Computed Tomography (CT) Image Quality Enhancement via a Uniform Framework Integrating Noise Estimation and Super-Resolution Networks
Computed tomography (CT) imaging technology has been widely used to assist medical diagnosis in recent years. However, noise during the process of imaging, and data compression during the process of storage and transmission always interrupt the image quality, resulting in unreliable performance of t...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 19; no. 15; p. 3348 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
30.07.2019
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s19153348 |
Cover
| Abstract | Computed tomography (CT) imaging technology has been widely used to assist medical diagnosis in recent years. However, noise during the process of imaging, and data compression during the process of storage and transmission always interrupt the image quality, resulting in unreliable performance of the post-processing steps in the computer assisted diagnosis system (CADs), such as medical image segmentation, feature extraction, and medical image classification. Since the degradation of medical images typically appears as noise and low-resolution blurring, in this paper, we propose a uniform deep convolutional neural network (DCNN) framework to handle the de-noising and super-resolution of the CT image at the same time. The framework consists of two steps: Firstly, a dense-inception network integrating an inception structure and dense skip connection is proposed to estimate the noise level. The inception structure is used to extract the noise and blurring features with respect to multiple receptive fields, while the dense skip connection can reuse those extracted features and transfer them across the network. Secondly, a modified residual-dense network combined with joint loss is proposed to reconstruct the high-resolution image with low noise. The inception block is applied on each skip connection of the dense-residual network so that the structure features of the image are transferred through the network more than the noise and blurring features. Moreover, both the perceptual loss and the mean square error (MSE) loss are used to restrain the network, leading to better performance in the reconstruction of image edges and details. Our proposed network integrates the degradation estimation, noise removal, and image super-resolution in one uniform framework to enhance medical image quality. We apply our method to the Cancer Imaging Archive (TCIA) public dataset to evaluate its ability in medical image quality enhancement. The experimental results demonstrate that the proposed method outperforms the state-of-the-art methods on de-noising and super-resolution by providing higher peak signal to noise ratio (PSNR) and structure similarity index (SSIM) values. |
|---|---|
| AbstractList | Computed tomography (CT) imaging technology has been widely used to assist medical diagnosis in recent years. However, noise during the process of imaging, and data compression during the process of storage and transmission always interrupt the image quality, resulting in unreliable performance of the post-processing steps in the computer assisted diagnosis system (CADs), such as medical image segmentation, feature extraction, and medical image classification. Since the degradation of medical images typically appears as noise and low-resolution blurring, in this paper, we propose a uniform deep convolutional neural network (DCNN) framework to handle the de-noising and super-resolution of the CT image at the same time. The framework consists of two steps: Firstly, a dense-inception network integrating an inception structure and dense skip connection is proposed to estimate the noise level. The inception structure is used to extract the noise and blurring features with respect to multiple receptive fields, while the dense skip connection can reuse those extracted features and transfer them across the network. Secondly, a modified residual-dense network combined with joint loss is proposed to reconstruct the high-resolution image with low noise. The inception block is applied on each skip connection of the dense-residual network so that the structure features of the image are transferred through the network more than the noise and blurring features. Moreover, both the perceptual loss and the mean square error (MSE) loss are used to restrain the network, leading to better performance in the reconstruction of image edges and details. Our proposed network integrates the degradation estimation, noise removal, and image super-resolution in one uniform framework to enhance medical image quality. We apply our method to the Cancer Imaging Archive (TCIA) public dataset to evaluate its ability in medical image quality enhancement. The experimental results demonstrate that the proposed method outperforms the state-of-the-art methods on de-noising and super-resolution by providing higher peak signal to noise ratio (PSNR) and structure similarity index (SSIM) values. Computed tomography (CT) imaging technology has been widely used to assist medical diagnosis in recent years. However, noise during the process of imaging, and data compression during the process of storage and transmission always interrupt the image quality, resulting in unreliable performance of the post-processing steps in the computer assisted diagnosis system (CADs), such as medical image segmentation, feature extraction, and medical image classification. Since the degradation of medical images typically appears as noise and low-resolution blurring, in this paper, we propose a uniform deep convolutional neural network (DCNN) framework to handle the de-noising and super-resolution of the CT image at the same time. The framework consists of two steps: Firstly, a dense-inception network integrating an inception structure and dense skip connection is proposed to estimate the noise level. The inception structure is used to extract the noise and blurring features with respect to multiple receptive fields, while the dense skip connection can reuse those extracted features and transfer them across the network. Secondly, a modified residual-dense network combined with joint loss is proposed to reconstruct the high-resolution image with low noise. The inception block is applied on each skip connection of the dense-residual network so that the structure features of the image are transferred through the network more than the noise and blurring features. Moreover, both the perceptual loss and the mean square error (MSE) loss are used to restrain the network, leading to better performance in the reconstruction of image edges and details. Our proposed network integrates the degradation estimation, noise removal, and image super-resolution in one uniform framework to enhance medical image quality. We apply our method to the Cancer Imaging Archive (TCIA) public dataset to evaluate its ability in medical image quality enhancement. The experimental results demonstrate that the proposed method outperforms the state-of-the-art methods on de-noising and super-resolution by providing higher peak signal to noise ratio (PSNR) and structure similarity index (SSIM) values.Computed tomography (CT) imaging technology has been widely used to assist medical diagnosis in recent years. However, noise during the process of imaging, and data compression during the process of storage and transmission always interrupt the image quality, resulting in unreliable performance of the post-processing steps in the computer assisted diagnosis system (CADs), such as medical image segmentation, feature extraction, and medical image classification. Since the degradation of medical images typically appears as noise and low-resolution blurring, in this paper, we propose a uniform deep convolutional neural network (DCNN) framework to handle the de-noising and super-resolution of the CT image at the same time. The framework consists of two steps: Firstly, a dense-inception network integrating an inception structure and dense skip connection is proposed to estimate the noise level. The inception structure is used to extract the noise and blurring features with respect to multiple receptive fields, while the dense skip connection can reuse those extracted features and transfer them across the network. Secondly, a modified residual-dense network combined with joint loss is proposed to reconstruct the high-resolution image with low noise. The inception block is applied on each skip connection of the dense-residual network so that the structure features of the image are transferred through the network more than the noise and blurring features. Moreover, both the perceptual loss and the mean square error (MSE) loss are used to restrain the network, leading to better performance in the reconstruction of image edges and details. Our proposed network integrates the degradation estimation, noise removal, and image super-resolution in one uniform framework to enhance medical image quality. We apply our method to the Cancer Imaging Archive (TCIA) public dataset to evaluate its ability in medical image quality enhancement. The experimental results demonstrate that the proposed method outperforms the state-of-the-art methods on de-noising and super-resolution by providing higher peak signal to noise ratio (PSNR) and structure similarity index (SSIM) values. |
| Author | Wang, Ying Yu, Xiaosheng Zhang, Yifei Chi, Jianning Wu, Chengdong |
| AuthorAffiliation | 1 Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110004, China 2 College of Information Science and Engineering, Northeastern University, Shenyang 110004, China |
| AuthorAffiliation_xml | – name: 2 College of Information Science and Engineering, Northeastern University, Shenyang 110004, China – name: 1 Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110004, China |
| Author_xml | – sequence: 1 givenname: Jianning surname: Chi fullname: Chi, Jianning – sequence: 2 givenname: Yifei surname: Zhang fullname: Zhang, Yifei – sequence: 3 givenname: Xiaosheng orcidid: 0000-0003-3218-1486 surname: Yu fullname: Yu, Xiaosheng – sequence: 4 givenname: Ying surname: Wang fullname: Wang, Ying – sequence: 5 givenname: Chengdong surname: Wu fullname: Wu, Chengdong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31366173$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kt1uEzEQhVeoiP7ABS-ALHHTIoXa6_2xb5BQlEKkqghIry3vepy47Npb29sqD8B74yQlaivEla3xmU9n5vg4O7DOQpa9JfgjpRyfB8JJSWnBXmRHpMiLCctzfPDofpgdh3CDcU4pZa-yQ0poVZGaHmW_p64fxggKLVzvll4OqzU6nS7O0LyXS0DfR9mZuEYzu5K2hR5sRHdGIomurdHO9-jCyx7unf-F5jZCIkRjl-jKmQBoFqLpU8FZJK1CP8cB_OQHBNeN2-IVxE1neJ291LIL8ObhPMmuL2aL6dfJ5bcv8-nny0lbVDxOSiY5bblSpNKkqYkitS4KImtWAm00KMo0ASV1A5xWuszLRpUYN9C0OWdFS0-y-Y6rnLwRg0_m_Fo4acS24PxSSB9N24FoZAIDoRq4KrQuGCWyaHBekqrhGmhifdixRjvI9b3suj2QYLHJRexzSeJPO_EwNj2oNq3Ry-6Jg6cv1qzE0t2JquJVjssEOH0AeHc7QoiiN6GFrpMW3BhEnld1XTPGeZK-fya9caO3aa8ip5gwXFT1BvjusaO9lb9fIwnOdoLWuxA86P-Od_5M25q4zT0NY7p_dPwBQnvaEA |
| CitedBy_id | crossref_primary_10_3390_s19235139 crossref_primary_10_1080_00051144_2019_1691835 crossref_primary_10_1016_j_wneu_2024_11_048 crossref_primary_10_1016_j_neucom_2022_04_040 crossref_primary_10_1016_j_ajg_2023_07_005 crossref_primary_10_1109_ACCESS_2024_3407774 crossref_primary_10_1007_s00034_022_02163_8 crossref_primary_10_4015_S101623722450008X crossref_primary_10_1002_ima_22727 crossref_primary_10_1109_TRPMS_2023_3341903 crossref_primary_10_1016_j_slast_2021_10_014 crossref_primary_10_1109_ACCESS_2020_3036837 crossref_primary_10_5004_dwt_2021_27812 crossref_primary_10_1002_acm2_14270 crossref_primary_10_1007_s11042_021_11024_6 crossref_primary_10_1007_s40747_022_00724_7 |
| Cites_doi | 10.1109/ICIP.2017.8296828 10.1109/TIP.2007.901238 10.1109/CVPR.2017.411 10.1007/s10278-017-9958-5 10.1109/ICASSP.2017.7953077 10.1016/j.patrec.2016.03.026 10.1109/TMI.2016.2615567 10.1109/TBME.2018.2813759 10.1109/TCSVT.2004.837017 10.1109/TMI.2018.2827462 10.1109/LSP.2009.2030856 10.1109/ICSIPA.2011.6144138 10.1118/1.2961876 10.23919/ChiCC.2018.8483036 10.1109/TPAMI.2016.2596743 10.1609/aaai.v31i1.11231 10.1109/CVPRW.2017.151 10.1109/ICIP.2018.8451362 10.1109/CVPR.2016.207 10.1109/LSP.2012.2197200 10.1109/CVPR.2017.243 10.1109/83.503915 10.1007/s10278-013-9622-7 10.1109/TASSP.1981.1163711 10.1016/j.patcog.2018.11.028 10.1109/TIP.2017.2764625 10.1007/978-3-319-46475-6_25 10.1109/GlobalSIP.2017.8309146 10.1109/TIP.2012.2221728 10.1109/CVPR.2018.00262 10.1109/TIP.2006.881969 10.1109/CVPR.2018.00344 10.1109/CVPR.2017.19 10.1016/j.imavis.2008.08.002 10.1109/TMI.2018.2829662 10.1109/ICIP.2012.6467150 |
| ContentType | Journal Article |
| Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
| Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s19153348 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_ba41ae13fe9d4ff4831a4b02516b9fe3 10.3390/s19153348 PMC6696205 31366173 10_3390_s19153348 |
| Genre | Journal Article |
| GeographicLocations | United States--US China |
| GeographicLocations_xml | – name: China – name: United States--US |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61701101 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IAO IPNFZ ITC RIG UNPAY |
| ID | FETCH-LOGICAL-c469t-58a93c9dd16f1b71d17f441a785e3bfed38f1edafbe936f525bd500bebc2984c3 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 18:51:56 EDT 2025 Sun Oct 26 03:59:58 EDT 2025 Tue Sep 30 16:46:34 EDT 2025 Wed Oct 01 14:32:33 EDT 2025 Tue Oct 07 06:53:42 EDT 2025 Wed Feb 19 02:32:41 EST 2025 Thu Apr 24 22:53:57 EDT 2025 Thu Oct 16 04:36:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Keywords | inception structure dense connection medical image enhancement residual network deep convolutional neural network |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-58a93c9dd16f1b71d17f441a785e3bfed38f1edafbe936f525bd500bebc2984c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3218-1486 |
| OpenAccessLink | https://doaj.org/article/ba41ae13fe9d4ff4831a4b02516b9fe3 |
| PMID | 31366173 |
| PQID | 2301804675 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ba41ae13fe9d4ff4831a4b02516b9fe3 unpaywall_primary_10_3390_s19153348 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6696205 proquest_miscellaneous_2267778899 proquest_journals_2301804675 pubmed_primary_31366173 crossref_primary_10_3390_s19153348 crossref_citationtrail_10_3390_s19153348 |
| PublicationCentury | 2000 |
| PublicationDate | 20190730 |
| PublicationDateYYYYMMDD | 2019-07-30 |
| PublicationDate_xml | – month: 7 year: 2019 text: 20190730 day: 30 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2019 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Jalalian (ref_1) 2017; 30 Clark (ref_36) 2013; 26 Pyatykh (ref_40) 2013; 22 ref_14 Jiang (ref_25) 2016; 78 ref_35 ref_34 ref_10 ref_32 Dabov (ref_8) 2007; 16 ref_31 ref_30 Hashemi (ref_26) 2010; 17 Chen (ref_11) 2017; 39 ref_19 ref_18 ref_17 Mosleh (ref_3) 2018; 27 Schultz (ref_15) 1996; 5 ref_16 ref_37 Keys (ref_13) 1981; 29 Amer (ref_39) 2005; 15 Yang (ref_12) 2018; 37 Elad (ref_7) 2006; 15 Allman (ref_5) 2018; 37 ref_24 Chvetsov (ref_33) 2008; 35 ref_23 ref_22 Tian (ref_27) 2012; 19 ref_21 ref_43 ref_20 ref_42 Zhao (ref_2) 2017; 36 ref_29 (ref_38) 2009; 27 ref_9 Foroozan (ref_4) 2018; 65 Rakhshanfar (ref_28) 2016; 25 Zhao (ref_41) 2019; 88 ref_6 |
| References_xml | – ident: ref_37 doi: 10.1109/ICIP.2017.8296828 – ident: ref_30 – volume: 16 start-page: 2080 year: 2007 ident: ref_8 article-title: Image denoising by sparse 3-D transform-domain collaborative filtering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.901238 – ident: ref_17 doi: 10.1109/CVPR.2017.411 – volume: 30 start-page: 796 year: 2017 ident: ref_1 article-title: Computer-Assisted Diagnosis System for Breast Cancer in Computed Tomography Laser Mammography (CTLM) publication-title: J. Digit. Imaging doi: 10.1007/s10278-017-9958-5 – ident: ref_21 doi: 10.1109/ICASSP.2017.7953077 – volume: 78 start-page: 8 year: 2016 ident: ref_25 article-title: Fast and reliable noise level estimation based on local statistic publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2016.03.026 – volume: 36 start-page: 487 year: 2017 ident: ref_2 article-title: Using Anatomic Magnetic Resonance Image Information to Enhance Visualization and Interpretation of Functional Images: A Comparison of Methods Applied to Clinical Arterial Spin Labeling Images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2615567 – volume: 65 start-page: 2692 year: 2018 ident: ref_4 article-title: Microbubble Localization for Three-Dimensional Superresolution Ultrasound Imaging Using Curve Fitting and Deconvolution Methods publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2813759 – volume: 15 start-page: 113 year: 2005 ident: ref_39 article-title: Fast and reliable structure-oriented video noise estimation publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2004.837017 – volume: 37 start-page: 1348 year: 2018 ident: ref_12 article-title: Low-Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2827462 – volume: 17 start-page: 12 year: 2010 ident: ref_26 article-title: Adaptive noise variance estimation in BayesShrink publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2009.2030856 – ident: ref_16 doi: 10.1109/ICSIPA.2011.6144138 – volume: 25 start-page: 4172 year: 2016 ident: ref_28 article-title: Estimation of Gaussian, Poissonian–Gaussian, and processed visual noise and its level function publication-title: IEEE Trans. Image Process. – volume: 35 start-page: 2754 year: 2008 ident: ref_33 article-title: SU-GG-T-124: Probability Density Distribution of Proton Range as a Function of Noise in CT Images publication-title: Med. Phys. doi: 10.1118/1.2961876 – ident: ref_9 doi: 10.23919/ChiCC.2018.8483036 – volume: 39 start-page: 1256 year: 2017 ident: ref_11 article-title: Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2596743 – ident: ref_31 doi: 10.1609/aaai.v31i1.11231 – ident: ref_42 – ident: ref_34 doi: 10.1109/CVPRW.2017.151 – ident: ref_35 – ident: ref_14 doi: 10.1109/ICIP.2018.8451362 – ident: ref_20 doi: 10.1109/CVPR.2016.207 – ident: ref_6 – ident: ref_29 – volume: 19 start-page: 395 year: 2012 ident: ref_27 article-title: Image noise estimation using a variation-adaptive evolutionary approach publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2012.2197200 – ident: ref_32 doi: 10.1109/CVPR.2017.243 – volume: 5 start-page: 996 year: 1996 ident: ref_15 article-title: Extraction of high-resolution frames from video sequences publication-title: IEEE Trans. Image Process. doi: 10.1109/83.503915 – volume: 26 start-page: 1045 year: 2013 ident: ref_36 article-title: The cancer imaging archive (TCIA): Maintaining and operating a public information repository publication-title: J. Digit. Imaging doi: 10.1007/s10278-013-9622-7 – ident: ref_10 – volume: 29 start-page: 1153 year: 1981 ident: ref_13 article-title: Cubic convolution interpolation for digital image processing publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/TASSP.1981.1163711 – volume: 88 start-page: 356 year: 2019 ident: ref_41 article-title: Simultaneous color-depth super-resolution with conditional generative adversarial networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.11.028 – volume: 27 start-page: 580 year: 2018 ident: ref_3 article-title: Explicit Ringing Removal in Image Deblurring publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2764625 – ident: ref_18 doi: 10.1007/978-3-319-46475-6_25 – ident: ref_23 doi: 10.1109/GlobalSIP.2017.8309146 – volume: 22 start-page: 687 year: 2013 ident: ref_40 article-title: Image noise level estimation by principal component analysis publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2221728 – ident: ref_24 doi: 10.1109/CVPR.2018.00262 – volume: 15 start-page: 3736 year: 2006 ident: ref_7 article-title: Image denoising via sparse and redundant representations over learned dictionaries publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.881969 – ident: ref_22 doi: 10.1109/CVPR.2018.00344 – ident: ref_19 doi: 10.1109/CVPR.2017.19 – volume: 27 start-page: 756 year: 2009 ident: ref_38 article-title: Automatic noise estimation in images using local statistics. Additive and multiplicative cases publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2008.08.002 – volume: 37 start-page: 1464 year: 2018 ident: ref_5 article-title: Photoacoustic Source Detection and Reflection Artifact Removal Enabled by Deep Learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2829662 – ident: ref_43 doi: 10.1109/ICIP.2012.6467150 |
| SSID | ssj0023338 |
| Score | 2.3931608 |
| Snippet | Computed tomography (CT) imaging technology has been widely used to assist medical diagnosis in recent years. However, noise during the process of imaging, and... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 3348 |
| SubjectTerms | Algorithms deep convolutional neural network Deep learning dense connection inception structure Information processing International conferences Mean square errors medical image enhancement Methods Neural networks Noise Pattern recognition Principal components analysis Quality Quality control residual network Tomography |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL8AB8U1KQebjUA5R4zh27CNUu2qR2AtbqbfIjsfqStvsqrsL6g_gfzOOvdGuKOLCNRk5lmfsec8ZPxPyEZOENpjo86A3llfCyNyUvszBt0oyy5jrz1d8m8izi-rrpbjcueor1IRFeeA4cCcWWzLAuAftKu8rxZmpbEDG0moPvc5nofSWTCWqxZF5RR0hjqT-ZIWspD9zupd9epH-u5DlnwWS9zfd0tz-NPP5TvYZPyaPEmykn2N3n5B70D0lD3fEBJ-RX-mCBkeni-skRE2PT6ef6Pk1Lho0qmXc0lF3FTwddgXpj5mhhiLuDNCVjreFWvQ8iUhgw3SymK2AjnApiKccqekc_b5Zwk0e9v5j5NJJLCdfPScX49H09CxPlyzkLTLjdS6U0bzVzjHpma2ZY7VHiGRqJYBbD44rz8AZb0Fz6UUprBNFYcG2pVZVy1-Qg27RwStCOS9aaK2rJPiqtOgVX7sCEDF444T3GTneDn7TJgXycBHGvEEmEvzUDH7KyPvBdBllN-4y-hI8OBgEpez-AcZPk-Kn-Vf8ZORo6_8mTd9Vg7yMqQJziMjIu-E1TrzwN8V0sNigTSnrulbIVzPyMobL0BPOOOKeGhuv9wJpr6v7b7rZVS_uLaWWZYHf_TCE3N9H4PB_jMBr8gBRoO43rIsjcrC-2cAbRFpr-7afVL8BiW4q1g priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtQwFLXKdAEsEG8CBZnHoiyixnFixwuEaDWjFokIwVTqLvKTjjRNhnmA-gH8N9eJEzqisE0sx_G9ts-xfc9F6A0sEkLCQh97vbE4yyWLZerS2DpdMKIIMW18xaeSHZ9mH8_ysx1U9rEw_lplPye2E7VptN8jPwCoTAogczx_v_ge-6xR_nS1T6EhQ2oF866VGLuBdlOvjDVCu4fj8vOXgYJRYGSdvhAFsn-wArbSxqJurUqteP91iPPvi5M3N_VCXv6U8_mVVWlyF90JcBJ_6Ox_D-3Y-j66fUVk8AH6FRI3GDxtLoJANd4_mr7FJxcwmeBOReMSj-tz7wF-txD_mEksMeBRD2nxpL_AhU-CuARUjMtmtrJ4DFNEF_2IZW3w183CLmN_JtB5NC67a-arh-h0Mp4eHcch-UKsgTGv47yQgmphDGGOKE4M4Q6gk-RFbqly1tDCEWukU1ZQ5vI0VyZPEmWVTkWRafoIjeqmtk8QpjTRViuTMeuyVCWFcNwkFpCEkyZ3LkL7fedXOiiT-wQZ8woYirdTNdgpQq-GootOjuO6QofegkMBr6DdPmiW36owIAEkwM9YQp0VJnMuKyiRmfKMiynhLI3QXm__KgzrVfXHCSP0cngNA9KfssjaNhsokzLOeQE8NkKPO3cZWkIJBTzEoXK-5UhbTd1-U8_OW9FvxgRLE_ju68Hl_t0DT__f-GfoFuA-0W5RJ3totF5u7HPAVmv1IgyY30eDKAc priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLegOwAHvmGFgczHYRyyxHHsxCc0plYbEhUSrTROkR3brFqXVG0zNO783zwnbtTCkJC4Ji8fTp79fj_7vZ8RegtBQkgI9IHTGwsSJnkgYxsHxhYZJ4oQ3dRXfBrx40ny8ZSdblTxu7RKoOLTZpB2VVgBRLAoJCIkLHRVo-Fc2_eXfi7JKZ2kjpIkN9EOZ4DGe2hnMvp8-LUpKvJXt4JCFNh9uAR60hSfboWhRq3_Ooj5Z6bkrbqcy6vvcjbbCEPDe0iuG9Bmn5wf1Ct1UPz4Tdvxf1p4H931GBUftk71AN0w5UN0Z0O58BH66XeD0HhcXXjVa7x_NH6HTy5ghMKtNMcVHpRnzq3cFCS-nEosMYBch5PxcJ0Vhk-8YgXcGI-q6dLgAYw7bUkllqXGX-q5WQRuoaHtJnjU5q4vH6PJcDA-Og78jg5BATR8FbBMCloIrQm3RKVEk9QCHpNpxgxV1miaWWK0tMoIyi2LmdIsipRRRSyypKBPUK-sSrOLMKVRYQqlE25sEqsoEzbVkQF4YqVm1vbR_voH54WXO3e7bsxyoD3OF_LOF_rodWc6bzU-rjP64LykM3Cy3M2BavEt970ckAc0xhBqjdCJtUlGiUyUo3FcCWtoH-2tfSz3Y8UyBxJIsggCFuujV91p6OVu6UaWpqrBJuZpmmZAjvvoaeuS3ZtQQgFkpXDzdMtZt151-0w5PWuUxDkXPI7guW86t_77F3j2T1bP0W3AlKKZ_o72UG-1qM0LwG0r9dJ3zV-LuD-z priority: 102 providerName: Unpaywall |
| Title | Computed Tomography (CT) Image Quality Enhancement via a Uniform Framework Integrating Noise Estimation and Super-Resolution Networks |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31366173 https://www.proquest.com/docview/2301804675 https://www.proquest.com/docview/2267778899 https://pubmed.ncbi.nlm.nih.gov/PMC6696205 https://www.mdpi.com/1424-8220/19/15/3348/pdf?version=1564740714 https://doaj.org/article/ba41ae13fe9d4ff4831a4b02516b9fe3 |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection (NC LIVE) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFLa6HKAHxE6gjMwiVA6BOE7s5IBQW83QIjWqYEaaniI7ttuRpsl0FmB-AP-b52xqxCBxycGxHMd-9vs-L99D6C04iViAo3et3pgbhIK5wje-q00WMSIJUeX9irOEnYyCr-NwvIWaY811Ay42UjsbT2o0n374dbP-DAP-k2WcQNk_LoBzlDdK381uXBtPyu671sE1ttGurY4N6nAWtPsLPqVljGt7zcsFF-lVmkPd0jqeqhT034RC_z5MeWeVz8T6p5hOb3mqwX10r4aY-LCyiQdoS-cP0d4t4cFH6HcdzEHhYXFdi1bjg-Phe3x6DRMMrpQ11rifX1mrsCuI-MdEYIEBo1qYiwfNoS58WgtOQME4KSYLjfswbVQ3IrHIFf6-mum5a_cJKivHSXX0fPEYjQb94fGJWwdkcDNg0Us3jERMs1gpwgyRnCjCDcApwaNQU2m0opEhWgkjdUyZCf1QqtDzpJaZH0dBRp-gnbzI9TOEKfUynUkVMG0CX3pRbLjyNKALI1RojIMOmsZPs1qt3AbNmKbAWmw_pW0_Oeh1m3VWSXRsynRke7DNYFW1y4RifpnWgxSAA_yMJtToWAXGBBElIpCWhTEZG00dtN_0f9pYagocjkQe-JvQQa_a1zBI7c6LyHWxgjw-45xHwG0d9LQyl7YmlFDASBwK5x1D6lS1-yafXJVC4IzFzPfgu29ak_t3Czz_j9q9QHcBEMbl2rW3j3aW85V-CaBrKXtom485PKPBlx7aPeon59965QJGrxxZkDZKzg8v_gBzwDSD |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtMwGLbGuBhcIM50DDAnaVxEi-PEji8QgtGqZVtv6KTeZXZsb5W6pDQtUx-A1-EZ-Z3TVjG4221jOW7-g7_Ph-9H6B1MEkLCRO85vTEvjCTzZGADz9g0ZkQRosv7FUdD1j8Ov42j8Qb63dyFcccqm5xYJmqdp26NfA-gMomBzPHo0-yH56pGud3VpoRG5RYHZnUBlK34OPgK9n0fBL3uaL_v1VUFvBSo4MKLYiloKrQmzBLFiSbcAiaQPI4MVdZoGltitLTKCMpsFERKR76vjEoDEYcphX5vodshhVwC8cPHlwSPAt-r1IsoFf5eAVyovOm6NueVpQGuw7N_H8vcWmYzubqQ0-mVOa93H92rwSr-XHnXA7Rhsofo7hUJw0foV10WQuNRfl7LX-Pd_dEHPDiHVIUrjY4V7mZnzr_cWiT-OZFYYkC7DjDjXnM8DA9q6QroGA_zSWFwFxJQdbcSy0zj78uZmXtux6GKFzysDrEXj9HxjRjhCdrM8sw8Q5hSPzWp0iEzNgyUHwvLtW8Ap1ipI2s7aLf5-Ela65678hvTBPiPs1PS2qmD3rRNZ5XYx3WNvjgLtg2cPnf5Qz4_TepwBwgCf8YQao3QobVhTIkMleNzTAlraAftNPZP6qRRJJcu3kGv28cQ7m4PR2YmX0KbgHHOY2DJHfS0cpd2JJRQQFscOudrjrQ21PUn2eSslBRnTLDAh_e-bV3u319g-_-Df4W2-qOjw-RwMDx4ju4AwhTlYri_gzYX86V5AShuoV6WoYPRyU3H6h_Ev2Aa |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkGA8IK4jMMDcpPEQNY4TO35ACLZWK4MKiU7qW2bHNqvUJaUXpv4A_hS_juPctorB215jy3FyLv6OffwdhF7DIiEkLPS-4xvzo1gyX4Y29I3NEkYUIbq8X_FlwA6Ook-jeLSBfjd3YVxaZeMTS0eti8ztkXcAKpMEgjked2ydFvF1v_d--sN3FaTcSWtTTqNSkUOzOoPwbf6uvw-yfhOGve5w78CvKwz4GYSFCz9OpKCZ0JowSxQnmnAL-EDyJDZUWaNpYonR0iojKLNxGCsdB4EyKgtFEmUUxr2GrnNKhUsn5KPzYI9C7FcxGUFj0JlDXFTeel1b_8oyAZdh279TNG8u86lcncnJ5ML617uDbtfAFX-oNO0u2jD5PXTrAp3hffSrLhGh8bA4ramw8e7e8C3un4LbwhVfxwp38xOna25fEv8cSywxIF8HnnGvSRXD_ZrGAgbGg2I8N7gLzqi6Z4llrvG35dTMfHf6UNkOHlQJ7fMH6OhKhPAQbeZFbh4hTGmQmUzpiBkbhSpIhOU6MIBZrNSxtR7abX5-mtUc6K4UxySFWMjJKW3l5KGXbddpRfxxWaePToJtB8fVXT4oZt_T2vQBjsDHGEKtETqyNkookZFysR1TwhrqoZ1G_mntQObpubp76EXbDKbvznNkbool9AkZ5zyBiNlD25W6tDOhhALy4jA4X1Oktamut-Tjk5JenDHBwgDe-6pVuX__gcf_n_xzdAOsNP3cHxw-QVsANkW5Lx7soM3FbGmeAqBbqGel5WB0fNWm-gcEVGRd |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLegOwAHvmGFgczHYRyyxHHsxCc0plYbEhUSrTROkR3brFqXVG0zNO783zwnbtTCkJC4Ji8fTp79fj_7vZ8RegtBQkgI9IHTGwsSJnkgYxsHxhYZJ4oQ3dRXfBrx40ny8ZSdblTxu7RKoOLTZpB2VVgBRLAoJCIkLHRVo-Fc2_eXfi7JKZ2kjpIkN9EOZ4DGe2hnMvp8-LUpKvJXt4JCFNh9uAR60hSfboWhRq3_Ooj5Z6bkrbqcy6vvcjbbCEPDe0iuG9Bmn5wf1Ct1UPz4Tdvxf1p4H931GBUftk71AN0w5UN0Z0O58BH66XeD0HhcXXjVa7x_NH6HTy5ghMKtNMcVHpRnzq3cFCS-nEosMYBch5PxcJ0Vhk-8YgXcGI-q6dLgAYw7bUkllqXGX-q5WQRuoaHtJnjU5q4vH6PJcDA-Og78jg5BATR8FbBMCloIrQm3RKVEk9QCHpNpxgxV1miaWWK0tMoIyi2LmdIsipRRRSyypKBPUK-sSrOLMKVRYQqlE25sEqsoEzbVkQF4YqVm1vbR_voH54WXO3e7bsxyoD3OF_LOF_rodWc6bzU-rjP64LykM3Cy3M2BavEt970ckAc0xhBqjdCJtUlGiUyUo3FcCWtoH-2tfSz3Y8UyBxJIsggCFuujV91p6OVu6UaWpqrBJuZpmmZAjvvoaeuS3ZtQQgFkpXDzdMtZt151-0w5PWuUxDkXPI7guW86t_77F3j2T1bP0W3AlKKZ_o72UG-1qM0LwG0r9dJ3zV-LuD-z |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computed+Tomography+%28CT%29+Image+Quality+Enhancement+via+a+Uniform+Framework+Integrating+Noise+Estimation+and+Super-Resolution+Networks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chi%2C+Jianning&rft.au=Zhang%2C+Yifei&rft.au=Yu%2C+Xiaosheng&rft.au=Wang%2C+Ying&rft.date=2019-07-30&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=19&rft.issue=15&rft_id=info:doi/10.3390%2Fs19153348&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |