Multiple Cracks Detection in Pipeline Using Damage Index Matrix Based on Piezoceramic Transducer-Enabled Stress Wave Propagation
Cracks in oil and gas pipelines cause leakage which results in property damage, environmental pollution, and even personal injury or loss of lives. In this paper, an active-sensing approach was conducted to identify the crack damage in pipeline structure using a stress wave propagation approach with...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 17; no. 8; p. 1812 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
12.08.2017
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s17081812 |
Cover
Abstract | Cracks in oil and gas pipelines cause leakage which results in property damage, environmental pollution, and even personal injury or loss of lives. In this paper, an active-sensing approach was conducted to identify the crack damage in pipeline structure using a stress wave propagation approach with piezoceramic transducers. A pipeline segment instrumented with five distributed piezoceramic transducers was used as the testing specimen in this research. Four cracks were artificially cut on the specimen, and each crack had six damage cases corresponding to different crack depths. In this way, cracks at different locations with different damage degrees were simulated. In each damage case, one piezoceramic transducer was used as an actuator to generate a stress wave to propagate along the pipeline specimen, and the other piezoceramic transducers were used as sensors to detect the wave responses. To quantitatively evaluate the crack damage status, a wavelet packet-based damage index matrix was developed. Experimental results show that the proposed method can evaluate the crack severity and estimate the crack location in the pipeline structure based on the proposed damage index matrix. The sensitivity of the proposed method decreases with increasing distance between the crack and the mounted piezoceramic transducers. |
---|---|
AbstractList | Cracks in oil and gas pipelines cause leakage which results in property damage, environmental pollution, and even personal injury or loss of lives. In this paper, an active-sensing approach was conducted to identify the crack damage in pipeline structure using a stress wave propagation approach with piezoceramic transducers. A pipeline segment instrumented with five distributed piezoceramic transducers was used as the testing specimen in this research. Four cracks were artificially cut on the specimen, and each crack had six damage cases corresponding to different crack depths. In this way, cracks at different locations with different damage degrees were simulated. In each damage case, one piezoceramic transducer was used as an actuator to generate a stress wave to propagate along the pipeline specimen, and the other piezoceramic transducers were used as sensors to detect the wave responses. To quantitatively evaluate the crack damage status, a wavelet packet-based damage index matrix was developed. Experimental results show that the proposed method can evaluate the crack severity and estimate the crack location in the pipeline structure based on the proposed damage index matrix. The sensitivity of the proposed method decreases with increasing distance between the crack and the mounted piezoceramic transducers. Cracks in oil and gas pipelines cause leakage which results in property damage, environmental pollution, and even personal injury or loss of lives. In this paper, an active-sensing approach was conducted to identify the crack damage in pipeline structure using a stress wave propagation approach with piezoceramic transducers. A pipeline segment instrumented with five distributed piezoceramic transducers was used as the testing specimen in this research. Four cracks were artificially cut on the specimen, and each crack had six damage cases corresponding to different crack depths. In this way, cracks at different locations with different damage degrees were simulated. In each damage case, one piezoceramic transducer was used as an actuator to generate a stress wave to propagate along the pipeline specimen, and the other piezoceramic transducers were used as sensors to detect the wave responses. To quantitatively evaluate the crack damage status, a wavelet packet-based damage index matrix was developed. Experimental results show that the proposed method can evaluate the crack severity and estimate the crack location in the pipeline structure based on the proposed damage index matrix. The sensitivity of the proposed method decreases with increasing distance between the crack and the mounted piezoceramic transducers.Cracks in oil and gas pipelines cause leakage which results in property damage, environmental pollution, and even personal injury or loss of lives. In this paper, an active-sensing approach was conducted to identify the crack damage in pipeline structure using a stress wave propagation approach with piezoceramic transducers. A pipeline segment instrumented with five distributed piezoceramic transducers was used as the testing specimen in this research. Four cracks were artificially cut on the specimen, and each crack had six damage cases corresponding to different crack depths. In this way, cracks at different locations with different damage degrees were simulated. In each damage case, one piezoceramic transducer was used as an actuator to generate a stress wave to propagate along the pipeline specimen, and the other piezoceramic transducers were used as sensors to detect the wave responses. To quantitatively evaluate the crack damage status, a wavelet packet-based damage index matrix was developed. Experimental results show that the proposed method can evaluate the crack severity and estimate the crack location in the pipeline structure based on the proposed damage index matrix. The sensitivity of the proposed method decreases with increasing distance between the crack and the mounted piezoceramic transducers. |
Author | Kong, Qingzhao Du, Guofeng Zhou, Hua Gu, Haichang |
AuthorAffiliation | 1 School of Urban Construction, Yangtze University, 434023 Jingzhou, China; gfdu@yangtzeu.edu.cn 2 Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA; qkong@uh.edu 3 School of Civil Engineering and Architecture, Wuhan University of Technology, 430072 Wuhan, China; zhouhua@whut.edu.cn |
AuthorAffiliation_xml | – name: 2 Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA; qkong@uh.edu – name: 3 School of Civil Engineering and Architecture, Wuhan University of Technology, 430072 Wuhan, China; zhouhua@whut.edu.cn – name: 1 School of Urban Construction, Yangtze University, 434023 Jingzhou, China; gfdu@yangtzeu.edu.cn |
Author_xml | – sequence: 1 givenname: Guofeng surname: Du fullname: Du, Guofeng – sequence: 2 givenname: Qingzhao orcidid: 0000-0001-9577-4540 surname: Kong fullname: Kong, Qingzhao – sequence: 3 givenname: Hua surname: Zhou fullname: Zhou, Hua – sequence: 4 givenname: Haichang surname: Gu fullname: Gu, Haichang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28805666$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktv1DAQgCNURB9w4A8gS1zgsNSOEz8uSGVbYKVWVKIVR2viTIKXxF7spCqc-Olkd8uqrTj5MZ-_GXt8mO354DHLXjL6jnNNjxOTVDHF8ifZASvyYqbynO7dm-9nhyktKc055-pZtp8rRUshxEH252LsBrfqkMwj2B-JnOKAdnDBE-fJpVth5zyS6-R8S06hhxbJwtd4Sy5giO6WfICENQlrFn8HixF6Z8lVBJ_qcVrOzjxU3YR8HSKmRL7BDZLLGFbQwjrN8-xpA13CF3fjUXb98exq_nl2_uXTYn5yPrOF0MOstDUXqpK8oBUUzIqqhIo3SqKuZM1lBaUoBZVNjlLIKcJysMo2FZeWKcv5UbbYeusAS7OKrof4ywRwZrMRYmsgDs52aCRnDedMU91AoQurSiorBbQWjMmmEJPr_da1Gqsea4t-iNA9kD6MePfdtOHGlKXUqignwZs7QQw_R0yD6V2y2HXgMYzJMJ0rqbhW61yvH6HLMEY_PdVEcS01ZRvq1f2KdqX8a_QEvN0CNoaUIjY7hFGz_kRm94km9vgRa92wadZ0Gdf958Rf58rIuA |
CitedBy_id | crossref_primary_10_1016_j_ndteint_2020_102220 crossref_primary_10_3390_app9050907 crossref_primary_10_1088_1755_1315_598_1_012102 crossref_primary_10_1109_JSEN_2020_2971854 crossref_primary_10_1016_j_ymssp_2020_107111 crossref_primary_10_1088_1361_6501_ad461f crossref_primary_10_1155_2022_8793615 crossref_primary_10_1088_1361_665X_ab1cc9 crossref_primary_10_3390_s18082586 crossref_primary_10_1016_j_engstruct_2019_109777 crossref_primary_10_1155_2022_5850187 crossref_primary_10_33737_jgpps_150489 crossref_primary_10_3390_s19030558 crossref_primary_10_1088_1361_665X_aadaa9 crossref_primary_10_3390_app9020332 crossref_primary_10_3390_s18061727 crossref_primary_10_3390_s20185398 crossref_primary_10_1109_JSEN_2019_2927381 crossref_primary_10_1016_j_cej_2023_147639 crossref_primary_10_3390_app9163284 crossref_primary_10_1088_1361_665X_ab936d crossref_primary_10_1109_ACCESS_2021_3122508 crossref_primary_10_3390_app9071456 crossref_primary_10_3390_s19071501 crossref_primary_10_3390_s19051231 crossref_primary_10_3390_s19010159 crossref_primary_10_2139_ssrn_4168579 crossref_primary_10_1155_2020_1906289 crossref_primary_10_3390_s18051563 crossref_primary_10_3390_s18113699 crossref_primary_10_1016_j_measurement_2018_03_018 crossref_primary_10_3390_app8112237 crossref_primary_10_3390_ma16093330 crossref_primary_10_3390_s18092950 crossref_primary_10_1051_itmconf_20257403006 crossref_primary_10_3390_app8071061 crossref_primary_10_3390_s18113973 crossref_primary_10_3390_app9040687 crossref_primary_10_3390_s23020855 crossref_primary_10_1061__ASCE_PS_1949_1204_0000608 crossref_primary_10_3390_polym15030567 crossref_primary_10_3390_s19061394 crossref_primary_10_3390_s19051107 crossref_primary_10_1016_j_ijpvp_2019_03_005 crossref_primary_10_1016_j_ijpvp_2019_103984 crossref_primary_10_1093_jom_ufaa029 crossref_primary_10_3390_app8112240 crossref_primary_10_1016_j_ijpvp_2021_104379 crossref_primary_10_1061__ASCE_AS_1943_5525_0000880 crossref_primary_10_1088_1361_665X_aae422 crossref_primary_10_3390_s18082489 crossref_primary_10_3390_app13158850 crossref_primary_10_3390_app9153200 crossref_primary_10_3390_s22186852 crossref_primary_10_3390_s18093100 crossref_primary_10_1155_2021_9984519 crossref_primary_10_3390_vibration1010011 crossref_primary_10_1016_j_autcon_2021_103888 crossref_primary_10_3390_s17122796 crossref_primary_10_1007_s11071_019_05299_6 crossref_primary_10_3390_app9153193 crossref_primary_10_3390_s18082653 crossref_primary_10_1177_1475921720918890 crossref_primary_10_3390_iot5040043 crossref_primary_10_3390_s18113954 crossref_primary_10_1177_1045389X19891534 |
Cites_doi | 10.1088/0964-1726/23/12/125031 10.1016/j.jmmm.2006.02.225 10.1007/s12541-011-0151-3 10.21595/jve.2016.16631 10.1088/0964-1726/22/4/045003 10.1016/j.ndteint.2005.03.001 10.1016/j.ymssp.2014.05.041 10.1088/0964-1726/25/3/037002 10.12989/sss.2016.18.4.643 10.1007/978-3-662-05615-8_6 10.1177/1475921714542891 10.1088/0964-1726/20/1/015005 10.1016/j.ymssp.2005.02.010 10.1088/0964-1726/22/8/085025 10.1088/0964-1726/19/6/065026 10.1016/j.ijsolstr.2005.02.007 10.1016/j.ymssp.2011.07.029 10.1109/TIM.2009.2027780 10.1155/2013/583205 10.1088/1361-665X/26/2/025022 10.1061/(ASCE)CP.1943-5487.0000324 10.1088/0964-1726/23/12/125030 10.1088/0964-1726/18/11/115010 10.1109/TMAG.2003.816152 10.1088/0022-3727/45/14/145302 10.1016/j.measurement.2016.01.042 10.1155/2013/631715 10.21595/jve.2016.17040 10.5006/C2016-07509 10.1109/TIM.2009.2022380 10.1088/0964-1726/24/11/115020 10.1080/19475411.2015.1089525 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2017 2017 by the authors. 2017 |
Copyright_xml | – notice: Copyright MDPI AG 2017 – notice: 2017 by the authors. 2017 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s17081812 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_731f331909fa494c8507b8a0d6117f46 PMC5579845 28805666 10_3390_s17081812 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c469t-5cd368b7340ba41c6b5ab3f87e9b7d37ba565607f2e767b3f12ac8cfb37c18c33 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 00:42:00 EDT 2025 Thu Aug 21 13:53:42 EDT 2025 Fri Sep 05 04:07:47 EDT 2025 Fri Jul 25 22:45:52 EDT 2025 Wed Feb 19 02:41:28 EST 2025 Thu Apr 24 22:55:02 EDT 2025 Thu Jul 03 08:42:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | multiple cracks detection piezoceramic transducer pipeline crack detection structural health monitoring wavelet packet analysis stress wave propagation |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-5cd368b7340ba41c6b5ab3f87e9b7d37ba565607f2e767b3f12ac8cfb37c18c33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The co-first authors contributed equally to this work. |
ORCID | 0000-0001-9577-4540 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s17081812 |
PMID | 28805666 |
PQID | 1939790186 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_731f331909fa494c8507b8a0d6117f46 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5579845 proquest_miscellaneous_1928783986 proquest_journals_1939790186 pubmed_primary_28805666 crossref_primary_10_3390_s17081812 crossref_citationtrail_10_3390_s17081812 |
PublicationCentury | 2000 |
PublicationDate | 2017-08-12 |
PublicationDateYYYYMMDD | 2017-08-12 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2017 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Ay (ref_9) 2014; 13 Breon (ref_31) 2007; 65 Siu (ref_19) 2014; 23 Ravanbod (ref_35) 2005; 38 Naemi (ref_2) 2006; 30 Gu (ref_36) 2010; 19 ref_14 Lee (ref_5) 2003; 39 ref_34 Kong (ref_23) 2013; 22 Xu (ref_39) 2013; 36 Qing (ref_33) 2009; 18 Kharkovsky (ref_7) 2009; 58 Cheng (ref_30) 2003; 34 ref_17 Du (ref_26) 2016; 25 Wang (ref_41) 2007; 20 Gao (ref_32) 2007; 49 Shi (ref_4) 2009; 31 Deraemaeker (ref_6) 2006; 20 Hong (ref_28) 2013; 22 Zuo (ref_16) 2012; 45 Hong (ref_37) 2016; 18 Mitra (ref_15) 2005; 42 Feng (ref_22) 2016; 18 Liang (ref_13) 2010; 20 Wang (ref_1) 2006; 5 Zhu (ref_29) 2017; 26 Feng (ref_21) 2016; 88 Zuo (ref_3) 2010; 31 Siu (ref_18) 2014; 23 Mcclanahan (ref_8) 2010; 59 Feng (ref_20) 2015; 24 Kim (ref_11) 2011; 12 Du (ref_25) 2013; 2013 Du (ref_27) 2016; 18 Zhang (ref_40) 2002; 17 Kudela (ref_12) 2015; 50 Wang (ref_38) 2013; 9 Chen (ref_42) 2003; 22 Kong (ref_24) 2015; 6 Wang (ref_10) 2015; 29 |
References_xml | – volume: 23 start-page: 125031 year: 2014 ident: ref_19 article-title: Stress wave communication in concrete: II. Evaluation of low voltage concrete stress wave communications utilizing spectrally efficient modulation schemes with PZT transducers publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/23/12/125031 – volume: 30 start-page: 790 year: 2006 ident: ref_2 article-title: FEM modeling techniques of magnetic flux leakage-type NDT for ferromagnetic plate inspections publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2006.02.225 – volume: 12 start-page: 1129 year: 2011 ident: ref_11 article-title: A review of piezoelectric energy harvesting based on vibration publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-011-0151-3 – volume: 18 start-page: 801 year: 2016 ident: ref_22 article-title: Damage detection of concrete piles subject to typical damages using piezoceramic based passive sensing approach publication-title: J. Vibroeng. doi: 10.21595/jve.2016.16631 – volume: 31 start-page: 53 year: 2010 ident: ref_3 article-title: Methods of NDT technique for buried pipelines publication-title: Chem. Equip. Technol. – volume: 22 start-page: 045003 year: 2013 ident: ref_28 article-title: Dynamic cooperative identification based on synergetic for pipe structural health monitoring with piezoceramic transducers publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/4/045003 – volume: 65 start-page: 1215 year: 2007 ident: ref_31 article-title: Guided wave damage detection tomography for structural health monitoring in critical zones of pipelines publication-title: Mater. Eval. – volume: 31 start-page: 371 year: 2009 ident: ref_4 article-title: The external corrosion inspection technology of buried steel pipeline publication-title: J. Oil Gas Technol. – volume: 49 start-page: 532 year: 2007 ident: ref_32 article-title: Guided-wave tomographic imaging of defects in pipe using a probabilistic reconstruction algorithm publication-title: Insight-Non-Destr. Test. Cond. Monit. – volume: 38 start-page: 643 year: 2005 ident: ref_35 article-title: Application of neuro-fuzzy techniques in oil pipeline ultrasonic nondestructive testing publication-title: NDT E Int. doi: 10.1016/j.ndteint.2005.03.001 – volume: 50 start-page: 456 year: 2015 ident: ref_12 article-title: Identification of cracks in thin-walled structures by means of wavenumber filtering publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2014.05.041 – volume: 25 start-page: 037002 year: 2016 ident: ref_26 article-title: An experimental feasibility study of pipeline corrosion pit detection using a piezoceramic time reversal mirror publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/3/037002 – volume: 18 start-page: 643 year: 2016 ident: ref_37 article-title: Active monitoring of pipeline tapered thread connection based on time reversal using piezoceramic transducers publication-title: Smart Struct. Syst. doi: 10.12989/sss.2016.18.4.643 – ident: ref_14 doi: 10.1007/978-3-662-05615-8_6 – volume: 20 start-page: 280 year: 2007 ident: ref_41 article-title: Study on fault diagnosis of low-speed rolling bearing using stress waves and wavelet analysis publication-title: J. Vib. Eng. – volume: 17 start-page: 17 year: 2002 ident: ref_40 article-title: Application of wavelet transform analysis in defects-detection publication-title: J. Exp. Mech. – volume: 13 start-page: 445 year: 2014 ident: ref_9 article-title: Structural damage identification based on self-fitting ARMAX model and multi-sensor data fusion publication-title: Struct. Health Monit. doi: 10.1177/1475921714542891 – volume: 20 start-page: 015005 year: 2010 ident: ref_13 article-title: Energy flow in piezoelectric energy harvesting systems publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/20/1/015005 – volume: 20 start-page: 1615 year: 2006 ident: ref_6 article-title: Vibration based damage detection using large array sensors and spatial filters publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2005.02.010 – volume: 22 start-page: 085025 year: 2013 ident: ref_23 article-title: Very early age concrete hydration characterization monitoring using piezoceramic based smart aggregates publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/8/085025 – volume: 19 start-page: 065026 year: 2010 ident: ref_36 article-title: Multi-functional smart aggregate-based structural health monitoring of circular reinforced concrete columns subjected to seismic excitations publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/19/6/065026 – volume: 42 start-page: 4695 year: 2005 ident: ref_15 article-title: Spectrally formulated wavelet finite element for wave propagation and impact force identification in connected 1-D waveguides publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2005.02.007 – volume: 36 start-page: 7 year: 2013 ident: ref_39 article-title: Active interface debonding detection of concrete-filled steel tube with piezoelectric technologies using wavelet packet analysis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2011.07.029 – volume: 59 start-page: 1693 year: 2010 ident: ref_8 article-title: Depth evaluation of shallow surface cracks in metals using rectangular waveguides at millimeter-wave frequencies publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2009.2027780 – volume: 9 start-page: 583205 year: 2013 ident: ref_38 article-title: Active sensing based bolted structure health monitoring using piezoceramic transducers publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1155/2013/583205 – volume: 26 start-page: 025022 year: 2017 ident: ref_29 article-title: Gas pipeline leakage detection based on PZT sensors publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/26/2/025022 – volume: 29 start-page: 1 year: 2015 ident: ref_10 article-title: Damage identification scheme based on compressive sensing publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000324 – ident: ref_17 – volume: 23 start-page: 125030 year: 2014 ident: ref_18 article-title: Stress wave communication in concrete: I. Characterization of a smart aggregate based concrete channel publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/23/12/125030 – volume: 18 start-page: 115010 year: 2009 ident: ref_33 article-title: Development of a real-time active pipeline integrity detection system publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/18/11/115010 – volume: 5 start-page: 15 year: 2006 ident: ref_1 article-title: Application Comparison between MFL&UT Techniques publication-title: Pipeline Tech. Equip. – volume: 39 start-page: 3604 year: 2003 ident: ref_5 article-title: Sensitivity analysis of simulations for magnetic particle inspection using the finite-element method publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2003.816152 – volume: 45 start-page: 145302 year: 2012 ident: ref_16 article-title: Elastic wave and damage quantification in brittle material with evolving damage publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/45/14/145302 – volume: 88 start-page: 345 year: 2016 ident: ref_21 article-title: Damage detection of concrete piles subject to typical damage types based on stress wave measurement using embedded smart aggregates transducers publication-title: Measurement doi: 10.1016/j.measurement.2016.01.042 – volume: 2013 start-page: 631715 year: 2013 ident: ref_25 article-title: Feasibility study on crack detection of pipelines using piezoceramic transducers publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1155/2013/631715 – volume: 34 start-page: 426 year: 2003 ident: ref_30 article-title: A Brief Review on Damage Detection in Pipes Using Stress Wave Factor Technique publication-title: J. Taiyuan Univ. Technol. – volume: 22 start-page: 82 year: 2003 ident: ref_42 article-title: Wavelet De-noising Method in Stress Wave Detection for Oil Pipeline publication-title: J. Vib. Shock – volume: 18 start-page: 2828 year: 2016 ident: ref_27 article-title: Damage detection of pipeline multiple cracks using piezoceramic transducers publication-title: J. Vibroeng. doi: 10.21595/jve.2016.17040 – ident: ref_34 doi: 10.5006/C2016-07509 – volume: 58 start-page: 2367 year: 2009 ident: ref_7 article-title: Near-field millimeter wave imaging of exposed and covered fatigue cracks publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2009.2022380 – volume: 24 start-page: 115020 year: 2015 ident: ref_20 article-title: Crack detection and leakage monitoring on reinforced concrete pipe publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/11/115020 – volume: 6 start-page: 149 year: 2015 ident: ref_24 article-title: Water presence detection in a concrete crack using smart aggregates publication-title: Int. J. Smart Nano Mater. doi: 10.1080/19475411.2015.1089525 |
SSID | ssj0023338 |
Score | 2.4668343 |
Snippet | Cracks in oil and gas pipelines cause leakage which results in property damage, environmental pollution, and even personal injury or loss of lives. In this... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1812 |
SubjectTerms | Cracks multiple cracks detection piezoceramic transducer pipeline crack detection Propagation stress wave propagation structural health monitoring wavelet packet analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQJzggaIEuUGRQD71ExI_EybG8BEiLkFoEt8jPshJkUVgQ6qk_vTNONtqtkLhwzczByYw936fMfCbkmy-lEznzicOxHpkJl2jm8yQIWDYPTvIUh5OHl_nZtby4zW5nrvrCnrBWHrj9cAdKsCAgT9IyaFlKWwCAMYVOXc6YCjKKbadlOiVTHdUSwLxaHSEBpP7giSmUbmN8rvpEkf63kOX_DZIzFed0lax0UJH-aJe4RhZ8_YkszwgIfiZ_h10_ID1qcFieHvtJ7K2q6aimV6NHnDb3NPYF0GP9AIcHPUd9RDpEaf5XeghFzNEx-vo_UMoavJ6exgLmIOhNchJnqxz9GWdK6I1-8fSqAab9O4Z0nVyfnvw6Oku6OxUSC0R4kmQWQlMYJWRqtGQ2N5k2IhTKl0Y5oYxGhJeqwL3KFVgY17awwQhlWWGF2CCL9bj2XwhlWqEeWnDAiaTgwTDjYTcz7dLcAgoZkO_Tb13ZTnAc7724r4B4YFiqPiwDst-7PrYqG285HWLAegcUxo4PIF2qLl2q99JlQHam4a663fpUAYgtFQCjAsx7vRn2Gf480bUfP6MPcEtAk-iz2WZHvxIOhyDAYrCoubyZW-q8pR7dRS3vLFNlIbOtj3i3bbLEEXSgYC_fIYuT5tl_Bcg0Mbtxd_wDAUEU-w priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAKM8tbWUQBy5R40fi5IT6VEFaVAkq9hb52a4EyTa7RYgTP50ZrzftooprPAcrM575xp75hpB3vpZOlMxnDtt6ZCFcppkvsyBg2zw4yXNsTh5_Lk_P5adJMUkXbvNUVrnyidFRu87iHfkeAI1aQfCqyg-zqwynRuHrahqhcZ88iNRlYM9qcpNwCci_lmxCAlL7vTlTSODG-FoMilT9d-HLf8skb8WdkyfkcQKMdH-p4U1yz7dPyaNbNILPyJ9xqgqkhz22zNMjv4gVVi2dtvRsOsOec09jdQA90j_AhdCPyJJIx0jQ_4seQChztENZ_xsCWo9D6mkMYw5U32fHscPK0S-xs4R-0z89Pesh376Iin1Ozk-Ovx6eZmmyQmYhHV5khQUFVUYJmRstmS1NoY0IlfK1UU4ooxHn5Spwr0oFK4xrW9lghLKsskK8IBtt1_pXhDKtkBUtOMiMpODBMOPhTDPt8tICFhmR96t_3dhEO47TL743kH6gWppBLSPydhCdLbk27hI6QIUNAkiPHT90_UWTTlujBAsCnEteBy1raStAvabSuSsZU0GWI7K9UneTzuy8ubGwEXkzLMNpwycU3fruGmUgwwRMiTIvl9Yx7ISDKwRwDCtqzW7Wtrq-0k4vI6N3Uai6ksXW_7f1mjzkCCqQkJdvk41Ff-13ABItzG60-7_5OQ3v priority: 102 providerName: ProQuest |
Title | Multiple Cracks Detection in Pipeline Using Damage Index Matrix Based on Piezoceramic Transducer-Enabled Stress Wave Propagation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28805666 https://www.proquest.com/docview/1939790186 https://www.proquest.com/docview/1928783986 https://pubmed.ncbi.nlm.nih.gov/PMC5579845 https://doaj.org/article/731f331909fa494c8507b8a0d6117f46 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF2V9gIHRMtHAyVaEAcuBq937bUPFSJtQkFKFQERuVn7WSIVp7gpajnx05nZOFaNcuSSQ2YOG8_OznvxzhtCXrlCWJ4xF1ls6xEpt5FiLos8h2Un3ookxubk8Wl2MhWfZulsi6xnbDYP8HIjtcN5UtP6_M31z5t3kPCHyDiBsr-9ZBKF2XDW8A4UpAw52Fi0LxMSDjRsJSrUde-UoqDYvwlm_ntb8lb5GT0g9xvcSN-vAr1Ltly1R-7dUhN8SP6Mm8uB9KjGznl67JbholVF5xWdzC-w9dzRcEmAHqsfcJLQjyiWSMeo039NB1DRLF2gr_sNda3GWfU0VDMLO6COhqHRytIvocGEflO_HJ3UQLvPQnwfkelo-PXoJGoGLEQGWPEySg3EKdeSi1grwUymU6W5z6UrtLRcaoVwL5Y-cTKTYGGJMrnxmkvDcsP5Y7JdLSq3TyhTEsXRvAWCJHjiNdMOUpspG2cGIEmPvF4_69I06uM4BOO8BBaCYSnbsPTIy9b1YiW5sclpgAFrHVAlO3yxqM_KJulKyZnncMbEhVeiECYH8KtzFduMMelF1iMH63CX651XAqItJKCkHMwvWjMkHb5JUZVbXKEPEE2AlujzZLU72pUkcCICRgaL7OybzlK7lmr-PQh7p6kscpE-_R-_7Rm5myACQfXe5IBsL-sr9xzw01L3yR05k_CZjz70yc5geDr53A__RfRD3vwFi1of9g |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6QE4IN4ECiwIJC5WvQ977UOFSJMqoU0UQSt6c_flEok6wUl5nfhl_DZmHMc0qOLWq3cOI8_szDf2zDeEvPSpdCJmPnA41iMj4QLNfBzkAtTmuZM8xOHk4SjuH8l3x9HxBvm9moXBtspVTKwCtZta_Ea-DUAjVZC8kvjN7EuAW6Pw7-pqhYauVyu4nYpirB7s2Pc_vkEJN98ZdMHerzjf6x3u9oN6y0BgoTRcBJEFZROjhAyNlszGJtJG5InyqVFOKKMR84Qq517FCk4Y1zaxuRHKssTiB1FIAZsSJ1xbZLPTG43fNyWfgApwyWckRBpuz5lCCjnG17JgtSzgMoT7b6Pmhcy3d4vcrCErfbv0sdtkwxd3yI0LRIZ3ya9h3ZdId0sc2qddv6h6vAo6Keh4MsOpd0-r_gTa1WcQxOgAeRrpEFcEfKcdSKaOTlHW_4SUWuqziaVVInXgfGXQq2a8HP1QzbbQj_qrp-MSKv7TyrXukaMreev3SauYFv4hoUwr5GXLHdRmUvDcMOMhqjDtwtgCGmqT16t3ndma-Bz3b3zOoABCs2SNWdrkRSM6W7J9XCbUQYM1AkjQXT2YlqdZfd8zJVguILyFaa5lKm0CuNskOnQxYyqXcZtsrcyd1VFjnv318TZ53hzDfcefOLrw03OUgRoXUC3KPFh6R6MJh2AM8BxO1JrfrKm6flJMPlWc4lGk0kRGj_6v1jNyrX84PMgOBqP9x-Q6R4iD9MB8i7QW5bl_AgBtYZ7Wt4CSk6u-eH8ApqJSBw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqYTggHgTKLAgkLhY8XrXXvtQIdIkaiiJIqCiN3efJRJ1gpPyOvH7-FXMOI5pUMWtV-8cRt55fGPPfEPIc5cJyxPmAotjPSLmNlDMJYHnoHbkrYhCHE4ejZP9Q_HmKD7aIr_XszDYVrmOiVWgtjOD38g7ADQyCckrTTq-bouY9Aav5l8C3CCFf1rX6zRUvWbB7lZ0Y_WQx4H78Q3KucXusAd3_yKKBv0Pe_tBvXEgMFAmLoPYgOKpllyEWglmEh0rzX0qXaal5VIrxD-h9JGTiYQTFimTGq-5NCw1-HEU0sG2hCwpWmS72x9P3jXlH4dqcMVtxHkWdhZMIp0cizYyYrU44CK0-2_T5rksOLhBrtfwlb5e2dtNsuWKW-TaOVLD2-TXqO5RpHslDvDTnltW_V4FnRZ0Mp3jBLyjVa8C7alTCGh0iJyNdITrAr7TLiRWS2co635Cei3V6dTQKqlaMMQy6FfzXpa-r-Zc6Ef11dFJCdX_SWVmd8jhpbz1u6RVzAp3n1CmJHK0eQt1muCR10w7iDBM2TAxgIza5OX6XeemJkHHXRyfcyiG8Fry5lra5FkjOl8xf1wk1MULawSQrLt6MCtP8tr3c8mZ5xDqwswrkQmTAgbXqQptwpj0ImmTnfV153UEWeR_7b1NnjbH4Pv4Q0cVbnaGMlDvAsJFmXsr62g0iSAwA1SHE7lhNxuqbp4U008Vv3gcyywV8YP_q_WEXAEHzN8OxwcPydUI0Q4yBUc7pLUsz9wjwGpL_bh2AkqOL9vv_gAPblYz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Cracks+Detection+in+Pipeline+Using+Damage+Index+Matrix+Based+on+Piezoceramic+Transducer-Enabled+Stress+Wave+Propagation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Guofeng+Du&rft.au=Qingzhao+Kong&rft.au=Hua+Zhou&rft.au=Haichang+Gu&rft.date=2017-08-12&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=17&rft.issue=8&rft.spage=1812&rft_id=info:doi/10.3390%2Fs17081812&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_731f331909fa494c8507b8a0d6117f46 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |