DBN Structure Design Algorithm for Different Datasets Based on Information Entropy and Reconstruction Error
Deep belief networks (DBNs) of deep learning technology have been successfully used in many fields. However, the structure of a DBN is difficult to design for different datasets. Hence, a DBN structure design algorithm based on information entropy and reconstruction error is proposed. Unlike previou...
        Saved in:
      
    
          | Published in | Entropy (Basel, Switzerland) Vol. 20; no. 12; p. 927 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Switzerland
          MDPI AG
    
        04.12.2018
     MDPI  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1099-4300 1099-4300  | 
| DOI | 10.3390/e20120927 | 
Cover
| Abstract | Deep belief networks (DBNs) of deep learning technology have been successfully used in many fields. However, the structure of a DBN is difficult to design for different datasets. Hence, a DBN structure design algorithm based on information entropy and reconstruction error is proposed. Unlike previous algorithms, we innovatively combine network depth and node number and optimizes them simultaneously. First, the mathematical model of the structural design problem is established, and the boundary constraint for node number based on information entropy is derived by introducing the idea of information compression. Moreover, the optimization objective of the network performance based on reconstruction error is proposed by deriving the fact that network energy is proportional to reconstruction error. Finally, the improved simulated annealing (ISA) algorithm is used to adjust the DBN network layers and nodes simultaneously. Experiments were carried out on three public datasets (MNIST, Cifar-10 and Cifar-100). The results show that the proposed algorithm can design its proper structure to different datasets, yielding a trained DBN which has the lowest reconstruction error and prediction error rate. The proposed algorithm is shown to have the best performance compared with other algorithms and can be used to assist the setting of DBN structural parameters for different datasets. | 
    
|---|---|
| AbstractList | Deep belief networks (DBNs) of deep learning technology have been successfully used in many fields. However, the structure of a DBN is difficult to design for different datasets. Hence, a DBN structure design algorithm based on information entropy and reconstruction error is proposed. Unlike previous algorithms, we innovatively combine network depth and node number and optimizes them simultaneously. First, the mathematical model of the structural design problem is established, and the boundary constraint for node number based on information entropy is derived by introducing the idea of information compression. Moreover, the optimization objective of the network performance based on reconstruction error is proposed by deriving the fact that network energy is proportional to reconstruction error. Finally, the improved simulated annealing (ISA) algorithm is used to adjust the DBN network layers and nodes simultaneously. Experiments were carried out on three public datasets (MNIST, Cifar-10 and Cifar-100). The results show that the proposed algorithm can design its proper structure to different datasets, yielding a trained DBN which has the lowest reconstruction error and prediction error rate. The proposed algorithm is shown to have the best performance compared with other algorithms and can be used to assist the setting of DBN structural parameters for different datasets. Deep belief networks (DBNs) of deep learning technology have been successfully used in many fields. However, the structure of a DBN is difficult to design for different datasets. Hence, a DBN structure design algorithm based on information entropy and reconstruction error is proposed. Unlike previous algorithms, we innovatively combine network depth and node number and optimizes them simultaneously. First, the mathematical model of the structural design problem is established, and the boundary constraint for node number based on information entropy is derived by introducing the idea of information compression. Moreover, the optimization objective of the network performance based on reconstruction error is proposed by deriving the fact that network energy is proportional to reconstruction error. Finally, the improved simulated annealing (ISA) algorithm is used to adjust the DBN network layers and nodes simultaneously. Experiments were carried out on three public datasets (MNIST, Cifar-10 and Cifar-100). The results show that the proposed algorithm can design its proper structure to different datasets, yielding a trained DBN which has the lowest reconstruction error and prediction error rate. The proposed algorithm is shown to have the best performance compared with other algorithms and can be used to assist the setting of DBN structural parameters for different datasets.Deep belief networks (DBNs) of deep learning technology have been successfully used in many fields. However, the structure of a DBN is difficult to design for different datasets. Hence, a DBN structure design algorithm based on information entropy and reconstruction error is proposed. Unlike previous algorithms, we innovatively combine network depth and node number and optimizes them simultaneously. First, the mathematical model of the structural design problem is established, and the boundary constraint for node number based on information entropy is derived by introducing the idea of information compression. Moreover, the optimization objective of the network performance based on reconstruction error is proposed by deriving the fact that network energy is proportional to reconstruction error. Finally, the improved simulated annealing (ISA) algorithm is used to adjust the DBN network layers and nodes simultaneously. Experiments were carried out on three public datasets (MNIST, Cifar-10 and Cifar-100). The results show that the proposed algorithm can design its proper structure to different datasets, yielding a trained DBN which has the lowest reconstruction error and prediction error rate. The proposed algorithm is shown to have the best performance compared with other algorithms and can be used to assist the setting of DBN structural parameters for different datasets.  | 
    
| Author | Jiang, Jianjun Zhang, Jing Ran, Xiaomin Zhang, Lijia Jiang, Jun Wu, Yifan  | 
    
| AuthorAffiliation | National Digital Switching System Engineering and Technological Research Center (NDSC), Zhengzhou 450000, Henan, China | 
    
| AuthorAffiliation_xml | – name: National Digital Switching System Engineering and Technological Research Center (NDSC), Zhengzhou 450000, Henan, China | 
    
| Author_xml | – sequence: 1 givenname: Jianjun surname: Jiang fullname: Jiang, Jianjun – sequence: 2 givenname: Jing surname: Zhang fullname: Zhang, Jing – sequence: 3 givenname: Lijia surname: Zhang fullname: Zhang, Lijia – sequence: 4 givenname: Xiaomin surname: Ran fullname: Ran, Xiaomin – sequence: 5 givenname: Jun surname: Jiang fullname: Jiang, Jun – sequence: 6 givenname: Yifan surname: Wu fullname: Wu, Yifan  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33266651$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kl1rFDEUhgep2A-98A9IwBsV1uZjkkxuhLZbdaEo-HEdMpkz26wzyZpklP33prt1aYt4cTiHnCcv5z3JcXXgg4eqek7wW8YUPgWKCcWKykfVEcFKzWqG8cGd-rA6TmmFMWWUiCfVIWNUCMHJUfVjfv4Jfc1xsnmKgOaQ3NKjs2EZosvXI-pDRHPX9xDBZzQ32STICZ2X1KHg0cIXYjTZlfrS5xjWG2R8h76ADT5tdbetGEN8Wj3uzZDg2W0-qb6_v_x28XF29fnD4uLsamZrofJM1IQ3PauNsi1mTAJrWGd6RqmQxaSwwCw2JTiVpFW9otBa1mIoFDdA2Um12Ol2waz0OrrRxI0OxuntQYhLbWJ2dgDNqOoUyK63AmrVQcMtISVqXivSS1603uy0Jr82m99mGPaCBOub7ev99gv8bgevp3aEzpaVRTPcm-B-x7trvQy_tOSEclIXgVe3AjH8nCBlPbpkYRiMhzAlTWshpCSS35h8-QBdhSn6sldNeUOlaiRpCvXi7kT7Uf5-gAK83gE2hpQi9P-1d_qAtS5vn76YccM_bvwB7kjOlg | 
    
| CitedBy_id | crossref_primary_10_1016_j_sna_2023_115003 crossref_primary_10_3390_app10175765  | 
    
| Cites_doi | 10.1109/FPL.2009.5272262 10.1080/01431160802549278 10.3390/app8050795 10.1145/2783258.2788576 10.1162/neco.2008.04-07-510 10.1016/j.neunet.2014.09.003 10.1007/978-3-642-35289-8_26 10.1126/science.1127647 10.1109/CVPR.2013.465 10.1109/CVPR.2014.214 10.1109/CVPR.2014.220 10.1016/j.patcog.2016.05.028 10.1561/2200000006 10.3390/app7111184 10.3390/s16010100 10.3390/s17071694  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 by the authors. 2018  | 
    
| Copyright_xml | – notice: 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 by the authors. 2018  | 
    
| DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/e20120927 | 
    
| DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 1099-4300 | 
    
| ExternalDocumentID | oai_doaj_org_article_329d9e7dfc6e49de85c115c145491f75 10.3390/e20120927 PMC7512514 33266651 10_3390_e20120927  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM ADTOC C1A CH8 IPNFZ ITC RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c469t-64158f34a9cb0337e383daf322670926ce3c0a3c05271b9f92ebc3b0e3da5ae23 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1099-4300 | 
    
| IngestDate | Fri Oct 03 12:45:30 EDT 2025 Sun Oct 26 04:15:42 EDT 2025 Tue Sep 30 16:57:25 EDT 2025 Thu Oct 02 06:04:52 EDT 2025 Fri Jul 25 12:01:30 EDT 2025 Mon Jul 21 06:04:12 EDT 2025 Thu Oct 16 04:46:48 EDT 2025 Thu Apr 24 22:53:18 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Keywords | reconstruction error DBN deep learning information entropy structure design artificial intelligence improved simulated annealing algorithm  | 
    
| Language | English | 
    
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c469t-64158f34a9cb0337e383daf322670926ce3c0a3c05271b9f92ebc3b0e3da5ae23 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1099-4300/20/12/927/pdf?version=1543920347 | 
    
| PMID | 33266651 | 
    
| PQID | 2582798718 | 
    
| PQPubID | 2032401 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_329d9e7dfc6e49de85c115c145491f75 unpaywall_primary_10_3390_e20120927 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7512514 proquest_miscellaneous_2466771752 proquest_journals_2582798718 pubmed_primary_33266651 crossref_primary_10_3390_e20120927 crossref_citationtrail_10_3390_e20120927  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20181204 | 
    
| PublicationDateYYYYMMDD | 2018-12-04 | 
    
| PublicationDate_xml | – month: 12 year: 2018 text: 20181204 day: 4  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland – name: Basel  | 
    
| PublicationTitle | Entropy (Basel, Switzerland) | 
    
| PublicationTitleAlternate | Entropy (Basel) | 
    
| PublicationYear | 2018 | 
    
| Publisher | MDPI AG MDPI  | 
    
| Publisher_xml | – name: MDPI AG – name: MDPI  | 
    
| References | Hao (ref_26) 2007; 37 Chunxia (ref_25) 2015; 3 Xing (ref_11) 2016; 38 Yann (ref_5) 2015; 521 ref_14 ref_13 ref_12 ref_10 ref_19 Qiang (ref_16) 2016; 16 Guangyuan (ref_15) 2015; 30 Schmidhuber (ref_20) 2014; 61 Nicolas (ref_1) 2008; 20 Naijie (ref_22) 2015; 36 ref_23 Bengio (ref_28) 2009; 2 Zhiqiang (ref_9) 2017; 61 Roux (ref_24) 2008; 20 Bengio (ref_21) 2012; Volume 7700 ref_2 ref_29 ref_27 ref_8 Stathakis (ref_18) 2009; 30 ref_4 Xuan (ref_17) 2016; 33 Hinton (ref_3) 2006; 313 ref_7 ref_6  | 
    
| References_xml | – volume: 3 start-page: 159 year: 2015 ident: ref_25 article-title: Restricted Boltzmann Machine publication-title: Chin. J. Eng. Math. – ident: ref_23 doi: 10.1109/FPL.2009.5272262 – volume: 30 start-page: 2133 year: 2009 ident: ref_18 article-title: How many hidden layers and nodes? publication-title: Int. J. Remote Sens. doi: 10.1080/01431160802549278 – volume: 521 start-page: 567 year: 2015 ident: ref_5 article-title: Deep learning publication-title: Nature – ident: ref_14 doi: 10.3390/app8050795 – volume: 30 start-page: 256 year: 2015 ident: ref_15 article-title: Calculation for depth of deep belief network publication-title: Control Decis. – ident: ref_8 doi: 10.1145/2783258.2788576 – volume: 33 start-page: 843 year: 2016 ident: ref_17 article-title: Alternating update layers for DBN-DNN fast training method publication-title: Appl. Res. Comput. – volume: 20 start-page: 1631 year: 2008 ident: ref_1 article-title: Representational power of restricted Boltzmann machines and deep belief networks publication-title: Neural Comput. doi: 10.1162/neco.2008.04-07-510 – volume: 61 start-page: 85 year: 2014 ident: ref_20 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: Volume 7700 start-page: 437 year: 2012 ident: ref_21 article-title: Practical recommendations for gradient-based training of deep architectures publication-title: Lecture Notes in Computer Science doi: 10.1007/978-3-642-35289-8_26 – ident: ref_4 – ident: ref_29 – ident: ref_27 – ident: ref_2 – volume: 36 start-page: 1042 year: 2015 ident: ref_22 article-title: Algorithm of depth neural network training based on multi-GPU publication-title: J. Chin. Comput. Syst. – volume: 38 start-page: 2972 year: 2016 ident: ref_11 article-title: Research on low probability of intercept radar signal recognition using deep belief network and bispectra diagonal slice publication-title: J. Electron. Inf. Technol. – volume: 313 start-page: 436 year: 2006 ident: ref_3 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – ident: ref_19 doi: 10.1109/CVPR.2013.465 – ident: ref_7 doi: 10.1109/CVPR.2014.214 – volume: 20 start-page: 1631 year: 2008 ident: ref_24 article-title: Representational power of restricted Boltzmann machines and deep belief networks publication-title: Neural Comput. doi: 10.1162/neco.2008.04-07-510 – ident: ref_6 doi: 10.1109/CVPR.2014.220 – volume: 16 start-page: 234 year: 2016 ident: ref_16 article-title: Research and application of the level of the deep belief betwork (DBN) publication-title: Sci. Technol. Eng. – volume: 61 start-page: 686 year: 2017 ident: ref_9 article-title: Discriminant deep belief network for high-resolution SAR image classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.05.028 – volume: 2 start-page: 1 year: 2009 ident: ref_28 article-title: Learning Deep Architectures for AI publication-title: Found. Trends® Mach. Learn. doi: 10.1561/2200000006 – ident: ref_10 doi: 10.3390/app7111184 – ident: ref_13 doi: 10.3390/s16010100 – volume: 37 start-page: 129 year: 2007 ident: ref_26 article-title: Simulated Annealing Algorithm of Global Search for Critical Sliding Surface of Slope and Improvements publication-title: J. Jilin Univ. – ident: ref_12 doi: 10.3390/s17071694  | 
    
| SSID | ssj0023216 | 
    
| Score | 2.1778355 | 
    
| Snippet | Deep belief networks (DBNs) of deep learning technology have been successfully used in many fields. However, the structure of a DBN is difficult to design for... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 927 | 
    
| SubjectTerms | Algorithms artificial intelligence Belief networks Datasets DBN deep learning Entropy (Information theory) Errors improved simulated annealing algorithm information entropy Machine learning Mathematical models Neurons Optimization Reconstruction reconstruction error Simulated annealing Structural design structure design  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUll_ZSUvrlNClqm0MvJrY-rWO2uyEUmksTyM3I0jgJ2drLxkvJv89I9rq7NCWXHozBGoQYzaD38OgNIYeFqbhwhU0Z2CpFfIs5B5lOFWJjpnzQxg63kX-cqdML8f1SXm60-go1Yb08cO-4I86MN6B97RQI46GQDkGMwzmEyWsd1UuzwqzJ1EC1OMtVryPEkdQfAYt3REPrmI3TJ4r0P4Ys_y6QfL5qFvb-t53PN06fk13ycoCN9Lhf7ivyDJrX5HY6OaM_owDsagl0Gosx6PH8qkXGf_2LIh6l06EBSkentsMTq7ujE3x52jZ0uIoUtobOQsX64p7axtNASf8Iy9LZctku35CLk9n5t9N0aJ6QOmS8XarwZC5qLqxxVca5BqSi3taYv0GxjSkH3GUWH8l0XpnaMKgcrzJAK2mB8bdkp2kbeE8oIGarReURHDlEX0GD0DPIkTxLRD-gE_J17dTSDcriocHFvESGEfxfjv5PyOfRdNHLaTxmNAk7MxoEBez4AeOiHOKifCouErK_3tdySMu7ksmCaYMcsUjIp3EYEyr8JbENtCu0EUppJLmSJeRdHwbjSjiCXaVknhC9FSBbS90eaW6uo2i3lgFKioR8GUPp3x7Y-x8e-EBe4HxFrL0R-2QHwwYOEEF11ceYLA-9_Ria priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB2V7QEuVRFfKQWZjwOXqBs7tpMDQl12qwqJFQIq9RY5ttMitsk2zQr133cmm6RdUThEkeI5OPZM_F48fgPwPklzEdvEhNybPER8izHnxzpUiI25cqSNTaeRv87V8Un85VSebsG8PwtDaZX9N7H9ULvK0j_yAy4TrpEgR8mn5WVIVaNod7UvoWG60gruYysx9gC2OSljjWB7Mpt_-z5QMMEjtdYXEkj2Dzxvz45SSZk7q1Ir3n8f4vw7cfLhqlya6z9msbizKh3twk4HJ9nhev4fw5Yvn8Dv6WTOfrTCsKvas2mbpMEOF2f4Ps35BUOcyqZdYZSGTU2DK1lzxSZ4c6wqWXdEiaaMzSiTfXnNTOkYUdVbwVk2q-uqfgonR7Ofn4_DrqhCaJEJN6HCFTspRGxSm4-F0B4pqjMFxjUpuXFlvbBjg5fkOsrTIuU-tyIfe7SSxnPxDEZlVfoXwDxiuSLOHYImi6iMtAkd9xGSaomoyOsAPvSDmtlOcZwKXywyZB40_tkw_gG8HUyXa5mN-4wmNDODASljtw-q-izrAi0TPHWp166wysep84m0CHot-lycRoWWAez385p14XqV3TpXAG-GZgw02j0xpa9WaBMrpZH8Sh7A87UbDD0RCIKVklEAesNBNrq62VL-Om_FvLUkiBkH8G5wpX-PwN7_O_8SHqFl0mbbxPswQofwrxAzNfnrLhBuACitFtM priority: 102 providerName: ProQuest  | 
    
| Title | DBN Structure Design Algorithm for Different Datasets Based on Information Entropy and Reconstruction Error | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33266651 https://www.proquest.com/docview/2582798718 https://www.proquest.com/docview/2466771752 https://pubmed.ncbi.nlm.nih.gov/PMC7512514 https://www.mdpi.com/1099-4300/20/12/927/pdf?version=1543920347 https://doaj.org/article/329d9e7dfc6e49de85c115c145491f75  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 20 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: HH5 dateStart: 19990101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: KQ8 dateStart: 19990101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: GX1 dateStart: 19990101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: RPM dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: 8FG dateStart: 19990301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbY9gAXHuIVWCrzOHDJNvEzOaGWtrtColoBlcopOI6zW21JqjQFLb-eceqGLSwSEoemUTKR3Hrs-b54_A1Cr6I4pUxHyidGpT7gWxhzJpC-AGxMRGa1se1u5PdTcTJj7-Z87uqcrl1aJVDxRTNJ21Ubn9EgAIreD0k_Bp6-yvI339yrJAj_EN4DyuQB6goOYLyDurPp6eBzs8bpHt7qCVEg931Dmr2itoTMlSjUiPVfhzD_TJS8uSlW6vK7Wi6vRKHJHfRl1_5t8snF0aZOj_SP36Qd_-MH3kW3HULFg61L3UM3THEfXYyGU_yx0ZrdVAaPmrwPPFieldWiPv-KAfrikau1UuORqiE41ms8hK8MlwV2u56sF-CxTY5fXWJVZNiy318atnhcVWX1AM0m409vT3xXp8HXQK5rXwAIiHLKVKzTgFJpgPVmKoepworDEaEN1YGCDycyTOM8JibVNA0MWHFlCH2IOkVZmMcIG4CHOUszwGEagJ6VO8yICYGncwBaRnro9a7fEu1EzG0tjWUCZMZ2cdJ2sYdetKarrXLHdUZD2_mtgRXbbi6U1Vnixm5CSZzFRma5FobFmYm4BhytwY1ZHOaSe-hw5zqJmwHWCeERkTHQ0chDz9vbMHbtgowqTLkBGyaEBD7NiYcebT2tbQkFXC0EDz0k93xwr6n7d4rFeaMPLrlFrcxDL1tv_fs_8OSfrJ6iW3AaNXk87BB1wC_MM0BjddpDB9HkuIe6w_H09EOveacBx-N52HNj8SdbRjI2 | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7aFcEIiXocDykrhYtfdl-1ChBqdKaRshaKXezHp33aKmdnAcVflz_DZmnbXbiMKth8hSPJZWszM739gz3yD0Pk5yylQsfWJk7gO-BZ8zQeQLwMZEaMuNbbuRj8ZidMK-nPLTNfS764WxZZXdmdge1LpS9h35NuExiSBBDuNP01--nRplv652IzSkG62gd1qKMdfYcWAWV5DCzXb2U9jvD4TsDY8_j3w3ZcBXkBo2voAQFheUyUTlAaWRgZxNywIM3VKbEaEMVYGEHydRmCdFQkyuaB4YkOLSWOIDCAEbjLIEkr-NwXD89Vuf8lESiiWfEaVJsG1I26tqR9jciILtsIDbEO7fhZqb83IqF1dyMrkRBfceoPsOvuLdpb09RGumfIQu0sEYf2-JaOe1wWlbFIJ3J2egv-b8EgMuxqkbxNLgVDYQOZsZHsBF46rEriXKmgge2sr56QLLUmObGl8T3OJhXVf1Y3RyJ-p9gtbLqjTPEDaAHQuWawBpClCg5ULUxISQxHNAYSby0MdOqZlyDOd20MYkg0zH6j_r9e-ht73odEnrcZvQwO5ML2CZuNs_qvosc46dUZLoxES6UMKwRJuYKwDZCmycJWERcQ9tdfuaueNhll0bs4fe9LfBse3XGlmaag4yTIgIkm1OPPR0aQb9SiiAbiF46KFoxUBWlrp6p_x53pKHR9xCWuahd70p_VsDz_-_-Ndoc3R8dJgd7o8PXqB78FTcVvqwLbQOxmFeAl5r8lfOKTD6cdd--AflQ1Nv | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgEXBOIVKGBeEpdoEzu2kwNCXbJLS2GFBJV6Sx3HaRFLsmSzqvav8euYyatdUbj1sIq0cSRr_I39TTLzDSGvwijlgQm1y6xOXeC34HPWU64EbsxkhtrYWI38eSb3DoOPR-Joi_zua2EwrbLfE5uNOisNviMfMREyBQGyH47yLi3iSzx9t_jlYgcp_NLat9NoIXJg12cQvi3f7sew1q8Zm06-vd9zuw4DroGwsHYlHF9hzgMdmdTjXFmI1zKdA8hR1oxJY7nxNPwEU34a5RGzqeGpZ2GU0BZFD2D7v6ZQxR2r1KcfhmCPM1-2SkacR97IsqZKFZvXXDj_mjYBl3Hbv1M0b6yKhV6f6fn8wvk3vU1udcSV7rZIu0O2bHGX_IjHM_q1kaBdVZbGTToI3Z2fgLXq058UGDGNuxYsNY11DWdmvaRjuGS0LGhXDIXgoBPMmV-sqS4yikHxubQtnVRVWd0jh1di3PtkuygL-5BQC6wxD9IM6JkB_ocqiBmzPoTvAviXVQ550xs1MZ22ObbYmCcQ46D9k8H-DnkxDF20gh6XDRrjygwDUIO7-aOsTpLOpRPOoiyyKsuNtEGU2VAYoNcG0B1Efq6EQ3b6dU26jWGZnMPYIc-H2-DS-J1GF7ZcwZhASgVhtmAOedDCYJgJB7otpfAdojYAsjHVzTvF99NGNlwJJLOBQ14OUPq3BR79f_LPyHXwvuTT_uzgMbkJD4VNik-wQ7YBG_YJELU6fdp4BCXHV-2CfwCjFlEJ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLage4AXBuIWNpC5PPCSNfE1eUIt7TQhUSFBpfEUHNvZqpWkSlPQ-PUcJ25YYUhIPESJ6hPJrY99vq8-_g5Cr5I0p0wnKiRW5SHgW5hzNpKhAGxMhHHa2O408vuZOJmzd6f81Nc5Xfu0SqDii3aRdrs2IaNRBBR9GJNhCjx9ZYo33_xfSRD-IbxHlMmbaE9wAOMDtDeffRh9bvc4_cudnhAFcj-0pD0r6krIXIlCrVj_dQjzz0TJW5typS6_q-XyShQ63kdftv3vkk8ujjZNfqR__Cbt-B9f8C664xEqHnUudQ_dsOV9dDEZz_DHVmt2U1s8afM-8Gh5VtWL5vwrBuiLJ77WSoMnqoHg2KzxGG4GVyX2p56cF-CpS45fXWJVGuzY7y8NWzyt66p-gObH009vT0JfpyHUQK6bUAAISArKVKrziFJpgfUaVcBS4cThiNCW6kjBxYmM87RIic01zSMLVlxZQh-iQVmV9jHCFuBhwXIDOEwD0HNyh4bYGHg6B6BlZYBeb8ct017E3NXSWGZAZtwQZ_0QB-hFb7rqlDuuMxq7we8NnNh2-0FVn2V-7maUpCa10hRaWJYam3ANOFqDG7M0LiQP0OHWdTK_AqwzwhMiU6CjSYCe980wd92GjCpttQEbJoQEPs1JgB51ntb3hAKuFoLHAZI7PrjT1d2WcnHe6oNL7lArC9DL3lv__gs8-SerA3QbHpM2j4cdogH4hX0KaKzJn_kZ9xOFOS3Q | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DBN+Structure+Design+Algorithm+for+Different+Datasets+Based+on+Information+Entropy+and+Reconstruction+Error&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Jiang%2C+Jianjun&rft.au=Zhang%2C+Jing&rft.au=Zhang%2C+Lijia&rft.au=Ran%2C+Xiaomin&rft.date=2018-12-04&rft.eissn=1099-4300&rft.volume=20&rft.issue=12&rft_id=info:doi/10.3390%2Fe20120927&rft_id=info%3Apmid%2F33266651&rft.externalDocID=33266651 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |