Modeling, Clustering, and Segmenting Video with Mixtures of Dynamic Textures
A dynamic texture is a spatio-temporal generative model for video, which represents video sequences as observations from a linear dynamical system. This work studies the mixture of dynamic textures, a statistical model for an ensemble of video sequences that is sampled from a finite collection of vi...
Saved in:
| Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 30; no. 5; pp. 909 - 926 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Los Alamitos, CA
IEEE
01.05.2008
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0162-8828 2160-9292 1939-3539 |
| DOI | 10.1109/TPAMI.2007.70738 |
Cover
| Abstract | A dynamic texture is a spatio-temporal generative model for video, which represents video sequences as observations from a linear dynamical system. This work studies the mixture of dynamic textures, a statistical model for an ensemble of video sequences that is sampled from a finite collection of visual processes, each of which is a dynamic texture. An expectation-maximization (EM) algorithm is derived for learning the parameters of the model, and the model is related to previous works in linear systems, machine learning, time- series clustering, control theory, and computer vision. Through experimentation, it is shown that the mixture of dynamic textures is a suitable representation for both the appearance and dynamics of a variety of visual processes that have traditionally been challenging for computer vision (for example, fire, steam, water, vehicle and pedestrian traffic, and so forth). When compared with state-of-the-art methods in motion segmentation, including both temporal texture methods and traditional representations (for example, optical flow or other localized motion representations), the mixture of dynamic textures achieves superior performance in the problems of clustering and segmenting video of such processes. |
|---|---|
| AbstractList | A dynamic texture is a spatio-temporal generative model for video, which represents video sequences as observations from a linear dynamical system. This work studies the mixture of dynamic textures, a statistical model for an ensemble of video sequences that is sampled from a finite collection of visual processes, each of which is a dynamic texture. An expectation-maximization (EM) algorithm is derived for learning the parameters of the model, and the model is related to previous works in linear systems, machine learning, time- series clustering, control theory, and computer vision. Through experimentation, it is shown that the mixture of dynamic textures is a suitable representation for both the appearance and dynamics of a variety of visual processes that have traditionally been challenging for computer vision (for example, fire, steam, water, vehicle and pedestrian traffic, and so forth). When compared with state-of-the-art methods in motion segmentation, including both temporal texture methods and traditional representations (for example, optical flow or other localized motion representations), the mixture of dynamic textures achieves superior performance in the problems of clustering and segmenting video of such processes. A dynamic texture is a spatio-temporal generative model for video, which represents video sequences as observations from a linear dynamical system. This work studies the mixture of dynamic textures, a statistical model for an ensemble of video sequences that is sampled from a finite collection of visual processes, each of which is a dynamic texture. An expectationmaximization (EM) algorithm is derived for learning the parameters of the model, and the model is related to previous works in linear systems, machine learning, time-series clustering, control theory, and computer vision. Through experimentation, it is shown that the mixture of dynamic textures is a suitable representation for both the appearance and dynamics of a variety of visual processes that have traditionally been challenging for computer vision (e.g. fire, steam, water, vehicle and pedestrian traffic, etc.). When compared with state-of-the-art methods in motion segmentation, including both temporal texture methods and traditional representations (e.g. optical flow or other localized motion representations), the mixture of dynamic textures achieves superior performance in the problems of clustering and segmenting video of such processes.A dynamic texture is a spatio-temporal generative model for video, which represents video sequences as observations from a linear dynamical system. This work studies the mixture of dynamic textures, a statistical model for an ensemble of video sequences that is sampled from a finite collection of visual processes, each of which is a dynamic texture. An expectationmaximization (EM) algorithm is derived for learning the parameters of the model, and the model is related to previous works in linear systems, machine learning, time-series clustering, control theory, and computer vision. Through experimentation, it is shown that the mixture of dynamic textures is a suitable representation for both the appearance and dynamics of a variety of visual processes that have traditionally been challenging for computer vision (e.g. fire, steam, water, vehicle and pedestrian traffic, etc.). When compared with state-of-the-art methods in motion segmentation, including both temporal texture methods and traditional representations (e.g. optical flow or other localized motion representations), the mixture of dynamic textures achieves superior performance in the problems of clustering and segmenting video of such processes. A dynamic texture is a spatio-temporal generative model for video, which represents video sequences as observations from a linear dynamical system. This work studies the mixture of dynamic textures, a statistical model for an ensemble [abstract truncated by publisher]. An expectation-maximization (EM) algorithm is derived for learning the parameters of the model, and the model is related to previous works in linear systems, machine learning, time- series clustering, control theory, and computer vision. A dynamic texture is a spatio-temporal generative model for video, which represents video sequences as observations from a linear dynamical system. This work studies the mixture of dynamic textures, a statistical model for an ensemble of video sequences that is sampled from a finite collection of visual processes, each of which is a dynamic texture. An expectationmaximization (EM) algorithm is derived for learning the parameters of the model, and the model is related to previous works in linear systems, machine learning, time-series clustering, control theory, and computer vision. Through experimentation, it is shown that the mixture of dynamic textures is a suitable representation for both the appearance and dynamics of a variety of visual processes that have traditionally been challenging for computer vision (e.g. fire, steam, water, vehicle and pedestrian traffic, etc.). When compared with state-of-the-art methods in motion segmentation, including both temporal texture methods and traditional representations (e.g. optical flow or other localized motion representations), the mixture of dynamic textures achieves superior performance in the problems of clustering and segmenting video of such processes. |
| Author | Chan, A.B. Vasconcelos, N. |
| Author_xml | – sequence: 1 givenname: A.B. surname: Chan fullname: Chan, A.B. organization: Univ. of California at San Diego, La Jolla – sequence: 2 givenname: N. surname: Vasconcelos fullname: Vasconcelos, N. organization: Univ. of California at San Diego, La Jolla |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20245844$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18369258$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0s1v0zAUAHALDbGucEdCQhEScCHl2Y5j-ziVr0mtQKJwtRz7ZXhKk2Engv33eG3pYRLs5K_f87Oe3xk56YceCXlKYUEp6LebL-friwUDkAsJkqsHZMZoDaVmmp2QGdCalUoxdUrOUroCoJUA_oicUsVrzYSakdV68NiF_vJNseymNGLczW3vi694ucV-zOvie_A4FL_C-KNYh9_jFDEVQ1u8u-ntNrhig_u9x-Rha7uETw7jnHz78H6z_FSuPn-8WJ6vSlfVeiwlMFtVXiP3AmXjrbVUtpJqAaKBVtiGeoeeOq48VExRrmTrW6doo0U-4XPyen_vdRx-TphGsw3JYdfZHocpGQ28Zrke4l6ppIBaSMmyfPVfKaGquBbiXsizk4rRDF_cgVfDFPtcGKNqxnNiKTN6fkBTs0VvrmPY2nhj_v5QBi8PwCZnuzba3oV0dAxYJVROOSf13rk4pBSxNS6MdgxDP0YbOkPB3LaM2bWMuW0Zs2uZHAh3Ao9v-HfIs31IQMQjr7jQueT8D5EVyYc |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1016_j_cviu_2012_09_002 crossref_primary_10_1016_j_eswa_2012_12_092 crossref_primary_10_1109_TCSVT_2016_2592322 crossref_primary_10_1109_TCSVT_2018_2885211 crossref_primary_10_17671_gazibtd_419205 crossref_primary_10_1109_TCSVT_2012_2203199 crossref_primary_10_1016_j_jfranklin_2017_04_013 crossref_primary_10_4304_jcp_8_5_1292_1297 crossref_primary_10_1002_aisy_202300706 crossref_primary_10_1007_s10489_023_04639_9 crossref_primary_10_17706_IJCEE_2015_7_5_316_324 crossref_primary_10_3390_rs14164110 crossref_primary_10_1007_s00521_018_3527_9 crossref_primary_10_1109_TIP_2015_2479561 crossref_primary_10_1155_2017_2580860 crossref_primary_10_1109_TCSVT_2014_2308616 crossref_primary_10_1109_TMM_2018_2832601 crossref_primary_10_1002_ima_20184 crossref_primary_10_1016_j_eswa_2019_05_055 crossref_primary_10_1109_ACCESS_2017_2733219 crossref_primary_10_1007_s10044_015_0459_1 crossref_primary_10_1109_TKDE_2021_3094997 crossref_primary_10_1016_j_ijcce_2024_07_006 crossref_primary_10_1016_j_measurement_2024_114459 crossref_primary_10_1016_j_patrec_2024_12_007 crossref_primary_10_1007_s11045_022_00826_y crossref_primary_10_1007_s11831_018_09305_9 crossref_primary_10_1109_TCSVT_2015_2489418 crossref_primary_10_1016_j_cviu_2014_10_001 crossref_primary_10_1109_ACCESS_2019_2904712 crossref_primary_10_1016_j_neucom_2017_02_058 crossref_primary_10_1109_ACCESS_2024_3488797 crossref_primary_10_1109_ACCESS_2023_3293537 crossref_primary_10_1016_j_cviu_2014_07_008 crossref_primary_10_1145_3092690 crossref_primary_10_1016_j_bica_2016_09_006 crossref_primary_10_1016_j_dsp_2019_03_017 crossref_primary_10_1109_TIP_2016_2598653 crossref_primary_10_1109_TPAMI_2013_111 crossref_primary_10_1145_3481299 crossref_primary_10_1007_s10851_015_0563_2 crossref_primary_10_1109_TNNLS_2020_3027667 crossref_primary_10_1515_amcs_2017_0013 crossref_primary_10_1016_j_patcog_2017_06_020 crossref_primary_10_1117_1_JEI_27_5_053044 crossref_primary_10_1016_j_neucom_2024_128673 crossref_primary_10_1109_ACCESS_2024_3374383 crossref_primary_10_1109_TCSVT_2014_2358029 crossref_primary_10_1109_TMM_2016_2598091 crossref_primary_10_1007_s11554_013_0368_8 crossref_primary_10_1016_j_neucom_2017_02_023 crossref_primary_10_1142_S021800142451011X crossref_primary_10_1088_1742_6596_1921_1_012074 crossref_primary_10_1109_TCSVT_2009_2026932 crossref_primary_10_1109_LSP_2020_3025688 crossref_primary_10_1109_TITS_2014_2371333 crossref_primary_10_1109_TNNLS_2018_2851979 crossref_primary_10_1016_j_media_2012_02_002 crossref_primary_10_1016_j_patrec_2022_11_008 crossref_primary_10_1080_19479832_2021_1900408 crossref_primary_10_1016_j_cviu_2019_102882 crossref_primary_10_1109_TASL_2013_2279318 crossref_primary_10_3390_agriengineering2040039 crossref_primary_10_1007_s00138_010_0262_3 crossref_primary_10_1016_j_neucom_2016_09_138 crossref_primary_10_1109_TFUZZ_2013_2240689 crossref_primary_10_2139_ssrn_4112841 crossref_primary_10_1109_ACCESS_2017_2708838 crossref_primary_10_1109_TIP_2012_2226899 crossref_primary_10_1109_TCSVT_2016_2539878 crossref_primary_10_1109_TIP_2018_2875353 crossref_primary_10_1109_TNNLS_2020_3011717 crossref_primary_10_1137_120872048 crossref_primary_10_1016_j_ins_2016_04_049 crossref_primary_10_1007_s11263_014_0735_3 crossref_primary_10_1109_TMM_2020_2997202 crossref_primary_10_1016_j_cviu_2008_08_009 crossref_primary_10_3390_s22124441 crossref_primary_10_1007_s11042_015_2548_y crossref_primary_10_1109_TPAMI_2010_226 crossref_primary_10_1109_TASL_2010_2090148 crossref_primary_10_1109_TIP_2012_2210234 crossref_primary_10_1016_j_patrec_2012_06_011 crossref_primary_10_1007_s00530_019_00629_5 crossref_primary_10_1016_j_autcon_2022_104167 crossref_primary_10_1007_s11042_014_2219_4 crossref_primary_10_1109_TMI_2019_2946059 crossref_primary_10_1016_j_patcog_2016_03_031 crossref_primary_10_1145_3487892 crossref_primary_10_1007_s11760_013_0532_4 crossref_primary_10_1016_j_patcog_2010_10_021 crossref_primary_10_1109_TASL_2009_2036306 crossref_primary_10_1049_iet_ipr_2016_0044 crossref_primary_10_3390_computers2020088 crossref_primary_10_3390_su17010041 crossref_primary_10_1007_s13177_023_00373_1 crossref_primary_10_1007_s11263_016_0918_1 crossref_primary_10_3390_app9132670 crossref_primary_10_1109_TIP_2011_2179055 crossref_primary_10_1016_j_dsp_2021_103030 crossref_primary_10_1109_TPAMI_2014_2359432 crossref_primary_10_1016_j_patrec_2013_10_002 crossref_primary_10_3390_mi13010072 crossref_primary_10_1016_j_cviu_2023_103653 crossref_primary_10_1007_s11263_015_0864_3 crossref_primary_10_1016_j_idm_2016_07_001 crossref_primary_10_1109_TIP_2016_2579307 crossref_primary_10_1162_COMJ_a_00375 crossref_primary_10_3390_math10203856 crossref_primary_10_3724_SP_J_1016_2010_01835 crossref_primary_10_1109_TPAMI_2014_2300484 crossref_primary_10_1016_j_cosrev_2024_100686 crossref_primary_10_1109_ACCESS_2020_3003993 crossref_primary_10_1109_TPAMI_2009_21 crossref_primary_10_1016_j_neucom_2023_126561 crossref_primary_10_1109_TIP_2019_2922818 crossref_primary_10_1109_MCE_2020_3029769 crossref_primary_10_1016_j_heliyon_2024_e25360 crossref_primary_10_2197_ipsjjip_19_190 crossref_primary_10_1109_TCSVT_2013_2276151 crossref_primary_10_1109_TIP_2014_2300811 crossref_primary_10_1007_s13369_022_07092_x crossref_primary_10_1109_TPAMI_2011_52 crossref_primary_10_32604_cmc_2022_028570 crossref_primary_10_1109_TIP_2022_3204217 crossref_primary_10_1109_TPAMI_2012_236 crossref_primary_10_1016_j_patcog_2023_109335 crossref_primary_10_1109_TITS_2016_2634580 crossref_primary_10_3390_info13010002 crossref_primary_10_1016_j_eswa_2020_113333 crossref_primary_10_1109_TPAMI_2009_110 crossref_primary_10_1007_s00332_018_9470_1 crossref_primary_10_1109_TIP_2011_2172800 crossref_primary_10_1016_j_patcog_2012_03_010 crossref_primary_10_1109_TSMCB_2012_2192267 crossref_primary_10_1109_TCSVT_2011_2159430 crossref_primary_10_1016_j_neucom_2015_12_070 crossref_primary_10_1109_ACCESS_2024_3435144 crossref_primary_10_1016_j_ijdrr_2017_02_021 crossref_primary_10_1016_j_mlwa_2021_100023 crossref_primary_10_1109_LGRS_2021_3072191 crossref_primary_10_1016_j_neucom_2017_05_045 crossref_primary_10_1016_j_automatica_2018_06_022 crossref_primary_10_1109_TNNLS_2023_3274611 crossref_primary_10_1117_1_3518080 crossref_primary_10_1016_j_cviu_2013_04_006 crossref_primary_10_1016_j_patcog_2018_07_006 crossref_primary_10_1109_TIP_2020_2985284 crossref_primary_10_18178_joig_7_4_112_116 crossref_primary_10_1109_TCDS_2022_3230858 crossref_primary_10_1109_TCSVT_2017_2731866 crossref_primary_10_1002_rob_21989 crossref_primary_10_1109_TIP_2015_2462029 crossref_primary_10_1109_TNNLS_2020_2979049 crossref_primary_10_1007_s12065_022_00713_2 crossref_primary_10_1007_s00371_018_1499_5 crossref_primary_10_1016_j_neucom_2018_08_085 crossref_primary_10_1109_TPAMI_2020_3040591 crossref_primary_10_1109_TITS_2016_2516586 crossref_primary_10_1117_1_OE_57_4_043109 crossref_primary_10_1109_JSEN_2014_2381260 crossref_primary_10_3390_s20185073 crossref_primary_10_1016_j_compind_2018_02_007 crossref_primary_10_1016_j_cviu_2016_04_003 crossref_primary_10_1109_TMM_2016_2542585 crossref_primary_10_1049_iet_cvi_2019_0455 crossref_primary_10_1109_TGRS_2019_2903794 crossref_primary_10_1109_TIP_2013_2258353 crossref_primary_10_1016_j_neucom_2014_11_034 crossref_primary_10_1109_TII_2019_2916671 crossref_primary_10_32604_iasc_2022_029535 crossref_primary_10_1016_j_jpdc_2017_03_002 crossref_primary_10_1109_ACCESS_2018_2872733 crossref_primary_10_1109_JIOT_2024_3376457 crossref_primary_10_1109_TAFFC_2015_2404352 crossref_primary_10_3724_SP_J_1004_2012_00742 crossref_primary_10_1121_1_4751535 crossref_primary_10_1080_13682199_2020_1767843 crossref_primary_10_1049_iet_ipr_2016_0994 crossref_primary_10_1109_TIP_2015_2447738 crossref_primary_10_1109_TCSVT_2021_3061153 crossref_primary_10_1016_j_cviu_2020_103040 crossref_primary_10_1016_j_media_2013_05_003 crossref_primary_10_1109_TCSVT_2015_2511479 crossref_primary_10_1109_TCSVT_2017_2713480 crossref_primary_10_1109_TNNLS_2015_2435653 crossref_primary_10_1016_j_procs_2019_08_203 crossref_primary_10_1007_s13369_017_2995_z crossref_primary_10_1177_0278364915583881 |
| Cites_doi | 10.1109/83.334981 10.1016/j.patcog.2005.01.025 10.1109/34.868677 10.1109/ICCV.1998.710707 10.1023/A:1021669406132 10.1109/34.868688 10.1023/A:1008078328650 10.1109/tpami.2009.110 10.1109/TCS.1983.1085288 10.1080/01621459.1991.10475107 10.1109/CVPR.1997.609375 10.1109/ACV.1994.341288 10.1109/PROC.1976.10289 10.1007/3-540-55426-2_33 10.1109/CVPR.1999.786972 10.1109/CVPR.1999.784983 10.1109/ICCV.2001.937584 10.1016/0304-4076(94)90036-1 10.1016/0004-3702(81)90024-2 10.1162/089976699300016674 10.1109/CVPR.2001.990925 10.1109/CVPR.1993.341161 10.1109/34.1000236 10.1109/89.242489 10.1109/TPAMI.2002.1023800 10.1109/CVPR.2005.279 10.1080/01621459.1998.10474114 10.1109/TSP.2004.831125 10.1007/978-3-540-70932-9_11 10.1007/978-1-4615-3236-1_1 10.1109/ICCV.2005.151 10.1109/ICCV.2001.937658 10.1109/ICCV.2005.135 10.1109/CVPR.2005.263 10.1109/TPAMI.2003.1195991 10.1016/0005-1098(94)90230-5 10.1109/9.554398 10.1111/j.1467-9892.2005.00441.x 10.1007/978-1-4757-3502-4 10.1109/ICCV.2003.1238632 10.1007/BF01908075 10.1162/089976600300015619 10.1109/34.908972 10.1007/BF01420984 10.1007/978-3-540-70932-9_10 10.1111/j.1467-9892.1982.tb00349.x 10.1109/TAC.1965.1098191 10.1016/j.patcog.2003.12.018 10.2307/2984875 10.1109/cvpr.2003.1211367 10.1109/34.531801 10.1109/iccv.1998.710861 10.1109/ACC.2002.1024543 |
| ContentType | Journal Article |
| Copyright | 2008 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
| Copyright_xml | – notice: 2008 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8 |
| DOI | 10.1109/TPAMI.2007.70738 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database MEDLINE - Academic Technology Research Database Technology Research Database MEDLINE Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Applied Sciences |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 926 |
| ExternalDocumentID | 2322975071 18369258 20245844 10_1109_TPAMI_2007_70738 4359353 |
| Genre | orig-research Evaluation Studies Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION IQODW RIG CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8 |
| ID | FETCH-LOGICAL-c469t-702a44d9e3d5e7bdaaa17f719505b0f5ab1dced1c38d04281387fdfc81b95dce3 |
| IEDL.DBID | RIE |
| ISSN | 0162-8828 |
| IngestDate | Thu Oct 02 11:01:56 EDT 2025 Wed Oct 01 14:24:29 EDT 2025 Mon Sep 29 05:01:15 EDT 2025 Sat Sep 27 19:55:06 EDT 2025 Mon Jun 30 06:36:07 EDT 2025 Mon Jul 21 05:59:10 EDT 2025 Mon Jul 21 09:13:35 EDT 2025 Wed Oct 01 06:41:52 EDT 2025 Thu Apr 24 22:51:11 EDT 2025 Tue Aug 26 16:47:22 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | video clustering temporal textures video modeling Kalman filter Dynamic texture motion segmentation time-series clustering mixture models expectation-maximization linear dynamical systems probabilistic models Cluster analysis Parameter estimation Video signal Mixture theory Linear time Computer control Dynamical system Modeling Texture Image sequence Fires Classification Dynamic model Pattern analysis Computer vision Statistical analysis Probabilistic approach Motion estimation Computer theory Time series Pedestrian traffic Water vapor Image segmentation Road traffic Control theory EM algorithm Artificial intelligence Optical flow |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-702a44d9e3d5e7bdaaa17f719505b0f5ab1dced1c38d04281387fdfc81b95dce3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-1 ObjectType-Feature-3 |
| PMID | 18369258 |
| PQID | 862350677 |
| PQPubID | 23500 |
| PageCount | 18 |
| ParticipantIDs | crossref_citationtrail_10_1109_TPAMI_2007_70738 crossref_primary_10_1109_TPAMI_2007_70738 pascalfrancis_primary_20245844 proquest_miscellaneous_875065772 proquest_miscellaneous_34437821 pubmed_primary_18369258 proquest_miscellaneous_903620735 proquest_journals_862350677 proquest_miscellaneous_70443955 ieee_primary_4359353 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2008-05-01 |
| PublicationDateYYYYMMDD | 2008-05-01 |
| PublicationDate_xml | – month: 05 year: 2008 text: 2008-05-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Los Alamitos, CA |
| PublicationPlace_xml | – name: Los Alamitos, CA – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2008 |
| Publisher | IEEE IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref53 ref52 ref11 ref55 ref10 ref54 (ref58) 2008 ref17 ref16 ref19 ref18 Kay (ref23) 1993 ref51 Horn (ref1) 1986 ref46 Young (ref29) 2006 ref45 ref48 ref47 ref42 ref44 ref43 Lucas (ref3) ref8 ref7 ref9 ref4 ref6 ref5 ref40 ref34 ref37 ref31 ref30 ref33 ref32 ref2 ref39 ref38 (ref60) 2008 Duda (ref50) 2001 Ghahramani (ref36) 1997 ref24 ref26 ref25 Forsyth (ref49) 2002 ref20 ref64 ref63 ref22 ref21 ref28 ref27 Ghahramani (ref35) 1996 Pavlović (ref41) 2000 ref62 ref61 |
| References_xml | – ident: ref6 doi: 10.1109/83.334981 – ident: ref45 doi: 10.1016/j.patcog.2005.01.025 – start-page: 121 volume-title: Proc. DARPA Image Understanding Workshop ident: ref3 article-title: An Iterative Image Registration Technique with an Application to Stereo Vision – ident: ref51 doi: 10.1109/34.868677 – ident: ref39 doi: 10.1109/ICCV.1998.710707 – ident: ref13 doi: 10.1023/A:1021669406132 – volume-title: Fundamentals of Statistical Signal Processing: Estimation Theory year: 1993 ident: ref23 – volume-title: Washington State Dept. of Transportation year: 2008 ident: ref60 – ident: ref61 doi: 10.1109/34.868688 – ident: ref9 doi: 10.1023/A:1008078328650 – ident: ref19 doi: 10.1109/tpami.2009.110 – ident: ref33 doi: 10.1109/TCS.1983.1085288 – ident: ref37 doi: 10.1080/01621459.1991.10475107 – volume-title: Pattern Classification year: 2001 ident: ref50 – volume-title: Technical Report CRG-TR-96-1, Dept. of Computer Science, Univ. of Toronto year: 1997 ident: ref36 article-title: The EM Algorithm for Mixtures of Factor Analyzers – ident: ref53 doi: 10.1109/CVPR.1997.609375 – ident: ref8 doi: 10.1109/ACV.1994.341288 – ident: ref31 doi: 10.1109/PROC.1976.10289 – volume-title: The HTK Book year: 2006 ident: ref29 – ident: ref10 doi: 10.1007/3-540-55426-2_33 – ident: ref55 doi: 10.1109/CVPR.1999.786972 – ident: ref40 doi: 10.1109/CVPR.1999.784983 – ident: ref14 doi: 10.1109/ICCV.2001.937584 – ident: ref42 doi: 10.1016/0304-4076(94)90036-1 – ident: ref2 doi: 10.1016/0004-3702(81)90024-2 – volume-title: Technical Report CRG-TR-96-2, Dept. of Computer Science, Univ. of Toronto year: 1996 ident: ref35 article-title: Parameter Estimation for Linear Dynamical Systems – ident: ref24 doi: 10.1162/089976699300016674 – ident: ref16 doi: 10.1109/CVPR.2001.990925 – ident: ref52 doi: 10.1109/CVPR.1993.341161 – ident: ref63 doi: 10.1109/34.1000236 – ident: ref34 doi: 10.1109/89.242489 – ident: ref56 doi: 10.1109/TPAMI.2002.1023800 – ident: ref17 doi: 10.1109/CVPR.2005.279 – volume-title: Advances in Neural Information Processing Systems 13 year: 2000 ident: ref41 article-title: Learning Switching Linear Models of Human Motion – ident: ref46 doi: 10.1080/01621459.1998.10474114 – ident: ref57 doi: 10.1109/TSP.2004.831125 – ident: ref21 doi: 10.1007/978-3-540-70932-9_11 – ident: ref5 doi: 10.1007/978-1-4615-3236-1_1 – ident: ref20 doi: 10.1109/ICCV.2005.151 – ident: ref12 doi: 10.1109/ICCV.2001.937658 – ident: ref43 doi: 10.1109/ICCV.2005.135 – ident: ref18 doi: 10.1109/CVPR.2005.263 – ident: ref11 doi: 10.1109/TPAMI.2003.1195991 – ident: ref26 doi: 10.1016/0005-1098(94)90230-5 – ident: ref32 doi: 10.1109/9.554398 – volume-title: Computer Vision: A Modern Approach year: 2002 ident: ref49 – ident: ref64 doi: 10.1111/j.1467-9892.2005.00441.x – ident: ref27 doi: 10.1007/978-1-4757-3502-4 – ident: ref15 doi: 10.1109/ICCV.2003.1238632 – ident: ref59 doi: 10.1007/BF01908075 – ident: ref44 doi: 10.1162/089976600300015619 – ident: ref54 doi: 10.1109/34.908972 – ident: ref4 doi: 10.1007/BF01420984 – ident: ref22 doi: 10.1007/978-3-540-70932-9_10 – year: 2008 ident: ref58 article-title: Mixtures of Dynamic Textures – ident: ref25 doi: 10.1111/j.1467-9892.1982.tb00349.x – ident: ref30 doi: 10.1109/TAC.1965.1098191 – ident: ref48 doi: 10.1016/j.patcog.2003.12.018 – ident: ref28 doi: 10.2307/2984875 – ident: ref38 doi: 10.1109/cvpr.2003.1211367 – ident: ref7 doi: 10.1109/34.531801 – volume-title: Robot Vision year: 1986 ident: ref1 – ident: ref62 doi: 10.1109/iccv.1998.710861 – ident: ref47 doi: 10.1109/ACC.2002.1024543 |
| SSID | ssj0014503 |
| Score | 2.4640746 |
| Snippet | A dynamic texture is a spatio-temporal generative model for video, which represents video sequences as observations from a linear dynamical system. This work... An expectation-maximization (EM) algorithm is derived for learning the parameters of the model, and the model is related to previous works in linear systems,... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 909 |
| SubjectTerms | Algorithms Applied sciences Artificial Intelligence Cluster Analysis Clustering Clustering algorithms Computer science; control theory; systems Computer Simulation Computer vision Control theory Dynamic tests Dynamic texture Dynamical systems Dynamics Exact sciences and technology expectation-maximization Fires Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Information Storage and Retrieval - methods Kalman filter Likelihood Functions linear dynamical systems Linear systems Machine learning Machine learning algorithms Marine vehicles Mathematical models mixture models Models, Statistical motion segmentation Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry probabilistic models Representations Reproducibility of Results Sensitivity and Specificity Studies Surface layer temporal textures Texture time-series clustering Vehicle dynamics video clustering video modeling Video Recording - methods Video sequences |
| Title | Modeling, Clustering, and Segmenting Video with Mixtures of Dynamic Textures |
| URI | https://ieeexplore.ieee.org/document/4359353 https://www.ncbi.nlm.nih.gov/pubmed/18369258 https://www.proquest.com/docview/862350677 https://www.proquest.com/docview/34437821 https://www.proquest.com/docview/70443955 https://www.proquest.com/docview/875065772 https://www.proquest.com/docview/903620735 |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBQssjLRQfuCA1u0lsr-NjVagKYhESW9Rb5NiTakVJUHcjAb8ej_OgIBZxs-JJFHtm5BnP4wN4kfLUoTM6di7BWJgyiXMpZZyjwVJVMklMyPJ9Pzu_EG8v5eUWHI-1MIgYks9wQsMQy3eNbemqbOqPds0l34Ztlc-6Wq0xYiBkQEH2FozXcO9GDCHJRE8XH07mb7puhcpLdIDoy_lMZ4Tzfus0CvAqlBxpVn5_qg7YYrPlGU6gs12YD__eJZ58nrTrcmJ__NHW8X8Xdx_u9aYoO-lk5wFsYb0HuwPMA-u1fg_u3upZuA_vCD2NatiP2el1S20WwtjUjn3Eq5B8VF-xT0uHDaNLXjZffqMoxYo1FXv1vTZflpYtsHv2EC7OXi9Oz-MekiG23o9exyrJjBBOI3cSVemMMamqFGHJyjKppClTZ9GllueOvLGU56pylfXGsZZ-hj-Cnbqp8Qkw1EnmqBA2LyuhnNQELJ4pi1mWW-d0BNOBNYXt-5UTbMZ1EfyWRBeBr4SjqYrA1whejm987Xp1_IN2n1gw0vW7H8HRb9wf5zMKUedCRHA4iEPRa_uq8F4hl9SKL4Ln46xXU4q9mBqbdlVwIbg3xtLNFCrxJFrKCNgGCu9aeoPRu0ObSTQZJH59_iuPO1n9tRO9yB_8feWHcKdLhaFczqews75p8Zm3t9blUVC0n8EKJWM |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFFoeodD6wAWp2XViu46PVaHawm6FxBb1Fjm2U61ok4rdSMCvx-M8KIhF3Kx4EsWeGXnG8_gAXicssc5qFVtLXcx1QeNMCBFnTrtCloJSHbJ8zw4n5_z9hbjYgIOhFsY5F5LP3AiHIZZva9PgVdnYH-2KCXYH7grOuWirtYaYARcBB9nbMF7HvSPRByWpGs8_Hs1O236F0st0AOnL2KFKEen91nkUAFYwPVIv_Q6VLbTFetsznEEnWzDr_75NPfkyalbFyPz4o7Hj_y7vETzsjFFy1ErPY9hw1TZs9UAPpNP7bXhwq2vhDkwRPw2r2A_I8VWDjRbCWFeWfHKXIf2ouiSfF9bVBK95yWzxDeMUS1KX5O33Sl8vDJm79tkTOD95Nz-exB0oQ2y8J72KJU0151Y5ZoWThdVaJ7KUiCYrCloKXSTWOJsYlln0xxKWydKWxpvHSvgZ9hQ2q7pyz4E4RVOLpbBZUXJphUJo8VQal6aZsVZFMO5Zk5uuYzkCZ1zlwXOhKg98RSRNmQe-RvBmeOOm7dbxD9odZMFA1-1-BHu_cX-YTzFInXEewW4vDnmn78vc-4VMYDO-CPaHWa-oGH3RlaubZc44Z94cS9ZTSOpJlBARkDUU3rn0JqN3iNaTKDRJ_Pr8V561svprJzqRf_H3le_Dvcl8Ns2np2cfduF-mxiDmZ0vYXP1tXGvvPW1KvaC0v0ENhYosA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling%2C+Clustering%2C+and+Segmenting+Video+with+Mixtures+of+Dynamic+Textures&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Chan%2C+A.B&rft.au=Vasconcelos%2C+N&rft.date=2008-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=30&rft.issue=5&rft.spage=909&rft_id=info:doi/10.1109%2FTPAMI.2007.70738&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2322975071 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |