Computed Tomography (CT) Image Quality Enhancement via a Uniform Framework Integrating Noise Estimation and Super-Resolution Networks

Computed tomography (CT) imaging technology has been widely used to assist medical diagnosis in recent years. However, noise during the process of imaging, and data compression during the process of storage and transmission always interrupt the image quality, resulting in unreliable performance of t...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 19; no. 15; p. 3348
Main Authors Chi, Jianning, Zhang, Yifei, Yu, Xiaosheng, Wang, Ying, Wu, Chengdong
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 30.07.2019
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s19153348

Cover

Abstract Computed tomography (CT) imaging technology has been widely used to assist medical diagnosis in recent years. However, noise during the process of imaging, and data compression during the process of storage and transmission always interrupt the image quality, resulting in unreliable performance of the post-processing steps in the computer assisted diagnosis system (CADs), such as medical image segmentation, feature extraction, and medical image classification. Since the degradation of medical images typically appears as noise and low-resolution blurring, in this paper, we propose a uniform deep convolutional neural network (DCNN) framework to handle the de-noising and super-resolution of the CT image at the same time. The framework consists of two steps: Firstly, a dense-inception network integrating an inception structure and dense skip connection is proposed to estimate the noise level. The inception structure is used to extract the noise and blurring features with respect to multiple receptive fields, while the dense skip connection can reuse those extracted features and transfer them across the network. Secondly, a modified residual-dense network combined with joint loss is proposed to reconstruct the high-resolution image with low noise. The inception block is applied on each skip connection of the dense-residual network so that the structure features of the image are transferred through the network more than the noise and blurring features. Moreover, both the perceptual loss and the mean square error (MSE) loss are used to restrain the network, leading to better performance in the reconstruction of image edges and details. Our proposed network integrates the degradation estimation, noise removal, and image super-resolution in one uniform framework to enhance medical image quality. We apply our method to the Cancer Imaging Archive (TCIA) public dataset to evaluate its ability in medical image quality enhancement. The experimental results demonstrate that the proposed method outperforms the state-of-the-art methods on de-noising and super-resolution by providing higher peak signal to noise ratio (PSNR) and structure similarity index (SSIM) values.
AbstractList Computed tomography (CT) imaging technology has been widely used to assist medical diagnosis in recent years. However, noise during the process of imaging, and data compression during the process of storage and transmission always interrupt the image quality, resulting in unreliable performance of the post-processing steps in the computer assisted diagnosis system (CADs), such as medical image segmentation, feature extraction, and medical image classification. Since the degradation of medical images typically appears as noise and low-resolution blurring, in this paper, we propose a uniform deep convolutional neural network (DCNN) framework to handle the de-noising and super-resolution of the CT image at the same time. The framework consists of two steps: Firstly, a dense-inception network integrating an inception structure and dense skip connection is proposed to estimate the noise level. The inception structure is used to extract the noise and blurring features with respect to multiple receptive fields, while the dense skip connection can reuse those extracted features and transfer them across the network. Secondly, a modified residual-dense network combined with joint loss is proposed to reconstruct the high-resolution image with low noise. The inception block is applied on each skip connection of the dense-residual network so that the structure features of the image are transferred through the network more than the noise and blurring features. Moreover, both the perceptual loss and the mean square error (MSE) loss are used to restrain the network, leading to better performance in the reconstruction of image edges and details. Our proposed network integrates the degradation estimation, noise removal, and image super-resolution in one uniform framework to enhance medical image quality. We apply our method to the Cancer Imaging Archive (TCIA) public dataset to evaluate its ability in medical image quality enhancement. The experimental results demonstrate that the proposed method outperforms the state-of-the-art methods on de-noising and super-resolution by providing higher peak signal to noise ratio (PSNR) and structure similarity index (SSIM) values.
Computed tomography (CT) imaging technology has been widely used to assist medical diagnosis in recent years. However, noise during the process of imaging, and data compression during the process of storage and transmission always interrupt the image quality, resulting in unreliable performance of the post-processing steps in the computer assisted diagnosis system (CADs), such as medical image segmentation, feature extraction, and medical image classification. Since the degradation of medical images typically appears as noise and low-resolution blurring, in this paper, we propose a uniform deep convolutional neural network (DCNN) framework to handle the de-noising and super-resolution of the CT image at the same time. The framework consists of two steps: Firstly, a dense-inception network integrating an inception structure and dense skip connection is proposed to estimate the noise level. The inception structure is used to extract the noise and blurring features with respect to multiple receptive fields, while the dense skip connection can reuse those extracted features and transfer them across the network. Secondly, a modified residual-dense network combined with joint loss is proposed to reconstruct the high-resolution image with low noise. The inception block is applied on each skip connection of the dense-residual network so that the structure features of the image are transferred through the network more than the noise and blurring features. Moreover, both the perceptual loss and the mean square error (MSE) loss are used to restrain the network, leading to better performance in the reconstruction of image edges and details. Our proposed network integrates the degradation estimation, noise removal, and image super-resolution in one uniform framework to enhance medical image quality. We apply our method to the Cancer Imaging Archive (TCIA) public dataset to evaluate its ability in medical image quality enhancement. The experimental results demonstrate that the proposed method outperforms the state-of-the-art methods on de-noising and super-resolution by providing higher peak signal to noise ratio (PSNR) and structure similarity index (SSIM) values.Computed tomography (CT) imaging technology has been widely used to assist medical diagnosis in recent years. However, noise during the process of imaging, and data compression during the process of storage and transmission always interrupt the image quality, resulting in unreliable performance of the post-processing steps in the computer assisted diagnosis system (CADs), such as medical image segmentation, feature extraction, and medical image classification. Since the degradation of medical images typically appears as noise and low-resolution blurring, in this paper, we propose a uniform deep convolutional neural network (DCNN) framework to handle the de-noising and super-resolution of the CT image at the same time. The framework consists of two steps: Firstly, a dense-inception network integrating an inception structure and dense skip connection is proposed to estimate the noise level. The inception structure is used to extract the noise and blurring features with respect to multiple receptive fields, while the dense skip connection can reuse those extracted features and transfer them across the network. Secondly, a modified residual-dense network combined with joint loss is proposed to reconstruct the high-resolution image with low noise. The inception block is applied on each skip connection of the dense-residual network so that the structure features of the image are transferred through the network more than the noise and blurring features. Moreover, both the perceptual loss and the mean square error (MSE) loss are used to restrain the network, leading to better performance in the reconstruction of image edges and details. Our proposed network integrates the degradation estimation, noise removal, and image super-resolution in one uniform framework to enhance medical image quality. We apply our method to the Cancer Imaging Archive (TCIA) public dataset to evaluate its ability in medical image quality enhancement. The experimental results demonstrate that the proposed method outperforms the state-of-the-art methods on de-noising and super-resolution by providing higher peak signal to noise ratio (PSNR) and structure similarity index (SSIM) values.
Author Wang, Ying
Yu, Xiaosheng
Zhang, Yifei
Chi, Jianning
Wu, Chengdong
AuthorAffiliation 1 Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110004, China
2 College of Information Science and Engineering, Northeastern University, Shenyang 110004, China
AuthorAffiliation_xml – name: 2 College of Information Science and Engineering, Northeastern University, Shenyang 110004, China
– name: 1 Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110004, China
Author_xml – sequence: 1
  givenname: Jianning
  surname: Chi
  fullname: Chi, Jianning
– sequence: 2
  givenname: Yifei
  surname: Zhang
  fullname: Zhang, Yifei
– sequence: 3
  givenname: Xiaosheng
  orcidid: 0000-0003-3218-1486
  surname: Yu
  fullname: Yu, Xiaosheng
– sequence: 4
  givenname: Ying
  surname: Wang
  fullname: Wang, Ying
– sequence: 5
  givenname: Chengdong
  surname: Wu
  fullname: Wu, Chengdong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31366173$$D View this record in MEDLINE/PubMed
BookMark eNp9kt1uEzEQhVeoiP7ABS-ALHHTIoXa6_2xb5BQlEKkqghIry3vepy47Npb29sqD8B74yQlaivEla3xmU9n5vg4O7DOQpa9JfgjpRyfB8JJSWnBXmRHpMiLCctzfPDofpgdh3CDcU4pZa-yQ0poVZGaHmW_p64fxggKLVzvll4OqzU6nS7O0LyXS0DfR9mZuEYzu5K2hR5sRHdGIomurdHO9-jCyx7unf-F5jZCIkRjl-jKmQBoFqLpU8FZJK1CP8cB_OQHBNeN2-IVxE1neJ291LIL8ObhPMmuL2aL6dfJ5bcv8-nny0lbVDxOSiY5bblSpNKkqYkitS4KImtWAm00KMo0ASV1A5xWuszLRpUYN9C0OWdFS0-y-Y6rnLwRg0_m_Fo4acS24PxSSB9N24FoZAIDoRq4KrQuGCWyaHBekqrhGmhifdixRjvI9b3suj2QYLHJRexzSeJPO_EwNj2oNq3Ry-6Jg6cv1qzE0t2JquJVjssEOH0AeHc7QoiiN6GFrpMW3BhEnld1XTPGeZK-fya9caO3aa8ip5gwXFT1BvjusaO9lb9fIwnOdoLWuxA86P-Od_5M25q4zT0NY7p_dPwBQnvaEA
CitedBy_id crossref_primary_10_3390_s19235139
crossref_primary_10_1080_00051144_2019_1691835
crossref_primary_10_1016_j_wneu_2024_11_048
crossref_primary_10_1016_j_neucom_2022_04_040
crossref_primary_10_1016_j_ajg_2023_07_005
crossref_primary_10_1109_ACCESS_2024_3407774
crossref_primary_10_1007_s00034_022_02163_8
crossref_primary_10_4015_S101623722450008X
crossref_primary_10_1002_ima_22727
crossref_primary_10_1109_TRPMS_2023_3341903
crossref_primary_10_1016_j_slast_2021_10_014
crossref_primary_10_1109_ACCESS_2020_3036837
crossref_primary_10_5004_dwt_2021_27812
crossref_primary_10_1002_acm2_14270
crossref_primary_10_1007_s11042_021_11024_6
crossref_primary_10_1007_s40747_022_00724_7
Cites_doi 10.1109/ICIP.2017.8296828
10.1109/TIP.2007.901238
10.1109/CVPR.2017.411
10.1007/s10278-017-9958-5
10.1109/ICASSP.2017.7953077
10.1016/j.patrec.2016.03.026
10.1109/TMI.2016.2615567
10.1109/TBME.2018.2813759
10.1109/TCSVT.2004.837017
10.1109/TMI.2018.2827462
10.1109/LSP.2009.2030856
10.1109/ICSIPA.2011.6144138
10.1118/1.2961876
10.23919/ChiCC.2018.8483036
10.1109/TPAMI.2016.2596743
10.1609/aaai.v31i1.11231
10.1109/CVPRW.2017.151
10.1109/ICIP.2018.8451362
10.1109/CVPR.2016.207
10.1109/LSP.2012.2197200
10.1109/CVPR.2017.243
10.1109/83.503915
10.1007/s10278-013-9622-7
10.1109/TASSP.1981.1163711
10.1016/j.patcog.2018.11.028
10.1109/TIP.2017.2764625
10.1007/978-3-319-46475-6_25
10.1109/GlobalSIP.2017.8309146
10.1109/TIP.2012.2221728
10.1109/CVPR.2018.00262
10.1109/TIP.2006.881969
10.1109/CVPR.2018.00344
10.1109/CVPR.2017.19
10.1016/j.imavis.2008.08.002
10.1109/TMI.2018.2829662
10.1109/ICIP.2012.6467150
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s19153348
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

CrossRef

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_ba41ae13fe9d4ff4831a4b02516b9fe3
10.3390/s19153348
PMC6696205
31366173
10_3390_s19153348
Genre Journal Article
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61701101
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IAO
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c469t-58a93c9dd16f1b71d17f441a785e3bfed38f1edafbe936f525bd500bebc2984c3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Tue Oct 14 18:51:56 EDT 2025
Sun Oct 26 03:59:58 EDT 2025
Tue Sep 30 16:46:34 EDT 2025
Wed Oct 01 14:32:33 EDT 2025
Tue Oct 07 06:53:42 EDT 2025
Wed Feb 19 02:32:41 EST 2025
Thu Apr 24 22:53:57 EDT 2025
Thu Oct 16 04:36:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords inception structure
dense connection
medical image enhancement
residual network
deep convolutional neural network
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-58a93c9dd16f1b71d17f441a785e3bfed38f1edafbe936f525bd500bebc2984c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3218-1486
OpenAccessLink https://doaj.org/article/ba41ae13fe9d4ff4831a4b02516b9fe3
PMID 31366173
PQID 2301804675
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_ba41ae13fe9d4ff4831a4b02516b9fe3
unpaywall_primary_10_3390_s19153348
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6696205
proquest_miscellaneous_2267778899
proquest_journals_2301804675
pubmed_primary_31366173
crossref_primary_10_3390_s19153348
crossref_citationtrail_10_3390_s19153348
PublicationCentury 2000
PublicationDate 20190730
PublicationDateYYYYMMDD 2019-07-30
PublicationDate_xml – month: 7
  year: 2019
  text: 20190730
  day: 30
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Jalalian (ref_1) 2017; 30
Clark (ref_36) 2013; 26
Pyatykh (ref_40) 2013; 22
ref_14
Jiang (ref_25) 2016; 78
ref_35
ref_34
ref_10
ref_32
Dabov (ref_8) 2007; 16
ref_31
ref_30
Hashemi (ref_26) 2010; 17
Chen (ref_11) 2017; 39
ref_19
ref_18
ref_17
Mosleh (ref_3) 2018; 27
Schultz (ref_15) 1996; 5
ref_16
ref_37
Keys (ref_13) 1981; 29
Amer (ref_39) 2005; 15
Yang (ref_12) 2018; 37
Elad (ref_7) 2006; 15
Allman (ref_5) 2018; 37
ref_24
Chvetsov (ref_33) 2008; 35
ref_23
ref_22
Tian (ref_27) 2012; 19
ref_21
ref_43
ref_20
ref_42
Zhao (ref_2) 2017; 36
ref_29
(ref_38) 2009; 27
ref_9
Foroozan (ref_4) 2018; 65
Rakhshanfar (ref_28) 2016; 25
Zhao (ref_41) 2019; 88
ref_6
References_xml – ident: ref_37
  doi: 10.1109/ICIP.2017.8296828
– ident: ref_30
– volume: 16
  start-page: 2080
  year: 2007
  ident: ref_8
  article-title: Image denoising by sparse 3-D transform-domain collaborative filtering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.901238
– ident: ref_17
  doi: 10.1109/CVPR.2017.411
– volume: 30
  start-page: 796
  year: 2017
  ident: ref_1
  article-title: Computer-Assisted Diagnosis System for Breast Cancer in Computed Tomography Laser Mammography (CTLM)
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-017-9958-5
– ident: ref_21
  doi: 10.1109/ICASSP.2017.7953077
– volume: 78
  start-page: 8
  year: 2016
  ident: ref_25
  article-title: Fast and reliable noise level estimation based on local statistic
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2016.03.026
– volume: 36
  start-page: 487
  year: 2017
  ident: ref_2
  article-title: Using Anatomic Magnetic Resonance Image Information to Enhance Visualization and Interpretation of Functional Images: A Comparison of Methods Applied to Clinical Arterial Spin Labeling Images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2615567
– volume: 65
  start-page: 2692
  year: 2018
  ident: ref_4
  article-title: Microbubble Localization for Three-Dimensional Superresolution Ultrasound Imaging Using Curve Fitting and Deconvolution Methods
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2813759
– volume: 15
  start-page: 113
  year: 2005
  ident: ref_39
  article-title: Fast and reliable structure-oriented video noise estimation
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2004.837017
– volume: 37
  start-page: 1348
  year: 2018
  ident: ref_12
  article-title: Low-Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2827462
– volume: 17
  start-page: 12
  year: 2010
  ident: ref_26
  article-title: Adaptive noise variance estimation in BayesShrink
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2009.2030856
– ident: ref_16
  doi: 10.1109/ICSIPA.2011.6144138
– volume: 25
  start-page: 4172
  year: 2016
  ident: ref_28
  article-title: Estimation of Gaussian, Poissonian–Gaussian, and processed visual noise and its level function
  publication-title: IEEE Trans. Image Process.
– volume: 35
  start-page: 2754
  year: 2008
  ident: ref_33
  article-title: SU-GG-T-124: Probability Density Distribution of Proton Range as a Function of Noise in CT Images
  publication-title: Med. Phys.
  doi: 10.1118/1.2961876
– ident: ref_9
  doi: 10.23919/ChiCC.2018.8483036
– volume: 39
  start-page: 1256
  year: 2017
  ident: ref_11
  article-title: Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2596743
– ident: ref_31
  doi: 10.1609/aaai.v31i1.11231
– ident: ref_42
– ident: ref_34
  doi: 10.1109/CVPRW.2017.151
– ident: ref_35
– ident: ref_14
  doi: 10.1109/ICIP.2018.8451362
– ident: ref_20
  doi: 10.1109/CVPR.2016.207
– ident: ref_6
– ident: ref_29
– volume: 19
  start-page: 395
  year: 2012
  ident: ref_27
  article-title: Image noise estimation using a variation-adaptive evolutionary approach
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2012.2197200
– ident: ref_32
  doi: 10.1109/CVPR.2017.243
– volume: 5
  start-page: 996
  year: 1996
  ident: ref_15
  article-title: Extraction of high-resolution frames from video sequences
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.503915
– volume: 26
  start-page: 1045
  year: 2013
  ident: ref_36
  article-title: The cancer imaging archive (TCIA): Maintaining and operating a public information repository
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-013-9622-7
– ident: ref_10
– volume: 29
  start-page: 1153
  year: 1981
  ident: ref_13
  article-title: Cubic convolution interpolation for digital image processing
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1981.1163711
– volume: 88
  start-page: 356
  year: 2019
  ident: ref_41
  article-title: Simultaneous color-depth super-resolution with conditional generative adversarial networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.11.028
– volume: 27
  start-page: 580
  year: 2018
  ident: ref_3
  article-title: Explicit Ringing Removal in Image Deblurring
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2764625
– ident: ref_18
  doi: 10.1007/978-3-319-46475-6_25
– ident: ref_23
  doi: 10.1109/GlobalSIP.2017.8309146
– volume: 22
  start-page: 687
  year: 2013
  ident: ref_40
  article-title: Image noise level estimation by principal component analysis
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2221728
– ident: ref_24
  doi: 10.1109/CVPR.2018.00262
– volume: 15
  start-page: 3736
  year: 2006
  ident: ref_7
  article-title: Image denoising via sparse and redundant representations over learned dictionaries
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.881969
– ident: ref_22
  doi: 10.1109/CVPR.2018.00344
– ident: ref_19
  doi: 10.1109/CVPR.2017.19
– volume: 27
  start-page: 756
  year: 2009
  ident: ref_38
  article-title: Automatic noise estimation in images using local statistics. Additive and multiplicative cases
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2008.08.002
– volume: 37
  start-page: 1464
  year: 2018
  ident: ref_5
  article-title: Photoacoustic Source Detection and Reflection Artifact Removal Enabled by Deep Learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2829662
– ident: ref_43
  doi: 10.1109/ICIP.2012.6467150
SSID ssj0023338
Score 2.3931608
Snippet Computed tomography (CT) imaging technology has been widely used to assist medical diagnosis in recent years. However, noise during the process of imaging, and...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3348
SubjectTerms Algorithms
deep convolutional neural network
Deep learning
dense connection
inception structure
Information processing
International conferences
Mean square errors
medical image enhancement
Methods
Neural networks
Noise
Pattern recognition
Principal components analysis
Quality
Quality control
residual network
Tomography
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL8AB8U1KQebjUA5R4zh27CNUu2qR2AtbqbfIjsfqStvsqrsL6g_gfzOOvdGuKOLCNRk5lmfsec8ZPxPyEZOENpjo86A3llfCyNyUvszBt0oyy5jrz1d8m8izi-rrpbjcueor1IRFeeA4cCcWWzLAuAftKu8rxZmpbEDG0moPvc5nofSWTCWqxZF5RR0hjqT-ZIWspD9zupd9epH-u5DlnwWS9zfd0tz-NPP5TvYZPyaPEmykn2N3n5B70D0lD3fEBJ-RX-mCBkeni-skRE2PT6ef6Pk1Lho0qmXc0lF3FTwddgXpj5mhhiLuDNCVjreFWvQ8iUhgw3SymK2AjnApiKccqekc_b5Zwk0e9v5j5NJJLCdfPScX49H09CxPlyzkLTLjdS6U0bzVzjHpma2ZY7VHiGRqJYBbD44rz8AZb0Fz6UUprBNFYcG2pVZVy1-Qg27RwStCOS9aaK2rJPiqtOgVX7sCEDF444T3GTneDn7TJgXycBHGvEEmEvzUDH7KyPvBdBllN-4y-hI8OBgEpez-AcZPk-Kn-Vf8ZORo6_8mTd9Vg7yMqQJziMjIu-E1TrzwN8V0sNigTSnrulbIVzPyMobL0BPOOOKeGhuv9wJpr6v7b7rZVS_uLaWWZYHf_TCE3N9H4PB_jMBr8gBRoO43rIsjcrC-2cAbRFpr-7afVL8BiW4q1g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtQwFLXKdAEsEG8CBZnHoiyixnFixwuEaDWjFokIwVTqLvKTjjRNhnmA-gH8N9eJEzqisE0sx_G9ts-xfc9F6A0sEkLCQh97vbE4yyWLZerS2DpdMKIIMW18xaeSHZ9mH8_ysx1U9rEw_lplPye2E7VptN8jPwCoTAogczx_v_ge-6xR_nS1T6EhQ2oF866VGLuBdlOvjDVCu4fj8vOXgYJRYGSdvhAFsn-wArbSxqJurUqteP91iPPvi5M3N_VCXv6U8_mVVWlyF90JcBJ_6Ox_D-3Y-j66fUVk8AH6FRI3GDxtLoJANd4_mr7FJxcwmeBOReMSj-tz7wF-txD_mEksMeBRD2nxpL_AhU-CuARUjMtmtrJ4DFNEF_2IZW3w183CLmN_JtB5NC67a-arh-h0Mp4eHcch-UKsgTGv47yQgmphDGGOKE4M4Q6gk-RFbqly1tDCEWukU1ZQ5vI0VyZPEmWVTkWRafoIjeqmtk8QpjTRViuTMeuyVCWFcNwkFpCEkyZ3LkL7fedXOiiT-wQZ8woYirdTNdgpQq-GootOjuO6QofegkMBr6DdPmiW36owIAEkwM9YQp0VJnMuKyiRmfKMiynhLI3QXm__KgzrVfXHCSP0cngNA9KfssjaNhsokzLOeQE8NkKPO3cZWkIJBTzEoXK-5UhbTd1-U8_OW9FvxgRLE_ju68Hl_t0DT__f-GfoFuA-0W5RJ3totF5u7HPAVmv1IgyY30eDKAc
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLegOwAHvmGFgczHYRyyxHHsxCc0plYbEhUSrTROkR3brFqXVG0zNO783zwnbtTCkJC4Ji8fTp79fj_7vZ8RegtBQkgI9IHTGwsSJnkgYxsHxhYZJ4oQ3dRXfBrx40ny8ZSdblTxu7RKoOLTZpB2VVgBRLAoJCIkLHRVo-Fc2_eXfi7JKZ2kjpIkN9EOZ4DGe2hnMvp8-LUpKvJXt4JCFNh9uAR60hSfboWhRq3_Ooj5Z6bkrbqcy6vvcjbbCEPDe0iuG9Bmn5wf1Ct1UPz4Tdvxf1p4H931GBUftk71AN0w5UN0Z0O58BH66XeD0HhcXXjVa7x_NH6HTy5ghMKtNMcVHpRnzq3cFCS-nEosMYBch5PxcJ0Vhk-8YgXcGI-q6dLgAYw7bUkllqXGX-q5WQRuoaHtJnjU5q4vH6PJcDA-Og78jg5BATR8FbBMCloIrQm3RKVEk9QCHpNpxgxV1miaWWK0tMoIyi2LmdIsipRRRSyypKBPUK-sSrOLMKVRYQqlE25sEqsoEzbVkQF4YqVm1vbR_voH54WXO3e7bsxyoD3OF_LOF_rodWc6bzU-rjP64LykM3Cy3M2BavEt970ckAc0xhBqjdCJtUlGiUyUo3FcCWtoH-2tfSz3Y8UyBxJIsggCFuujV91p6OVu6UaWpqrBJuZpmmZAjvvoaeuS3ZtQQgFkpXDzdMtZt151-0w5PWuUxDkXPI7guW86t_77F3j2T1bP0W3AlKKZ_o72UG-1qM0LwG0r9dJ3zV-LuD-z
  priority: 102
  providerName: Unpaywall
Title Computed Tomography (CT) Image Quality Enhancement via a Uniform Framework Integrating Noise Estimation and Super-Resolution Networks
URI https://www.ncbi.nlm.nih.gov/pubmed/31366173
https://www.proquest.com/docview/2301804675
https://www.proquest.com/docview/2267778899
https://pubmed.ncbi.nlm.nih.gov/PMC6696205
https://www.mdpi.com/1424-8220/19/15/3348/pdf?version=1564740714
https://doaj.org/article/ba41ae13fe9d4ff4831a4b02516b9fe3
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection (NC LIVE)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFLa6HKAHxE6gjMwiVA6BOE7s5IBQW83QIjWqYEaaniI7ttuRpsl0FmB-AP-b52xqxCBxycGxHMd-9vs-L99D6C04iViAo3et3pgbhIK5wje-q00WMSIJUeX9irOEnYyCr-NwvIWaY811Ay42UjsbT2o0n374dbP-DAP-k2WcQNk_LoBzlDdK381uXBtPyu671sE1ttGurY4N6nAWtPsLPqVljGt7zcsFF-lVmkPd0jqeqhT034RC_z5MeWeVz8T6p5hOb3mqwX10r4aY-LCyiQdoS-cP0d4t4cFH6HcdzEHhYXFdi1bjg-Phe3x6DRMMrpQ11rifX1mrsCuI-MdEYIEBo1qYiwfNoS58WgtOQME4KSYLjfswbVQ3IrHIFf6-mum5a_cJKivHSXX0fPEYjQb94fGJWwdkcDNg0Us3jERMs1gpwgyRnCjCDcApwaNQU2m0opEhWgkjdUyZCf1QqtDzpJaZH0dBRp-gnbzI9TOEKfUynUkVMG0CX3pRbLjyNKALI1RojIMOmsZPs1qt3AbNmKbAWmw_pW0_Oeh1m3VWSXRsynRke7DNYFW1y4RifpnWgxSAA_yMJtToWAXGBBElIpCWhTEZG00dtN_0f9pYagocjkQe-JvQQa_a1zBI7c6LyHWxgjw-45xHwG0d9LQyl7YmlFDASBwK5x1D6lS1-yafXJVC4IzFzPfgu29ak_t3Czz_j9q9QHcBEMbl2rW3j3aW85V-CaBrKXtom485PKPBlx7aPeon59965QJGrxxZkDZKzg8v_gBzwDSD
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtMwGLbGuBhcIM50DDAnaVxEi-PEji8QgtGqZVtv6KTeZXZsb5W6pDQtUx-A1-EZ-Z3TVjG4221jOW7-g7_Ph-9H6B1MEkLCRO85vTEvjCTzZGADz9g0ZkQRosv7FUdD1j8Ov42j8Qb63dyFcccqm5xYJmqdp26NfA-gMomBzPHo0-yH56pGud3VpoRG5RYHZnUBlK34OPgK9n0fBL3uaL_v1VUFvBSo4MKLYiloKrQmzBLFiSbcAiaQPI4MVdZoGltitLTKCMpsFERKR76vjEoDEYcphX5vodshhVwC8cPHlwSPAt-r1IsoFf5eAVyovOm6NueVpQGuw7N_H8vcWmYzubqQ0-mVOa93H92rwSr-XHnXA7Rhsofo7hUJw0foV10WQuNRfl7LX-Pd_dEHPDiHVIUrjY4V7mZnzr_cWiT-OZFYYkC7DjDjXnM8DA9q6QroGA_zSWFwFxJQdbcSy0zj78uZmXtux6GKFzysDrEXj9HxjRjhCdrM8sw8Q5hSPzWp0iEzNgyUHwvLtW8Ap1ipI2s7aLf5-Ela65678hvTBPiPs1PS2qmD3rRNZ5XYx3WNvjgLtg2cPnf5Qz4_TepwBwgCf8YQao3QobVhTIkMleNzTAlraAftNPZP6qRRJJcu3kGv28cQ7m4PR2YmX0KbgHHOY2DJHfS0cpd2JJRQQFscOudrjrQ21PUn2eSslBRnTLDAh_e-bV3u319g-_-Df4W2-qOjw-RwMDx4ju4AwhTlYri_gzYX86V5AShuoV6WoYPRyU3H6h_Ev2Aa
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkGA8IK4jMMDcpPEQNY4TO35ACLZWK4MKiU7qW2bHNqvUJaUXpv4A_hS_juPctorB215jy3FyLv6OffwdhF7DIiEkLPS-4xvzo1gyX4Y29I3NEkYUIbq8X_FlwA6Ook-jeLSBfjd3YVxaZeMTS0eti8ztkXcAKpMEgjked2ydFvF1v_d--sN3FaTcSWtTTqNSkUOzOoPwbf6uvw-yfhOGve5w78CvKwz4GYSFCz9OpKCZ0JowSxQnmnAL-EDyJDZUWaNpYonR0iojKLNxGCsdB4EyKgtFEmUUxr2GrnNKhUsn5KPzYI9C7FcxGUFj0JlDXFTeel1b_8oyAZdh279TNG8u86lcncnJ5ML617uDbtfAFX-oNO0u2jD5PXTrAp3hffSrLhGh8bA4ramw8e7e8C3un4LbwhVfxwp38xOna25fEv8cSywxIF8HnnGvSRXD_ZrGAgbGg2I8N7gLzqi6Z4llrvG35dTMfHf6UNkOHlQJ7fMH6OhKhPAQbeZFbh4hTGmQmUzpiBkbhSpIhOU6MIBZrNSxtR7abX5-mtUc6K4UxySFWMjJKW3l5KGXbddpRfxxWaePToJtB8fVXT4oZt_T2vQBjsDHGEKtETqyNkookZFysR1TwhrqoZ1G_mntQObpubp76EXbDKbvznNkbool9AkZ5zyBiNlD25W6tDOhhALy4jA4X1Oktamut-Tjk5JenDHBwgDe-6pVuX__gcf_n_xzdAOsNP3cHxw-QVsANkW5Lx7soM3FbGmeAqBbqGel5WB0fNWm-gcEVGRd
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLegOwAHvmGFgczHYRyyxHHsxCc0plYbEhUSrTROkR3brFqXVG0zNO783zwnbtTCkJC4Ji8fTp79fj_7vZ8RegtBQkgI9IHTGwsSJnkgYxsHxhYZJ4oQ3dRXfBrx40ny8ZSdblTxu7RKoOLTZpB2VVgBRLAoJCIkLHRVo-Fc2_eXfi7JKZ2kjpIkN9EOZ4DGe2hnMvp8-LUpKvJXt4JCFNh9uAR60hSfboWhRq3_Ooj5Z6bkrbqcy6vvcjbbCEPDe0iuG9Bmn5wf1Ct1UPz4Tdvxf1p4H931GBUftk71AN0w5UN0Z0O58BH66XeD0HhcXXjVa7x_NH6HTy5ghMKtNMcVHpRnzq3cFCS-nEosMYBch5PxcJ0Vhk-8YgXcGI-q6dLgAYw7bUkllqXGX-q5WQRuoaHtJnjU5q4vH6PJcDA-Og78jg5BATR8FbBMCloIrQm3RKVEk9QCHpNpxgxV1miaWWK0tMoIyi2LmdIsipRRRSyypKBPUK-sSrOLMKVRYQqlE25sEqsoEzbVkQF4YqVm1vbR_voH54WXO3e7bsxyoD3OF_LOF_rodWc6bzU-rjP64LykM3Cy3M2BavEt970ckAc0xhBqjdCJtUlGiUyUo3FcCWtoH-2tfSz3Y8UyBxJIsggCFuujV91p6OVu6UaWpqrBJuZpmmZAjvvoaeuS3ZtQQgFkpXDzdMtZt151-0w5PWuUxDkXPI7guW86t_77F3j2T1bP0W3AlKKZ_o72UG-1qM0LwG0r9dJ3zV-LuD-z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computed+Tomography+%28CT%29+Image+Quality+Enhancement+via+a+Uniform+Framework+Integrating+Noise+Estimation+and+Super-Resolution+Networks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chi%2C+Jianning&rft.au=Zhang%2C+Yifei&rft.au=Yu%2C+Xiaosheng&rft.au=Wang%2C+Ying&rft.date=2019-07-30&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=19&rft.issue=15&rft_id=info:doi/10.3390%2Fs19153348&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon