Cost-Sensitive KNN Algorithm for Cancer Prediction Based on Entropy Analysis
Early diagnosis of cancer is beneficial in the formulation of the best treatment plan; it can improve the survival rate and the quality of patient life. However, imaging detection and needle biopsy usually used not only find it difficult to effectively diagnose tumors at early stage, but also do gre...
        Saved in:
      
    
          | Published in | Entropy (Basel, Switzerland) Vol. 24; no. 2; p. 253 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Switzerland
          MDPI AG
    
        08.02.2022
     MDPI  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1099-4300 1099-4300  | 
| DOI | 10.3390/e24020253 | 
Cover
| Abstract | Early diagnosis of cancer is beneficial in the formulation of the best treatment plan; it can improve the survival rate and the quality of patient life. However, imaging detection and needle biopsy usually used not only find it difficult to effectively diagnose tumors at early stage, but also do great harm to the human body. Since the changes in a patient’s health status will cause changes in blood protein indexes, if cancer can be diagnosed by the changes in blood indexes in the early stage of cancer, it can not only conveniently track and detect the treatment process of cancer, but can also reduce the pain of patients and reduce the costs. In this paper, 39 serum protein markers were taken as research objects. The difference of the entropies of serum protein marker sequences in different types of patients was analyzed, and based on this, a cost-sensitive analysis model was established for the purpose of improving the accuracy of cancer recognition. The results showed that there were significant differences in entropy of different cancer patients, and the complexity of serum protein markers in normal people was higher than that in cancer patients. Although the dataset was rather imbalanced, containing 897 instances, including 799 normal instances, 44 liver cancer instances, and 54 ovarian cancer instances, the accuracy of our model still reached 95.21%. Other evaluation indicators were also stable and satisfactory; precision, recall, F1 and AUC reach 0.807, 0.833, 0.819 and 0.92, respectively. This study has certain theoretical and practical significance for cancer prediction and clinical application and can also provide a research basis for the intelligent medical treatment. | 
    
|---|---|
| AbstractList | Early diagnosis of cancer is beneficial in the formulation of the best treatment plan; it can improve the survival rate and the quality of patient life. However, imaging detection and needle biopsy usually used not only find it difficult to effectively diagnose tumors at early stage, but also do great harm to the human body. Since the changes in a patient’s health status will cause changes in blood protein indexes, if cancer can be diagnosed by the changes in blood indexes in the early stage of cancer, it can not only conveniently track and detect the treatment process of cancer, but can also reduce the pain of patients and reduce the costs. In this paper, 39 serum protein markers were taken as research objects. The difference of the entropies of serum protein marker sequences in different types of patients was analyzed, and based on this, a cost-sensitive analysis model was established for the purpose of improving the accuracy of cancer recognition. The results showed that there were significant differences in entropy of different cancer patients, and the complexity of serum protein markers in normal people was higher than that in cancer patients. Although the dataset was rather imbalanced, containing 897 instances, including 799 normal instances, 44 liver cancer instances, and 54 ovarian cancer instances, the accuracy of our model still reached 95.21%. Other evaluation indicators were also stable and satisfactory; precision, recall, F1 and AUC reach 0.807, 0.833, 0.819 and 0.92, respectively. This study has certain theoretical and practical significance for cancer prediction and clinical application and can also provide a research basis for the intelligent medical treatment. Early diagnosis of cancer is beneficial in the formulation of the best treatment plan; it can improve the survival rate and the quality of patient life. However, imaging detection and needle biopsy usually used not only find it difficult to effectively diagnose tumors at early stage, but also do great harm to the human body. Since the changes in a patient's health status will cause changes in blood protein indexes, if cancer can be diagnosed by the changes in blood indexes in the early stage of cancer, it can not only conveniently track and detect the treatment process of cancer, but can also reduce the pain of patients and reduce the costs. In this paper, 39 serum protein markers were taken as research objects. The difference of the entropies of serum protein marker sequences in different types of patients was analyzed, and based on this, a cost-sensitive analysis model was established for the purpose of improving the accuracy of cancer recognition. The results showed that there were significant differences in entropy of different cancer patients, and the complexity of serum protein markers in normal people was higher than that in cancer patients. Although the dataset was rather imbalanced, containing 897 instances, including 799 normal instances, 44 liver cancer instances, and 54 ovarian cancer instances, the accuracy of our model still reached 95.21%. Other evaluation indicators were also stable and satisfactory; precision, recall, F1 and AUC reach 0.807, 0.833, 0.819 and 0.92, respectively. This study has certain theoretical and practical significance for cancer prediction and clinical application and can also provide a research basis for the intelligent medical treatment.Early diagnosis of cancer is beneficial in the formulation of the best treatment plan; it can improve the survival rate and the quality of patient life. However, imaging detection and needle biopsy usually used not only find it difficult to effectively diagnose tumors at early stage, but also do great harm to the human body. Since the changes in a patient's health status will cause changes in blood protein indexes, if cancer can be diagnosed by the changes in blood indexes in the early stage of cancer, it can not only conveniently track and detect the treatment process of cancer, but can also reduce the pain of patients and reduce the costs. In this paper, 39 serum protein markers were taken as research objects. The difference of the entropies of serum protein marker sequences in different types of patients was analyzed, and based on this, a cost-sensitive analysis model was established for the purpose of improving the accuracy of cancer recognition. The results showed that there were significant differences in entropy of different cancer patients, and the complexity of serum protein markers in normal people was higher than that in cancer patients. Although the dataset was rather imbalanced, containing 897 instances, including 799 normal instances, 44 liver cancer instances, and 54 ovarian cancer instances, the accuracy of our model still reached 95.21%. Other evaluation indicators were also stable and satisfactory; precision, recall, F1 and AUC reach 0.807, 0.833, 0.819 and 0.92, respectively. This study has certain theoretical and practical significance for cancer prediction and clinical application and can also provide a research basis for the intelligent medical treatment.  | 
    
| Author | Song, Chaohong Li, Xinran  | 
    
| AuthorAffiliation | Department of Mathematics and Statistics, Huazhong Agricultural University, Wuhan 430070, China; chh_song@mail.hzau.edu.cn | 
    
| AuthorAffiliation_xml | – name: Department of Mathematics and Statistics, Huazhong Agricultural University, Wuhan 430070, China; chh_song@mail.hzau.edu.cn | 
    
| Author_xml | – sequence: 1 givenname: Chaohong surname: Song fullname: Song, Chaohong – sequence: 2 givenname: Xinran orcidid: 0000-0002-5678-6829 surname: Li fullname: Li, Xinran  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35205547$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp1kU9vEzEQxS1URNuUA18ArcQFkLb1-s-u94IUogJVoxYJOFtjrzd15NipvVuUb4_TlKit4OSR_fObN2-O0YEP3iD0psKnlLb4zBCGCSacvkBHFW7bklGMDx7Vh-g4pSXGhJKqfoUOKSeYc9YcofkspKH8YXyyg70zxeXVVTF1ixDtcLMq-hCLGXhtYvE9ms7qwQZffIZkuiIX536IYb0pph7cJtl0gl724JJ5_XBO0K8v5z9n38r59deL2XReala3Q8lBcdpRDbrnragr0migihKhGwBumOqYUEKruul0JQgRNdcdFTWlPE_bV3SCLna6XYClXEe7griRAay8vwhxISEOVjsjjREtBqYEpoRp4NAxzFumak1EQ7nKWh93WqNfw-Y3OLcXrLDcxiv38Wb40w5ej2plOm1yAOCeOHj64u2NXIQ7KURT4dxwgt4_CMRwO5o0yJVN2jgH3oQxSZKHFDUmZIu-e4Yuwxhz0vcUaVjTNlvq7WNHeyt_N5yBsx2gY0gpml5qO8B2j9mgdf8c8sOzH_8P5A_si8J0 | 
    
| CitedBy_id | crossref_primary_10_3390_math11040792 crossref_primary_10_3390_cancers15020555 crossref_primary_10_1109_ACCESS_2024_3406748 crossref_primary_10_1177_15330338241250324 crossref_primary_10_5937_afmnai40_40853 crossref_primary_10_3390_app14062347 crossref_primary_10_1038_s41591_023_02475_5 crossref_primary_10_20935_AcadMed7444 crossref_primary_10_3390_math12040538  | 
    
| Cites_doi | 10.1016/j.ins.2017.09.013 10.3390/e21060541 10.1016/j.medengphy.2008.04.005 10.1038/s41598-020-72510-9 10.1145/312129.312220 10.1007/BF01619355 10.1097/IGC.0000000000001118 10.1145/2988544 10.1016/j.csbj.2014.11.005 10.1007/BF01001956 10.1111/j.1399-5618.2006.00373.x 10.1145/1089827.1089834 10.1002/ijc.28792 10.1016/j.jksuci.2021.05.004 10.1016/j.ins.2019.02.062 10.1007/978-3-319-98074-4 10.1109/TIT.1967.1053964 10.1109/TKDE.2014.2312336 10.1038/s41598-017-07408-0 10.1016/j.physa.2018.01.002 10.1016/j.cca.2018.12.028 10.1126/science.aar3247 10.1158/1078-0432.CCR-17-0853 10.1016/j.pan.2020.07.399 10.1016/j.compbiomed.2012.11.005  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022  | 
    
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022  | 
    
| DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/e24020253 | 
    
| DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Proquest Central ProQuest Technology Collection ProQuest One ProQuest Central Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 1099-4300 | 
    
| ExternalDocumentID | oai_doaj_org_article_ee890a4b80324ca5ad40594b6c28735b 10.3390/e24020253 PMC8871087 35205547 10_3390_e24020253  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 81701794  | 
    
| GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM ADTOC C1A CH8 IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c469t-5ab53d3cacf5986127ca3b328c7aa5e4bd48b8cb67dc1822865cd386335390f13 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1099-4300 | 
    
| IngestDate | Fri Oct 03 12:52:10 EDT 2025 Sun Oct 26 04:16:02 EDT 2025 Tue Sep 30 16:23:30 EDT 2025 Fri Sep 05 10:49:24 EDT 2025 Fri Jul 25 12:05:59 EDT 2025 Thu Jan 02 22:56:56 EST 2025 Thu Apr 24 22:53:01 EDT 2025 Thu Oct 16 04:45:22 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | cancer prediction KNN imbalanced dataset approximate entropy cost-sensitive learning sample entropy  | 
    
| Language | English | 
    
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c469t-5ab53d3cacf5986127ca3b328c7aa5e4bd48b8cb67dc1822865cd386335390f13 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-5678-6829 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1099-4300/24/2/253/pdf?version=1644997468 | 
    
| PMID | 35205547 | 
    
| PQID | 2632747977 | 
    
| PQPubID | 2032401 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ee890a4b80324ca5ad40594b6c28735b unpaywall_primary_10_3390_e24020253 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8871087 proquest_miscellaneous_2633860227 proquest_journals_2632747977 pubmed_primary_35205547 crossref_citationtrail_10_3390_e24020253 crossref_primary_10_3390_e24020253  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220208 | 
    
| PublicationDateYYYYMMDD | 2022-02-08 | 
    
| PublicationDate_xml | – month: 2 year: 2022 text: 20220208 day: 8  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland – name: Basel  | 
    
| PublicationTitle | Entropy (Basel, Switzerland) | 
    
| PublicationTitleAlternate | Entropy (Basel) | 
    
| PublicationYear | 2022 | 
    
| Publisher | MDPI AG MDPI  | 
    
| Publisher_xml | – name: MDPI AG – name: MDPI  | 
    
| References | Lee (ref_11) 2020; 87 Liu (ref_28) 2013; 43 Abreu (ref_7) 2017; 49 ref_14 ref_13 ref_30 Zhang (ref_31) 2014; 26 Yang (ref_22) 2014; 135 Bhatia (ref_21) 2010; 8 Pawlak (ref_12) 1982; 11 Chen (ref_29) 2009; 31 ref_18 ref_16 ref_15 Chaudhary (ref_10) 2018; 24 Pan (ref_6) 2017; 7 Li (ref_17) 2018; 422 Savareh (ref_8) 2020; 20 Pincus (ref_25) 1991; 7 (ref_2) 2019; 490 Tao (ref_19) 2019; 487 Chang (ref_27) 2018; 496 Konstantina (ref_5) 2015; 13 Glenn (ref_24) 2006; 8 Du (ref_4) 2020; 10 ref_1 Anika (ref_9) 2019; 14 Cohen (ref_3) 2018; 359 Cover (ref_20) 1967; 13 ref_26 Chien (ref_23) 2017; 27  | 
    
| References_xml | – volume: 422 start-page: 242 year: 2018 ident: ref_17 article-title: Cost-sensitive and hybrid-attribute measure multi-decision tree over imbalanced data sets publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.09.013 – ident: ref_26 doi: 10.3390/e21060541 – volume: 31 start-page: 61 year: 2009 ident: ref_29 article-title: Measuring complexity using fuzzyen, apen, and sampen publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2008.04.005 – volume: 10 start-page: 15552 year: 2020 ident: ref_4 article-title: Quantitative proteomics identifes a plasma multi protein model for detection of hepatocellular carcinoma publication-title: Sci. Rep. doi: 10.1038/s41598-020-72510-9 – ident: ref_13 doi: 10.1145/312129.312220 – volume: 7 start-page: 335 year: 1991 ident: ref_25 article-title: A regularity statistic for medical data analysis publication-title: J. Clin. Monit. doi: 10.1007/BF01619355 – volume: 27 start-page: S20 year: 2017 ident: ref_23 article-title: Ovarian cancer prevention, screening, and early detection: Report from the 11th biennial ovarian cancer research symposium publication-title: Int. J. Gynecol. Cancer doi: 10.1097/IGC.0000000000001118 – volume: 49 start-page: 52.1 year: 2017 ident: ref_7 article-title: Predicting Breast Cancer Recurrence using Machine Learning Techniques: A Systematic Review publication-title: ACM Comput. Surv. doi: 10.1145/2988544 – volume: 13 start-page: 8 year: 2015 ident: ref_5 article-title: Machine learning applications in cancer prognosis and prediction publication-title: Comput. Struct. Biotechnol. doi: 10.1016/j.csbj.2014.11.005 – volume: 11 start-page: 341 year: 1982 ident: ref_12 article-title: Rough sets publication-title: J. Comput. Inform. Sci. doi: 10.1007/BF01001956 – volume: 8 start-page: 424 year: 2006 ident: ref_24 article-title: Approximate entropy of self-reported mood prior to episodes in bipolar disorder publication-title: Bipolar Disord. doi: 10.1111/j.1399-5618.2006.00373.x – ident: ref_16 doi: 10.1145/1089827.1089834 – volume: 135 start-page: 1605 year: 2014 ident: ref_22 article-title: Prospective cohort studies of association between family history of liver cancer and risk of liver cancer publication-title: Int. J. Cancer doi: 10.1002/ijc.28792 – ident: ref_14 – ident: ref_1 doi: 10.1016/j.jksuci.2021.05.004 – ident: ref_18 – volume: 487 start-page: 31 year: 2019 ident: ref_19 article-title: Self-adaptive cost weights-based support vector machine cost-sensitive ensemble for imbalanced data classification publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.02.062 – ident: ref_30 doi: 10.1007/978-3-319-98074-4 – volume: 13 start-page: 21 year: 1967 ident: ref_20 article-title: Nearest neighbour pattern classification publication-title: IEEE Trans. Inf. Theor. doi: 10.1109/TIT.1967.1053964 – volume: 14 start-page: i446 year: 2019 ident: ref_9 article-title: Deep learning with multimodal representation for pancancer prognosis prediction publication-title: Bioinformatics – volume: 26 start-page: 2872 year: 2014 ident: ref_31 article-title: A new strategy of cost-free learning in the class imbalance problem publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2014.2312336 – volume: 7 start-page: 7402 year: 2017 ident: ref_6 article-title: Machine Learning Applications for Prediction of Relapse in Childhood Acute Lymphoblastic Leukemia publication-title: Sci. Rep. doi: 10.1038/s41598-017-07408-0 – volume: 496 start-page: 339 year: 2018 ident: ref_27 article-title: Mixture models with entropy regularization for community detection in networks publication-title: Physica A doi: 10.1016/j.physa.2018.01.002 – volume: 490 start-page: 113 year: 2019 ident: ref_2 article-title: Blood-based protein biomarkers in breast cancer publication-title: Clin. Chim. Acta doi: 10.1016/j.cca.2018.12.028 – ident: ref_15 – volume: 8 start-page: 302 year: 2010 ident: ref_21 article-title: Survey of nearest neighbour techniques publication-title: Int. J. Comput. Sci. Inf. Secur. – volume: 359 start-page: 926 year: 2018 ident: ref_3 article-title: Detection and localization of surgically resectable cancers with a multi-analyte blood test publication-title: Science doi: 10.1126/science.aar3247 – volume: 87 start-page: 107277 year: 2020 ident: ref_11 article-title: Incorporating deep learning and multi-omics autoencoding for analysis of lung adenocarcinoma prognostication publication-title: Comput. Biol. – volume: 24 start-page: 1248 year: 2018 ident: ref_10 article-title: Deep learning-based multi-omics integration robustly predicts survival in liver cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-17-0853 – volume: 20 start-page: 1195 year: 2020 ident: ref_8 article-title: A machine learning approach identified a diagnostic model for pancreatic cancer through using circulating microRNA signatures publication-title: Pancreatology doi: 10.1016/j.pan.2020.07.399 – volume: 43 start-page: 100 year: 2013 ident: ref_28 article-title: Analysis of heart rate variability using fuzzy measure entropy publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2012.11.005  | 
    
| SSID | ssj0023216 | 
    
| Score | 2.3695898 | 
    
| Snippet | Early diagnosis of cancer is beneficial in the formulation of the best treatment plan; it can improve the survival rate and the quality of patient life.... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 253 | 
    
| SubjectTerms | Algorithms approximate entropy Blood cancer prediction Cost analysis cost-sensitive learning Endometrial cancer Entropy Health services imbalanced dataset Kinases KNN Markers Medical research Model accuracy Ovarian cancer Proteins sample entropy Serum proteins  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRS-i-FpfxMfBS7FtkiZ7dBdFVBZBBW8lmaYqrN1l3UX898603bKLihdvpZlA-CbJfEMmXxg7cVJrH2kfGCfCQFrwAf5SQZvEnXKvvHFltUUvuXqU10_qaeapL6oJq-SBK-DOvDft0EpnQgz9YJXNJEmMuASQ6wvlaPcNTXuaTNWploijpNIREpjUn3k6Q8DoLuaiTynS_xOz_F4guTQphvbzw_b7M9HncpWt1LSRn1fDXWMLvlhnt93B-zi4pxJ02rT4Ta_Hz_vPA8z3X944slHeJZ-O-N2IjmPIBbyDUSvj-HFBJerDTz5VJdlgj5cXD92roH4dIQBMaceBsk6JTICFnDTWo1iDFU7EBrS1ykuXSeMMuERngEkE3UCFTJhECIWQ5JHYZIvFoPDbjIPIosiCBpkLGfoI-zhSedGQG0B-1mKnU9RSqKXD6QWLfoopBAGcNgC32FFjOqz0Mn4y6hD0jQFJXJc_0PFp7fj0L8e32N7UcWm97t5TUp_HBAlJbYsdNs24YugYxBZ-MCltBL28FaPNVuXnZiRIR0MkWNii52bA3FDnW4rXl1KVG3frKDTY87iZK78jsPMfCOyy5ZguY1ANudlji-PRxO8jRRq7g3I1fAF4ZQ11 priority: 102 providerName: Directory of Open Access Journals – databaseName: Proquest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9gCXCsRr24LM48DFahLbsXtAqLvaqgIUVUCl3iJ74rRIS7LdZoX675nJJqGrFm6RPZGcGT--yYy_Yey9V8aE2ARhvYyEchAENmlxSOROZdDB-jbbIktPztTnc32-xbL-LgylVfZ7YrtRFzXQP_ID4hVH6Itw5dPiSlDVKIqu9iU0XFdaofjYUow9YNsJMWON2PZklp1-G1wwmcTpml9IorN_ECi2gKe-3DiVWvL--xDn3cTJh6tq4W5-u_n81ql0_JjtdHCSH63t_4Rtheop-zqtrxvxnVLTaTPjX7KMH80v8Guay18cUSqfkq2X_HRJYRoyDZ_gaVZwfJhR6vrihvdsJc_Y2fHsx_REdFUTBKCr2wjtvJaFBAclca_HiQEnvUwsGOd0UL5Q1lvwqSkAnQu6mQqFtKmUGlVSxvI5G1V1FV4yDrKIYwcGVClVFGJ8xxP7i4HSAuK2MfvQay2HjlKcKlvMc3QtSMH5oOAxezuILtY8GvcJTUj1gwBRX7cN9fIi71ZSHoI9jJzyNkIsCE67QhHnjE8BnT-p_Zjt94bLu_V4nf-dPWP2ZujGlUThEVeFetXKSKrIlaDMi7Wdh5EgTI0QeGGP2ZgBG0Pd7Kl-XrZs3biLx5HFN98Nc-XfGtj9_-D32KOErl9Q1rjdZ6NmuQqvEBQ1_nU30_8AjNgL4A priority: 102 providerName: ProQuest  | 
    
| Title | Cost-Sensitive KNN Algorithm for Cancer Prediction Based on Entropy Analysis | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35205547 https://www.proquest.com/docview/2632747977 https://www.proquest.com/docview/2633860227 https://pubmed.ncbi.nlm.nih.gov/PMC8871087 https://www.mdpi.com/1099-4300/24/2/253/pdf?version=1644997468 https://doaj.org/article/ee890a4b80324ca5ad40594b6c28735b  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 24 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: HH5 dateStart: 19990101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: KQ8 dateStart: 19990101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: GX1 dateStart: 19990101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: RPM dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: 8FG dateStart: 19990301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbY9gAXHuJVWKrwOHDJ5mE78Z5QW7W7AhRVQKVyimzH2a0oSZWmoOXXM5O4EYVFQlyiKB5Ljmec-cYz-UzIK8Xi2ASxcYWivsukNi484u4pkjvlhhuhmmqLJDpfsLdLvrQbbltbVgmh-Kr5SGPWxmXU972QeaEXcuptsvzNN7uTBEgf8HrMInFE-hEHLN4j_UUyH31uUpy2b0snRCG29wymEsDJ0wMn1HD1Xwcw_6yTvLkrNvLqu1yvf3FCszsk3Q-_rT35crKr1Yn-8Ruz4_-_311y2-JTZ9Qa1D1ywxT3yftJua3dj1jrjl9H512SOKP1RVmt6suvDsBeZ4LGUznzCvM-qGtnDO4xc-BmirXwmytnT3_ygCxm00-Tc9cew-BqiJ1rl0vFaUa11DmSuQdhrCVVNBQ6lpIbpjImlNAqijMN0Qr-6qozKiJKOUx6HtCHpFeUhXlMHE2zIJA61iynzDcB9FFIJxPrXGgAggPyeq-XVFuOcjwqY51CrIIqTDsVDsiLTnTTEnNcJzRG5XYCyKXdPCiri9QuzdQYcepLpoQP4FJLLjOGJDYq0hBNUq4G5HhvGqld4NsUae4hEgP0PCDPu2ZYmphvkYUpd40MxSO-QpB51FpSNxLAvT4gOWiJD2zsYKiHLcXqsqH_BrcQ-AJ6vuys8e8z8OSfpJ6SWyH-1oHV6OKY9OpqZ54B2KrVkByJ2dmQ9MfTZP5h2GxZwPVsGQztWvsJtVwnAA | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9jBeEIivwmDmS-LFWhI7sfswobV06miJJtikvQXbcTakkpQ21dR_jr-NuzTJVm3wtrfIvkTW-Wz_Lnf-HSHvjZDS-dIxZbjHhLaOQVPIukjulLnQKVNlW8TR8FR8OQvPNsif5i4MplU2e2K1UaeFxX_ke8grDtAX4Mqn6W-GVaMwutqU0NB1aYV0v6IYqy92jNzyEly4-f7RZ5jvD0FwODjpD1ldZYBZcA1LFmoT8pRbbTPkKvcDaTU3PFBWah06YVKhjLImkqkFMI43OW3KVcR5yLte5nP47j2yJbjogvO31RvEx99al48HfrTiM-IgvOcwlgEog6-dglWxgNsQ7s1Eze1FPtXLSz2ZXDsFDx-SBzV8pQcre3tENlz-mIz7xbxk3zEVHjdPOopjejA5B-2VF78ooGLaR9ua0eMZhoXQFGgPTs-UwsMAU-WnS9qwozwhp3eiv6dkMy9y95xQy1Pf11ZakXHhOR_eMcg2I22mLODEDvnYaC2xNYU5VtKYJODKoIKTVsEd8rYVna54O24T6qHqWwGk2q4aitl5Uq_cxDnV9bQwygPsaXWoU4EcNyay4Gzy0HTITjNxSb3-58mVtXbIm7YbVi6GY3TuikUlw7ECWAAyz1bz3I4EYLEHQA965JoFrA11vSf_eVGxg8Op4XsK3nzX2sq_NfDi_4PfJdvDk6_jZHwUj16S-wFe_cCMdbVDNsvZwr0CQFaa17XVU_LjrhfaX5R4SKw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkIAXBOKrY4D5knixmsR27D4gtHUrG52qSTBpb5ntOBtSSbo21dR_jb-Ou3xBxeBtb5F9iazznf27-Pw7Qt5ZoZQPlWfa8oAJ4zyDJskGSO6Ueem1rbItJvHBifhyKk83yM_2LgymVbZrYrVQp4XDf-R95BUH6AtwpZ81aRHHe6NPs0uGFaTwpLUtp1GbyNivriB8W3w83IO5fh9Fo_1vwwPWVBhgDsLCkkljJU-5My5DnvIwUs5wyyPtlDHSC5sKbbWzsUodAHG8xelSrmPOJR8EWcjhu7fIbYUs7nhLffS5C_Z4FMY1kxEH0b7HUwzAF3xt_6vKBFyHbf9O0by7zGdmdWWm0z_2v9EDcr8BrnSntrSHZMPnj8jRsFiU7CsmweOySceTCd2ZnoOuyosfFPAwHaJVzenxHA-E0AjoLuybKYWHfUySn61oy4vymJzciPaekM28yP0zQh1Pw9A45UTGReBDeMciz4xymXaAEHvkQ6u1xDXk5VhDY5pAEIMKTjoF98ibTnRWM3ZcJ7SLqu8EkGS7aijm50njs4n3ehAYYXUAqNMZaVKB7DY2dhBmcml7ZLuduKTx_EXy20575HXXDT6LBzEm98WykuFY-ysCmaf1PHcjAUAcAMSDHrVmAWtDXe_Jv19UvOCwX4SBhjffdrbybw1s_X_wr8gdcK_k6HAyfk7uRXjnA1PV9TbZLOdL_wKQWGlfViZPydlN-9gvmPxGRg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4BLAfHolrYyjwOXNA_bsXuqtqtWFaBVJVipnCLbcdoVS7LKZkHl1zOTeCO2FAlxi-yx5GTGnm88k8-EvDVcShdLFyjDooBr6wJoEsERkjsVTjhl2mqLSXo-5e8vxaU_cFv6skoIxWftJo1Zm4CzKAoTHiZhIli4yIvj7_4kCZA-4HXJU3WfbKUCsPiAbE0nF6MvbYrTj-3ohBjE9qHDVAI4ebbhhFqu_rsA5p91kg9W5ULf_NDz-W9O6OwRydbT72pPvh6uGnNof95idvz_93tMtj0-paPOoJ6Qe658Sj6Oq2UTfMJad9wd6YfJhI7mV1U9a66_UYC9dIzGU9OLGvM-qGt6Au4xp_BwirXwixu6pj95RqZnp5_H54G_hiGwEDs3gdBGsJxZbQskc48TaTUzLFFWai0cNzlXRlmTytxCtIK_utqcqZQxAR-9iNlzMiir0u0Qalkex9pKywvGIxfDGIN0MtIWygIQHJJ3a71k1nOU41UZ8wxiFVRh1qtwSF73oouOmOMuoRNUbi-AXNptQ1VfZX5pZs6po0hzoyIAl1YLnXMksTGphWiSCTMke2vTyPwCX2ZIcw-RGKDnIXnVd8PSxHyLLl21amUYXvGVgMyLzpL6mQDujQDJQY_csLGNqW72lLPrlv4b3EIcKRj5prfGv3-B3X-SekkeJvhbB1ajqz0yaOqV2wew1ZgDv6J-AQLpIpo | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cost-Sensitive+KNN+Algorithm+for+Cancer+Prediction+Based+on+Entropy+Analysis&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Song%2C+Chaohong&rft.au=Li%2C+Xinran&rft.date=2022-02-08&rft.eissn=1099-4300&rft.volume=24&rft.issue=2&rft_id=info:doi/10.3390%2Fe24020253&rft_id=info%3Apmid%2F35205547&rft.externalDocID=35205547 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |