SLAM in Dynamic Environments: A Deep Learning Approach for Moving Object Tracking Using ML-RANSAC Algorithm

The important problem of Simultaneous Localization and Mapping (SLAM) in dynamic environments is less studied than the counterpart problem in static settings. In this paper, we present a solution for the feature-based SLAM problem in dynamic environments. We propose an algorithm that integrates SLAM...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 19; no. 17; p. 3699
Main Authors Bahraini, Masoud S., Rad, Ahmad B., Bozorg, Mohammad
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 26.08.2019
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s19173699

Cover

Abstract The important problem of Simultaneous Localization and Mapping (SLAM) in dynamic environments is less studied than the counterpart problem in static settings. In this paper, we present a solution for the feature-based SLAM problem in dynamic environments. We propose an algorithm that integrates SLAM with multi-target tracking (SLAMMTT) using a robust feature-tracking algorithm for dynamic environments. A novel implementation of RANdomSAmple Consensus (RANSAC) method referred to as multilevel-RANSAC (ML-RANSAC) within the Extended Kalman Filter (EKF) framework is applied for multi-target tracking (MTT). We also apply machine learning to detect features from the input data and to distinguish moving from stationary objects. The data stream from LIDAR and vision sensors are fused in real-time to detect objects and depth information. A practical experiment is designed to verify the performance of the algorithm in a dynamic environment. The unique feature of this algorithm is its ability to maintain tracking of features even when the observations are intermittent whereby many reported algorithms fail in such situations. Experimental validation indicates that the algorithm is able to perform consistent estimates in a fast and robust manner suggesting its feasibility for real-time applications.
AbstractList The important problem of Simultaneous Localization and Mapping (SLAM) in dynamic environments is less studied than the counterpart problem in static settings. In this paper, we present a solution for the feature-based SLAM problem in dynamic environments. We propose an algorithm that integrates SLAM with multi-target tracking (SLAMMTT) using a robust feature-tracking algorithm for dynamic environments. A novel implementation of RANdomSAmple Consensus (RANSAC) method referred to as multilevel-RANSAC (ML-RANSAC) within the Extended Kalman Filter (EKF) framework is applied for multi-target tracking (MTT). We also apply machine learning to detect features from the input data and to distinguish moving from stationary objects. The data stream from LIDAR and vision sensors are fused in real-time to detect objects and depth information. A practical experiment is designed to verify the performance of the algorithm in a dynamic environment. The unique feature of this algorithm is its ability to maintain tracking of features even when the observations are intermittent whereby many reported algorithms fail in such situations. Experimental validation indicates that the algorithm is able to perform consistent estimates in a fast and robust manner suggesting its feasibility for real-time applications.
The important problem of Simultaneous Localization and Mapping (SLAM) in dynamic environments is less studied than the counterpart problem in static settings. In this paper, we present a solution for the feature-based SLAM problem in dynamic environments. We propose an algorithm that integrates SLAM with multi-target tracking (SLAMMTT) using a robust feature-tracking algorithm for dynamic environments. A novel implementation of RANdomSAmple Consensus (RANSAC) method referred to as multilevel-RANSAC (ML-RANSAC) within the Extended Kalman Filter (EKF) framework is applied for multi-target tracking (MTT). We also apply machine learning to detect features from the input data and to distinguish moving from stationary objects. The data stream from LIDAR and vision sensors are fused in real-time to detect objects and depth information. A practical experiment is designed to verify the performance of the algorithm in a dynamic environment. The unique feature of this algorithm is its ability to maintain tracking of features even when the observations are intermittent whereby many reported algorithms fail in such situations. Experimental validation indicates that the algorithm is able to perform consistent estimates in a fast and robust manner suggesting its feasibility for real-time applications.The important problem of Simultaneous Localization and Mapping (SLAM) in dynamic environments is less studied than the counterpart problem in static settings. In this paper, we present a solution for the feature-based SLAM problem in dynamic environments. We propose an algorithm that integrates SLAM with multi-target tracking (SLAMMTT) using a robust feature-tracking algorithm for dynamic environments. A novel implementation of RANdomSAmple Consensus (RANSAC) method referred to as multilevel-RANSAC (ML-RANSAC) within the Extended Kalman Filter (EKF) framework is applied for multi-target tracking (MTT). We also apply machine learning to detect features from the input data and to distinguish moving from stationary objects. The data stream from LIDAR and vision sensors are fused in real-time to detect objects and depth information. A practical experiment is designed to verify the performance of the algorithm in a dynamic environment. The unique feature of this algorithm is its ability to maintain tracking of features even when the observations are intermittent whereby many reported algorithms fail in such situations. Experimental validation indicates that the algorithm is able to perform consistent estimates in a fast and robust manner suggesting its feasibility for real-time applications.
Author Bahraini, Masoud S.
Bozorg, Mohammad
Rad, Ahmad B.
AuthorAffiliation 1 Department of Mechanical Engineering, Sirjan University of Technology, Sirjan 78137-33385, Iran
2 School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC V3T 0A3, Canada
3 Faculty of Mechanical Engineering, Yazd University, Yazd 89195-741, Iran
AuthorAffiliation_xml – name: 1 Department of Mechanical Engineering, Sirjan University of Technology, Sirjan 78137-33385, Iran
– name: 2 School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC V3T 0A3, Canada
– name: 3 Faculty of Mechanical Engineering, Yazd University, Yazd 89195-741, Iran
Author_xml – sequence: 1
  givenname: Masoud S.
  orcidid: 0000-0002-3692-2168
  surname: Bahraini
  fullname: Bahraini, Masoud S.
– sequence: 2
  givenname: Ahmad B.
  surname: Rad
  fullname: Rad, Ahmad B.
– sequence: 3
  givenname: Mohammad
  surname: Bozorg
  fullname: Bozorg, Mohammad
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31454925$$D View this record in MEDLINE/PubMed
BookMark eNp9kltv0zAUgCM0xC7wwB9AlngBpDLfktg8IEXdgEktk9j2bNnOSesusYOdDvXfk9JRbRPixZfjz5-Pj32cHfjgIcteE_yRMYlPE5GkZIWUz7IjwimfCErxwYPxYXac0gpjyhgTL7JDRnjOJc2PsturWTVHzqOzjdeds-jc37kYfAd-SJ9Qhc4AejQDHb3zC1T1fQzaLlETIpqHu23s0qzADug6anu7nd-kbTufTX5U36-qKaraRYhuWHYvs-eNbhO8uu9Pspsv59fTb5PZ5deLaTWbWF7IYcILxnBpwBZCSE6ZqUte40ZywowFK3NNcyaMsdyQopECaslYU-a5pHVjsWAn2cXOWwe9Un10nY4bFbRTfwIhLpSOg7MtqNoCmNoAoyXmQI2wDEpZyILLfDzTjq4PO9fa93rzS7ftXkiw2lZf7as_wp93cL82HYxuP0TdPsrg8Yp3S7UId6oox9cgeBS8uxfE8HMNaVCdSxbaVnsI66QoFUQwWeZ0RN8-QVdhHf1YV0UZJqUQhShH6s3DjPap_P0AI_B-B9gYUorQ_Pd6p09Y6wY9uLC9jGv_seM3hwfNfg
CitedBy_id crossref_primary_10_3390_ijgi9040202
crossref_primary_10_1109_TIM_2021_3116288
crossref_primary_10_3390_heritage6020057
crossref_primary_10_3390_s22051802
crossref_primary_10_3390_math12111619
crossref_primary_10_1109_ACCESS_2020_3042339
crossref_primary_10_1177_09697330241270829
crossref_primary_10_1007_s40747_024_01367_6
crossref_primary_10_1007_s12206_022_0640_6
crossref_primary_10_1088_1361_6501_ad5b0e
crossref_primary_10_1155_2022_1550543
crossref_primary_10_3390_s23062940
crossref_primary_10_3390_s23010327
crossref_primary_10_1038_s41598_021_91861_5
crossref_primary_10_1109_TIM_2021_3126010
crossref_primary_10_3390_s19224945
crossref_primary_10_3390_rs12101686
crossref_primary_10_1016_j_robot_2021_103837
crossref_primary_10_37394_23209_2025_22_6
crossref_primary_10_1080_02626667_2023_2248112
crossref_primary_10_3390_s20113097
crossref_primary_10_1109_ACCESS_2022_3226212
crossref_primary_10_47164_ijngc_v14i2_566
crossref_primary_10_1007_s10462_025_11187_w
crossref_primary_10_3390_mi14091689
Cites_doi 10.1002/rob.20312
10.1016/j.mechatronics.2017.12.002
10.1049/iet-spr.2015.0389
10.1109/IVS.2008.4621259
10.5772/33583
10.1109/CVPR.2014.81
10.1007/s40997-019-00294-z
10.1007/s10462-012-9365-8
10.1109/TASE.2015.2426203
10.1109/ICRA.2015.7139256
10.1109/IVS.2018.8500454
10.1016/j.neucom.2018.01.092
10.1134/S1054661816010065
10.1016/j.inffus.2010.01.004
10.1109/IVS.2011.5940576
10.3390/s18072046
10.1007/978-3-319-10584-0_23
10.1177/0278364907081229
10.5244/C.29.32
10.1109/ACC.2014.6859273
10.1007/s10514-005-0606-4
10.1002/rob.21620
10.1109/TRO.2016.2624754
10.1007/978-3-540-88688-4_37
10.1109/70.938382
10.1109/AHS.2018.8541483
10.1109/JIOT.2019.2902141
10.1002/rob.21430
10.1109/IVS.2014.6856558
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s19173699
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_dceebdbe32704e2b8c3e79696495d0fc
10.3390/s19173699
PMC6749210
31454925
10_3390_s19173699
Genre Journal Article
GeographicLocations Iran
United States--US
GeographicLocations_xml – name: Iran
– name: United States--US
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IAO
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c469t-463307bec6889423bd74d0f9413bcec95a2538bbc4b16f98ed933f75592dfc083
IEDL.DBID M48
ISSN 1424-8220
IngestDate Tue Oct 14 18:49:34 EDT 2025
Sun Oct 26 04:08:28 EDT 2025
Tue Sep 30 16:48:44 EDT 2025
Fri Sep 05 11:10:04 EDT 2025
Tue Oct 07 06:58:51 EDT 2025
Thu Apr 03 06:54:37 EDT 2025
Thu Oct 16 04:43:08 EDT 2025
Thu Apr 24 23:10:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords RANSAC
R-CNN
deep learning
SLAM
DATMO
multi-target tracking
autonomous robot
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-463307bec6889423bd74d0f9413bcec95a2538bbc4b16f98ed933f75592dfc083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3692-2168
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s19173699
PMID 31454925
PQID 2301788687
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_dceebdbe32704e2b8c3e79696495d0fc
unpaywall_primary_10_3390_s19173699
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6749210
proquest_miscellaneous_2281839752
proquest_journals_2301788687
pubmed_primary_31454925
crossref_primary_10_3390_s19173699
crossref_citationtrail_10_3390_s19173699
PublicationCentury 2000
PublicationDate 20190826
PublicationDateYYYYMMDD 2019-08-26
PublicationDate_xml – month: 8
  year: 2019
  text: 20190826
  day: 26
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Vu (ref_10) 2011; 12
Bahraini (ref_1) 2019; 5
ref_13
ref_35
ref_12
Brea (ref_21) 2019; 6
ref_34
ref_33
ref_30
Druzhkov (ref_24) 2016; 26
ref_19
Aycard (ref_36) 2016; 17
Saputra (ref_37) 2018; 51
ref_18
ref_17
ref_16
ref_15
Saeedi (ref_5) 2016; 33
Mertz (ref_39) 2013; 30
Guivant (ref_41) 2001; 17
Wolf (ref_32) 2005; 19
Premebida (ref_14) 2009; 26
Brunetti (ref_23) 2018; 300
ref_25
Betke (ref_31) 2016; 6
ref_22
ref_44
ref_43
(ref_4) 2015; 43
ref_20
ref_42
Cadena (ref_6) 2016; 32
ref_40
Bahraini (ref_38) 2018; 49
ref_3
ref_2
ref_29
ref_28
ref_27
ref_26
ref_9
Wang (ref_8) 2007; 26
Shi (ref_45) 2016; 10
ref_7
Chang (ref_11) 2016; 13
References_xml – volume: 26
  start-page: 696
  year: 2009
  ident: ref_14
  article-title: LIDAR and vision-based pedestrian detection system
  publication-title: J. Field Robot.
  doi: 10.1002/rob.20312
– ident: ref_28
– volume: 49
  start-page: 105
  year: 2018
  ident: ref_38
  article-title: SLAM in dynamic environments via ML-RANSAC
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2017.12.002
– ident: ref_9
– ident: ref_30
– volume: 10
  start-page: 592
  year: 2016
  ident: ref_45
  article-title: Extended target tracking filter with intermittent observations
  publication-title: IET Signal Process.
  doi: 10.1049/iet-spr.2015.0389
– ident: ref_3
– ident: ref_34
  doi: 10.1109/IVS.2008.4621259
– ident: ref_26
  doi: 10.5772/33583
– ident: ref_40
  doi: 10.1109/CVPR.2014.81
– ident: ref_2
  doi: 10.1007/s40997-019-00294-z
– volume: 43
  start-page: 55
  year: 2015
  ident: ref_4
  article-title: Visual simultaneous localization and mapping: A survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-012-9365-8
– volume: 13
  start-page: 1
  year: 2016
  ident: ref_11
  article-title: Exploiting Moving Objects: Multi-Robot Simultaneous Localization and Tracking
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2015.2426203
– volume: 6
  start-page: 1
  year: 2016
  ident: ref_31
  article-title: Data Association for Multi-Object Visual Tracking
  publication-title: Synth. Lect. Comput. Vis.
– ident: ref_42
– ident: ref_18
– ident: ref_44
– ident: ref_15
  doi: 10.1109/ICRA.2015.7139256
– ident: ref_22
  doi: 10.1109/IVS.2018.8500454
– volume: 300
  start-page: 17
  year: 2018
  ident: ref_23
  article-title: Computer vision and deep learning techniques for pedestrian detection and tracking: A survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.01.092
– volume: 26
  start-page: 9
  year: 2016
  ident: ref_24
  article-title: A survey of deep learning methods and software tools for image classification and object detection
  publication-title: Pattern Recognit. Image Anal.
  doi: 10.1134/S1054661816010065
– volume: 12
  start-page: 58
  year: 2011
  ident: ref_10
  article-title: Grid-based localization and local mapping with moving object detection and tracking
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2010.01.004
– ident: ref_12
  doi: 10.1109/IVS.2011.5940576
– ident: ref_20
  doi: 10.3390/s18072046
– volume: 17
  start-page: 1
  year: 2016
  ident: ref_36
  article-title: Multiple Sensor Fusion and Classification for Moving Object Detection and Tracking
  publication-title: IEEE Trans. Intell. Transp. Syst.
– ident: ref_19
  doi: 10.1007/978-3-319-10584-0_23
– ident: ref_25
– volume: 26
  start-page: 889
  year: 2007
  ident: ref_8
  article-title: Simultaneous Localization, Mapping and Moving Object Tracking
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364907081229
– ident: ref_16
  doi: 10.5244/C.29.32
– ident: ref_27
  doi: 10.1109/ACC.2014.6859273
– ident: ref_33
– volume: 19
  start-page: 53
  year: 2005
  ident: ref_32
  article-title: Mobile Robot Simultaneous Localization and Mapping in Dynamic Environments
  publication-title: Auton. Robot.
  doi: 10.1007/s10514-005-0606-4
– volume: 33
  start-page: 3
  year: 2016
  ident: ref_5
  article-title: Multiple-Robot Simultaneous Localization and Mapping: A Review
  publication-title: J. Field Robot.
  doi: 10.1002/rob.21620
– volume: 32
  start-page: 1309
  year: 2016
  ident: ref_6
  article-title: Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2016.2624754
– ident: ref_29
  doi: 10.1007/978-3-540-88688-4_37
– volume: 17
  start-page: 242
  year: 2001
  ident: ref_41
  article-title: Optimization of the simultaneous localization and map-building algorithm for real-time implementation
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.938382
– ident: ref_7
  doi: 10.1109/AHS.2018.8541483
– ident: ref_13
– ident: ref_17
– ident: ref_43
– volume: 6
  start-page: 5423
  year: 2019
  ident: ref_21
  article-title: Deep Learning-Based Multiple Object Visual Tracking on Embedded System for IoT and Mobile Edge Computing Applications
  publication-title: IEEE Int. Things J.
  doi: 10.1109/JIOT.2019.2902141
– volume: 5
  start-page: 35
  year: 2019
  ident: ref_1
  article-title: A New Adaptive UKF Algorithm to Improve the Accuracy of SLAM
  publication-title: Int. J. Robot. Theory Appl.
– volume: 51
  start-page: 37
  year: 2018
  ident: ref_37
  article-title: Visual SLAM and structure from motion in dynamic environments: A survey
  publication-title: ACM Comput. Surv. (CSUR)
– volume: 30
  start-page: 17
  year: 2013
  ident: ref_39
  article-title: Moving object detection with laser scanners
  publication-title: J. Field Robot.
  doi: 10.1002/rob.21430
– ident: ref_35
  doi: 10.1109/IVS.2014.6856558
SSID ssj0023338
Score 2.4655046
Snippet The important problem of Simultaneous Localization and Mapping (SLAM) in dynamic environments is less studied than the counterpart problem in static settings....
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3699
SubjectTerms Algorithms
autonomous robot
Classification
DATMO
Deep learning
Lasers
Localization
Mechanical engineering
Methods
multi-target tracking
Neural networks
Product development
R-CNN
RANSAC
Robots
Semantics
Sensors
SLAM
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5VXKCHCgptXaDathx6sYi9zj56My-hioAEReJm7csQkToRJKr67ztjO1YiqLj0aq_l1Tx2vm-8_hZgjxusGVj4Y4O1N868LmMjDaa7IfkoXDK1pz7k4FycXmc_bvo3C0d90Z6wRh64Mdy-x1Xceht4KntZSK1yPEiSdEFk73ulo9W3p_ScTLVUiyPzanSEOJL6_UdiJfhevVR9apH-55Dl0w2Sq7NqYv78NqPRQvU5WYc3LWxkeTPdDXgVqrfwekFMcBPur87yARtW7Kg5ZJ4dL_zD9p3l7CiECWv1VG9Z3oqJM0StbFD3FdiFpa4Mw_rlqIPO6v0EbHAWX-bnV_khy0e344fh9O7XFlyfHP88PI3boxRih_x3GmeCYzKjv4RSGhGU9TJD62ksYdYFp_smxZXPWpfZRJRaBa85LyXSjdSXDmHaO1ipxlX4AIw7T4I0iMp9mQUhrQ9CaBlU6axOQhnBt7mJC9fqjNNxF6MC-QZ5o-i8EcGXbuikEdd4btAB-akbQHrY9QWMkqKNkuKlKIlgZ-7lok3SxwLZVyKVEkpG8Lm7jelF30xMFcYzHENqWYjZ-mkE75ug6GbCk4z07foRyKVwWZrq8p1qeFdLeAuJDya9CL52gfVvC3z8HxbYhjXEepra4anYgZXpwyzsIp6a2k916vwFojEehA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QE4IJ4lpSDzOHCJuomzdoyEUNpuVaHugloq9Rb5lW3Fkt22u0L8e2byYlcUrokjOR6P5_vG9jcA77jGmIGBP9QYe8PEqSLUUqO7a5KPwiVTOcpDjsbi6Cz5fD4434BxexeGjlW2a2K1ULuZpRz5LkLlCOmaSOWn-VVIVaNod7UtoaGb0gruYyUxdgc2Y1LG6sHm3nD89aSjYBwZWa0vxJHs794QW8H-qLWoVIn334Y4_z44eXdZzvWvn3o6XYlKhw_hQQMnWVbb_xFs-PIx3F8RGXwC30-PsxG7LNlBXXyeDVfutn1gGTvwfs4andUJyxqRcYZolo2qfAP7YihbwzCuWcqss-qcARsdhyfZ-DTbZ9l0gkO1uPjxFM4Oh9_2j8KmxEJokRcvwkRwdHK0o0hThcjKOJm4fqEwtBnrrRroGFdEY2xiIlGo1DvFeSGRhsSusAjfnkGvnJX-OTBuHQnVIFp3ReKFNM4LoaRPC2tU5IsA3rdDnNtGf5zKYExz5CFkjbyzRgBvuqbzWnTjtkZ7ZKeuAelkVw9m15O8cbscLeWNM57Hsp_42KSWe0mCQMgL8T9tADutlfPGeW_yP1MtgNfda3Q72kvRpZ8tsQ2paCGWG8QBbNWTousJjxLSvRsEINemy1pX19-UlxeVtLeQ-GHUD-BtN7H-PQLb_-_8C7iH6E5RAjwWO9BbXC_9S0RQC_OqcYvfWxAbRQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB5B9wAcljcEFmQeBy7ZNHFix9zCPrRC24JYKi2nKH6kW203rdpUCH4948SNWlikvcZjycnMeL6ZjD8DvKcFxgwM_H6BsdePtSj9ghfo7oWlj8ItU2hbhxwM2cko_nyenLvD6kvXVomp-KTZpO0pLB8jWD8IRRDyAGeKYK7L27DDEoTePdgZDb9mP5oTRE60ZQ-imMoHS5uL2DlbMaeh5r8OT_7bFnlnVc2LXz-L6XQj5hzfh-F6tW2ryeX-qpb76vdfRI43fp0HsOvQJ8lac3kIt0z1CO5tcBI-hsuz02xAJhU5bO-qJ0cbR-E-kowcGjMnjpZ1TDLHSU4Q_JJBU54gX6Qt7hAMg8oW4knTlkAGp_63bHiWHZBsOp4tJvXF1RMYHR99Pzjx3Y0MvsI0uvZjRnFPQLWzNBUIxKTmse6XAiOhVEaJpIhwA5VSxTJkpUiNFpSWHLOWSJcK0d5T6FWzyjwHQpW2vDYI7nUZG8alNowJbtJSSRGa0oMPa53lytGV21szpjmmLVa9eadeD952ovOWo-M6oU9W8Z2ApdVuHswW49x5aY6qN1JLQyPej00kU0UNt_xBmEbieyoP9tZmkztfX-aYxIU8TVnKPXjTDaOX2l8vRWVmK5SxpFsI_ZLIg2etlXUroWFsafISD_iW_W0tdXukmlw0TOCM48Sw78G7zlL__wVe3EjqJdxFTChs2Txie9CrFyvzCnFXLV87b_sDuJsnvg
  priority: 102
  providerName: Unpaywall
Title SLAM in Dynamic Environments: A Deep Learning Approach for Moving Object Tracking Using ML-RANSAC Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/31454925
https://www.proquest.com/docview/2301788687
https://www.proquest.com/docview/2281839752
https://pubmed.ncbi.nlm.nih.gov/PMC6749210
https://www.mdpi.com/1424-8220/19/17/3699/pdf
https://doaj.org/article/dceebdbe32704e2b8c3e79696495d0fc
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (Free e-resource, activated by CARLI)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB71cQAOiDeGEi2PAxdD7HV2vUgIuW1ChepQtURKT5b34TTCOCFNBP33zNqOFYsgcfHBXlv2zozn-2btbwDe0BRzBiZ-N8Xc6wZaZG7KUwz31MpH4StTaFuHjIfsZBR8GffGO7DusVlP4PVWamf7SY0W-bvfP28-YcB_tIwTKfv7a8s58KpiF_YxQQnbwSEOmsUEn9KyobX9p8vFfNitBIbap7bSUqnevw1y_v3l5K1VMU9vfqV5vpGWBvfgbo0nSVQ5wH3YMcUDuLOhMvgQvl-cRjGZFuS46j5P-hs_t30gETk2Zk5qodUJiWqVcYJwlsRlwYF8lbZcQzCxKVtaJ-WHBiQ-dc-j4UV0RKJ8MltMl1c_HsFo0P92dOLWPRZchcR46QaMYpSjIVkYCoRWUvNAdzOBuU0qo0Qv9fGVKKUKpMcyERotKM048hBfZwrx22PYK2aFeQqEKm2VahCu6ywwjEttGBPchJmSwjOZA2_XU5yoWoDc9sHIEyQi1hpJYw0HXjVD55XqxrZBh9ZOzQArlF3umC0mSR13CVrKSC0N9Xk3ML4MFTXcKgIhMcTnVA4crK2crJ0vQVrm8TBkIXfgZXMY484upqSFma1wjJXRQjDX8x14UjlFcyfUC6zwXc8B3nKX1q22jxTTq1Lbm3E80es68LpxrH_PwLP_mabncBtBnrB1cJ8dwN5ysTIvEEgtZQd2-ZjjNhx87sD-YX94dt4pixKdMoBw32h4Fl3-Ad5eH4k
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigcEG8MpSwviYvV-JFdLxKqTNMqpXGQaCvlZrwPpxXBCU2iqn-K38iM7biJKNx6tdfWeuf5za6_AXgXZBgzMPC7GcZeNzQydzORoblnRB-FLlMaqkMmfd49Cb8M2oM1-L34F4aOVS58YumozVhTjXwbU2UP4RqPxM7kl0tdo2h3ddFCo1KLQ3t5gZBt-umgg_J97_v7e8e7XbfuKuBqhIIzN-QI4QVOnUeRxGRCGRGaVi7RmytttWxnPjoBpXSoPJ7LyBrE_LnAzNs3ucaMBd97C26HAfoStB8xuAJ4AeK9ir0oCGRre0pYCL9WrsS8sjXAdfns38cyN-bFJLu8yEajpZi3fx_u1ckqiyvtegBrtngId5coDB_Bj6NenLCzgnWq1vZsb-nPuY8sZh1rJ6xmcR2yuKYwZ5grs6SsZrCvimpBDKOmpro9K08xsKTnfov7R_Eui0dDFMTs9OdjOLmRpX4C68W4sM-ABdoQDQ5iAZOHlgtlLOdS2CjXSno2d-DDYolTXbObU5ONUYooh6SRNtJw4E0zdFJRelw36DPJqRlALNzlhfH5MK2NOkVJWWWUDXzRCq2vIh1YQXRDiDrxO7UDmwspp7VrmKZXiuzA6-Y2GjXt1GSFHc9xDHF0YabY9h14WilFM5PAC4lVr-2AWFGXlamu3inOTkvicC7wQa_lwNtGsf69As__P_lXsNE9Tnpp76B_-ALuYB4pqdTu801Yn53P7UvM1WZqqzQQBt9v2iL_AIdoUTg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VInE8IG4MBZZL4sVKfGTXi4SQaRq1NAmIUilvxns4rQhOaBJV_Wv8OmZ8NRGFt75m19HuzvmN198AvA5SjBkY-N0UY68bGpm5qUjR3FOij0KXKQ3VIQdDvnsYfhp1Rhvwu_4Whq5V1j6xcNRmqqlG3sJU2UO4xiPRyqprEV-6vQ-zXy51kKI3rXU7jVJF9u3ZKcK3-fu9Lsr6je_3dr5t77pVhwFXIyxcuCFHOC9wGzyKJCYWyojQtDOJnl1pq2Un9dEhKKVD5fFMRtYg_s8EZuG-yTRmL_i_V-CqCAJJ1wnF6BzsBYj9SiYjHGy35oSLcOdyLf4VbQIuym3_vqJ5fZnP0rPTdDJZiX-923CrSlxZXGraHdiw-V24uUJneA9-HPTjATvOWbdsc892Vr6ie8di1rV2xipG1zGLKzpzhnkzGxSVDfZZUV2IYQTVVMNnxY0GNui7X-PhQbzN4skYBbE4-nkfDi_lqB_AZj7N7SNggTZEiYO4wGSh5UIZy7kUNsq0kp7NHHhbH3GiK6ZzargxSRDxkDSSRhoOvGymzkp6j4smfSQ5NROIkbv4YXoyTioDT1BSVhllA1-0Q-urSAdWEPUQIlDcp3Zgq5ZyUrmJeXKu1A68aIbRwOmtTZrb6RLnEF8XZo0d34GHpVI0Kwm8kBj2Og6INXVZW-r6SH58VJCIc4EPem0HXjWK9e8TePz_xT-Ha2iLSX9vuP8EbmBKKanq7vMt2FycLO1TTNsW6llhHwy-X7ZB_gFcNFV7
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB5B9wAcljcEFmQeBy7ZNHFix9zCPrRC24JYKi2nKH6kW203rdpUCH4948SNWlikvcZjycnMeL6ZjD8DvKcFxgwM_H6BsdePtSj9ghfo7oWlj8ItU2hbhxwM2cko_nyenLvD6kvXVomp-KTZpO0pLB8jWD8IRRDyAGeKYK7L27DDEoTePdgZDb9mP5oTRE60ZQ-imMoHS5uL2DlbMaeh5r8OT_7bFnlnVc2LXz-L6XQj5hzfh-F6tW2ryeX-qpb76vdfRI43fp0HsOvQJ8lac3kIt0z1CO5tcBI-hsuz02xAJhU5bO-qJ0cbR-E-kowcGjMnjpZ1TDLHSU4Q_JJBU54gX6Qt7hAMg8oW4knTlkAGp_63bHiWHZBsOp4tJvXF1RMYHR99Pzjx3Y0MvsI0uvZjRnFPQLWzNBUIxKTmse6XAiOhVEaJpIhwA5VSxTJkpUiNFpSWHLOWSJcK0d5T6FWzyjwHQpW2vDYI7nUZG8alNowJbtJSSRGa0oMPa53lytGV21szpjmmLVa9eadeD952ovOWo-M6oU9W8Z2ApdVuHswW49x5aY6qN1JLQyPej00kU0UNt_xBmEbieyoP9tZmkztfX-aYxIU8TVnKPXjTDaOX2l8vRWVmK5SxpFsI_ZLIg2etlXUroWFsafISD_iW_W0tdXukmlw0TOCM48Sw78G7zlL__wVe3EjqJdxFTChs2Txie9CrFyvzCnFXLV87b_sDuJsnvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SLAM+in+Dynamic+Environments%3A+A+Deep+Learning+Approach+for+Moving+Object+Tracking+Using+ML-RANSAC+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Bahraini%2C+Masoud+S.&rft.au=Rad%2C+Ahmad+B.&rft.au=Bozorg%2C+Mohammad&rft.date=2019-08-26&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=19&rft.issue=17&rft.spage=3699&rft_id=info:doi/10.3390%2Fs19173699&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s19173699
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon