Gait Characteristics Harvested during a Smartphone-Based Self-Administered 2-Minute Walk Test in People with Multiple Sclerosis: Test-Retest Reliability and Minimum Detectable Change
The measurement of gait characteristics during a self-administered 2-minute walk test (2MWT), in persons with multiple sclerosis (PwMS), using a single body-worn device, has the potential to provide high-density longitudinal information on disease progression, beyond what is currently measured in th...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 20; no. 20; p. 5906 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
19.10.2020
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s20205906 |
Cover
Summary: | The measurement of gait characteristics during a self-administered 2-minute walk test (2MWT), in persons with multiple sclerosis (PwMS), using a single body-worn device, has the potential to provide high-density longitudinal information on disease progression, beyond what is currently measured in the clinician-administered 2MWT. The purpose of this study is to determine the test-retest reliability, standard error of measurement (SEM) and minimum detectable change (MDC) of features calculated on gait characteristics, harvested during a self-administered 2MWT in a home environment, in 51 PwMS and 11 healthy control (HC) subjects over 24 weeks, using a single waist-worn inertial sensor-based smartphone. Excellent, or good to excellent test-retest reliability were observed in 58 of the 92 temporal, spatial and spatiotemporal gait features in PwMS. However, these were less reliable for HCs. Low SEM% and MDC% values were observed for most of the distribution measures for all gait characteristics for PwMS and HCs. This study demonstrates the inter-session test-retest reliability and provides an indication of clinically important change estimates, for interpreting the outcomes of gait characteristics measured using a body-worn smartphone, during a self-administered 2MWT. This system thus provides a reliable measure of gait characteristics in PwMS, supporting its application for the longitudinal assessment of gait deficits in this population. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s20205906 |