A Comparative analysis of multiple outlier detection procedures in the linear regression model
We evaluate several published techniques to detect multiple outliers in linear regression using an extensive Monte Carlo simulation. These procedures include both direct methods from algorithms and indirect methods from robust regression estimators. We evaluate the impact of outlier density and geom...
        Saved in:
      
    
          | Published in | Computational statistics & data analysis Vol. 36; no. 3; pp. 351 - 382 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Amsterdam
          Elsevier B.V
    
        28.05.2001
     Elsevier Science Elsevier  | 
| Series | Computational Statistics & Data Analysis | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0167-9473 1872-7352  | 
| DOI | 10.1016/S0167-9473(00)00042-6 | 
Cover
| Abstract | We evaluate several published techniques to detect multiple outliers in linear regression using an extensive Monte Carlo simulation. These procedures include both direct methods from algorithms and indirect methods from robust regression estimators. We evaluate the impact of outlier density and geometry, regressor variable dimension, and outlying distance in both leverage and residual on detection capability and false alarm (swamping) probability. The simulation scenarios focus on outlier configurations likely to be encountered in practice and use a designed experiment approach. The results for each scenario provide insight and limitations to performance for each technique. Finally, we summarize each procedure's performance and make recommendations. | 
    
|---|---|
| AbstractList | We evaluate several published techniques to detect multiple outliers in linear regression using an extensive Monte Carlo simulation. These procedures include both direct methods from algorithms and indirect methods from robust regression estimators. We evaluate the impact of outlier density and geometry, regressor variable dimension, and outlying distance in both leverage and residual on detection capability and false alarm (swamping) probability. The simulation scenarios focus on outlier configurations likely to be encountered in practice and use a designed experiment approach. The results for each scenario provide insight and limitations to performance for each technique. Finally, we summarize each procedure's performance and make recommendations. | 
    
| Author | Wisnowski, James W Simpson, James R Montgomery, Douglas C  | 
    
| Author_xml | – sequence: 1 givenname: James W surname: Wisnowski fullname: Wisnowski, James W email: jim.wisnowski@usafa.af.mil organization: Department of Mathematical Sciences, US Air Force Academy, 2354 Fairchild Dr Suite 6D2A, USAF Academy, CO 80840-6252, USA – sequence: 2 givenname: Douglas C surname: Montgomery fullname: Montgomery, Douglas C organization: Department of Industrial and Management Systems Engineering, Arizona State University, Tempe, AZ 85287-5906, USA – sequence: 3 givenname: James R surname: Simpson fullname: Simpson, James R organization: Department of Industrial Engineering, Florida A&M University-Florida State University, Tallahassee, FL 32310-6046, USA  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1057836$$DView record in Pascal Francis http://econpapers.repec.org/article/eeecsdana/v_3a36_3ay_3a2001_3ai_3a3_3ap_3a351-382.htm$$DView record in RePEc  | 
    
| BookMark | eNqFUU2LFDEQDbKCs6s_QcjBgx5a89HdSeNBlsFPFjy4Z0M6qXYj6U6TZAbm31u9Iyt40ENVwav3HlS9S3KxpAUIec7Za854_-YbNtUMrZIvGXvFGGtF0z8iO66VaJTsxAXZPVCekMtSfiJJtErvyPdruk_zarOt4QjULjaeSig0TXQ-xBrWCDQdagyQqYcKroa00DUnB_6QodCw0HoHNIYFbKYZfiBYNs6cPMSn5PFkY4Fnv-cVuf3w_nb_qbn5-vHz_vqmcW0_1KaduAY9ae-EGkfNJslGGIEPQ9cOjIvBSz1Og5N-ZLgdPSiAdsTTGB-Fklfky9k2wwrOrDnMNp8MALji8SZzNNLKHtsJSzDGcYQNw1q32SGihbmrM5q9OJuttjgbp2wXF8qDKWed0rJH2tszzeVUSobJuFDt9p6abYjIM1s65j4ds73eMGbu0zGbuvtL_cf_37p3Zx3gN4-YiikuwIJphIzhGJ_Cfxx-ATQQqkw | 
    
| CitedBy_id | crossref_primary_10_1186_1756_0500_5_456 crossref_primary_10_1016_j_cam_2023_115219 crossref_primary_10_1016_j_epsr_2013_05_021 crossref_primary_10_15672_hujms_1383910 crossref_primary_10_1063_1_1628671 crossref_primary_10_1007_s00216_007_1486_6 crossref_primary_10_3390_agriculture15030288 crossref_primary_10_1007_s11634_007_0007_y crossref_primary_10_1080_00949650802140703 crossref_primary_10_1080_03610926_2012_737496 crossref_primary_10_1016_j_jspi_2004_06_033 crossref_primary_10_1007_s00180_007_0026_3 crossref_primary_10_1080_02664760701833008 crossref_primary_10_1198_106186006X113593 crossref_primary_10_1007_s00138_010_0280_1 crossref_primary_10_1016_j_seps_2013_12_004 crossref_primary_10_1016_j_trac_2014_04_016 crossref_primary_10_1080_00949650701460616 crossref_primary_10_1007_s10479_017_2417_3 crossref_primary_10_29050_harranziraat_303175 crossref_primary_10_1111_j_1467_9868_2008_00692_x crossref_primary_10_5194_acp_14_6643_2014 crossref_primary_10_1109_TCOMM_2005_843466 crossref_primary_10_1145_3199524_3199553 crossref_primary_10_1080_02664760701833040 crossref_primary_10_1081_STA_120015017 crossref_primary_10_3390_en15197278 crossref_primary_10_1080_03610918_2021_2007400 crossref_primary_10_1007_s10255_005_0230_2 crossref_primary_10_1016_j_jkss_2010_02_007 crossref_primary_10_1093_bioinformatics_btn465 crossref_primary_10_1080_03610926_2020_1792497 crossref_primary_10_1039_c0an00345j crossref_primary_10_1175_JTECH_D_11_00059_1 crossref_primary_10_1198_004017004000000509 crossref_primary_10_3390_s90604211 crossref_primary_10_1186_2251_712X_9_7 crossref_primary_10_1080_03052150500229418 crossref_primary_10_1080_15598608_2017_1344940 crossref_primary_10_1080_08974454_2021_1962479 crossref_primary_10_1198_jasa_2011_tm10390 crossref_primary_10_5351_CKSS_2002_9_1_291 crossref_primary_10_1007_s42081_020_00089_6  | 
    
| Cites_doi | 10.2307/2291266 10.1016/S0167-9473(98)00021-8 10.1214/aos/1176350366 10.2307/2290776 10.1002/(SICI)1520-6750(199803)45:2<125::AID-NAV1>3.0.CO;2-A 10.2307/2289995 10.1111/j.2517-6161.1992.tb01449.x 10.1111/j.2517-6161.1994.tb01988.x 10.1214/aos/1176342503 10.1002/(SICI)1099-095X(199711/12)8:6<583::AID-ENV277>3.0.CO;2-L 10.1080/03610929008830300 10.2307/2288718 10.2307/2291724 10.2307/2532894  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2001 Elsevier Science B.V. 2001 INIST-CNRS  | 
    
| Copyright_xml | – notice: 2001 Elsevier Science B.V. – notice: 2001 INIST-CNRS  | 
    
| DBID | AAYXX CITATION IQODW DKI X2L  | 
    
| DOI | 10.1016/S0167-9473(00)00042-6 | 
    
| DatabaseName | CrossRef Pascal-Francis RePEc IDEAS RePEc  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics Statistics  | 
    
| EISSN | 1872-7352 | 
    
| EndPage | 382 | 
    
| ExternalDocumentID | eeecsdana_v_3a36_3ay_3a2001_3ai_3a3_3ap_3a351_382_htm 1057836 10_1016_S0167_9473_00_00042_6 S0167947300000426  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDS SES SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K VH1 VOH WUQ XPP ZMT ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV IQODW SSH 02 0R 1 8P ABFLS ABPTK ADALY DKI G- HZ IPNFZ K M STF X X2L  | 
    
| ID | FETCH-LOGICAL-c469t-4f18e8f8dc27bb80f30bebe1995490129d38bf9c3db080fbde7ee4b35201b273 | 
    
| IEDL.DBID | AIKHN | 
    
| ISSN | 0167-9473 | 
    
| IngestDate | Wed Aug 18 03:10:09 EDT 2021 Wed Apr 02 07:22:08 EDT 2025 Wed Oct 01 03:04:54 EDT 2025 Thu Apr 24 22:58:52 EDT 2025 Fri Feb 23 02:31:48 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | Outlier Minimum volume ellipsoid Robust regression Monte Carlo simulation Multiple outliers Monte Carlo method Linear regression Statistical estimation Regression residual Algorithm Linear model Multiple regression Direct method Statistical regression Ordinary least squares residual Least median od squares estimator Simulation Regression model Numerical simulation Robustness Linear estimation Distance M estimation  | 
    
| Language | English | 
    
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c469t-4f18e8f8dc27bb80f30bebe1995490129d38bf9c3db080fbde7ee4b35201b273 | 
    
| PageCount | 32 | 
    
| ParticipantIDs | repec_primary_eeecsdana_v_3a36_3ay_3a2001_3ai_3a3_3ap_3a351_382_htm pascalfrancis_primary_1057836 crossref_citationtrail_10_1016_S0167_9473_00_00042_6 crossref_primary_10_1016_S0167_9473_00_00042_6 elsevier_sciencedirect_doi_10_1016_S0167_9473_00_00042_6  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2001-05-28 | 
    
| PublicationDateYYYYMMDD | 2001-05-28 | 
    
| PublicationDate_xml | – month: 05 year: 2001 text: 2001-05-28 day: 28  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | Amsterdam | 
    
| PublicationPlace_xml | – name: Amsterdam | 
    
| PublicationSeriesTitle | Computational Statistics & Data Analysis | 
    
| PublicationTitle | Computational statistics & data analysis | 
    
| PublicationYear | 2001 | 
    
| Publisher | Elsevier B.V Elsevier Science Elsevier  | 
    
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science – name: Elsevier  | 
    
| References | Atkinson, Riani (BIB1) 1997; 8 Hadi (BIB4) 1992; 54 Wilcox (BIB19) 1997 Barnett, Lewis (BIB2) 1994 Marazzi (BIB10) 1993 Rousseeuw (BIB12) 1985 Hadi, Simonoff (BIB6) 1993; 88 Hadi, Simonoff (BIB7) 1997; 281–282 Simpson, Montgomery (BIB17) 1998; 45 Kianifard, Swallow (BIB9) 1990; 19 Sebert, D.M., 1996. Identifying multiple outliers and influential subsets: a clustering approach. Unpublished Dissertation, Arizona State University, AZ. Swallow, Kianifard (BIB18) 1996; 52 Rousseeuw, van Zomeren (BIB14) 1990; 85 Coakley, Hettmansperger (BIB3) 1993; 88 Hadi (BIB5) 1994; 56 Huber (BIB8) 1973; 1 Sebert, Montgomery, Rollier (BIB16) 1998; 27 Yohai (BIB20) 1987; 15 Rousseeuw (BIB13) 1984; 79 Rocke, Woodruff (BIB11) 1996; 91 Swallow (10.1016/S0167-9473(00)00042-6_BIB18) 1996; 52 Yohai (10.1016/S0167-9473(00)00042-6_BIB20) 1987; 15 Coakley (10.1016/S0167-9473(00)00042-6_BIB3) 1993; 88 Rousseeuw (10.1016/S0167-9473(00)00042-6_BIB13) 1984; 79 Atkinson (10.1016/S0167-9473(00)00042-6_BIB1) 1997; 8 Hadi (10.1016/S0167-9473(00)00042-6_BIB4) 1992; 54 Rocke (10.1016/S0167-9473(00)00042-6_BIB11) 1996; 91 Sebert (10.1016/S0167-9473(00)00042-6_BIB16) 1998; 27 Simpson (10.1016/S0167-9473(00)00042-6_BIB17) 1998; 45 Marazzi (10.1016/S0167-9473(00)00042-6_BIB10) 1993 Barnett (10.1016/S0167-9473(00)00042-6_BIB2) 1994 Wilcox (10.1016/S0167-9473(00)00042-6_BIB19) 1997 Rousseeuw (10.1016/S0167-9473(00)00042-6_BIB14) 1990; 85 Hadi (10.1016/S0167-9473(00)00042-6_BIB7) 1997; 281–282 10.1016/S0167-9473(00)00042-6_BIB15 Hadi (10.1016/S0167-9473(00)00042-6_BIB6) 1993; 88 Rousseeuw (10.1016/S0167-9473(00)00042-6_BIB12) 1985 Huber (10.1016/S0167-9473(00)00042-6_BIB8) 1973; 1 Kianifard (10.1016/S0167-9473(00)00042-6_BIB9) 1990; 19 Hadi (10.1016/S0167-9473(00)00042-6_BIB5) 1994; 56  | 
    
| References_xml | – volume: 88 start-page: 1264 year: 1993 end-page: 1272 ident: BIB6 article-title: Procedures for the identification of multiple outliers in linear models publication-title: J. Amer. Statist. Assoc. – volume: 27 start-page: 461 year: 1998 end-page: 484 ident: BIB16 article-title: A clustering algorithm for identifying multiple outliers in linear regression publication-title: Comput. Statist. Data Anal. – volume: 45 start-page: 125 year: 1998 end-page: 134 ident: BIB17 article-title: A compound estimator for robust regression. publication-title: Naval Res. Logist. – start-page: 283 year: 1985 end-page: 297 ident: BIB12 article-title: Multivariate estimation with high breakdown point. publication-title: Mathematical Statistics and Applications, Vol B. – volume: 85 start-page: 633 year: 1990 end-page: 639 ident: BIB14 article-title: Unmasking multivariate outliers and leverage points publication-title: J. Amer. Statist. Assoc. – volume: 8 start-page: 583 year: 1997 end-page: 602 ident: BIB1 article-title: Bivariate boxplots, multiple outliers, multivariate transformations and discriminant analysis: the 1997 Hunter lecture publication-title: Environmetrics – volume: 281–282 year: 1997 ident: BIB7 article-title: A more robust outlier identifier for regression data publication-title: Bull. Internat. Statist. Inst. – volume: 52 start-page: 545 year: 1996 end-page: 556 ident: BIB18 article-title: Using robust scale estimates in detecting multiple outliers in linear regression publication-title: Biometrics – volume: 56 start-page: 393 year: 1994 end-page: 396 ident: BIB5 article-title: A modification of a method for the detection of outliers in multivariate samples publication-title: J. Roy. Statist. Soc. Ser. B – reference: Sebert, D.M., 1996. Identifying multiple outliers and influential subsets: a clustering approach. Unpublished Dissertation, Arizona State University, AZ. – volume: 19 start-page: 1913 year: 1990 end-page: 1938 ident: BIB9 article-title: A Monte Carlo comparison of five procedures for identifying outliers in linear regression publication-title: Commun. Statist. Part A Theory Methods – volume: 15 start-page: 642 year: 1987 end-page: 656 ident: BIB20 article-title: High breakdown-point and high efficiency robust estimates for regression publication-title: Ann. Statist. – year: 1997 ident: BIB19 publication-title: Introduction to Robust Estimation and Hypothesis Testing. – volume: 79 start-page: 871 year: 1984 end-page: 881 ident: BIB13 article-title: Least median of squares regression publication-title: J. Amer. Statist. Assoc. – volume: 88 start-page: 872 year: 1993 end-page: 880 ident: BIB3 article-title: A bounded influence, high breakdown, efficient regression estimator publication-title: J. Amer. Statist. Assoc. – year: 1993 ident: BIB10 publication-title: Algorithms, routines, and S Functions for Robust Statistics – year: 1994 ident: BIB2 publication-title: Outliers in Statistical Data – volume: 54 start-page: 761 year: 1992 end-page: 777 ident: BIB4 article-title: Identifying multiple outliers in multivariate data publication-title: J. Roy. Statist. Soc. Ser. B – volume: 1 start-page: 799 year: 1973 end-page: 821 ident: BIB8 article-title: Robust regression: asymptotics, conjectures and Monte Carlo publication-title: Ann. Statist. – volume: 91 start-page: 1047 year: 1996 end-page: 1061 ident: BIB11 article-title: Identification of outliers in multivariate data publication-title: J. Amer. Statist. Assoc. – volume: 281–282 year: 1997 ident: 10.1016/S0167-9473(00)00042-6_BIB7 article-title: A more robust outlier identifier for regression data publication-title: Bull. Internat. Statist. Inst. – volume: 88 start-page: 1264 year: 1993 ident: 10.1016/S0167-9473(00)00042-6_BIB6 article-title: Procedures for the identification of multiple outliers in linear models publication-title: J. Amer. Statist. Assoc. doi: 10.2307/2291266 – volume: 27 start-page: 461 year: 1998 ident: 10.1016/S0167-9473(00)00042-6_BIB16 article-title: A clustering algorithm for identifying multiple outliers in linear regression publication-title: Comput. Statist. Data Anal. doi: 10.1016/S0167-9473(98)00021-8 – volume: 15 start-page: 642 year: 1987 ident: 10.1016/S0167-9473(00)00042-6_BIB20 article-title: High breakdown-point and high efficiency robust estimates for regression publication-title: Ann. Statist. doi: 10.1214/aos/1176350366 – volume: 88 start-page: 872 year: 1993 ident: 10.1016/S0167-9473(00)00042-6_BIB3 article-title: A bounded influence, high breakdown, efficient regression estimator publication-title: J. Amer. Statist. Assoc. doi: 10.2307/2290776 – volume: 45 start-page: 125 year: 1998 ident: 10.1016/S0167-9473(00)00042-6_BIB17 article-title: A compound estimator for robust regression. publication-title: Naval Res. Logist. doi: 10.1002/(SICI)1520-6750(199803)45:2<125::AID-NAV1>3.0.CO;2-A – volume: 85 start-page: 633 year: 1990 ident: 10.1016/S0167-9473(00)00042-6_BIB14 article-title: Unmasking multivariate outliers and leverage points publication-title: J. Amer. Statist. Assoc. doi: 10.2307/2289995 – year: 1994 ident: 10.1016/S0167-9473(00)00042-6_BIB2 – volume: 54 start-page: 761 year: 1992 ident: 10.1016/S0167-9473(00)00042-6_BIB4 article-title: Identifying multiple outliers in multivariate data publication-title: J. Roy. Statist. Soc. Ser. B doi: 10.1111/j.2517-6161.1992.tb01449.x – year: 1997 ident: 10.1016/S0167-9473(00)00042-6_BIB19 – volume: 56 start-page: 393 year: 1994 ident: 10.1016/S0167-9473(00)00042-6_BIB5 article-title: A modification of a method for the detection of outliers in multivariate samples publication-title: J. Roy. Statist. Soc. Ser. B doi: 10.1111/j.2517-6161.1994.tb01988.x – volume: 1 start-page: 799 year: 1973 ident: 10.1016/S0167-9473(00)00042-6_BIB8 article-title: Robust regression: asymptotics, conjectures and Monte Carlo publication-title: Ann. Statist. doi: 10.1214/aos/1176342503 – start-page: 283 year: 1985 ident: 10.1016/S0167-9473(00)00042-6_BIB12 article-title: Multivariate estimation with high breakdown point. – volume: 8 start-page: 583 year: 1997 ident: 10.1016/S0167-9473(00)00042-6_BIB1 article-title: Bivariate boxplots, multiple outliers, multivariate transformations and discriminant analysis: the 1997 Hunter lecture publication-title: Environmetrics doi: 10.1002/(SICI)1099-095X(199711/12)8:6<583::AID-ENV277>3.0.CO;2-L – volume: 19 start-page: 1913 year: 1990 ident: 10.1016/S0167-9473(00)00042-6_BIB9 article-title: A Monte Carlo comparison of five procedures for identifying outliers in linear regression publication-title: Commun. Statist. Part A Theory Methods doi: 10.1080/03610929008830300 – volume: 79 start-page: 871 year: 1984 ident: 10.1016/S0167-9473(00)00042-6_BIB13 article-title: Least median of squares regression publication-title: J. Amer. Statist. Assoc. doi: 10.2307/2288718 – year: 1993 ident: 10.1016/S0167-9473(00)00042-6_BIB10 – volume: 91 start-page: 1047 year: 1996 ident: 10.1016/S0167-9473(00)00042-6_BIB11 article-title: Identification of outliers in multivariate data publication-title: J. Amer. Statist. Assoc. doi: 10.2307/2291724 – ident: 10.1016/S0167-9473(00)00042-6_BIB15 – volume: 52 start-page: 545 year: 1996 ident: 10.1016/S0167-9473(00)00042-6_BIB18 article-title: Using robust scale estimates in detecting multiple outliers in linear regression publication-title: Biometrics doi: 10.2307/2532894  | 
    
| SSID | ssj0002478 | 
    
| Score | 1.8321257 | 
    
| Snippet | We evaluate several published techniques to detect multiple outliers in linear regression using an extensive Monte Carlo simulation. These procedures include... | 
    
| SourceID | repec pascalfrancis crossref elsevier  | 
    
| SourceType | Index Database Enrichment Source Publisher  | 
    
| StartPage | 351 | 
    
| SubjectTerms | Exact sciences and technology Linear inference, regression Mathematics Minimum volume ellipsoid Monte Carlo simulation Multiple outliers Outlier Probability and statistics Robust regression Sciences and techniques of general use Statistics  | 
    
| Title | A Comparative analysis of multiple outlier detection procedures in the linear regression model | 
    
| URI | https://dx.doi.org/10.1016/S0167-9473(00)00042-6 http://econpapers.repec.org/article/eeecsdana/v_3a36_3ay_3a2001_3ai_3a3_3ap_3a351-382.htm  | 
    
| Volume | 36 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 0167-9473 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 0167-9473 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 0167-9473 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 0167-9473 databaseCode: AKRWK dateStart: 19830301 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB212wuoQnyKLbTygQMc0vXGTuIcVwvVllV7gCJ6worjcVkJ0mg3ReLCb2cmyW63B1SJQ2JpJDvRTDTzHL15BnhDILzIYiejDIPjv1UqMinmkUPlyyTOjQ_c4Hx2ns6-6I-XyeUOTNe9MEyr7HN_l9PbbN1bRr03R_ViMfrMBPpcs966bHcCu7BH9ceYAexNTuez801CjnWXkFnimyfcNvJ0i7TGt1K-a9eJ0n-VqP26WJHjQnfiBaHZJdZYbpWjk8fwqMeRYtK96hPYweopPDzbiLCunsG3iZjeanuLopcfEddBrGmEgvlA9FThsWk5WZVoK5q_oV24WFSClhMMRIulWOJVx5mtRHt8znO4OPlwMZ1F_XEKUUl74CbSYWzQBOPLOHPOyKCkoxByj7bO-X-UV8aFvFTeEYwMzmOGqB0hNDl2hHJewKC6rvAlCBcIVEgstCyNJnzplFcs9E5wLguqyIag1w60ZS81zide_LBbnLI0s-x3K1mflPxu0yEcb6bVndbGfRPMOjr2zkdjqR7cN_XwTjS3HphwY8sQpm10N3ZELFeeQmV_WVWolG6_6WJKGg0LttFV85iQxcT2e_Pz4P9f8BU86OhuSRSb1zBoljd4SPincUewe_xnfNR_5TzOP32dk_X9_PQvYtgBYg | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcgCEEJ9igYIPHOCQrhs7iXOsVlQLdHthkXrCiuNxWQnSaDdF4sJvZ8bJfvSAKnFIIo1iO5qJ7DfWm2eAtwTCqyJ1MikwON6tUonJsUwcKl9naWl84ALn2Vk-_ao_nWfnezBZ18IwrXKY-_s5Pc7Wg2U8eHPcLhbjL0ygLzXrrcuYCdyC2zpLC87ADv9seR6p7qdjFvjm17dlPH0X0fhOyvexlyT_1wJ1v61W5LbQn3dBWHaJLdY7i9HJQ3gwoEhx3H_oI9jD5jHcm20kWFdP4NuxmGyVvUU1iI-IyyDWJELBbCAaVXjsIiOrEXE981eUg4tFI6g7wTC0WoolXvSM2UbEw3Oewvzkw3wyTYbDFJKaMuAu0eHIoAnG12nhnJFBSUcB5AptXfJulFfGhbJW3hGIDM5jgagd4TN55AjjPIP95rLB5yBcIEghsdKyNprQpVNescw7gbkiqKoYgV470NaD0Difd_HD7jDK8sKy361kdVLyu81HcLhp1vZKGzc1MOvo2Gu_jKXV4KamB9eiuTNgxmUtI5jE6G7siFivPIXK_rKqUjndftPFhDR6LNhGV8vPjCwmtd-7ny_-_wPfwJ3pfHZqTz-efX4Jd3viW5ak5hXsd8srPCAk1LnX8U__C3e3_38 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparative+analysis+of+multiple+outlier+detection+procedures+in+the+linear+regression+model&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Wisnowski%2C+James+W&rft.au=Montgomery%2C+Douglas+C&rft.au=Simpson%2C+James+R&rft.date=2001-05-28&rft.pub=Elsevier+B.V&rft.issn=0167-9473&rft.eissn=1872-7352&rft.volume=36&rft.issue=3&rft.spage=351&rft.epage=382&rft_id=info:doi/10.1016%2FS0167-9473%2800%2900042-6&rft.externalDocID=S0167947300000426 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon |