Cost-Sensitive KNN Algorithm for Cancer Prediction Based on Entropy Analysis

Early diagnosis of cancer is beneficial in the formulation of the best treatment plan; it can improve the survival rate and the quality of patient life. However, imaging detection and needle biopsy usually used not only find it difficult to effectively diagnose tumors at early stage, but also do gre...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 24; no. 2; p. 253
Main Authors Song, Chaohong, Li, Xinran
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 08.02.2022
MDPI
Subjects
Online AccessGet full text
ISSN1099-4300
1099-4300
DOI10.3390/e24020253

Cover

Abstract Early diagnosis of cancer is beneficial in the formulation of the best treatment plan; it can improve the survival rate and the quality of patient life. However, imaging detection and needle biopsy usually used not only find it difficult to effectively diagnose tumors at early stage, but also do great harm to the human body. Since the changes in a patient’s health status will cause changes in blood protein indexes, if cancer can be diagnosed by the changes in blood indexes in the early stage of cancer, it can not only conveniently track and detect the treatment process of cancer, but can also reduce the pain of patients and reduce the costs. In this paper, 39 serum protein markers were taken as research objects. The difference of the entropies of serum protein marker sequences in different types of patients was analyzed, and based on this, a cost-sensitive analysis model was established for the purpose of improving the accuracy of cancer recognition. The results showed that there were significant differences in entropy of different cancer patients, and the complexity of serum protein markers in normal people was higher than that in cancer patients. Although the dataset was rather imbalanced, containing 897 instances, including 799 normal instances, 44 liver cancer instances, and 54 ovarian cancer instances, the accuracy of our model still reached 95.21%. Other evaluation indicators were also stable and satisfactory; precision, recall, F1 and AUC reach 0.807, 0.833, 0.819 and 0.92, respectively. This study has certain theoretical and practical significance for cancer prediction and clinical application and can also provide a research basis for the intelligent medical treatment.
AbstractList Early diagnosis of cancer is beneficial in the formulation of the best treatment plan; it can improve the survival rate and the quality of patient life. However, imaging detection and needle biopsy usually used not only find it difficult to effectively diagnose tumors at early stage, but also do great harm to the human body. Since the changes in a patient’s health status will cause changes in blood protein indexes, if cancer can be diagnosed by the changes in blood indexes in the early stage of cancer, it can not only conveniently track and detect the treatment process of cancer, but can also reduce the pain of patients and reduce the costs. In this paper, 39 serum protein markers were taken as research objects. The difference of the entropies of serum protein marker sequences in different types of patients was analyzed, and based on this, a cost-sensitive analysis model was established for the purpose of improving the accuracy of cancer recognition. The results showed that there were significant differences in entropy of different cancer patients, and the complexity of serum protein markers in normal people was higher than that in cancer patients. Although the dataset was rather imbalanced, containing 897 instances, including 799 normal instances, 44 liver cancer instances, and 54 ovarian cancer instances, the accuracy of our model still reached 95.21%. Other evaluation indicators were also stable and satisfactory; precision, recall, F1 and AUC reach 0.807, 0.833, 0.819 and 0.92, respectively. This study has certain theoretical and practical significance for cancer prediction and clinical application and can also provide a research basis for the intelligent medical treatment.
Early diagnosis of cancer is beneficial in the formulation of the best treatment plan; it can improve the survival rate and the quality of patient life. However, imaging detection and needle biopsy usually used not only find it difficult to effectively diagnose tumors at early stage, but also do great harm to the human body. Since the changes in a patient's health status will cause changes in blood protein indexes, if cancer can be diagnosed by the changes in blood indexes in the early stage of cancer, it can not only conveniently track and detect the treatment process of cancer, but can also reduce the pain of patients and reduce the costs. In this paper, 39 serum protein markers were taken as research objects. The difference of the entropies of serum protein marker sequences in different types of patients was analyzed, and based on this, a cost-sensitive analysis model was established for the purpose of improving the accuracy of cancer recognition. The results showed that there were significant differences in entropy of different cancer patients, and the complexity of serum protein markers in normal people was higher than that in cancer patients. Although the dataset was rather imbalanced, containing 897 instances, including 799 normal instances, 44 liver cancer instances, and 54 ovarian cancer instances, the accuracy of our model still reached 95.21%. Other evaluation indicators were also stable and satisfactory; precision, recall, F1 and AUC reach 0.807, 0.833, 0.819 and 0.92, respectively. This study has certain theoretical and practical significance for cancer prediction and clinical application and can also provide a research basis for the intelligent medical treatment.Early diagnosis of cancer is beneficial in the formulation of the best treatment plan; it can improve the survival rate and the quality of patient life. However, imaging detection and needle biopsy usually used not only find it difficult to effectively diagnose tumors at early stage, but also do great harm to the human body. Since the changes in a patient's health status will cause changes in blood protein indexes, if cancer can be diagnosed by the changes in blood indexes in the early stage of cancer, it can not only conveniently track and detect the treatment process of cancer, but can also reduce the pain of patients and reduce the costs. In this paper, 39 serum protein markers were taken as research objects. The difference of the entropies of serum protein marker sequences in different types of patients was analyzed, and based on this, a cost-sensitive analysis model was established for the purpose of improving the accuracy of cancer recognition. The results showed that there were significant differences in entropy of different cancer patients, and the complexity of serum protein markers in normal people was higher than that in cancer patients. Although the dataset was rather imbalanced, containing 897 instances, including 799 normal instances, 44 liver cancer instances, and 54 ovarian cancer instances, the accuracy of our model still reached 95.21%. Other evaluation indicators were also stable and satisfactory; precision, recall, F1 and AUC reach 0.807, 0.833, 0.819 and 0.92, respectively. This study has certain theoretical and practical significance for cancer prediction and clinical application and can also provide a research basis for the intelligent medical treatment.
Author Song, Chaohong
Li, Xinran
AuthorAffiliation Department of Mathematics and Statistics, Huazhong Agricultural University, Wuhan 430070, China; chh_song@mail.hzau.edu.cn
AuthorAffiliation_xml – name: Department of Mathematics and Statistics, Huazhong Agricultural University, Wuhan 430070, China; chh_song@mail.hzau.edu.cn
Author_xml – sequence: 1
  givenname: Chaohong
  surname: Song
  fullname: Song, Chaohong
– sequence: 2
  givenname: Xinran
  orcidid: 0000-0002-5678-6829
  surname: Li
  fullname: Li, Xinran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35205547$$D View this record in MEDLINE/PubMed
BookMark eNp1kU9vEzEQxS1URNuUA18ArcQFkLb1-s-u94IUogJVoxYJOFtjrzd15NipvVuUb4_TlKit4OSR_fObN2-O0YEP3iD0psKnlLb4zBCGCSacvkBHFW7bklGMDx7Vh-g4pSXGhJKqfoUOKSeYc9YcofkspKH8YXyyg70zxeXVVTF1ixDtcLMq-hCLGXhtYvE9ms7qwQZffIZkuiIX536IYb0pph7cJtl0gl724JJ5_XBO0K8v5z9n38r59deL2XReala3Q8lBcdpRDbrnragr0migihKhGwBumOqYUEKruul0JQgRNdcdFTWlPE_bV3SCLna6XYClXEe7griRAay8vwhxISEOVjsjjREtBqYEpoRp4NAxzFumak1EQ7nKWh93WqNfw-Y3OLcXrLDcxiv38Wb40w5ej2plOm1yAOCeOHj64u2NXIQ7KURT4dxwgt4_CMRwO5o0yJVN2jgH3oQxSZKHFDUmZIu-e4Yuwxhz0vcUaVjTNlvq7WNHeyt_N5yBsx2gY0gpml5qO8B2j9mgdf8c8sOzH_8P5A_si8J0
CitedBy_id crossref_primary_10_3390_math11040792
crossref_primary_10_3390_cancers15020555
crossref_primary_10_1109_ACCESS_2024_3406748
crossref_primary_10_1177_15330338241250324
crossref_primary_10_5937_afmnai40_40853
crossref_primary_10_3390_app14062347
crossref_primary_10_1038_s41591_023_02475_5
crossref_primary_10_20935_AcadMed7444
crossref_primary_10_3390_math12040538
Cites_doi 10.1016/j.ins.2017.09.013
10.3390/e21060541
10.1016/j.medengphy.2008.04.005
10.1038/s41598-020-72510-9
10.1145/312129.312220
10.1007/BF01619355
10.1097/IGC.0000000000001118
10.1145/2988544
10.1016/j.csbj.2014.11.005
10.1007/BF01001956
10.1111/j.1399-5618.2006.00373.x
10.1145/1089827.1089834
10.1002/ijc.28792
10.1016/j.jksuci.2021.05.004
10.1016/j.ins.2019.02.062
10.1007/978-3-319-98074-4
10.1109/TIT.1967.1053964
10.1109/TKDE.2014.2312336
10.1038/s41598-017-07408-0
10.1016/j.physa.2018.01.002
10.1016/j.cca.2018.12.028
10.1126/science.aar3247
10.1158/1078-0432.CCR-17-0853
10.1016/j.pan.2020.07.399
10.1016/j.compbiomed.2012.11.005
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/e24020253
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Proquest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed
Publicly Available Content Database

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_ee890a4b80324ca5ad40594b6c28735b
10.3390/e24020253
PMC8871087
35205547
10_3390_e24020253
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 81701794
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
C1A
CH8
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c469t-5ab53d3cacf5986127ca3b328c7aa5e4bd48b8cb67dc1822865cd386335390f13
IEDL.DBID UNPAY
ISSN 1099-4300
IngestDate Fri Oct 03 12:52:10 EDT 2025
Sun Oct 26 04:16:02 EDT 2025
Tue Sep 30 16:23:30 EDT 2025
Fri Sep 05 10:49:24 EDT 2025
Fri Jul 25 12:05:59 EDT 2025
Thu Jan 02 22:56:56 EST 2025
Thu Apr 24 22:53:01 EDT 2025
Thu Oct 16 04:45:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords cancer prediction
KNN
imbalanced dataset
approximate entropy
cost-sensitive learning
sample entropy
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-5ab53d3cacf5986127ca3b328c7aa5e4bd48b8cb67dc1822865cd386335390f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5678-6829
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1099-4300/24/2/253/pdf?version=1644997468
PMID 35205547
PQID 2632747977
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_ee890a4b80324ca5ad40594b6c28735b
unpaywall_primary_10_3390_e24020253
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8871087
proquest_miscellaneous_2633860227
proquest_journals_2632747977
pubmed_primary_35205547
crossref_citationtrail_10_3390_e24020253
crossref_primary_10_3390_e24020253
PublicationCentury 2000
PublicationDate 20220208
PublicationDateYYYYMMDD 2022-02-08
PublicationDate_xml – month: 2
  year: 2022
  text: 20220208
  day: 8
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lee (ref_11) 2020; 87
Liu (ref_28) 2013; 43
Abreu (ref_7) 2017; 49
ref_14
ref_13
ref_30
Zhang (ref_31) 2014; 26
Yang (ref_22) 2014; 135
Bhatia (ref_21) 2010; 8
Pawlak (ref_12) 1982; 11
Chen (ref_29) 2009; 31
ref_18
ref_16
ref_15
Chaudhary (ref_10) 2018; 24
Pan (ref_6) 2017; 7
Li (ref_17) 2018; 422
Savareh (ref_8) 2020; 20
Pincus (ref_25) 1991; 7
(ref_2) 2019; 490
Tao (ref_19) 2019; 487
Chang (ref_27) 2018; 496
Konstantina (ref_5) 2015; 13
Glenn (ref_24) 2006; 8
Du (ref_4) 2020; 10
ref_1
Anika (ref_9) 2019; 14
Cohen (ref_3) 2018; 359
Cover (ref_20) 1967; 13
ref_26
Chien (ref_23) 2017; 27
References_xml – volume: 422
  start-page: 242
  year: 2018
  ident: ref_17
  article-title: Cost-sensitive and hybrid-attribute measure multi-decision tree over imbalanced data sets
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.09.013
– ident: ref_26
  doi: 10.3390/e21060541
– volume: 31
  start-page: 61
  year: 2009
  ident: ref_29
  article-title: Measuring complexity using fuzzyen, apen, and sampen
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2008.04.005
– volume: 10
  start-page: 15552
  year: 2020
  ident: ref_4
  article-title: Quantitative proteomics identifes a plasma multi protein model for detection of hepatocellular carcinoma
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-72510-9
– ident: ref_13
  doi: 10.1145/312129.312220
– volume: 7
  start-page: 335
  year: 1991
  ident: ref_25
  article-title: A regularity statistic for medical data analysis
  publication-title: J. Clin. Monit.
  doi: 10.1007/BF01619355
– volume: 27
  start-page: S20
  year: 2017
  ident: ref_23
  article-title: Ovarian cancer prevention, screening, and early detection: Report from the 11th biennial ovarian cancer research symposium
  publication-title: Int. J. Gynecol. Cancer
  doi: 10.1097/IGC.0000000000001118
– volume: 49
  start-page: 52.1
  year: 2017
  ident: ref_7
  article-title: Predicting Breast Cancer Recurrence using Machine Learning Techniques: A Systematic Review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2988544
– volume: 13
  start-page: 8
  year: 2015
  ident: ref_5
  article-title: Machine learning applications in cancer prognosis and prediction
  publication-title: Comput. Struct. Biotechnol.
  doi: 10.1016/j.csbj.2014.11.005
– volume: 11
  start-page: 341
  year: 1982
  ident: ref_12
  article-title: Rough sets
  publication-title: J. Comput. Inform. Sci.
  doi: 10.1007/BF01001956
– volume: 8
  start-page: 424
  year: 2006
  ident: ref_24
  article-title: Approximate entropy of self-reported mood prior to episodes in bipolar disorder
  publication-title: Bipolar Disord.
  doi: 10.1111/j.1399-5618.2006.00373.x
– ident: ref_16
  doi: 10.1145/1089827.1089834
– volume: 135
  start-page: 1605
  year: 2014
  ident: ref_22
  article-title: Prospective cohort studies of association between family history of liver cancer and risk of liver cancer
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.28792
– ident: ref_14
– ident: ref_1
  doi: 10.1016/j.jksuci.2021.05.004
– ident: ref_18
– volume: 487
  start-page: 31
  year: 2019
  ident: ref_19
  article-title: Self-adaptive cost weights-based support vector machine cost-sensitive ensemble for imbalanced data classification
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.02.062
– ident: ref_30
  doi: 10.1007/978-3-319-98074-4
– volume: 13
  start-page: 21
  year: 1967
  ident: ref_20
  article-title: Nearest neighbour pattern classification
  publication-title: IEEE Trans. Inf. Theor.
  doi: 10.1109/TIT.1967.1053964
– volume: 14
  start-page: i446
  year: 2019
  ident: ref_9
  article-title: Deep learning with multimodal representation for pancancer prognosis prediction
  publication-title: Bioinformatics
– volume: 26
  start-page: 2872
  year: 2014
  ident: ref_31
  article-title: A new strategy of cost-free learning in the class imbalance problem
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2014.2312336
– volume: 7
  start-page: 7402
  year: 2017
  ident: ref_6
  article-title: Machine Learning Applications for Prediction of Relapse in Childhood Acute Lymphoblastic Leukemia
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-07408-0
– volume: 496
  start-page: 339
  year: 2018
  ident: ref_27
  article-title: Mixture models with entropy regularization for community detection in networks
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.01.002
– volume: 490
  start-page: 113
  year: 2019
  ident: ref_2
  article-title: Blood-based protein biomarkers in breast cancer
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2018.12.028
– ident: ref_15
– volume: 8
  start-page: 302
  year: 2010
  ident: ref_21
  article-title: Survey of nearest neighbour techniques
  publication-title: Int. J. Comput. Sci. Inf. Secur.
– volume: 359
  start-page: 926
  year: 2018
  ident: ref_3
  article-title: Detection and localization of surgically resectable cancers with a multi-analyte blood test
  publication-title: Science
  doi: 10.1126/science.aar3247
– volume: 87
  start-page: 107277
  year: 2020
  ident: ref_11
  article-title: Incorporating deep learning and multi-omics autoencoding for analysis of lung adenocarcinoma prognostication
  publication-title: Comput. Biol.
– volume: 24
  start-page: 1248
  year: 2018
  ident: ref_10
  article-title: Deep learning-based multi-omics integration robustly predicts survival in liver cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-17-0853
– volume: 20
  start-page: 1195
  year: 2020
  ident: ref_8
  article-title: A machine learning approach identified a diagnostic model for pancreatic cancer through using circulating microRNA signatures
  publication-title: Pancreatology
  doi: 10.1016/j.pan.2020.07.399
– volume: 43
  start-page: 100
  year: 2013
  ident: ref_28
  article-title: Analysis of heart rate variability using fuzzy measure entropy
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2012.11.005
SSID ssj0023216
Score 2.3695898
Snippet Early diagnosis of cancer is beneficial in the formulation of the best treatment plan; it can improve the survival rate and the quality of patient life....
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 253
SubjectTerms Algorithms
approximate entropy
Blood
cancer prediction
Cost analysis
cost-sensitive learning
Endometrial cancer
Entropy
Health services
imbalanced dataset
Kinases
KNN
Markers
Medical research
Model accuracy
Ovarian cancer
Proteins
sample entropy
Serum proteins
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRS-i-FpfxMfBS7FtkiZ7dBdFVBZBBW8lmaYqrN1l3UX898603bKLihdvpZlA-CbJfEMmXxg7cVJrH2kfGCfCQFrwAf5SQZvEnXKvvHFltUUvuXqU10_qaeapL6oJq-SBK-DOvDft0EpnQgz9YJXNJEmMuASQ6wvlaPcNTXuaTNWploijpNIREpjUn3k6Q8DoLuaiTynS_xOz_F4guTQphvbzw_b7M9HncpWt1LSRn1fDXWMLvlhnt93B-zi4pxJ02rT4Ta_Hz_vPA8z3X944slHeJZ-O-N2IjmPIBbyDUSvj-HFBJerDTz5VJdlgj5cXD92roH4dIQBMaceBsk6JTICFnDTWo1iDFU7EBrS1ykuXSeMMuERngEkE3UCFTJhECIWQ5JHYZIvFoPDbjIPIosiCBpkLGfoI-zhSedGQG0B-1mKnU9RSqKXD6QWLfoopBAGcNgC32FFjOqz0Mn4y6hD0jQFJXJc_0PFp7fj0L8e32N7UcWm97t5TUp_HBAlJbYsdNs24YugYxBZ-MCltBL28FaPNVuXnZiRIR0MkWNii52bA3FDnW4rXl1KVG3frKDTY87iZK78jsPMfCOyy5ZguY1ANudlji-PRxO8jRRq7g3I1fAF4ZQ11
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Proquest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9gCXCsRr24LM48DFahLbsXtAqLvaqgIUVUCl3iJ74rRIS7LdZoX675nJJqGrFm6RPZGcGT--yYy_Yey9V8aE2ARhvYyEchAENmlxSOROZdDB-jbbIktPztTnc32-xbL-LgylVfZ7YrtRFzXQP_ID4hVH6Itw5dPiSlDVKIqu9iU0XFdaofjYUow9YNsJMWON2PZklp1-G1wwmcTpml9IorN_ECi2gKe-3DiVWvL--xDn3cTJh6tq4W5-u_n81ql0_JjtdHCSH63t_4Rtheop-zqtrxvxnVLTaTPjX7KMH80v8Guay18cUSqfkq2X_HRJYRoyDZ_gaVZwfJhR6vrihvdsJc_Y2fHsx_REdFUTBKCr2wjtvJaFBAclca_HiQEnvUwsGOd0UL5Q1lvwqSkAnQu6mQqFtKmUGlVSxvI5G1V1FV4yDrKIYwcGVClVFGJ8xxP7i4HSAuK2MfvQay2HjlKcKlvMc3QtSMH5oOAxezuILtY8GvcJTUj1gwBRX7cN9fIi71ZSHoI9jJzyNkIsCE67QhHnjE8BnT-p_Zjt94bLu_V4nf-dPWP2ZujGlUThEVeFetXKSKrIlaDMi7Wdh5EgTI0QeGGP2ZgBG0Pd7Kl-XrZs3biLx5HFN98Nc-XfGtj9_-D32KOErl9Q1rjdZ6NmuQqvEBQ1_nU30_8AjNgL4A
  priority: 102
  providerName: ProQuest
Title Cost-Sensitive KNN Algorithm for Cancer Prediction Based on Entropy Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/35205547
https://www.proquest.com/docview/2632747977
https://www.proquest.com/docview/2633860227
https://pubmed.ncbi.nlm.nih.gov/PMC8871087
https://www.mdpi.com/1099-4300/24/2/253/pdf?version=1644997468
https://doaj.org/article/ee890a4b80324ca5ad40594b6c28735b
UnpaywallVersion publishedVersion
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: HH5
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: KQ8
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: GX1
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: 8FG
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbY9gAXHuJVWKrwOHDJ5mE78Z5QW7W7AhRVQKVyimzH2a0oSZWmoOXXM5O4EYVFQlyiKB5Ljmec-cYz-UzIK8Xi2ASxcYWivsukNi484u4pkjvlhhuhmmqLJDpfsLdLvrQbbltbVgmh-Kr5SGPWxmXU972QeaEXcuptsvzNN7uTBEgf8HrMInFE-hEHLN4j_UUyH31uUpy2b0snRCG29wymEsDJ0wMn1HD1Xwcw_6yTvLkrNvLqu1yvf3FCszsk3Q-_rT35crKr1Yn-8Ruz4_-_311y2-JTZ9Qa1D1ywxT3yftJua3dj1jrjl9H512SOKP1RVmt6suvDsBeZ4LGUznzCvM-qGtnDO4xc-BmirXwmytnT3_ygCxm00-Tc9cew-BqiJ1rl0vFaUa11DmSuQdhrCVVNBQ6lpIbpjImlNAqijMN0Qr-6qozKiJKOUx6HtCHpFeUhXlMHE2zIJA61iynzDcB9FFIJxPrXGgAggPyeq-XVFuOcjwqY51CrIIqTDsVDsiLTnTTEnNcJzRG5XYCyKXdPCiri9QuzdQYcepLpoQP4FJLLjOGJDYq0hBNUq4G5HhvGqld4NsUae4hEgP0PCDPu2ZYmphvkYUpd40MxSO-QpB51FpSNxLAvT4gOWiJD2zsYKiHLcXqsqH_BrcQ-AJ6vuys8e8z8OSfpJ6SWyH-1oHV6OKY9OpqZ54B2KrVkByJ2dmQ9MfTZP5h2GxZwPVsGQztWvsJtVwnAA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9jBeEIivwmDmS-LFWhI7sfswobV06miJJtikvQXbcTakkpQ21dR_jr-NuzTJVm3wtrfIvkTW-Wz_Lnf-HSHvjZDS-dIxZbjHhLaOQVPIukjulLnQKVNlW8TR8FR8OQvPNsif5i4MplU2e2K1UaeFxX_ke8grDtAX4Mqn6W-GVaMwutqU0NB1aYV0v6IYqy92jNzyEly4-f7RZ5jvD0FwODjpD1ldZYBZcA1LFmoT8pRbbTPkKvcDaTU3PFBWah06YVKhjLImkqkFMI43OW3KVcR5yLte5nP47j2yJbjogvO31RvEx99al48HfrTiM-IgvOcwlgEog6-dglWxgNsQ7s1Eze1FPtXLSz2ZXDsFDx-SBzV8pQcre3tENlz-mIz7xbxk3zEVHjdPOopjejA5B-2VF78ooGLaR9ua0eMZhoXQFGgPTs-UwsMAU-WnS9qwozwhp3eiv6dkMy9y95xQy1Pf11ZakXHhOR_eMcg2I22mLODEDvnYaC2xNYU5VtKYJODKoIKTVsEd8rYVna54O24T6qHqWwGk2q4aitl5Uq_cxDnV9bQwygPsaXWoU4EcNyay4Gzy0HTITjNxSb3-58mVtXbIm7YbVi6GY3TuikUlw7ECWAAyz1bz3I4EYLEHQA965JoFrA11vSf_eVGxg8Op4XsK3nzX2sq_NfDi_4PfJdvDk6_jZHwUj16S-wFe_cCMdbVDNsvZwr0CQFaa17XVU_LjrhfaX5R4SKw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkIAXBOKrY4D5knixmsR27D4gtHUrG52qSTBpb5ntOBtSSbo21dR_jb-Ou3xBxeBtb5F9iazznf27-Pw7Qt5ZoZQPlWfa8oAJ4zyDJskGSO6Ueem1rbItJvHBifhyKk83yM_2LgymVbZrYrVQp4XDf-R95BUH6AtwpZ81aRHHe6NPs0uGFaTwpLUtp1GbyNivriB8W3w83IO5fh9Fo_1vwwPWVBhgDsLCkkljJU-5My5DnvIwUs5wyyPtlDHSC5sKbbWzsUodAHG8xelSrmPOJR8EWcjhu7fIbYUs7nhLffS5C_Z4FMY1kxEH0b7HUwzAF3xt_6vKBFyHbf9O0by7zGdmdWWm0z_2v9EDcr8BrnSntrSHZMPnj8jRsFiU7CsmweOySceTCd2ZnoOuyosfFPAwHaJVzenxHA-E0AjoLuybKYWHfUySn61oy4vymJzciPaekM28yP0zQh1Pw9A45UTGReBDeMciz4xymXaAEHvkQ6u1xDXk5VhDY5pAEIMKTjoF98ibTnRWM3ZcJ7SLqu8EkGS7aijm50njs4n3ehAYYXUAqNMZaVKB7DY2dhBmcml7ZLuduKTx_EXy20575HXXDT6LBzEm98WykuFY-ysCmaf1PHcjAUAcAMSDHrVmAWtDXe_Jv19UvOCwX4SBhjffdrbybw1s_X_wr8gdcK_k6HAyfk7uRXjnA1PV9TbZLOdL_wKQWGlfViZPydlN-9gvmPxGRg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4BLAfHolrYyjwOXNA_bsXuqtqtWFaBVJVipnCLbcdoVS7LKZkHl1zOTeCO2FAlxi-yx5GTGnm88k8-EvDVcShdLFyjDooBr6wJoEsERkjsVTjhl2mqLSXo-5e8vxaU_cFv6skoIxWftJo1Zm4CzKAoTHiZhIli4yIvj7_4kCZA-4HXJU3WfbKUCsPiAbE0nF6MvbYrTj-3ohBjE9qHDVAI4ebbhhFqu_rsA5p91kg9W5ULf_NDz-W9O6OwRydbT72pPvh6uGnNof95idvz_93tMtj0-paPOoJ6Qe658Sj6Oq2UTfMJad9wd6YfJhI7mV1U9a66_UYC9dIzGU9OLGvM-qGt6Au4xp_BwirXwixu6pj95RqZnp5_H54G_hiGwEDs3gdBGsJxZbQskc48TaTUzLFFWai0cNzlXRlmTytxCtIK_utqcqZQxAR-9iNlzMiir0u0Qalkex9pKywvGIxfDGIN0MtIWygIQHJJ3a71k1nOU41UZ8wxiFVRh1qtwSF73oouOmOMuoRNUbi-AXNptQ1VfZX5pZs6po0hzoyIAl1YLnXMksTGphWiSCTMke2vTyPwCX2ZIcw-RGKDnIXnVd8PSxHyLLl21amUYXvGVgMyLzpL6mQDujQDJQY_csLGNqW72lLPrlv4b3EIcKRj5prfGv3-B3X-SekkeJvhbB1ajqz0yaOqV2wew1ZgDv6J-AQLpIpo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cost-Sensitive+KNN+Algorithm+for+Cancer+Prediction+Based+on+Entropy+Analysis&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Song%2C+Chaohong&rft.au=Li%2C+Xinran&rft.date=2022-02-08&rft.eissn=1099-4300&rft.volume=24&rft.issue=2&rft_id=info:doi/10.3390%2Fe24020253&rft_id=info%3Apmid%2F35205547&rft.externalDocID=35205547
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon