DBN Structure Design Algorithm for Different Datasets Based on Information Entropy and Reconstruction Error

Deep belief networks (DBNs) of deep learning technology have been successfully used in many fields. However, the structure of a DBN is difficult to design for different datasets. Hence, a DBN structure design algorithm based on information entropy and reconstruction error is proposed. Unlike previou...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 20; no. 12; p. 927
Main Authors Jiang, Jianjun, Zhang, Jing, Zhang, Lijia, Ran, Xiaomin, Jiang, Jun, Wu, Yifan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 04.12.2018
MDPI
Subjects
Online AccessGet full text
ISSN1099-4300
1099-4300
DOI10.3390/e20120927

Cover

Abstract Deep belief networks (DBNs) of deep learning technology have been successfully used in many fields. However, the structure of a DBN is difficult to design for different datasets. Hence, a DBN structure design algorithm based on information entropy and reconstruction error is proposed. Unlike previous algorithms, we innovatively combine network depth and node number and optimizes them simultaneously. First, the mathematical model of the structural design problem is established, and the boundary constraint for node number based on information entropy is derived by introducing the idea of information compression. Moreover, the optimization objective of the network performance based on reconstruction error is proposed by deriving the fact that network energy is proportional to reconstruction error. Finally, the improved simulated annealing (ISA) algorithm is used to adjust the DBN network layers and nodes simultaneously. Experiments were carried out on three public datasets (MNIST, Cifar-10 and Cifar-100). The results show that the proposed algorithm can design its proper structure to different datasets, yielding a trained DBN which has the lowest reconstruction error and prediction error rate. The proposed algorithm is shown to have the best performance compared with other algorithms and can be used to assist the setting of DBN structural parameters for different datasets.
AbstractList Deep belief networks (DBNs) of deep learning technology have been successfully used in many fields. However, the structure of a DBN is difficult to design for different datasets. Hence, a DBN structure design algorithm based on information entropy and reconstruction error is proposed. Unlike previous algorithms, we innovatively combine network depth and node number and optimizes them simultaneously. First, the mathematical model of the structural design problem is established, and the boundary constraint for node number based on information entropy is derived by introducing the idea of information compression. Moreover, the optimization objective of the network performance based on reconstruction error is proposed by deriving the fact that network energy is proportional to reconstruction error. Finally, the improved simulated annealing (ISA) algorithm is used to adjust the DBN network layers and nodes simultaneously. Experiments were carried out on three public datasets (MNIST, Cifar-10 and Cifar-100). The results show that the proposed algorithm can design its proper structure to different datasets, yielding a trained DBN which has the lowest reconstruction error and prediction error rate. The proposed algorithm is shown to have the best performance compared with other algorithms and can be used to assist the setting of DBN structural parameters for different datasets.
Deep belief networks (DBNs) of deep learning technology have been successfully used in many fields. However, the structure of a DBN is difficult to design for different datasets. Hence, a DBN structure design algorithm based on information entropy and reconstruction error is proposed. Unlike previous algorithms, we innovatively combine network depth and node number and optimizes them simultaneously. First, the mathematical model of the structural design problem is established, and the boundary constraint for node number based on information entropy is derived by introducing the idea of information compression. Moreover, the optimization objective of the network performance based on reconstruction error is proposed by deriving the fact that network energy is proportional to reconstruction error. Finally, the improved simulated annealing (ISA) algorithm is used to adjust the DBN network layers and nodes simultaneously. Experiments were carried out on three public datasets (MNIST, Cifar-10 and Cifar-100). The results show that the proposed algorithm can design its proper structure to different datasets, yielding a trained DBN which has the lowest reconstruction error and prediction error rate. The proposed algorithm is shown to have the best performance compared with other algorithms and can be used to assist the setting of DBN structural parameters for different datasets.Deep belief networks (DBNs) of deep learning technology have been successfully used in many fields. However, the structure of a DBN is difficult to design for different datasets. Hence, a DBN structure design algorithm based on information entropy and reconstruction error is proposed. Unlike previous algorithms, we innovatively combine network depth and node number and optimizes them simultaneously. First, the mathematical model of the structural design problem is established, and the boundary constraint for node number based on information entropy is derived by introducing the idea of information compression. Moreover, the optimization objective of the network performance based on reconstruction error is proposed by deriving the fact that network energy is proportional to reconstruction error. Finally, the improved simulated annealing (ISA) algorithm is used to adjust the DBN network layers and nodes simultaneously. Experiments were carried out on three public datasets (MNIST, Cifar-10 and Cifar-100). The results show that the proposed algorithm can design its proper structure to different datasets, yielding a trained DBN which has the lowest reconstruction error and prediction error rate. The proposed algorithm is shown to have the best performance compared with other algorithms and can be used to assist the setting of DBN structural parameters for different datasets.
Author Jiang, Jianjun
Zhang, Jing
Ran, Xiaomin
Zhang, Lijia
Jiang, Jun
Wu, Yifan
AuthorAffiliation National Digital Switching System Engineering and Technological Research Center (NDSC), Zhengzhou 450000, Henan, China
AuthorAffiliation_xml – name: National Digital Switching System Engineering and Technological Research Center (NDSC), Zhengzhou 450000, Henan, China
Author_xml – sequence: 1
  givenname: Jianjun
  surname: Jiang
  fullname: Jiang, Jianjun
– sequence: 2
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
– sequence: 3
  givenname: Lijia
  surname: Zhang
  fullname: Zhang, Lijia
– sequence: 4
  givenname: Xiaomin
  surname: Ran
  fullname: Ran, Xiaomin
– sequence: 5
  givenname: Jun
  surname: Jiang
  fullname: Jiang, Jun
– sequence: 6
  givenname: Yifan
  surname: Wu
  fullname: Wu, Yifan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33266651$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1rFDEUhgep2A-98A9IwBsV1uZjkkxuhLZbdaEo-HEdMpkz26wzyZpklP33prt1aYt4cTiHnCcv5z3JcXXgg4eqek7wW8YUPgWKCcWKykfVEcFKzWqG8cGd-rA6TmmFMWWUiCfVIWNUCMHJUfVjfv4Jfc1xsnmKgOaQ3NKjs2EZosvXI-pDRHPX9xDBZzQ32STICZ2X1KHg0cIXYjTZlfrS5xjWG2R8h76ADT5tdbetGEN8Wj3uzZDg2W0-qb6_v_x28XF29fnD4uLsamZrofJM1IQ3PauNsi1mTAJrWGd6RqmQxaSwwCw2JTiVpFW9otBa1mIoFDdA2Um12Ol2waz0OrrRxI0OxuntQYhLbWJ2dgDNqOoUyK63AmrVQcMtISVqXivSS1603uy0Jr82m99mGPaCBOub7ev99gv8bgevp3aEzpaVRTPcm-B-x7trvQy_tOSEclIXgVe3AjH8nCBlPbpkYRiMhzAlTWshpCSS35h8-QBdhSn6sldNeUOlaiRpCvXi7kT7Uf5-gAK83gE2hpQi9P-1d_qAtS5vn76YccM_bvwB7kjOlg
CitedBy_id crossref_primary_10_1016_j_sna_2023_115003
crossref_primary_10_3390_app10175765
Cites_doi 10.1109/FPL.2009.5272262
10.1080/01431160802549278
10.3390/app8050795
10.1145/2783258.2788576
10.1162/neco.2008.04-07-510
10.1016/j.neunet.2014.09.003
10.1007/978-3-642-35289-8_26
10.1126/science.1127647
10.1109/CVPR.2013.465
10.1109/CVPR.2014.214
10.1109/CVPR.2014.220
10.1016/j.patcog.2016.05.028
10.1561/2200000006
10.3390/app7111184
10.3390/s16010100
10.3390/s17071694
ContentType Journal Article
Copyright 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 by the authors. 2018
Copyright_xml – notice: 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/e20120927
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed

Publicly Available Content Database
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_329d9e7dfc6e49de85c115c145491f75
10.3390/e20120927
PMC7512514
33266651
10_3390_e20120927
Genre Journal Article
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
C1A
CH8
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c469t-64158f34a9cb0337e383daf322670926ce3c0a3c05271b9f92ebc3b0e3da5ae23
IEDL.DBID UNPAY
ISSN 1099-4300
IngestDate Fri Oct 03 12:45:30 EDT 2025
Sun Oct 26 04:15:42 EDT 2025
Tue Sep 30 16:57:25 EDT 2025
Thu Oct 02 06:04:52 EDT 2025
Fri Jul 25 12:01:30 EDT 2025
Mon Jul 21 06:04:12 EDT 2025
Thu Oct 16 04:46:48 EDT 2025
Thu Apr 24 22:53:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords reconstruction error
DBN
deep learning
information entropy
structure design
artificial intelligence
improved simulated annealing algorithm
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-64158f34a9cb0337e383daf322670926ce3c0a3c05271b9f92ebc3b0e3da5ae23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1099-4300/20/12/927/pdf?version=1543920347
PMID 33266651
PQID 2582798718
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_329d9e7dfc6e49de85c115c145491f75
unpaywall_primary_10_3390_e20120927
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7512514
proquest_miscellaneous_2466771752
proquest_journals_2582798718
pubmed_primary_33266651
crossref_primary_10_3390_e20120927
crossref_citationtrail_10_3390_e20120927
PublicationCentury 2000
PublicationDate 20181204
PublicationDateYYYYMMDD 2018-12-04
PublicationDate_xml – month: 12
  year: 2018
  text: 20181204
  day: 4
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2018
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Hao (ref_26) 2007; 37
Chunxia (ref_25) 2015; 3
Xing (ref_11) 2016; 38
Yann (ref_5) 2015; 521
ref_14
ref_13
ref_12
ref_10
ref_19
Qiang (ref_16) 2016; 16
Guangyuan (ref_15) 2015; 30
Schmidhuber (ref_20) 2014; 61
Nicolas (ref_1) 2008; 20
Naijie (ref_22) 2015; 36
ref_23
Bengio (ref_28) 2009; 2
Zhiqiang (ref_9) 2017; 61
Roux (ref_24) 2008; 20
Bengio (ref_21) 2012; Volume 7700
ref_2
ref_29
ref_27
ref_8
Stathakis (ref_18) 2009; 30
ref_4
Xuan (ref_17) 2016; 33
Hinton (ref_3) 2006; 313
ref_7
ref_6
References_xml – volume: 3
  start-page: 159
  year: 2015
  ident: ref_25
  article-title: Restricted Boltzmann Machine
  publication-title: Chin. J. Eng. Math.
– ident: ref_23
  doi: 10.1109/FPL.2009.5272262
– volume: 30
  start-page: 2133
  year: 2009
  ident: ref_18
  article-title: How many hidden layers and nodes?
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160802549278
– volume: 521
  start-page: 567
  year: 2015
  ident: ref_5
  article-title: Deep learning
  publication-title: Nature
– ident: ref_14
  doi: 10.3390/app8050795
– volume: 30
  start-page: 256
  year: 2015
  ident: ref_15
  article-title: Calculation for depth of deep belief network
  publication-title: Control Decis.
– ident: ref_8
  doi: 10.1145/2783258.2788576
– volume: 33
  start-page: 843
  year: 2016
  ident: ref_17
  article-title: Alternating update layers for DBN-DNN fast training method
  publication-title: Appl. Res. Comput.
– volume: 20
  start-page: 1631
  year: 2008
  ident: ref_1
  article-title: Representational power of restricted Boltzmann machines and deep belief networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.2008.04-07-510
– volume: 61
  start-page: 85
  year: 2014
  ident: ref_20
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: Volume 7700
  start-page: 437
  year: 2012
  ident: ref_21
  article-title: Practical recommendations for gradient-based training of deep architectures
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-642-35289-8_26
– ident: ref_4
– ident: ref_29
– ident: ref_27
– ident: ref_2
– volume: 36
  start-page: 1042
  year: 2015
  ident: ref_22
  article-title: Algorithm of depth neural network training based on multi-GPU
  publication-title: J. Chin. Comput. Syst.
– volume: 38
  start-page: 2972
  year: 2016
  ident: ref_11
  article-title: Research on low probability of intercept radar signal recognition using deep belief network and bispectra diagonal slice
  publication-title: J. Electron. Inf. Technol.
– volume: 313
  start-page: 436
  year: 2006
  ident: ref_3
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: ref_19
  doi: 10.1109/CVPR.2013.465
– ident: ref_7
  doi: 10.1109/CVPR.2014.214
– volume: 20
  start-page: 1631
  year: 2008
  ident: ref_24
  article-title: Representational power of restricted Boltzmann machines and deep belief networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.2008.04-07-510
– ident: ref_6
  doi: 10.1109/CVPR.2014.220
– volume: 16
  start-page: 234
  year: 2016
  ident: ref_16
  article-title: Research and application of the level of the deep belief betwork (DBN)
  publication-title: Sci. Technol. Eng.
– volume: 61
  start-page: 686
  year: 2017
  ident: ref_9
  article-title: Discriminant deep belief network for high-resolution SAR image classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.05.028
– volume: 2
  start-page: 1
  year: 2009
  ident: ref_28
  article-title: Learning Deep Architectures for AI
  publication-title: Found. Trends® Mach. Learn.
  doi: 10.1561/2200000006
– ident: ref_10
  doi: 10.3390/app7111184
– ident: ref_13
  doi: 10.3390/s16010100
– volume: 37
  start-page: 129
  year: 2007
  ident: ref_26
  article-title: Simulated Annealing Algorithm of Global Search for Critical Sliding Surface of Slope and Improvements
  publication-title: J. Jilin Univ.
– ident: ref_12
  doi: 10.3390/s17071694
SSID ssj0023216
Score 2.1778355
Snippet Deep belief networks (DBNs) of deep learning technology have been successfully used in many fields. However, the structure of a DBN is difficult to design for...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 927
SubjectTerms Algorithms
artificial intelligence
Belief networks
Datasets
DBN
deep learning
Entropy (Information theory)
Errors
improved simulated annealing algorithm
information entropy
Machine learning
Mathematical models
Neurons
Optimization
Reconstruction
reconstruction error
Simulated annealing
Structural design
structure design
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUll_ZSUvrlNClqm0MvJrY-rWO2uyEUmksTyM3I0jgJ2drLxkvJv89I9rq7NCWXHozBGoQYzaD38OgNIYeFqbhwhU0Z2CpFfIs5B5lOFWJjpnzQxg63kX-cqdML8f1SXm60-go1Yb08cO-4I86MN6B97RQI46GQDkGMwzmEyWsd1UuzwqzJ1EC1OMtVryPEkdQfAYt3REPrmI3TJ4r0P4Ys_y6QfL5qFvb-t53PN06fk13ycoCN9Lhf7ivyDJrX5HY6OaM_owDsagl0Gosx6PH8qkXGf_2LIh6l06EBSkentsMTq7ujE3x52jZ0uIoUtobOQsX64p7axtNASf8Iy9LZctku35CLk9n5t9N0aJ6QOmS8XarwZC5qLqxxVca5BqSi3taYv0GxjSkH3GUWH8l0XpnaMKgcrzJAK2mB8bdkp2kbeE8oIGarReURHDlEX0GD0DPIkTxLRD-gE_J17dTSDcriocHFvESGEfxfjv5PyOfRdNHLaTxmNAk7MxoEBez4AeOiHOKifCouErK_3tdySMu7ksmCaYMcsUjIp3EYEyr8JbENtCu0EUppJLmSJeRdHwbjSjiCXaVknhC9FSBbS90eaW6uo2i3lgFKioR8GUPp3x7Y-x8e-EBe4HxFrL0R-2QHwwYOEEF11ceYLA-9_Ria
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB2V7QEuVRFfKQWZjwOXqBs7tpMDQl12qwqJFQIq9RY5ttMitsk2zQr133cmm6RdUThEkeI5OPZM_F48fgPwPklzEdvEhNybPER8izHnxzpUiI25cqSNTaeRv87V8Un85VSebsG8PwtDaZX9N7H9ULvK0j_yAy4TrpEgR8mn5WVIVaNod7UvoWG60gruYysx9gC2OSljjWB7Mpt_-z5QMMEjtdYXEkj2Dzxvz45SSZk7q1Ir3n8f4vw7cfLhqlya6z9msbizKh3twk4HJ9nhev4fw5Yvn8Dv6WTOfrTCsKvas2mbpMEOF2f4Ps35BUOcyqZdYZSGTU2DK1lzxSZ4c6wqWXdEiaaMzSiTfXnNTOkYUdVbwVk2q-uqfgonR7Ofn4_DrqhCaJEJN6HCFTspRGxSm4-F0B4pqjMFxjUpuXFlvbBjg5fkOsrTIuU-tyIfe7SSxnPxDEZlVfoXwDxiuSLOHYImi6iMtAkd9xGSaomoyOsAPvSDmtlOcZwKXywyZB40_tkw_gG8HUyXa5mN-4wmNDODASljtw-q-izrAi0TPHWp166wysep84m0CHot-lycRoWWAez385p14XqV3TpXAG-GZgw02j0xpa9WaBMrpZH8Sh7A87UbDD0RCIKVklEAesNBNrq62VL-Om_FvLUkiBkH8G5wpX-PwN7_O_8SHqFl0mbbxPswQofwrxAzNfnrLhBuACitFtM
  priority: 102
  providerName: ProQuest
Title DBN Structure Design Algorithm for Different Datasets Based on Information Entropy and Reconstruction Error
URI https://www.ncbi.nlm.nih.gov/pubmed/33266651
https://www.proquest.com/docview/2582798718
https://www.proquest.com/docview/2466771752
https://pubmed.ncbi.nlm.nih.gov/PMC7512514
https://www.mdpi.com/1099-4300/20/12/927/pdf?version=1543920347
https://doaj.org/article/329d9e7dfc6e49de85c115c145491f75
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: HH5
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: KQ8
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: GX1
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: 8FG
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbY9gAXHuIVWCrzOHDJNvEzOaGWtrtColoBlcopOI6zW21JqjQFLb-eceqGLSwSEoemUTKR3Hrs-b54_A1Cr6I4pUxHyidGpT7gWxhzJpC-AGxMRGa1se1u5PdTcTJj7-Z87uqcrl1aJVDxRTNJ21Ubn9EgAIreD0k_Bp6-yvI339yrJAj_EN4DyuQB6goOYLyDurPp6eBzs8bpHt7qCVEg931Dmr2itoTMlSjUiPVfhzD_TJS8uSlW6vK7Wi6vRKHJHfRl1_5t8snF0aZOj_SP36Qd_-MH3kW3HULFg61L3UM3THEfXYyGU_yx0ZrdVAaPmrwPPFieldWiPv-KAfrikau1UuORqiE41ms8hK8MlwV2u56sF-CxTY5fXWJVZNiy318atnhcVWX1AM0m409vT3xXp8HXQK5rXwAIiHLKVKzTgFJpgPVmKoepworDEaEN1YGCDycyTOM8JibVNA0MWHFlCH2IOkVZmMcIG4CHOUszwGEagJ6VO8yICYGncwBaRnro9a7fEu1EzG0tjWUCZMZ2cdJ2sYdetKarrXLHdUZD2_mtgRXbbi6U1Vnixm5CSZzFRma5FobFmYm4BhytwY1ZHOaSe-hw5zqJmwHWCeERkTHQ0chDz9vbMHbtgowqTLkBGyaEBD7NiYcebT2tbQkFXC0EDz0k93xwr6n7d4rFeaMPLrlFrcxDL1tv_fs_8OSfrJ6iW3AaNXk87BB1wC_MM0BjddpDB9HkuIe6w_H09EOveacBx-N52HNj8SdbRjI2
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7aFcEIiXocDykrhYtfdl-1ChBqdKaRshaKXezHp33aKmdnAcVflz_DZmnbXbiMKth8hSPJZWszM739gz3yD0Pk5yylQsfWJk7gO-BZ8zQeQLwMZEaMuNbbuRj8ZidMK-nPLTNfS764WxZZXdmdge1LpS9h35NuExiSBBDuNP01--nRplv652IzSkG62gd1qKMdfYcWAWV5DCzXb2U9jvD4TsDY8_j3w3ZcBXkBo2voAQFheUyUTlAaWRgZxNywIM3VKbEaEMVYGEHydRmCdFQkyuaB4YkOLSWOIDCAEbjLIEkr-NwXD89Vuf8lESiiWfEaVJsG1I26tqR9jciILtsIDbEO7fhZqb83IqF1dyMrkRBfceoPsOvuLdpb09RGumfIQu0sEYf2-JaOe1wWlbFIJ3J2egv-b8EgMuxqkbxNLgVDYQOZsZHsBF46rEriXKmgge2sr56QLLUmObGl8T3OJhXVf1Y3RyJ-p9gtbLqjTPEDaAHQuWawBpClCg5ULUxISQxHNAYSby0MdOqZlyDOd20MYkg0zH6j_r9e-ht73odEnrcZvQwO5ML2CZuNs_qvosc46dUZLoxES6UMKwRJuYKwDZCmycJWERcQ9tdfuaueNhll0bs4fe9LfBse3XGlmaag4yTIgIkm1OPPR0aQb9SiiAbiF46KFoxUBWlrp6p_x53pKHR9xCWuahd70p_VsDz_-_-Ndoc3R8dJgd7o8PXqB78FTcVvqwLbQOxmFeAl5r8lfOKTD6cdd--AflQ1Nv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgEXBOIVKGBeEpdoEzu2kwNCXbJLS2GFBJV6Sx3HaRFLsmSzqvav8euYyatdUbj1sIq0cSRr_I39TTLzDSGvwijlgQm1y6xOXeC34HPWU64EbsxkhtrYWI38eSb3DoOPR-Joi_zua2EwrbLfE5uNOisNviMfMREyBQGyH47yLi3iSzx9t_jlYgcp_NLat9NoIXJg12cQvi3f7sew1q8Zm06-vd9zuw4DroGwsHYlHF9hzgMdmdTjXFmI1zKdA8hR1oxJY7nxNPwEU34a5RGzqeGpZ2GU0BZFD2D7v6ZQxR2r1KcfhmCPM1-2SkacR97IsqZKFZvXXDj_mjYBl3Hbv1M0b6yKhV6f6fn8wvk3vU1udcSV7rZIu0O2bHGX_IjHM_q1kaBdVZbGTToI3Z2fgLXq058UGDGNuxYsNY11DWdmvaRjuGS0LGhXDIXgoBPMmV-sqS4yikHxubQtnVRVWd0jh1di3PtkuygL-5BQC6wxD9IM6JkB_ocqiBmzPoTvAviXVQ550xs1MZ22ObbYmCcQ46D9k8H-DnkxDF20gh6XDRrjygwDUIO7-aOsTpLOpRPOoiyyKsuNtEGU2VAYoNcG0B1Efq6EQ3b6dU26jWGZnMPYIc-H2-DS-J1GF7ZcwZhASgVhtmAOedDCYJgJB7otpfAdojYAsjHVzTvF99NGNlwJJLOBQ14OUPq3BR79f_LPyHXwvuTT_uzgMbkJD4VNik-wQ7YBG_YJELU6fdp4BCXHV-2CfwCjFlEJ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLage4AXBuIWNpC5PPCSNfE1eUIt7TQhUSFBpfEUHNvZqpWkSlPQ-PUcJ25YYUhIPESJ6hPJrY99vq8-_g5Cr5I0p0wnKiRW5SHgW5hzNpKhAGxMhHHa2O408vuZOJmzd6f81Nc5Xfu0SqDii3aRdrs2IaNRBBR9GJNhCjx9ZYo33_xfSRD-IbxHlMmbaE9wAOMDtDeffRh9bvc4_cudnhAFcj-0pD0r6krIXIlCrVj_dQjzz0TJW5typS6_q-XyShQ63kdftv3vkk8ujjZNfqR__Cbt-B9f8C664xEqHnUudQ_dsOV9dDEZz_DHVmt2U1s8afM-8Gh5VtWL5vwrBuiLJ77WSoMnqoHg2KzxGG4GVyX2p56cF-CpS45fXWJVGuzY7y8NWzyt66p-gObH009vT0JfpyHUQK6bUAAISArKVKrziFJpgfUaVcBS4cThiNCW6kjBxYmM87RIic01zSMLVlxZQh-iQVmV9jHCFuBhwXIDOEwD0HNyh4bYGHg6B6BlZYBeb8ct017E3NXSWGZAZtwQZ_0QB-hFb7rqlDuuMxq7we8NnNh2-0FVn2V-7maUpCa10hRaWJYam3ANOFqDG7M0LiQP0OHWdTK_AqwzwhMiU6CjSYCe980wd92GjCpttQEbJoQEPs1JgB51ntb3hAKuFoLHAZI7PrjT1d2WcnHe6oNL7lArC9DL3lv__gs8-SerA3QbHpM2j4cdogH4hX0KaKzJn_kZ9xOFOS3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DBN+Structure+Design+Algorithm+for+Different+Datasets+Based+on+Information+Entropy+and+Reconstruction+Error&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Jiang%2C+Jianjun&rft.au=Zhang%2C+Jing&rft.au=Zhang%2C+Lijia&rft.au=Ran%2C+Xiaomin&rft.date=2018-12-04&rft.eissn=1099-4300&rft.volume=20&rft.issue=12&rft_id=info:doi/10.3390%2Fe20120927&rft_id=info%3Apmid%2F33266651&rft.externalDocID=33266651
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon