62fL5jPkSBja8UNMJ663JhbLO2RhNMD-ZhHsIvIZR7rqYWjb0jXxo2IFvhj17DMc3YoQnsF2UhX0GDNmiFjqVzkkrMHIqYogKHRCH1E43A3hb__nZ-VLNI0MWRBbKVhYKYI_MsrqBBLj9D-V0nFX7OYuEdJgsp3mb9B1jrYzWOaazCSaMuJYkgA9k1IzCBFouV9VpB5wnCW5lnURS8oiAFMBubfesih-z7NrbA3izuow7nz7nqMKWC7onJuFNLlsBPF26yWrOPImRp0dRAO0NB9pY1OaV4vTEq4u3SBUuktHz_8_rNdzB_Zd96x32X8DdCB3el0WKXdieTxf2JaZqc_3K7wkGP296E_4FfNtblQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanomyography+Signal+Pattern+Recognition+of+Knee+and+Ankle+Movements+Using+Swarm+Intelligence+Algorithm-Based+Feature+Selection+Methods&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Yue&rft.au=Sun%2C+Maoxun&rft.au=Xia%2C+Chunming&rft.au=Zhou%2C+Jie&rft.date=2023-08-04&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=15&rft.spage=6939&rft_id=info:doi/10.3390%2Fs23156939&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s23156939 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |