A Comparative analysis of multiple outlier detection procedures in the linear regression model

We evaluate several published techniques to detect multiple outliers in linear regression using an extensive Monte Carlo simulation. These procedures include both direct methods from algorithms and indirect methods from robust regression estimators. We evaluate the impact of outlier density and geom...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 36; no. 3; pp. 351 - 382
Main Authors Wisnowski, James W, Montgomery, Douglas C, Simpson, James R
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 28.05.2001
Elsevier Science
Elsevier
SeriesComputational Statistics & Data Analysis
Subjects
Online AccessGet full text
ISSN0167-9473
1872-7352
DOI10.1016/S0167-9473(00)00042-6

Cover

Abstract We evaluate several published techniques to detect multiple outliers in linear regression using an extensive Monte Carlo simulation. These procedures include both direct methods from algorithms and indirect methods from robust regression estimators. We evaluate the impact of outlier density and geometry, regressor variable dimension, and outlying distance in both leverage and residual on detection capability and false alarm (swamping) probability. The simulation scenarios focus on outlier configurations likely to be encountered in practice and use a designed experiment approach. The results for each scenario provide insight and limitations to performance for each technique. Finally, we summarize each procedure's performance and make recommendations.
AbstractList We evaluate several published techniques to detect multiple outliers in linear regression using an extensive Monte Carlo simulation. These procedures include both direct methods from algorithms and indirect methods from robust regression estimators. We evaluate the impact of outlier density and geometry, regressor variable dimension, and outlying distance in both leverage and residual on detection capability and false alarm (swamping) probability. The simulation scenarios focus on outlier configurations likely to be encountered in practice and use a designed experiment approach. The results for each scenario provide insight and limitations to performance for each technique. Finally, we summarize each procedure's performance and make recommendations.
Author Wisnowski, James W
Simpson, James R
Montgomery, Douglas C
Author_xml – sequence: 1
  givenname: James W
  surname: Wisnowski
  fullname: Wisnowski, James W
  email: jim.wisnowski@usafa.af.mil
  organization: Department of Mathematical Sciences, US Air Force Academy, 2354 Fairchild Dr Suite 6D2A, USAF Academy, CO 80840-6252, USA
– sequence: 2
  givenname: Douglas C
  surname: Montgomery
  fullname: Montgomery, Douglas C
  organization: Department of Industrial and Management Systems Engineering, Arizona State University, Tempe, AZ 85287-5906, USA
– sequence: 3
  givenname: James R
  surname: Simpson
  fullname: Simpson, James R
  organization: Department of Industrial Engineering, Florida A&M University-Florida State University, Tallahassee, FL 32310-6046, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1057836$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeecsdana/v_3a36_3ay_3a2001_3ai_3a3_3ap_3a351-382.htm$$DView record in RePEc
BookMark eNqFUU2LFDEQDbKCs6s_QcjBgx5a89HdSeNBlsFPFjy4Z0M6qXYj6U6TZAbm31u9Iyt40ENVwav3HlS9S3KxpAUIec7Za854_-YbNtUMrZIvGXvFGGtF0z8iO66VaJTsxAXZPVCekMtSfiJJtErvyPdruk_zarOt4QjULjaeSig0TXQ-xBrWCDQdagyQqYcKroa00DUnB_6QodCw0HoHNIYFbKYZfiBYNs6cPMSn5PFkY4Fnv-cVuf3w_nb_qbn5-vHz_vqmcW0_1KaduAY9ae-EGkfNJslGGIEPQ9cOjIvBSz1Og5N-ZLgdPSiAdsTTGB-Fklfky9k2wwrOrDnMNp8MALji8SZzNNLKHtsJSzDGcYQNw1q32SGihbmrM5q9OJuttjgbp2wXF8qDKWed0rJH2tszzeVUSobJuFDt9p6abYjIM1s65j4ds73eMGbu0zGbuvtL_cf_37p3Zx3gN4-YiikuwIJphIzhGJ_Cfxx-ATQQqkw
CitedBy_id crossref_primary_10_1186_1756_0500_5_456
crossref_primary_10_1016_j_cam_2023_115219
crossref_primary_10_1016_j_epsr_2013_05_021
crossref_primary_10_15672_hujms_1383910
crossref_primary_10_1063_1_1628671
crossref_primary_10_1007_s00216_007_1486_6
crossref_primary_10_3390_agriculture15030288
crossref_primary_10_1007_s11634_007_0007_y
crossref_primary_10_1080_00949650802140703
crossref_primary_10_1080_03610926_2012_737496
crossref_primary_10_1016_j_jspi_2004_06_033
crossref_primary_10_1007_s00180_007_0026_3
crossref_primary_10_1080_02664760701833008
crossref_primary_10_1198_106186006X113593
crossref_primary_10_1007_s00138_010_0280_1
crossref_primary_10_1016_j_seps_2013_12_004
crossref_primary_10_1016_j_trac_2014_04_016
crossref_primary_10_1080_00949650701460616
crossref_primary_10_1007_s10479_017_2417_3
crossref_primary_10_29050_harranziraat_303175
crossref_primary_10_1111_j_1467_9868_2008_00692_x
crossref_primary_10_5194_acp_14_6643_2014
crossref_primary_10_1109_TCOMM_2005_843466
crossref_primary_10_1145_3199524_3199553
crossref_primary_10_1080_02664760701833040
crossref_primary_10_1081_STA_120015017
crossref_primary_10_3390_en15197278
crossref_primary_10_1080_03610918_2021_2007400
crossref_primary_10_1007_s10255_005_0230_2
crossref_primary_10_1016_j_jkss_2010_02_007
crossref_primary_10_1093_bioinformatics_btn465
crossref_primary_10_1080_03610926_2020_1792497
crossref_primary_10_1039_c0an00345j
crossref_primary_10_1175_JTECH_D_11_00059_1
crossref_primary_10_1198_004017004000000509
crossref_primary_10_3390_s90604211
crossref_primary_10_1186_2251_712X_9_7
crossref_primary_10_1080_03052150500229418
crossref_primary_10_1080_15598608_2017_1344940
crossref_primary_10_1080_08974454_2021_1962479
crossref_primary_10_1198_jasa_2011_tm10390
crossref_primary_10_5351_CKSS_2002_9_1_291
crossref_primary_10_1007_s42081_020_00089_6
Cites_doi 10.2307/2291266
10.1016/S0167-9473(98)00021-8
10.1214/aos/1176350366
10.2307/2290776
10.1002/(SICI)1520-6750(199803)45:2<125::AID-NAV1>3.0.CO;2-A
10.2307/2289995
10.1111/j.2517-6161.1992.tb01449.x
10.1111/j.2517-6161.1994.tb01988.x
10.1214/aos/1176342503
10.1002/(SICI)1099-095X(199711/12)8:6<583::AID-ENV277>3.0.CO;2-L
10.1080/03610929008830300
10.2307/2288718
10.2307/2291724
10.2307/2532894
ContentType Journal Article
Copyright 2001 Elsevier Science B.V.
2001 INIST-CNRS
Copyright_xml – notice: 2001 Elsevier Science B.V.
– notice: 2001 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DKI
X2L
DOI 10.1016/S0167-9473(00)00042-6
DatabaseName CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EISSN 1872-7352
EndPage 382
ExternalDocumentID eeecsdana_v_3a36_3ay_3a2001_3ai_3a3_3ap_3a351_382_htm
1057836
10_1016_S0167_9473_00_00042_6
S0167947300000426
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
02
0R
1
8P
ABFLS
ABPTK
ADALY
DKI
G-
HZ
IPNFZ
K
M
STF
X
X2L
ID FETCH-LOGICAL-c469t-4f18e8f8dc27bb80f30bebe1995490129d38bf9c3db080fbde7ee4b35201b273
IEDL.DBID AIKHN
ISSN 0167-9473
IngestDate Wed Aug 18 03:10:09 EDT 2021
Wed Apr 02 07:22:08 EDT 2025
Wed Oct 01 03:04:54 EDT 2025
Thu Apr 24 22:58:52 EDT 2025
Fri Feb 23 02:31:48 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Outlier
Minimum volume ellipsoid
Robust regression
Monte Carlo simulation
Multiple outliers
Monte Carlo method
Linear regression
Statistical estimation
Regression residual
Algorithm
Linear model
Multiple regression
Direct method
Statistical regression
Ordinary least squares residual
Least median od squares estimator
Simulation
Regression model
Numerical simulation
Robustness
Linear estimation
Distance
M estimation
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-4f18e8f8dc27bb80f30bebe1995490129d38bf9c3db080fbde7ee4b35201b273
PageCount 32
ParticipantIDs repec_primary_eeecsdana_v_3a36_3ay_3a2001_3ai_3a3_3ap_3a351_382_htm
pascalfrancis_primary_1057836
crossref_citationtrail_10_1016_S0167_9473_00_00042_6
crossref_primary_10_1016_S0167_9473_00_00042_6
elsevier_sciencedirect_doi_10_1016_S0167_9473_00_00042_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-05-28
PublicationDateYYYYMMDD 2001-05-28
PublicationDate_xml – month: 05
  year: 2001
  text: 2001-05-28
  day: 28
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle Computational Statistics & Data Analysis
PublicationTitle Computational statistics & data analysis
PublicationYear 2001
Publisher Elsevier B.V
Elsevier Science
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science
– name: Elsevier
References Atkinson, Riani (BIB1) 1997; 8
Hadi (BIB4) 1992; 54
Wilcox (BIB19) 1997
Barnett, Lewis (BIB2) 1994
Marazzi (BIB10) 1993
Rousseeuw (BIB12) 1985
Hadi, Simonoff (BIB6) 1993; 88
Hadi, Simonoff (BIB7) 1997; 281–282
Simpson, Montgomery (BIB17) 1998; 45
Kianifard, Swallow (BIB9) 1990; 19
Sebert, D.M., 1996. Identifying multiple outliers and influential subsets: a clustering approach. Unpublished Dissertation, Arizona State University, AZ.
Swallow, Kianifard (BIB18) 1996; 52
Rousseeuw, van Zomeren (BIB14) 1990; 85
Coakley, Hettmansperger (BIB3) 1993; 88
Hadi (BIB5) 1994; 56
Huber (BIB8) 1973; 1
Sebert, Montgomery, Rollier (BIB16) 1998; 27
Yohai (BIB20) 1987; 15
Rousseeuw (BIB13) 1984; 79
Rocke, Woodruff (BIB11) 1996; 91
Swallow (10.1016/S0167-9473(00)00042-6_BIB18) 1996; 52
Yohai (10.1016/S0167-9473(00)00042-6_BIB20) 1987; 15
Coakley (10.1016/S0167-9473(00)00042-6_BIB3) 1993; 88
Rousseeuw (10.1016/S0167-9473(00)00042-6_BIB13) 1984; 79
Atkinson (10.1016/S0167-9473(00)00042-6_BIB1) 1997; 8
Hadi (10.1016/S0167-9473(00)00042-6_BIB4) 1992; 54
Rocke (10.1016/S0167-9473(00)00042-6_BIB11) 1996; 91
Sebert (10.1016/S0167-9473(00)00042-6_BIB16) 1998; 27
Simpson (10.1016/S0167-9473(00)00042-6_BIB17) 1998; 45
Marazzi (10.1016/S0167-9473(00)00042-6_BIB10) 1993
Barnett (10.1016/S0167-9473(00)00042-6_BIB2) 1994
Wilcox (10.1016/S0167-9473(00)00042-6_BIB19) 1997
Rousseeuw (10.1016/S0167-9473(00)00042-6_BIB14) 1990; 85
Hadi (10.1016/S0167-9473(00)00042-6_BIB7) 1997; 281–282
10.1016/S0167-9473(00)00042-6_BIB15
Hadi (10.1016/S0167-9473(00)00042-6_BIB6) 1993; 88
Rousseeuw (10.1016/S0167-9473(00)00042-6_BIB12) 1985
Huber (10.1016/S0167-9473(00)00042-6_BIB8) 1973; 1
Kianifard (10.1016/S0167-9473(00)00042-6_BIB9) 1990; 19
Hadi (10.1016/S0167-9473(00)00042-6_BIB5) 1994; 56
References_xml – volume: 88
  start-page: 1264
  year: 1993
  end-page: 1272
  ident: BIB6
  article-title: Procedures for the identification of multiple outliers in linear models
  publication-title: J. Amer. Statist. Assoc.
– volume: 27
  start-page: 461
  year: 1998
  end-page: 484
  ident: BIB16
  article-title: A clustering algorithm for identifying multiple outliers in linear regression
  publication-title: Comput. Statist. Data Anal.
– volume: 45
  start-page: 125
  year: 1998
  end-page: 134
  ident: BIB17
  article-title: A compound estimator for robust regression.
  publication-title: Naval Res. Logist.
– start-page: 283
  year: 1985
  end-page: 297
  ident: BIB12
  article-title: Multivariate estimation with high breakdown point.
  publication-title: Mathematical Statistics and Applications, Vol B.
– volume: 85
  start-page: 633
  year: 1990
  end-page: 639
  ident: BIB14
  article-title: Unmasking multivariate outliers and leverage points
  publication-title: J. Amer. Statist. Assoc.
– volume: 8
  start-page: 583
  year: 1997
  end-page: 602
  ident: BIB1
  article-title: Bivariate boxplots, multiple outliers, multivariate transformations and discriminant analysis: the 1997 Hunter lecture
  publication-title: Environmetrics
– volume: 281–282
  year: 1997
  ident: BIB7
  article-title: A more robust outlier identifier for regression data
  publication-title: Bull. Internat. Statist. Inst.
– volume: 52
  start-page: 545
  year: 1996
  end-page: 556
  ident: BIB18
  article-title: Using robust scale estimates in detecting multiple outliers in linear regression
  publication-title: Biometrics
– volume: 56
  start-page: 393
  year: 1994
  end-page: 396
  ident: BIB5
  article-title: A modification of a method for the detection of outliers in multivariate samples
  publication-title: J. Roy. Statist. Soc. Ser. B
– reference: Sebert, D.M., 1996. Identifying multiple outliers and influential subsets: a clustering approach. Unpublished Dissertation, Arizona State University, AZ.
– volume: 19
  start-page: 1913
  year: 1990
  end-page: 1938
  ident: BIB9
  article-title: A Monte Carlo comparison of five procedures for identifying outliers in linear regression
  publication-title: Commun. Statist. Part A Theory Methods
– volume: 15
  start-page: 642
  year: 1987
  end-page: 656
  ident: BIB20
  article-title: High breakdown-point and high efficiency robust estimates for regression
  publication-title: Ann. Statist.
– year: 1997
  ident: BIB19
  publication-title: Introduction to Robust Estimation and Hypothesis Testing.
– volume: 79
  start-page: 871
  year: 1984
  end-page: 881
  ident: BIB13
  article-title: Least median of squares regression
  publication-title: J. Amer. Statist. Assoc.
– volume: 88
  start-page: 872
  year: 1993
  end-page: 880
  ident: BIB3
  article-title: A bounded influence, high breakdown, efficient regression estimator
  publication-title: J. Amer. Statist. Assoc.
– year: 1993
  ident: BIB10
  publication-title: Algorithms, routines, and S Functions for Robust Statistics
– year: 1994
  ident: BIB2
  publication-title: Outliers in Statistical Data
– volume: 54
  start-page: 761
  year: 1992
  end-page: 777
  ident: BIB4
  article-title: Identifying multiple outliers in multivariate data
  publication-title: J. Roy. Statist. Soc. Ser. B
– volume: 1
  start-page: 799
  year: 1973
  end-page: 821
  ident: BIB8
  article-title: Robust regression: asymptotics, conjectures and Monte Carlo
  publication-title: Ann. Statist.
– volume: 91
  start-page: 1047
  year: 1996
  end-page: 1061
  ident: BIB11
  article-title: Identification of outliers in multivariate data
  publication-title: J. Amer. Statist. Assoc.
– volume: 281–282
  year: 1997
  ident: 10.1016/S0167-9473(00)00042-6_BIB7
  article-title: A more robust outlier identifier for regression data
  publication-title: Bull. Internat. Statist. Inst.
– volume: 88
  start-page: 1264
  year: 1993
  ident: 10.1016/S0167-9473(00)00042-6_BIB6
  article-title: Procedures for the identification of multiple outliers in linear models
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.2307/2291266
– volume: 27
  start-page: 461
  year: 1998
  ident: 10.1016/S0167-9473(00)00042-6_BIB16
  article-title: A clustering algorithm for identifying multiple outliers in linear regression
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/S0167-9473(98)00021-8
– volume: 15
  start-page: 642
  year: 1987
  ident: 10.1016/S0167-9473(00)00042-6_BIB20
  article-title: High breakdown-point and high efficiency robust estimates for regression
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176350366
– volume: 88
  start-page: 872
  year: 1993
  ident: 10.1016/S0167-9473(00)00042-6_BIB3
  article-title: A bounded influence, high breakdown, efficient regression estimator
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.2307/2290776
– volume: 45
  start-page: 125
  year: 1998
  ident: 10.1016/S0167-9473(00)00042-6_BIB17
  article-title: A compound estimator for robust regression.
  publication-title: Naval Res. Logist.
  doi: 10.1002/(SICI)1520-6750(199803)45:2<125::AID-NAV1>3.0.CO;2-A
– volume: 85
  start-page: 633
  year: 1990
  ident: 10.1016/S0167-9473(00)00042-6_BIB14
  article-title: Unmasking multivariate outliers and leverage points
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.2307/2289995
– year: 1994
  ident: 10.1016/S0167-9473(00)00042-6_BIB2
– volume: 54
  start-page: 761
  year: 1992
  ident: 10.1016/S0167-9473(00)00042-6_BIB4
  article-title: Identifying multiple outliers in multivariate data
  publication-title: J. Roy. Statist. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1992.tb01449.x
– year: 1997
  ident: 10.1016/S0167-9473(00)00042-6_BIB19
– volume: 56
  start-page: 393
  year: 1994
  ident: 10.1016/S0167-9473(00)00042-6_BIB5
  article-title: A modification of a method for the detection of outliers in multivariate samples
  publication-title: J. Roy. Statist. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1994.tb01988.x
– volume: 1
  start-page: 799
  year: 1973
  ident: 10.1016/S0167-9473(00)00042-6_BIB8
  article-title: Robust regression: asymptotics, conjectures and Monte Carlo
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176342503
– start-page: 283
  year: 1985
  ident: 10.1016/S0167-9473(00)00042-6_BIB12
  article-title: Multivariate estimation with high breakdown point.
– volume: 8
  start-page: 583
  year: 1997
  ident: 10.1016/S0167-9473(00)00042-6_BIB1
  article-title: Bivariate boxplots, multiple outliers, multivariate transformations and discriminant analysis: the 1997 Hunter lecture
  publication-title: Environmetrics
  doi: 10.1002/(SICI)1099-095X(199711/12)8:6<583::AID-ENV277>3.0.CO;2-L
– volume: 19
  start-page: 1913
  year: 1990
  ident: 10.1016/S0167-9473(00)00042-6_BIB9
  article-title: A Monte Carlo comparison of five procedures for identifying outliers in linear regression
  publication-title: Commun. Statist. Part A Theory Methods
  doi: 10.1080/03610929008830300
– volume: 79
  start-page: 871
  year: 1984
  ident: 10.1016/S0167-9473(00)00042-6_BIB13
  article-title: Least median of squares regression
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.2307/2288718
– year: 1993
  ident: 10.1016/S0167-9473(00)00042-6_BIB10
– volume: 91
  start-page: 1047
  year: 1996
  ident: 10.1016/S0167-9473(00)00042-6_BIB11
  article-title: Identification of outliers in multivariate data
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.2307/2291724
– ident: 10.1016/S0167-9473(00)00042-6_BIB15
– volume: 52
  start-page: 545
  year: 1996
  ident: 10.1016/S0167-9473(00)00042-6_BIB18
  article-title: Using robust scale estimates in detecting multiple outliers in linear regression
  publication-title: Biometrics
  doi: 10.2307/2532894
SSID ssj0002478
Score 1.8321257
Snippet We evaluate several published techniques to detect multiple outliers in linear regression using an extensive Monte Carlo simulation. These procedures include...
SourceID repec
pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 351
SubjectTerms Exact sciences and technology
Linear inference, regression
Mathematics
Minimum volume ellipsoid
Monte Carlo simulation
Multiple outliers
Outlier
Probability and statistics
Robust regression
Sciences and techniques of general use
Statistics
Title A Comparative analysis of multiple outlier detection procedures in the linear regression model
URI https://dx.doi.org/10.1016/S0167-9473(00)00042-6
http://econpapers.repec.org/article/eeecsdana/v_3a36_3ay_3a2001_3ai_3a3_3ap_3a351-382.htm
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  issn: 0167-9473
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  issn: 0167-9473
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  issn: 0167-9473
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  issn: 0167-9473
  databaseCode: AKRWK
  dateStart: 19830301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB212wuoQnyKLbTygQMc0vXGTuIcVwvVllV7gCJ6worjcVkJ0mg3ReLCb2cmyW63B1SJQ2JpJDvRTDTzHL15BnhDILzIYiejDIPjv1UqMinmkUPlyyTOjQ_c4Hx2ns6-6I-XyeUOTNe9MEyr7HN_l9PbbN1bRr03R_ViMfrMBPpcs966bHcCu7BH9ceYAexNTuez801CjnWXkFnimyfcNvJ0i7TGt1K-a9eJ0n-VqP26WJHjQnfiBaHZJdZYbpWjk8fwqMeRYtK96hPYweopPDzbiLCunsG3iZjeanuLopcfEddBrGmEgvlA9FThsWk5WZVoK5q_oV24WFSClhMMRIulWOJVx5mtRHt8znO4OPlwMZ1F_XEKUUl74CbSYWzQBOPLOHPOyKCkoxByj7bO-X-UV8aFvFTeEYwMzmOGqB0hNDl2hHJewKC6rvAlCBcIVEgstCyNJnzplFcs9E5wLguqyIag1w60ZS81zide_LBbnLI0s-x3K1mflPxu0yEcb6bVndbGfRPMOjr2zkdjqR7cN_XwTjS3HphwY8sQpm10N3ZELFeeQmV_WVWolG6_6WJKGg0LttFV85iQxcT2e_Pz4P9f8BU86OhuSRSb1zBoljd4SPincUewe_xnfNR_5TzOP32dk_X9_PQvYtgBYg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcgCEEJ9igYIPHOCQrhs7iXOsVlQLdHthkXrCiuNxWQnSaDdF4sJvZ8bJfvSAKnFIIo1iO5qJ7DfWm2eAtwTCqyJ1MikwON6tUonJsUwcKl9naWl84ALn2Vk-_ao_nWfnezBZ18IwrXKY-_s5Pc7Wg2U8eHPcLhbjL0ygLzXrrcuYCdyC2zpLC87ADv9seR6p7qdjFvjm17dlPH0X0fhOyvexlyT_1wJ1v61W5LbQn3dBWHaJLdY7i9HJQ3gwoEhx3H_oI9jD5jHcm20kWFdP4NuxmGyVvUU1iI-IyyDWJELBbCAaVXjsIiOrEXE981eUg4tFI6g7wTC0WoolXvSM2UbEw3Oewvzkw3wyTYbDFJKaMuAu0eHIoAnG12nhnJFBSUcB5AptXfJulFfGhbJW3hGIDM5jgagd4TN55AjjPIP95rLB5yBcIEghsdKyNprQpVNescw7gbkiqKoYgV470NaD0Difd_HD7jDK8sKy361kdVLyu81HcLhp1vZKGzc1MOvo2Gu_jKXV4KamB9eiuTNgxmUtI5jE6G7siFivPIXK_rKqUjndftPFhDR6LNhGV8vPjCwmtd-7ny_-_wPfwJ3pfHZqTz-efX4Jd3viW5ak5hXsd8srPCAk1LnX8U__C3e3_38
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparative+analysis+of+multiple+outlier+detection+procedures+in+the+linear+regression+model&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Wisnowski%2C+James+W&rft.au=Montgomery%2C+Douglas+C&rft.au=Simpson%2C+James+R&rft.date=2001-05-28&rft.pub=Elsevier+B.V&rft.issn=0167-9473&rft.eissn=1872-7352&rft.volume=36&rft.issue=3&rft.spage=351&rft.epage=382&rft_id=info:doi/10.1016%2FS0167-9473%2800%2900042-6&rft.externalDocID=S0167947300000426
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon