Visualization of automatically combined disease maps and pathway diagrams for rare diseases

Introduction: Investigation of molecular mechanisms of human disorders, especially rare diseases, require exploration of various knowledge repositories for building precise hypotheses and complex data interpretation. Recently, increasingly more resources offer diagrammatic representation of such mec...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in bioinformatics Vol. 3; p. 1101505
Main Authors Gawron, Piotr, Hoksza, David, Piñero, Janet, Peña-Chilet, Maria, Esteban-Medina, Marina, Fernandez-Rueda, Jose Luis, Colonna, Vincenza, Smula, Ewa, Heirendt, Laurent, Ancien, François, Groues, Valentin, Satagopam, Venkata P., Schneider, Reinhard, Dopazo, Joaquin, Furlong, Laura I., Ostaszewski, Marek
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 12.07.2023
Subjects
Online AccessGet full text
ISSN2673-7647
2673-7647
DOI10.3389/fbinf.2023.1101505

Cover

Abstract Introduction: Investigation of molecular mechanisms of human disorders, especially rare diseases, require exploration of various knowledge repositories for building precise hypotheses and complex data interpretation. Recently, increasingly more resources offer diagrammatic representation of such mechanisms, including disease-dedicated schematics in pathway databases and disease maps. However, collection of knowledge across them is challenging, especially for research projects with limited manpower. Methods: In this article we present an automated workflow for construction of maps of molecular mechanisms for rare diseases. The workflow requires a standardized definition of a disease using Orphanet or HPO identifiers to collect relevant genes and variants, and to assemble a functional, visual repository of related mechanisms, including data overlays. The diagrams composing the final map are unified to a common systems biology format from CellDesigner SBML, GPML and SBML+layout+render. The constructed resource contains disease-relevant genes and variants as data overlays for immediate visual exploration, including embedded genetic variant browser and protein structure viewer. Results: We demonstrate the functionality of our workflow on two examples of rare diseases: Kawasaki disease and retinitis pigmentosa. Two maps are constructed based on their corresponding identifiers. Moreover, for the retinitis pigmentosa use-case, we include a list of differentially expressed genes to demonstrate how to tailor the workflow using omics datasets. Discussion: In summary, our work allows for an ad-hoc construction of molecular diagrams combined from different sources, preserving their layout and graphical style, but integrating them into a single resource. This allows to reduce time consuming tasks of prototyping of a molecular disease map, enabling visual exploration, hypothesis building, data visualization and further refinement. The code of the workflow is open and accessible at https://gitlab.lcsb.uni.lu/minerva/automap/ .
AbstractList Investigation of molecular mechanisms of human disorders, especially rare diseases, require exploration of various knowledge repositories for building precise hypotheses and complex data interpretation. Recently, increasingly more resources offer diagrammatic representation of such mechanisms, including disease-dedicated schematics in pathway databases and disease maps. However, collection of knowledge across them is challenging, especially for research projects with limited manpower. In this article we present an automated workflow for construction of maps of molecular mechanisms for rare diseases. The workflow requires a standardized definition of a disease using Orphanet or HPO identifiers to collect relevant genes and variants, and to assemble a functional, visual repository of related mechanisms, including data overlays. The diagrams composing the final map are unified to a common systems biology format from CellDesigner SBML, GPML and SBML+layout+render. The constructed resource contains disease-relevant genes and variants as data overlays for immediate visual exploration, including embedded genetic variant browser and protein structure viewer. We demonstrate the functionality of our workflow on two examples of rare diseases: Kawasaki disease and retinitis pigmentosa. Two maps are constructed based on their corresponding identifiers. Moreover, for the retinitis pigmentosa use-case, we include a list of differentially expressed genes to demonstrate how to tailor the workflow using omics datasets. In summary, our work allows for an ad-hoc construction of molecular diagrams combined from different sources, preserving their layout and graphical style, but integrating them into a single resource. This allows to reduce time consuming tasks of prototyping of a molecular disease map, enabling visual exploration, hypothesis building, data visualization and further refinement. The code of the workflow is open and accessible at https://gitlab.lcsb.uni.lu/minerva/automap/.
Introduction: Investigation of molecular mechanisms of human disorders, especially rare diseases, require exploration of various knowledge repositories for building precise hypotheses and complex data interpretation. Recently, increasingly more resources offer diagrammatic representation of such mechanisms, including disease-dedicated schematics in pathway databases and disease maps. However, collection of knowledge across them is challenging, especially for research projects with limited manpower.Methods: In this article we present an automated workflow for construction of maps of molecular mechanisms for rare diseases. The workflow requires a standardized definition of a disease using Orphanet or HPO identifiers to collect relevant genes and variants, and to assemble a functional, visual repository of related mechanisms, including data overlays. The diagrams composing the final map are unified to a common systems biology format from CellDesigner SBML, GPML and SBML+layout+render. The constructed resource contains disease-relevant genes and variants as data overlays for immediate visual exploration, including embedded genetic variant browser and protein structure viewer.Results: We demonstrate the functionality of our workflow on two examples of rare diseases: Kawasaki disease and retinitis pigmentosa. Two maps are constructed based on their corresponding identifiers. Moreover, for the retinitis pigmentosa use-case, we include a list of differentially expressed genes to demonstrate how to tailor the workflow using omics datasets.Discussion: In summary, our work allows for an ad-hoc construction of molecular diagrams combined from different sources, preserving their layout and graphical style, but integrating them into a single resource. This allows to reduce time consuming tasks of prototyping of a molecular disease map, enabling visual exploration, hypothesis building, data visualization and further refinement. The code of the workflow is open and accessible at https://gitlab.lcsb.uni.lu/minerva/automap/.
Introduction: Investigation of molecular mechanisms of human disorders, especially rare diseases, require exploration of various knowledge repositories for building precise hypotheses and complex data interpretation. Recently, increasingly more resources offer diagrammatic representation of such mechanisms, including disease-dedicated schematics in pathway databases and disease maps. However, collection of knowledge across them is challenging, especially for research projects with limited manpower. Methods: In this article we present an automated workflow for construction of maps of molecular mechanisms for rare diseases. The workflow requires a standardized definition of a disease using Orphanet or HPO identifiers to collect relevant genes and variants, and to assemble a functional, visual repository of related mechanisms, including data overlays. The diagrams composing the final map are unified to a common systems biology format from CellDesigner SBML, GPML and SBML+layout+render. The constructed resource contains disease-relevant genes and variants as data overlays for immediate visual exploration, including embedded genetic variant browser and protein structure viewer. Results: We demonstrate the functionality of our workflow on two examples of rare diseases: Kawasaki disease and retinitis pigmentosa. Two maps are constructed based on their corresponding identifiers. Moreover, for the retinitis pigmentosa use-case, we include a list of differentially expressed genes to demonstrate how to tailor the workflow using omics datasets. Discussion: In summary, our work allows for an ad-hoc construction of molecular diagrams combined from different sources, preserving their layout and graphical style, but integrating them into a single resource. This allows to reduce time consuming tasks of prototyping of a molecular disease map, enabling visual exploration, hypothesis building, data visualization and further refinement. The code of the workflow is open and accessible at https://gitlab.lcsb.uni.lu/minerva/automap/ .
Introduction: Investigation of molecular mechanisms of human disorders, especially rare diseases, require exploration of various knowledge repositories for building precise hypotheses and complex data interpretation. Recently, increasingly more resources offer diagrammatic representation of such mechanisms, including disease-dedicated schematics in pathway databases and disease maps. However, collection of knowledge across them is challenging, especially for research projects with limited manpower. Methods: In this article we present an automated workflow for construction of maps of molecular mechanisms for rare diseases. The workflow requires a standardized definition of a disease using Orphanet or HPO identifiers to collect relevant genes and variants, and to assemble a functional, visual repository of related mechanisms, including data overlays. The diagrams composing the final map are unified to a common systems biology format from CellDesigner SBML, GPML and SBML+layout+render. The constructed resource contains disease-relevant genes and variants as data overlays for immediate visual exploration, including embedded genetic variant browser and protein structure viewer. Results: We demonstrate the functionality of our workflow on two examples of rare diseases: Kawasaki disease and retinitis pigmentosa. Two maps are constructed based on their corresponding identifiers. Moreover, for the retinitis pigmentosa use-case, we include a list of differentially expressed genes to demonstrate how to tailor the workflow using omics datasets. Discussion: In summary, our work allows for an ad-hoc construction of molecular diagrams combined from different sources, preserving their layout and graphical style, but integrating them into a single resource. This allows to reduce time consuming tasks of prototyping of a molecular disease map, enabling visual exploration, hypothesis building, data visualization and further refinement. The code of the workflow is open and accessible at https://gitlab.lcsb.uni.lu/minerva/automap/.
Introduction: Investigation of molecular mechanisms of human disorders, especially rare diseases, require exploration of various knowledge repositories for building precise hypotheses and complex data interpretation. Recently, increasingly more resources offer diagrammatic representation of such mechanisms, including disease-dedicated schematics in pathway databases and disease maps. However, collection of knowledge across them is challenging, especially for research projects with limited manpower. Methods: In this article we present an automated workflow for construction of maps of molecular mechanisms for rare diseases. The workflow requires a standardized definition of a disease using Orphanet or HPO identifiers to collect relevant genes and variants, and to assemble a functional, visual repository of related mechanisms, including data overlays. The diagrams composing the final map are unified to a common systems biology format from CellDesigner SBML, GPML and SBML+layout+render. The constructed resource contains disease-relevant genes and variants as data overlays for immediate visual exploration, including embedded genetic variant browser and protein structure viewer. Results: We demonstrate the functionality of our workflow on two examples of rare diseases: Kawasaki disease and retinitis pigmentosa. Two maps are constructed based on their corresponding identifiers. Moreover, for the retinitis pigmentosa use-case, we include a list of differentially expressed genes to demonstrate how to tailor the workflow using omics datasets. Discussion: In summary, our work allows for an ad-hoc construction of molecular diagrams combined from different sources, preserving their layout and graphical style, but integrating them into a single resource. This allows to reduce time consuming tasks of prototyping of a molecular disease map, enabling visual exploration, hypothesis building, data visualization and further refinement. The code of the workflow is open and accessible at https://gitlab.lcsb.uni.lu/minerva/automap/.Introduction: Investigation of molecular mechanisms of human disorders, especially rare diseases, require exploration of various knowledge repositories for building precise hypotheses and complex data interpretation. Recently, increasingly more resources offer diagrammatic representation of such mechanisms, including disease-dedicated schematics in pathway databases and disease maps. However, collection of knowledge across them is challenging, especially for research projects with limited manpower. Methods: In this article we present an automated workflow for construction of maps of molecular mechanisms for rare diseases. The workflow requires a standardized definition of a disease using Orphanet or HPO identifiers to collect relevant genes and variants, and to assemble a functional, visual repository of related mechanisms, including data overlays. The diagrams composing the final map are unified to a common systems biology format from CellDesigner SBML, GPML and SBML+layout+render. The constructed resource contains disease-relevant genes and variants as data overlays for immediate visual exploration, including embedded genetic variant browser and protein structure viewer. Results: We demonstrate the functionality of our workflow on two examples of rare diseases: Kawasaki disease and retinitis pigmentosa. Two maps are constructed based on their corresponding identifiers. Moreover, for the retinitis pigmentosa use-case, we include a list of differentially expressed genes to demonstrate how to tailor the workflow using omics datasets. Discussion: In summary, our work allows for an ad-hoc construction of molecular diagrams combined from different sources, preserving their layout and graphical style, but integrating them into a single resource. This allows to reduce time consuming tasks of prototyping of a molecular disease map, enabling visual exploration, hypothesis building, data visualization and further refinement. The code of the workflow is open and accessible at https://gitlab.lcsb.uni.lu/minerva/automap/.
Author Satagopam, Venkata P.
Furlong, Laura I.
Heirendt, Laurent
Fernandez-Rueda, Jose Luis
Groues, Valentin
Schneider, Reinhard
Ancien, François
Peña-Chilet, Maria
Colonna, Vincenza
Gawron, Piotr
Smula, Ewa
Piñero, Janet
Dopazo, Joaquin
Hoksza, David
Esteban-Medina, Marina
Ostaszewski, Marek
AuthorAffiliation 2 Faculty of Mathematics and Physics , Charles University , Prague , Czechia
8 Institute of Genetics and Biophysics , National Research Council of Italy , Naples , Rome
1 Luxembourg Centre for Systems Biomedicine (LCSB) , University of Luxembourg , Luxembourg , Luxembourg
9 Department of Genetics, Genomics and Informatics , College of Medicine , University of Tennessee Health Science Center , Memphis , TN , United States
6 Computational Medicine Platform, Fundacion Progreso y Salud , Sevilla , Spain
7 Spanish Network of Research in Rare Diseases (CIBERER) , Sevilla , Spain
4 Department of Experimental and Health Sciences , Pompeu Fabra University (UPF) , Barcelona , Spain
3 Research Programme on Biomedical Informatics (GRIB) , Hospital del Mar Medical Research Institute (IMIM) , Barcelona , Spain
5 MedBioinformatics Solutions SL , Barcelona , Spain
AuthorAffiliation_xml – name: 2 Faculty of Mathematics and Physics , Charles University , Prague , Czechia
– name: 1 Luxembourg Centre for Systems Biomedicine (LCSB) , University of Luxembourg , Luxembourg , Luxembourg
– name: 3 Research Programme on Biomedical Informatics (GRIB) , Hospital del Mar Medical Research Institute (IMIM) , Barcelona , Spain
– name: 4 Department of Experimental and Health Sciences , Pompeu Fabra University (UPF) , Barcelona , Spain
– name: 9 Department of Genetics, Genomics and Informatics , College of Medicine , University of Tennessee Health Science Center , Memphis , TN , United States
– name: 6 Computational Medicine Platform, Fundacion Progreso y Salud , Sevilla , Spain
– name: 7 Spanish Network of Research in Rare Diseases (CIBERER) , Sevilla , Spain
– name: 5 MedBioinformatics Solutions SL , Barcelona , Spain
– name: 8 Institute of Genetics and Biophysics , National Research Council of Italy , Naples , Rome
Author_xml – sequence: 1
  givenname: Piotr
  surname: Gawron
  fullname: Gawron, Piotr
– sequence: 2
  givenname: David
  surname: Hoksza
  fullname: Hoksza, David
– sequence: 3
  givenname: Janet
  surname: Piñero
  fullname: Piñero, Janet
– sequence: 4
  givenname: Maria
  surname: Peña-Chilet
  fullname: Peña-Chilet, Maria
– sequence: 5
  givenname: Marina
  surname: Esteban-Medina
  fullname: Esteban-Medina, Marina
– sequence: 6
  givenname: Jose Luis
  surname: Fernandez-Rueda
  fullname: Fernandez-Rueda, Jose Luis
– sequence: 7
  givenname: Vincenza
  surname: Colonna
  fullname: Colonna, Vincenza
– sequence: 8
  givenname: Ewa
  surname: Smula
  fullname: Smula, Ewa
– sequence: 9
  givenname: Laurent
  surname: Heirendt
  fullname: Heirendt, Laurent
– sequence: 10
  givenname: François
  surname: Ancien
  fullname: Ancien, François
– sequence: 11
  givenname: Valentin
  surname: Groues
  fullname: Groues, Valentin
– sequence: 12
  givenname: Venkata P.
  surname: Satagopam
  fullname: Satagopam, Venkata P.
– sequence: 13
  givenname: Reinhard
  surname: Schneider
  fullname: Schneider, Reinhard
– sequence: 14
  givenname: Joaquin
  surname: Dopazo
  fullname: Dopazo, Joaquin
– sequence: 15
  givenname: Laura I.
  surname: Furlong
  fullname: Furlong, Laura I.
– sequence: 16
  givenname: Marek
  surname: Ostaszewski
  fullname: Ostaszewski, Marek
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37502697$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1P3DAQtSqqQrf8gR6qHHvZrT_ixD5VFWoBCakXyoWDNf5ajJI4tRPQ9tfX7C4IekC9-GvmvTfzxu_RwRAHh9BHgleMCfnF6zD4FcWUrQjBhGP-Bh3RpmXLtqnbg2fnQ3Sc8y3GmAosJKbv0CFrOaaNbI_Q9VXIM3ThD0whDlX0FcxT7MvNQNdtKhP7IuRsZUN2kF3Vw5grGGw1wnRzD5sSgHWCPlc-pipBco-p-QN666HL7ni_L9CvH98vT86WFz9Pz0--XSxN3chpyQy3jHNJhBZMUo4J043hNdOSOitrb6jkXkNdVkta4zDVQGijRW0aTChboPMdr41wq8YUekgbFSGo7UNMawWpNNQ5RUE4433R1a4WpJVOE2CSEGcFtx4XLrbjmocRNvfFgydCgtWD82rrvHpwXu2dL6ivO9Q4695Z44YpQfeilJeRIdyodbwrnKyRuExqgT7vGVL8Pbs8qT5k47oOBhfnrKjgdc0oLssCfXou9qTyONSSQHcJJsWck_P_14L4B2TCtP0UpeDQvQb9Cx1TylM
CitedBy_id crossref_primary_10_1016_j_toxlet_2024_07_164
Cites_doi 10.1186/gm155
10.1007/s12035-013-8489-4
10.1096/fj.201901888r
10.18176/jiaci.0300
10.1186/s13059-016-0974-4
10.1093/nar/gkac352
10.1038/s41598-021-84098-9
10.15252/msb.202110387
10.1093/bioinformatics/btw167
10.1002/pro.4565
10.1093/nar/gkz1021
10.1093/nar/gkab1028
10.3390/biomedicines10112710
10.1038/s41540-018-0059-y
10.3390/pharmaceutics13111935
10.1093/database/baaa017
10.1093/bioinformatics/bty489
10.1093/nar/gkw377
10.1093/bioinformatics/btm254
10.2174/138920211795860107
10.1093/nar/gkaa1043
10.1038/npjsba.2016.20
10.1093/nar/gkab1049
10.1016/j.exer.2015.11.007
10.1016/j.jaci.2020.11.032
10.1093/nar/gkx1153
10.1093/bioinformatics/btp616
10.1016/j.ceca.2018.01.002
10.1038/nmeth.4077
10.1093/nar/gkq331
10.1093/bioinformatics/btaa850
10.1007/s12016-020-08783-9
10.1093/bioinformatics/btq099
10.1007/s11926-021-01028-4
10.1038/s41536-022-00235-6
10.1093/bioinformatics/btz286
10.1080/13816810701537424
10.1093/nar/gkz946
10.1001/jamapediatrics.2022.3756
10.3390/ijms21041503
10.1093/bib/bbz067
10.1093/nar/gky1133
10.1038/nbt1111
10.1093/nar/gky1131
10.1093/nar/gkac399
10.3389/fped.2021.746856
10.3390/vaccines10111879
10.1016/j.autrev.2022.103240
10.1093/nar/gkaa1024
10.1186/s13023-021-01741-4
ContentType Journal Article
Copyright Copyright © 2023 Gawron, Hoksza, Piñero, Peña-Chilet, Esteban-Medina, Fernandez-Rueda, Colonna, Smula, Heirendt, Ancien, Groues, Satagopam, Schneider, Dopazo, Furlong and Ostaszewski.
Copyright © 2023 Gawron, Hoksza, Piñero, Peña-Chilet, Esteban-Medina, Fernandez-Rueda, Colonna, Smula, Heirendt, Ancien, Groues, Satagopam, Schneider, Dopazo, Furlong and Ostaszewski. 2023 Gawron, Hoksza, Piñero, Peña-Chilet, Esteban-Medina, Fernandez-Rueda, Colonna, Smula, Heirendt, Ancien, Groues, Satagopam, Schneider, Dopazo, Furlong and Ostaszewski
Copyright_xml – notice: Copyright © 2023 Gawron, Hoksza, Piñero, Peña-Chilet, Esteban-Medina, Fernandez-Rueda, Colonna, Smula, Heirendt, Ancien, Groues, Satagopam, Schneider, Dopazo, Furlong and Ostaszewski.
– notice: Copyright © 2023 Gawron, Hoksza, Piñero, Peña-Chilet, Esteban-Medina, Fernandez-Rueda, Colonna, Smula, Heirendt, Ancien, Groues, Satagopam, Schneider, Dopazo, Furlong and Ostaszewski. 2023 Gawron, Hoksza, Piñero, Peña-Chilet, Esteban-Medina, Fernandez-Rueda, Colonna, Smula, Heirendt, Ancien, Groues, Satagopam, Schneider, Dopazo, Furlong and Ostaszewski
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fbinf.2023.1101505
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Gawron et al
EISSN 2673-7647
ExternalDocumentID oai_doaj_org_article_2a8ecff469be48179eb1a3911ed85df0
10.3389/fbinf.2023.1101505
PMC10369067
37502697
10_3389_fbinf_2023_1101505
Genre Journal Article
GroupedDBID 53G
9T4
AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
OK1
PGMZT
RPM
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c469t-3c5d355918b83925013b6c543b92ed94fc295fba495fd17ce02ba126b84c60123
IEDL.DBID DOA
ISSN 2673-7647
IngestDate Wed Aug 27 00:55:55 EDT 2025
Wed Aug 20 00:14:29 EDT 2025
Tue Sep 30 17:12:51 EDT 2025
Fri Jul 11 05:23:03 EDT 2025
Thu Jan 02 22:51:00 EST 2025
Thu Apr 24 22:51:42 EDT 2025
Tue Jul 01 03:01:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords rare diseases (RD)
gene-disease association
systems biomedicine
disease maps
pathway diagrams
Language English
License Copyright © 2023 Gawron, Hoksza, Piñero, Peña-Chilet, Esteban-Medina, Fernandez-Rueda, Colonna, Smula, Heirendt, Ancien, Groues, Satagopam, Schneider, Dopazo, Furlong and Ostaszewski.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-3c5d355918b83925013b6c543b92ed94fc295fba495fd17ce02ba126b84c60123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Aybar Acar, Middle East Technical University, Türkiye
Reviewed by: Bilal Alsallakh, Facebook, United States
ORCID: Piotr Gawron, orcid.org/0000-0002-9328-8052; David Hoksza, orcid.org/0000-0003-4679-0557; Janet Piñero, orcid.org/0000-0003-1244-7654; Maria Pena Chilet, orcid.org/0000-0002-6445-9617; Marina Esteban, orcid.org/0000-0003-2632-9587; Vincenza Colonna, orcid.org/0000-0002-3966-0474; Ewa Smula, orcid.org/0000-0001-7118-3164; Laurent Heirendt, orcid.org/0000-0003-1861-0037; François Ancien, orcid.org/0000-0002-0895-1746; Valentin Groues, orcid.org/0000-0001-6501-0806; Venkata Satagopam, orcid.org/0000-0002-6532-5880; Reinhard Schneider, orcid.org/0000-0002-8278-1618; Joaquin Dopazo, orcid.org/0000-0003-3318-120X; Laura I. Furlong, orcid.org/0000-0002-9383-528X; Marek Ostaszewski, orcid.org/0000-0003-1473-370X
Edited by: Barbora Kozlikova, Masaryk University, Czechia
OpenAccessLink https://doaj.org/article/2a8ecff469be48179eb1a3911ed85df0
PMID 37502697
PQID 2854432044
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_2a8ecff469be48179eb1a3911ed85df0
unpaywall_primary_10_3389_fbinf_2023_1101505
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10369067
proquest_miscellaneous_2854432044
pubmed_primary_37502697
crossref_primary_10_3389_fbinf_2023_1101505
crossref_citationtrail_10_3389_fbinf_2023_1101505
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-12
PublicationDateYYYYMMDD 2023-07-12
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-12
  day: 12
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in bioinformatics
PublicationTitleAlternate Front Bioinform
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Szklarczyk (B51) 2019; 47
Bales (B4) 2016; 150
Côté (B9) 2010; 38
Landrum (B30) 2018; 46
Yang (B54) 2021; 16
Ichhpujani (B25) 2022; 10
Gawron (B18) 2016; 2
Ortega (B41) 2021; 13
Türei (B52) 2016; 13
Hoksza (B24) 2019; 35
Mannu (B35) 2014; 19
Singh (B50) 2020; 2020
Makino (B44) 2022; 176
Balci (B3) 2021; 37
Liu (B32) 2022; 50
Malone (B34) 2010; 26
Vanderkam (B53) 2016; 32
D’Alessandro (B12) 2022; 10
Ayuso (B2) 2010; 2
Kitano (B26) 2005; 23
Hoksza (B23) 2018; 34
McLaren (B39) 2016; 17
Carvalho-Silva (B7) 2019; 47
Lei (B31) 2021; 9
Cunningham (B11) 2022; 50
Ferrari (B14) 2011; 12
B40
Chakraborty (B8) 2020; 34
Ostaszewski (B42) 2021; 17
Kumrah (B29) 2020; 59
Adams (B1) 2007; 28
Liu (B33) 2022; 50
Giryes (B21) 2023; 22
Davis (B13) 2007; 23
Gawron (B19) 2023; 32
Fujita (B17) 2014; 49
Mazein (B38) 2018; 4
Kuleshov (B28) 2016; 44
Bukulmez (B6) 2021; 23
Martens (B36) 2021; 49
Bijnens (B5) 2018; 71
Saito (B48) 2021; 11
B15
Fu (B16) 2020; 21
Csardi (B10) 2006; 1695
Rodrigues (B47) 2022; 7
Rodchenkov (B46) 2019; 48
Sakurai (B49) 2019; 29
Gillespie (B20) 2022; 50
Hoksza (B22) 2019; 21
Robinson (B45) 2010; 26
Mazein (B37) 2021; 147
Köhler (B27) 2021; 49
Piñero (B43) 2020; 48
References_xml – volume: 2
  start-page: 34
  year: 2010
  ident: B2
  article-title: Retinitis pigmentosa and allied conditions today: A paradigm of translational research
  publication-title: Genome Med.
  doi: 10.1186/gm155
– volume: 49
  start-page: 88
  year: 2014
  ident: B17
  article-title: Integrating pathways of Parkinson’s disease in a molecular interaction map
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-013-8489-4
– volume: 34
  start-page: 1211
  year: 2020
  ident: B8
  article-title: Novel molecular mechanisms for Prph2-associated pattern dystrophy
  publication-title: FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol.
  doi: 10.1096/fj.201901888r
– volume: 29
  start-page: 251
  year: 2019
  ident: B49
  article-title: Autoimmune aspects of Kawasaki disease
  publication-title: J. Investig. Allergol. Clin. Immunol.
  doi: 10.18176/jiaci.0300
– volume: 17
  start-page: 122
  year: 2016
  ident: B39
  article-title: The Ensembl variant effect predictor
  publication-title: Genome Biol.
  doi: 10.1186/s13059-016-0974-4
– volume: 50
  start-page: W551
  year: 2022
  ident: B32
  article-title: PaintOmics 4: New tools for the integrative analysis of multi-omics datasets supported by multiple pathway databases
  publication-title: Nucleic Acids Res. gkac352
  doi: 10.1093/nar/gkac352
– volume: 11
  start-page: 4681
  year: 2021
  ident: B48
  article-title: A case of retinitis pigmentosa homozygous for a rare CNGA1 causal variant
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-84098-9
– volume: 17
  start-page: e10387
  year: 2021
  ident: B42
  article-title: COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.202110387
– volume: 32
  start-page: 2378
  year: 2016
  ident: B53
  article-title: pileup.js: a JavaScript library for interactive and in-browser visualization of genomic data
  publication-title: Bioinforma. Oxf Engl.
  doi: 10.1093/bioinformatics/btw167
– volume: 32
  start-page: e4565
  year: 2023
  ident: B19
  article-title: Exploration and comparison of molecular mechanisms across diseases using MINERVA Net
  publication-title: Protein Sci.
  doi: 10.1002/pro.4565
– volume: 48
  start-page: D845
  year: 2020
  ident: B43
  article-title: The DisGeNET knowledge platform for disease genomics: 2019 update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz1021
– volume: 50
  start-page: D687
  year: 2022
  ident: B20
  article-title: The reactome pathway knowledgebase 2022
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab1028
– volume: 10
  start-page: 2710
  year: 2022
  ident: B12
  article-title: Pathogenesis of vascular retinal manifestations in COVID-19 patients: A review
  publication-title: Biomedicines
  doi: 10.3390/biomedicines10112710
– volume: 4
  start-page: 21
  year: 2018
  ident: B38
  article-title: Systems medicine disease maps: Community-driven comprehensive representation of disease mechanisms
  publication-title: NPJ Syst. Biol. Appl.
  doi: 10.1038/s41540-018-0059-y
– volume: 13
  start-page: 1935
  year: 2021
  ident: B41
  article-title: Neuroinflammation as a therapeutic target in retinitis pigmentosa and quercetin as its potential modulator
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13111935
– volume: 2020
  start-page: baaa017
  year: 2020
  ident: B50
  article-title: RA-Map: Building a state-of-the-art interactive knowledge base for rheumatoid arthritis
  publication-title: Database J. Biol. Databases Curation
  doi: 10.1093/database/baaa017
– volume: 34
  start-page: 4127
  year: 2018
  ident: B23
  article-title: MolArt: A molecular structure annotation and visualization tool
  publication-title: Bioinforma. Oxf Engl.
  doi: 10.1093/bioinformatics/bty489
– volume: 44
  start-page: W90
  year: 2016
  ident: B28
  article-title: Enrichr: A comprehensive gene set enrichment analysis web server 2016 update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw377
– volume: 23
  start-page: 1846
  year: 2007
  ident: B13
  article-title: GEOquery: A bridge between the gene expression Omnibus (GEO) and BioConductor
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm254
– ident: B40
– volume: 12
  start-page: 238
  year: 2011
  ident: B14
  article-title: Retinitis pigmentosa: Genes and disease mechanisms
  publication-title: Curr. Genomics
  doi: 10.2174/138920211795860107
– volume: 49
  start-page: D1207
  year: 2021
  ident: B27
  article-title: The human phenotype Ontology in 2021
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1043
– volume: 2
  start-page: 16020
  year: 2016
  ident: B18
  article-title: MINERVA-a platform for visualization and curation of molecular interaction networks
  publication-title: NPJ Syst. Biol. Appl.
  doi: 10.1038/npjsba.2016.20
– volume: 50
  start-page: D988
  year: 2022
  ident: B11
  article-title: Ensembl 2022
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab1049
– volume: 150
  start-page: 71
  year: 2016
  ident: B4
  article-title: Aberrant protein trafficking in retinal degenerations: The initial phase of retinal remodeling
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2015.11.007
– volume: 147
  start-page: 853
  year: 2021
  ident: B37
  article-title: AsthmaMap: An interactive knowledge repository for mechanisms of asthma
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2020.11.032
– volume: 46
  start-page: D1062
  year: 2018
  ident: B30
  article-title: ClinVar: Improving access to variant interpretations and supporting evidence
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1153
– volume: 26
  start-page: 139
  year: 2010
  ident: B45
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 71
  start-page: 95
  year: 2018
  ident: B5
  article-title: A critical appraisal of the role of intracellular Ca2+-signaling pathways in Kawasaki disease
  publication-title: Cell Calcium
  doi: 10.1016/j.ceca.2018.01.002
– volume: 13
  start-page: 966
  year: 2016
  ident: B52
  article-title: OmniPath: Guidelines and gateway for literature-curated signaling pathway resources
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4077
– volume: 38
  start-page: W155
  year: 2010
  ident: B9
  article-title: The Ontology Lookup service: Bigger and better
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq331
– volume: 37
  start-page: 1475
  year: 2021
  ident: B3
  article-title: Newt: A comprehensive web-based tool for viewing, constructing and analyzing biological maps
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa850
– volume: 59
  start-page: 122
  year: 2020
  ident: B29
  article-title: Immunogenetics of Kawasaki disease
  publication-title: Clin. Rev. Allergy Immunol.
  doi: 10.1007/s12016-020-08783-9
– volume: 26
  start-page: 1112
  year: 2010
  ident: B34
  article-title: Modeling sample variables with an experimental factor Ontology
  publication-title: Bioinforma. Oxf Engl.
  doi: 10.1093/bioinformatics/btq099
– volume: 23
  start-page: 58
  year: 2021
  ident: B6
  article-title: Current understanding of multisystem inflammatory syndrome (MIS-C) following COVID-19 and its distinction from Kawasaki disease
  publication-title: Curr. Rheumatol. Rep.
  doi: 10.1007/s11926-021-01028-4
– volume: 7
  start-page: 39
  year: 2022
  ident: B47
  article-title: Modeling PRPF31 retinitis pigmentosa using retinal pigment epithelium and organoids combined with gene augmentation rescue
  publication-title: Npj Regen. Med.
  doi: 10.1038/s41536-022-00235-6
– volume: 35
  start-page: 4496
  year: 2019
  ident: B24
  article-title: MINERVA API and plugins: Opening molecular network analysis and visualization to the community
  publication-title: Bioinforma. Oxf Engl.
  doi: 10.1093/bioinformatics/btz286
– volume: 28
  start-page: 113
  year: 2007
  ident: B1
  article-title: The retinal ciliopathies
  publication-title: Ophthalmic Genet.
  doi: 10.1080/13816810701537424
– volume: 48
  start-page: D489
  year: 2019
  ident: B46
  article-title: Pathway commons 2019 update: Integration, analysis and exploration of pathway data
  publication-title: Nucleic Acids Res. gkz946
  doi: 10.1093/nar/gkz946
– volume: 176
  start-page: 1217
  year: 2022
  ident: B44
  article-title: Incidence of Kawasaki disease before and after the COVID-19 pandemic in Japan: Results of the 26th nationwide survey, 2019 to 2020
  publication-title: JAMA Pediatr.
  doi: 10.1001/jamapediatrics.2022.3756
– volume: 21
  start-page: 1503
  year: 2020
  ident: B16
  article-title: Targeting neurovascular interaction in retinal disorders
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21041503
– volume: 21
  year: 2019
  ident: B22
  article-title: Closing the gap between formats for storing layout information in systems biology
  publication-title: Brief. Bioinform
  doi: 10.1093/bib/bbz067
– volume: 47
  start-page: D1056
  year: 2019
  ident: B7
  article-title: Open targets platform: New developments and updates two years on
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1133
– volume: 1695
  start-page: 1
  year: 2006
  ident: B10
  article-title: The igraph software package for complex network research
  publication-title: InterJournal Complex Syst.
– volume: 23
  start-page: 961
  year: 2005
  ident: B26
  article-title: Using process diagrams for the graphical representation of biological networks
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1111
– volume: 47
  start-page: D607
  year: 2019
  ident: B51
  article-title: STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1131
– volume: 50
  start-page: W312
  year: 2022
  ident: B33
  article-title: ExpressVis: A biologist-oriented interactive web server for exploring multi-omics data
  publication-title: Nucleic Acids Res. gkac399
  doi: 10.1093/nar/gkac399
– volume: 9
  start-page: 746856
  year: 2021
  ident: B31
  article-title: Increased risk of asthma and allergic rhinitis in patients with a past history of Kawasaki disease: A systematic review and meta-analyses
  publication-title: Front. Pediatr.
  doi: 10.3389/fped.2021.746856
– volume: 10
  start-page: 1879
  year: 2022
  ident: B25
  article-title: COVID-19 vaccine-associated ocular adverse effects: An overview
  publication-title: Vaccines
  doi: 10.3390/vaccines10111879
– volume: 22
  start-page: 103240
  year: 2023
  ident: B21
  article-title: Immune and non-immune mechanisms that determine vasculitis and coronary artery aneurysm topography in Kawasaki disease and MIS-C
  publication-title: Autoimmun. Rev.
  doi: 10.1016/j.autrev.2022.103240
– volume: 49
  start-page: D613
  year: 2021
  ident: B36
  article-title: WikiPathways: Connecting communities
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1024
– ident: B15
– volume: 19
  start-page: 275
  year: 2014
  ident: B35
  article-title: Retinal phototransduction
  publication-title: Retin. Phototransduction. Neurosci.
– volume: 16
  start-page: 101
  year: 2021
  ident: B54
  article-title: RDmap: A map for exploring rare diseases
  publication-title: Orphanet J. Rare Dis.
  doi: 10.1186/s13023-021-01741-4
SSID ssj0002808902
Score 2.236302
Snippet Introduction: Investigation of molecular mechanisms of human disorders, especially rare diseases, require exploration of various knowledge repositories for...
Investigation of molecular mechanisms of human disorders, especially rare diseases, require exploration of various knowledge repositories for building precise...
Introduction: Investigation of molecular mechanisms of human disorders, especially rare diseases, require exploration of various knowledge repositories for...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1101505
SubjectTerms Bioinformatics
disease maps
gene-disease association
pathway diagrams
rare diseases (RD)
systems biomedicine
Title Visualization of automatically combined disease maps and pathway diagrams for rare diseases
URI https://www.ncbi.nlm.nih.gov/pubmed/37502697
https://www.proquest.com/docview/2854432044
https://pubmed.ncbi.nlm.nih.gov/PMC10369067
https://doi.org/10.3389/fbinf.2023.1101505
https://doaj.org/article/2a8ecff469be48179eb1a3911ed85df0
UnpaywallVersion publishedVersion
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 2673-7647
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002808902
  issn: 2673-7647
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2673-7647
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002808902
  issn: 2673-7647
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2673-7647
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002808902
  issn: 2673-7647
  databaseCode: RPM
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQF7hURYU2LSAj9QYRiT-y9hEqEEJqTwUh9WD5U6XaZlfNrtD-e2ac7GpXrUoPvSZOYo_H8Xv2zDMhH12II0C2rhRByBL4Bi9dLWMJ_W-r5CtXSUxw_vylubkTtw_yYe2oL4wJ6-WBe8OdM6uiTwlYnItCgfvAz8VyGKIxKBlSZuswja2RqR95yajCDbQ-SwZYmD5PQDRRspNxjHwHGCQ3ZqIs2P8nlPl7sOTOvJ3axZMdj9dmouvX5NUAIelFX_U9shXbN-Tb_WOH-ZF9ViWdJGrns0nWY4VXLCg4FlQtBjrsyNCfdtpR2waKZxI_2QXcsBip1VGAsRQodFwW7fbJ3fXV10835XBwQunBTrOSexkAR-haOcQ_EmCea7wU3GkWgxbJMy2Ts0COUqhHPlbM2Zo1TgnfIMg6INvtpI3vCFUy6eS1UlKjkqBU3DOfas8xJLHxuiD10ojGD6rieLjF2AC7QMObbHiDhjeD4Qtyunpm2mtq_LX0JfbNqiTqYecL4CVm8BLzkpcU5GTZswbGD26K2DZO5p3BDFLBWSVEQd72Pb36FAc4xRo9Koja8IGNumzeaR-_Z43uGpCBBiRQkLOVu_xDY9__j8Z-ILv4TlyBrtkh2Z79mscjgE4zd5xHyXFe03oGcQoYfQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visualization+of+automatically+combined+disease+maps+and+pathway+diagrams+for+rare+diseases&rft.jtitle=Frontiers+in+bioinformatics&rft.au=Piotr+Gawron&rft.au=David+Hoksza&rft.au=David+Hoksza&rft.au=Janet+Pi%C3%B1ero&rft.date=2023-07-12&rft.pub=Frontiers+Media+S.A&rft.eissn=2673-7647&rft.volume=3&rft_id=info:doi/10.3389%2Ffbinf.2023.1101505&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2a8ecff469be48179eb1a3911ed85df0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-7647&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-7647&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-7647&client=summon