A Convolutional Neural Network Algorithm for Pest Detection Using GoogleNet

The primary strategy for mitigating lost productivity entails promptly, accurately, and efficiently detecting plant pests. Although detection by humans can be useful in detecting certain pests, it is often slower compared to automated methods, such as machine learning. Hence, this study employs a Co...

Full description

Saved in:
Bibliographic Details
Published inAgriEngineering Vol. 5; no. 4; pp. 2366 - 2380
Main Authors Yulita, Intan Nurma, Rambe, Muhamad Farid Ridho, Sholahuddin, Asep, Prabuwono, Anton Satria
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2023
Subjects
Online AccessGet full text
ISSN2624-7402
2624-7402
DOI10.3390/agriengineering5040145

Cover

Abstract The primary strategy for mitigating lost productivity entails promptly, accurately, and efficiently detecting plant pests. Although detection by humans can be useful in detecting certain pests, it is often slower compared to automated methods, such as machine learning. Hence, this study employs a Convolutional Neural Network (CNN) model, specifically GoogleNet, to detect pests within mobile applications. The technique of detection involves the input of images depicting plant pests, which are subsequently subjected to further processing. This study employed many experimental methods to determine the most effective model. The model exhibiting a 93.78% accuracy stands out as the most superior model within the scope of this investigation. The aforementioned model has been included in a smartphone application with the purpose of facilitating Indonesian farmers in the identification of pests affecting their crops. The implementation of an Indonesian language application is a contribution to this research. Using this local language makes it easier for Indonesian farmers to use it. The potential impact of this application on Indonesian farmers is anticipated to be significant. By enhancing pest identification capabilities, farmers may employ more suitable pest management strategies, leading to improved crop yields in the long run.
AbstractList The primary strategy for mitigating lost productivity entails promptly, accurately, and efficiently detecting plant pests. Although detection by humans can be useful in detecting certain pests, it is often slower compared to automated methods, such as machine learning. Hence, this study employs a Convolutional Neural Network (CNN) model, specifically GoogleNet, to detect pests within mobile applications. The technique of detection involves the input of images depicting plant pests, which are subsequently subjected to further processing. This study employed many experimental methods to determine the most effective model. The model exhibiting a 93.78% accuracy stands out as the most superior model within the scope of this investigation. The aforementioned model has been included in a smartphone application with the purpose of facilitating Indonesian farmers in the identification of pests affecting their crops. The implementation of an Indonesian language application is a contribution to this research. Using this local language makes it easier for Indonesian farmers to use it. The potential impact of this application on Indonesian farmers is anticipated to be significant. By enhancing pest identification capabilities, farmers may employ more suitable pest management strategies, leading to improved crop yields in the long run.
Author Yulita, Intan Nurma
Sholahuddin, Asep
Prabuwono, Anton Satria
Rambe, Muhamad Farid Ridho
Author_xml – sequence: 1
  givenname: Intan Nurma
  orcidid: 0000-0002-8539-3311
  surname: Yulita
  fullname: Yulita, Intan Nurma
– sequence: 2
  givenname: Muhamad Farid Ridho
  surname: Rambe
  fullname: Rambe, Muhamad Farid Ridho
– sequence: 3
  givenname: Asep
  surname: Sholahuddin
  fullname: Sholahuddin, Asep
– sequence: 4
  givenname: Anton Satria
  orcidid: 0000-0003-3337-6605
  surname: Prabuwono
  fullname: Prabuwono, Anton Satria
BookMark eNqNkV9rVDEQxYNUsNZ-Bbngiy9r8-_e3IAvy1rbYlEf6nOYZifXrNlkTXIt_fZmuyJSBH2aIfzOycyZ5-QopoiEvGT0jRCansGUPcbJR8Ts49RTSZnsn5BjPnC5UJLyoz_6Z-S0lA2llDew1_qYfFh2qxR_pDBXnyKE7iPO-aHUu5S_dcswpezr123nUu4-Y6ndO6xo93T3pbQvu4uUpoBN8II8dRAKnv6qJ-Tm_fnN6nJx_eniarW8Xlg56LoQeqROCiWVUqwfkWspOVfWcadZIwQdNEeuemWpGDRah1Zyt-bMgRZKnJCrg-06wcbsst9CvjcJvHl4SHkykKu3AY3ioheaS307ajmCvAWka6YGBhRcr0TzUgevOe7g_g5C-G3IqNknbP6ecFO-Pih3OX2fWy5m64vFECBimotpW3FGR8V4Q189Qjdpzi3sPdXuMHLJZKPeHiibUykZnbG-wj7nmsGHf88zPJL_5yI_AUhytPM
CitedBy_id crossref_primary_10_1016_j_mlwa_2024_100596
crossref_primary_10_1007_s10661_024_12667_2
crossref_primary_10_1016_j_atech_2024_100517
crossref_primary_10_3390_plants13213001
crossref_primary_10_1038_s41598_024_83012_3
crossref_primary_10_3390_agriculture15040418
Cites_doi 10.3389/fcomp.2022.1041703
10.1186/s13007-021-00745-2
10.1186/s40537-019-0197-0
10.3390/app10175841
10.1007/s10462-021-10066-4
10.1109/ACCESS.2021.3130035
10.1016/j.compag.2022.106827
10.1007/s13593-020-00657-w
10.1016/j.bbe.2021.11.004
10.1109/CVPR52729.2023.02271
10.1007/s11222-009-9153-8
10.20546/ijcmas.2019.801.264
10.1016/j.compag.2022.107017
10.1016/j.compbiomed.2023.106611
10.5573/IEIESPC.2015.4.1.035
10.3390/agriculture12020248
10.1109/ACCESS.2022.3220335
10.3390/electronics10040372
10.3390/agronomy11122494
10.1109/DeSE58274.2023.10099694
10.1080/09540091.2020.1841111
10.3390/ma15041477
10.22271/chemi.2020.v8.i5d.10529
10.1109/ICASSP40776.2020.9053228
10.31018/jans.v14iSI.3599
10.29103/micoms.v3i.230
10.1109/ACCESS.2019.2927169
10.1016/j.neucom.2020.04.157
10.1016/bs.agron.2020.03.001
10.1007/s10530-021-02631-3
10.1016/j.patcog.2023.109347
10.1186/s40537-020-00387-6
10.3391/mbi.2020.11.4.07
10.1007/s41348-022-00599-3
10.7831/ras.9.0_178
10.1016/j.isprsjprs.2020.12.010
10.21512/commit.v16i2.8144
10.1111/een.13073
10.1109/TKDE.2019.2912815
10.1109/ACCESS.2021.3105112
10.3390/insects14020148
10.3390/computation11020020
10.1080/01431161.2020.1842541
10.3389/fnins.2018.00818
10.1016/j.bspc.2023.105239
10.3390/ai1020021
10.14202/vetworld.2022.1154-1162
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7X2
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
COVID
DWQXO
HCIFZ
M0K
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.3390/agriengineering5040145
DatabaseName CrossRef
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
SciTech Premium Collection (via ProQuest)
Agriculture Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Agricultural Science Database
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2624-7402
EndPage 2380
ExternalDocumentID oai_doaj_org_article_723539249b8948a4bae0d1761a0af573
10.3390/agriengineering5040145
10_3390_agriengineering5040145
GeographicLocations Taiwan
Indonesia
GeographicLocations_xml – name: Taiwan
– name: Indonesia
GroupedDBID 7X2
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
ITC
M0K
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
3V.
8FE
8FH
8FK
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
7S9
L.6
PUEGO
ADTOC
UNPAY
ID FETCH-LOGICAL-c469t-3980f4374777158e2944227cf2f9146930692e2757c0369ecfec42fd21fa9373
IEDL.DBID BENPR
ISSN 2624-7402
IngestDate Fri Oct 03 12:51:17 EDT 2025
Tue Aug 19 17:56:34 EDT 2025
Thu Oct 02 12:09:28 EDT 2025
Mon Jun 30 07:35:20 EDT 2025
Thu Apr 24 23:04:45 EDT 2025
Thu Oct 16 04:34:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-3980f4374777158e2944227cf2f9146930692e2757c0369ecfec42fd21fa9373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8539-3311
0000-0003-3337-6605
OpenAccessLink https://www.proquest.com/docview/2904582414?pq-origsite=%requestingapplication%&accountid=15518
PQID 2904582414
PQPubID 5046921
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_723539249b8948a4bae0d1761a0af573
unpaywall_primary_10_3390_agriengineering5040145
proquest_miscellaneous_2942108712
proquest_journals_2904582414
crossref_citationtrail_10_3390_agriengineering5040145
crossref_primary_10_3390_agriengineering5040145
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle AgriEngineering
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kasinathan (ref_22) 2021; 8
Shorten (ref_40) 2019; 6
Wong (ref_58) 2020; 32
Chithambarathanu (ref_25) 2023; 11
Lu (ref_46) 2021; 33
ref_14
Rejeb (ref_18) 2022; 198
ref_12
ref_56
Gondal (ref_20) 2022; 6
ref_19
Yu (ref_53) 2021; 444
Hao (ref_48) 2021; 9
Ardison (ref_47) 2022; 16
Wang (ref_50) 2018; 12
White (ref_11) 2022; 129
ref_23
ref_21
Kattenborn (ref_43) 2021; 173
Nuryitmawan (ref_4) 2021; 4
Wang (ref_8) 2021; 17
Safitri (ref_5) 2022; 27
Fushiki (ref_57) 2011; 21
ref_29
ref_26
Khalifa (ref_41) 2022; 55
Rozaki (ref_1) 2021; 9
Jiao (ref_27) 2022; 195
Yatoo (ref_3) 2021; 41
Kora (ref_51) 2022; 42
Gupta (ref_9) 2022; 24
ref_36
ref_35
Saleh (ref_39) 2021; 8
ref_34
(ref_38) 2021; 1
ref_31
Lei (ref_44) 2019; 7
Yuesheng (ref_32) 2021; 9
Panggabean (ref_30) 2020; 14
Ahirwar (ref_17) 2019; 8
Braga (ref_13) 2021; 46
Yoo (ref_52) 2015; 4
Burchfield (ref_15) 2020; 162
ref_37
Thao (ref_7) 2022; 36
Chen (ref_54) 2022; 10
Yilmaz (ref_55) 2021; 5
Dutta (ref_16) 2020; 8
Gandharum (ref_2) 2021; 42
Muhammad (ref_33) 2018; 12
Prabha (ref_28) 2022; 14
Tuggener (ref_45) 2022; 4
ref_49
Pocock (ref_10) 2020; 11
Agustina (ref_6) 2022; 15
Sangeetha (ref_24) 2022; 71
Xu (ref_42) 2023; 137
References_xml – volume: 12
  start-page: 468
  year: 2018
  ident: ref_33
  article-title: Evaluation of CNN, alexnet and GoogleNet for fruit recognition
  publication-title: Indones. J. Electr. Eng. Comput. Sci.
– volume: 4
  start-page: 1703
  year: 2022
  ident: ref_45
  article-title: Is it enough to optimize CNN architectures on ImageNet?
  publication-title: Front. Comput. Sci.
  doi: 10.3389/fcomp.2022.1041703
– volume: 17
  start-page: 43
  year: 2021
  ident: ref_8
  article-title: Early real-time detection algorithm of tomato diseases and pests in the natural environment
  publication-title: Plant Methods
  doi: 10.1186/s13007-021-00745-2
– volume: 6
  start-page: 59
  year: 2022
  ident: ref_20
  article-title: Early pest detection from crop using image processing and computational intelligence
  publication-title: Int. J. Sci. Res. Eng. Manag.
– volume: 6
  start-page: 60
  year: 2019
  ident: ref_40
  article-title: A survey on Image Data Augmentation for Deep Learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– ident: ref_49
  doi: 10.3390/app10175841
– volume: 4
  start-page: 32
  year: 2021
  ident: ref_4
  article-title: The Impact of Credit on Multidimensional Poverty in Rural Areas: A Case Study of the Indonesian Agricultural Sector
  publication-title: Agriecobis J. Agric. Socioecon. Bus.
– volume: 1
  start-page: 1
  year: 2021
  ident: ref_38
  article-title: Performance comparison of deep learning frameworks
  publication-title: Comput. Inform.
– volume: 55
  start-page: 2351
  year: 2022
  ident: ref_41
  article-title: A comprehensive survey of recent trends in deep learning for digital images augmentation
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-10066-4
– volume: 9
  start-page: 159283
  year: 2021
  ident: ref_48
  article-title: A Generalized Pooling for Brain Tumor Segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3130035
– volume: 195
  start-page: 106827
  year: 2022
  ident: ref_27
  article-title: Adaptive feature fusion pyramid network for multi-classes agricultural pest detection
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106827
– volume: 41
  start-page: 7
  year: 2021
  ident: ref_3
  article-title: Sustainable management of diseases and pests in crops by vermicompost and vermicompost tea. A review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-020-00657-w
– volume: 42
  start-page: 79
  year: 2022
  ident: ref_51
  article-title: Transfer learning techniques for medical image analysis: A review
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2021.11.004
– ident: ref_37
  doi: 10.1109/CVPR52729.2023.02271
– volume: 36
  start-page: 209
  year: 2022
  ident: ref_7
  article-title: Pest Early Detection in Greenhouse Using Machine Learning
  publication-title: Rev. D’intelligence Artif.
– volume: 21
  start-page: 137
  year: 2011
  ident: ref_57
  article-title: Estimation of prediction error by using K-fold cross-validation
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-009-9153-8
– volume: 8
  start-page: 2500
  year: 2019
  ident: ref_17
  article-title: Application of Drone in Agriculture
  publication-title: Int. J. Curr. Microbiol. Appl. Sci.
  doi: 10.20546/ijcmas.2019.801.264
– volume: 198
  start-page: 107017
  year: 2022
  ident: ref_18
  article-title: Drones in agriculture: A review and bibliometric analysis
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107017
– ident: ref_21
  doi: 10.1016/j.compbiomed.2023.106611
– volume: 4
  start-page: 35
  year: 2015
  ident: ref_52
  article-title: Deep Convolution Neural Networks in Computer Vision: A Review
  publication-title: IEIE Trans. Smart Process. Comput.
  doi: 10.5573/IEIESPC.2015.4.1.035
– ident: ref_26
  doi: 10.3390/agriculture12020248
– volume: 10
  start-page: 118654
  year: 2022
  ident: ref_54
  article-title: Missing Teeth and Restoration Detection Using Dental Panoramic Radiography Based on Transfer Learning with CNNs
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3220335
– ident: ref_29
  doi: 10.3390/electronics10040372
– ident: ref_12
  doi: 10.3390/agronomy11122494
– ident: ref_35
  doi: 10.1109/DeSE58274.2023.10099694
– volume: 27
  start-page: 1169
  year: 2022
  ident: ref_5
  article-title: The Adaptation of Export-Scale Urban Farmers Amid the COVID-19 Pandemic in Bandung Metropolitan
  publication-title: Qual. Rep.
– volume: 33
  start-page: 482
  year: 2021
  ident: ref_46
  article-title: CNN Convolutional layer optimisation based on quantum evolutionary algorithm
  publication-title: Conn. Sci.
  doi: 10.1080/09540091.2020.1841111
– ident: ref_56
  doi: 10.3390/ma15041477
– volume: 8
  start-page: 203
  year: 2020
  ident: ref_16
  article-title: Application of drone in agriculture: A review
  publication-title: Int. J. Chem. Stud.
  doi: 10.22271/chemi.2020.v8.i5d.10529
– ident: ref_36
  doi: 10.1109/ICASSP40776.2020.9053228
– volume: 71
  start-page: 1399
  year: 2022
  ident: ref_24
  article-title: A Novel Exploration of Plant Disease and Pest Detection Using Machine Learning and Deep Learning Algorithms
  publication-title: Publ. Issue
– volume: 14
  start-page: 138
  year: 2022
  ident: ref_28
  article-title: Android application development for identifying maize infested with fall armyworms with Tamil Nadu Agricultural University Integrated proposed pest management (TNAU IPM) capsules
  publication-title: J. Appl. Nat. Sci.
  doi: 10.31018/jans.v14iSI.3599
– ident: ref_31
  doi: 10.29103/micoms.v3i.230
– volume: 14
  start-page: 588
  year: 2020
  ident: ref_30
  article-title: Indonesia’s Ambivalent Language Policy on English: Cause and Effect
  publication-title: Int. J. Innov. Creat. Change
– volume: 7
  start-page: 124087
  year: 2019
  ident: ref_44
  article-title: A dilated cnn model for image classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2927169
– volume: 444
  start-page: 92
  year: 2021
  ident: ref_53
  article-title: Convolutional neural networks for medical image analysis: State-of-the-art, comparisons, improvement and perspectives
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.157
– volume: 162
  start-page: 1
  year: 2020
  ident: ref_15
  article-title: Drones in agriculture
  publication-title: Adv. Agron.
  doi: 10.1016/bs.agron.2020.03.001
– volume: 24
  start-page: 123
  year: 2022
  ident: ref_9
  article-title: Using citizen science for early detection of tree pests and diseases: Perceptions of professional and public participants
  publication-title: Biol. Invasions
  doi: 10.1007/s10530-021-02631-3
– volume: 137
  start-page: 109347
  year: 2023
  ident: ref_42
  article-title: A Comprehensive Survey of Image Augmentation Techniques for Deep Learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2023.109347
– volume: 8
  start-page: 1
  year: 2021
  ident: ref_39
  article-title: Analysis and best parameters selection for person recognition based on gait model using CNN algorithm and image augmentation
  publication-title: J. Big Data
  doi: 10.1186/s40537-020-00387-6
– volume: 11
  start-page: 720
  year: 2020
  ident: ref_10
  article-title: Ethical dilemmas when using citizen science for early detection of invasive tree pests and diseases
  publication-title: Manag. Biol. Invasions
  doi: 10.3391/mbi.2020.11.4.07
– volume: 129
  start-page: 1249
  year: 2022
  ident: ref_11
  article-title: Technology development for the early detection of plant pests: A framework for assessing Technology Readiness Levels (TRLs) in environmental science
  publication-title: J. Plant Dis. Prot.
  doi: 10.1007/s41348-022-00599-3
– volume: 9
  start-page: 178
  year: 2021
  ident: ref_1
  article-title: Farmers’ disaster mitigation strategies in Indonesia
  publication-title: Rev. Agric. Sci.
  doi: 10.7831/ras.9.0_178
– volume: 8
  start-page: 446
  year: 2021
  ident: ref_22
  article-title: Insect classification and detection in field crops using modern machine learning techniques
  publication-title: Inf. Process. Agric.
– volume: 173
  start-page: 24
  year: 2021
  ident: ref_43
  article-title: Review on Convolutional Neural Networks (CNN) in vegetation remote sensing
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.12.010
– volume: 16
  start-page: 149
  year: 2022
  ident: ref_47
  article-title: Observing Pre-Trained Convolutional Neural Network (CNN) Layers as Feature Extractor for Detecting Bias in Image Classification Data
  publication-title: CommIT J.
  doi: 10.21512/commit.v16i2.8144
– volume: 46
  start-page: 1241
  year: 2021
  ident: ref_13
  article-title: Host repertoires and changing insect–plant interactions
  publication-title: Ecol. Entomol.
  doi: 10.1111/een.13073
– volume: 5
  start-page: 395
  year: 2021
  ident: ref_55
  article-title: A modified version of GoogLeNet for melanoma diagnosis
  publication-title: J. Inf. Telecommun.
– volume: 32
  start-page: 1586
  year: 2020
  ident: ref_58
  article-title: Reliable Accuracy Estimates from k-Fold Cross Validation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2912815
– volume: 9
  start-page: 113599
  year: 2021
  ident: ref_32
  article-title: Circular Fruit and Vegetable Classification Based on Optimized GoogLeNet
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3105112
– volume: 11
  start-page: 1
  year: 2023
  ident: ref_25
  article-title: Survey on crop pest detection using deep learning and machine learning approaches
  publication-title: Multimed. Tools Appl.
– ident: ref_19
  doi: 10.3390/insects14020148
– ident: ref_14
  doi: 10.3390/computation11020020
– volume: 42
  start-page: 1738
  year: 2021
  ident: ref_2
  article-title: Remote sensing versus the area sampling frame method in paddy rice acreage estimation in Indramayu regency, West Java province, Indonesia
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2020.1842541
– volume: 12
  start-page: 818
  year: 2018
  ident: ref_50
  article-title: Multiple sclerosis identification by 14-layer convolutional neural network with batch normalization, dropout, and stochastic pooling
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00818
– ident: ref_34
  doi: 10.1016/j.bspc.2023.105239
– ident: ref_23
  doi: 10.3390/ai1020021
– volume: 15
  start-page: 1154
  year: 2022
  ident: ref_6
  article-title: The first report on the prevalence of soil-transmitted helminth infections and associated risk factors among traditional pig farmers in Bali Province, Indonesia
  publication-title: Vet. World
  doi: 10.14202/vetworld.2022.1154-1162
SSID ssj0002504599
Score 2.3068316
Snippet The primary strategy for mitigating lost productivity entails promptly, accurately, and efficiently detecting plant pests. Although detection by humans can be...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2366
SubjectTerms Accuracy
Agriculture
Algorithms
Applications programs
Artificial intelligence
Artificial neural networks
Automation
Convolutional Neural Network
Corn
Crop yield
Crops
Deep learning
Experimental methods
Farmers
Farms
GoogLeNet
Identification
Language
Machine learning
mobile application
Mobile communications networks
Mobile computing
mobile telephones
Neural networks
Pest control
pest detection
pest identification
pest management
Pesticides
Pests
Smartphones
Software
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yF_UgPrG-iOC1bJukm-a4vlEUDwp7K0marEJtZe0q_nsnaS27IKwHT4U8aJhMku8jk28QOkkjLkSey5DqgQqZTG2olBJhrmzMc5PH1L9Ku7sfXD-xm1Eymkn15WLCGnngxnB9TmhCHUlQqWCpZEqaKI-BfMtI2oR7nc8oFTNkyu3BTpgrEaJ5EkyB1_fl2OkGdxJ_UO8u1OZOIy_aP4c0l6flm_z6lEUxc-hcrqO1Fi3iYTPKDbRkyk20OhxPWsUMs4Vuh_isKj9aD4LGTm7Df3x8Nx4W42ryUj-_YoCn-AF-iM9N7QOwSuwDBvBVVY0LAx220ePlxePZddhmSAg10No6pCKNLKNACTiPk9QQwRghXFtiBWyBAviAIIbwhGs4qYTR1mhGbE5iKwGX0B3UK6vS7CJMB5HiOeCNVBumgYMJGw-A7kSGwzK1IkDJj6Ey3aqHuyQWRQYswhk4-93AAep3_d4a_YyFPU7dPHStnf61LwCvyFqvyBZ5RYAOfmYxaxfle0aEuxUGyMICdNxVw3JydySyNNXUtWFAgoFFkgBF3ez_ceh7_zH0fbTiUto3ITMHqFdPpuYQgE-tjryPfwPX4gEr
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbQ9gAceCMCBQWJa5r4FccnlBZKBaLqoZXKKbIdO1SEZLWbLYJf33HijQpC4nGKlHgkWzNjf188_ozQqyITUta1SqjJdcJU4RKttUxq7bCobY3peCrt43F-dMben_PzUJuzDmWVQMUvxkma5IQlAhhOylOWYsbTZe1eX4YfSVhkXqyc5sDYd3IOUHyBds6OT8pP_kK5rel0KpgCtU9V46WDZ5U_DvGL_TGmawvSqNv_E9i8uemW6vs31bbX1p3Du9PlqutRrtCXm3zZ2wx6z_z4Rczxv4d0D90JiDQupxC6j27Y7gG6XTaroMphH6IPZXzQd5chSqGxl_QYH2MNeVy2Tb-6GD5_jQECxycwoviNHcYiry4eixLid33ftBYMHqHTw7enB0dJuIUhMUCdh4TKInOMAu0QAvPCEskYIcI44iRMsxI4hySWCC4MdFxa46xhxNUEOwXYhz5Gi67v7BMUw7C0qAHTFMYyAzxPOpwDpcqsgKnAyQjxrScqExTK_UUZbQVMxXuw-r0HI5TOdstJo-OPFvve0XNrr7E9vuhXTRVSthKEcurpqS4kKxTTymY1FjlWmXJc0AjtbsOkCom_rsB7fieSYRahl_NnSFm_D6M62298GwZEG5gqiVA2h9dfdv3pv5s8Q7cIQLOpCGcXLYbVxj4HKDXoFyFhrgC2fRtx
  priority: 102
  providerName: Unpaywall
Title A Convolutional Neural Network Algorithm for Pest Detection Using GoogleNet
URI https://www.proquest.com/docview/2904582414
https://www.proquest.com/docview/2942108712
https://www.mdpi.com/2624-7402/5/4/145/pdf?version=1702290360
https://doaj.org/article/723539249b8948a4bae0d1761a0af573
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2624-7402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002504599
  issn: 2624-7402
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2624-7402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002504599
  issn: 2624-7402
  databaseCode: ABDBF
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2624-7402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002504599
  issn: 2624-7402
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2624-7402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002504599
  issn: 2624-7402
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE4IJ4iUKogcY02sZ04PiCUli0VqKsVaqVyihw_wiEk220WxIXfztibBCoh4JJIfsiJPWPPZ4-_AXiVx1wIrWVEVVZFTOY2qqpKRLqyCddGJ9TfSjtbZqcX7P1lerkHy_EujHOrHOdEP1HrTrk98jkR7kgP1xv2Zn0VuahR7nR1DKEhh9AK-rWnGLsF-8QxY81g_2ixXH2cdl0cYVcqxO6qMEW8P5e14xOeqP8w3x203VilPJn_DQv09rZdy-_fZNP8thid3Id7gxUZFrthfwB7pn0Id4t6MzBpmEfwoQiPu_brIFlY2NFw-Jf3-w6Lpsbf6z9_CdFsDVfYYPjW9N4xqw29I0H4ruvqxmCFx3B-sjg_Po2GyAmRQrjbR1TksWUUoQLnSZobIhgjhCtLrMCpUSBOEMQQnnKFK5gwyhrFiNUksRLtFfoEZm3XmqcQ0iyuuEY7JFeGKcRmwiYZwqDYcFRfKwJIx44q1cAq7oJbNCWiC9fB5Z87OID5VG-949X4Z40jNw5TaceL7RO6TV0OalZyQlPqIGWVC5ZLVkkT64RniYylTTkN4GAcxXJQ1uvyl2gF8HLKRjVzZyeyNd3WlWEoT4guSQDxNPr_-enP_t7qc7jjgtjvnGQOYNZvtuYFmjp9dTjI76HfKsDn2Y8Fpl0sV8WnnxAuBAQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeygcEE-RUsBIcIw2sZ04PlRo-2LLtqsKLVJvkeNHOIRku81S9cfx3xhnnUAlBFx6ihTbcTS2x_N5xt8g9C6LuBBay5CqtAiZzGxYFIUIdWFjro2OaXcr7WyWTr6wTxfJxQb60d-FcWGVvU7sFLVulDsjHxHhXHqw37APi8vQZY1y3tU-hYb0qRX0Xkcx5i92TM3NNUC4q72TQxjv94QcH80PJqHPMhAqgIZtSEUWWUbBrOY8TjJDBGOEcGWJFaBGBNjUghjCE65A2wujrFGMWE1iK2Fvp_DZe2iLUSYA-23tH83OPw-HPI4fLBFifTOZUhGNZOnoiwemQSh3fr1bm2KXO-CWwbu9qhfy5lpW1W973_Ej9NAbrXi8nmWP0Yapn6AH43LpiTvMUzQd44Om_u4nMlR2rB_dowszx-OqBGm2X79hsJLxOXSID03bxYHVuItbwB-bpqwMNHiG5nchwudos25q8wJhmkYF12D2ZMowBVBQ2DgF1BUZDtrCigAlvaBy5UnMXS6NKgcw4wSc_1nAARoN7RZrGo9_tth34zDUdjTc3YtmWeZ-Veec0IQ6BFtkgmWSFdJEOuZpLCNpE04DtNuPYu51w1X-ayYH6O1QDKvauWpkbZqVq8MAiwOYJQGKhtH_z1_f-Xuvb9D2ZH52mp-ezKYv0X0CVts6PmcXbbbLlXkFVlZbvPZzGaP8jlfPT53cOdo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK_E4IJ4iUMBIcIw2sZ04PlRo2-3SsrBaoSL1Fjl-hEOabLdZqv5E_hXjrBOohIBLT5FiO45mxuMZz_gbhN5mERdCaxlSlRYhk5kNi6IQoS5szLXRMe1upX2ep0df2cfT5HQL_ejvwri0yl4ndopaN8qdkY-IcCE92G_YyPq0iMVk-n55HroKUi7S2pfTkL7Mgt7r4Mb8JY-ZuboEd-5i73gCvH9HyPTw5OAo9BUHQgVuYhtSkUWWUTCxOY-TzBDBGCFcWWIFqBQB9rUghvCEK9D8wihrFCNWk9hK2OcpfPYW2nGxL9ARO_uH88WX4cDHYYUlQmxuKVMqopEsHZTxgDoI7S7Gd22D7OoIXDN-76zrpby6lFX12z44fYDuewMWjzcS9xBtmfoRujcuVx7EwzxGszE-aOrvXqihs0MA6R5dyjkeVyVQs_12hsFixguYEE9M2-WE1bjLYcAfmqasDAx4gk5ugoRP0Xbd1OYZwjSNCq7BBMqUYQrcQmHjFDywyHDQHFYEKOkJlSsPaO7qalQ5ODaOwPmfCRyg0TBuuYH0-OeIfceHobeD5O5eNKsy9ys854Qm1HmzRSZYJlkhTaRjnsYykjbhNEC7PRdzrycu8l9SHaA3QzOscBe2kbVp1q4PA78cHFsSoGjg_n_--vO_z_oa3YZVlH86ns9eoLsEDLhNqs4u2m5Xa_MSDK62eOVFGaP8hhfPTxtnPgk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbQ9gAceCMCBQWJa5r4FccnlBZKBaLqoZXKKbIdO1SEZLWbLYJf33HijQpC4nGKlHgkWzNjf188_ozQqyITUta1SqjJdcJU4RKttUxq7bCobY3peCrt43F-dMben_PzUJuzDmWVQMUvxkma5IQlAhhOylOWYsbTZe1eX4YfSVhkXqyc5sDYd3IOUHyBds6OT8pP_kK5rel0KpgCtU9V46WDZ5U_DvGL_TGmawvSqNv_E9i8uemW6vs31bbX1p3Du9PlqutRrtCXm3zZ2wx6z_z4Rczxv4d0D90JiDQupxC6j27Y7gG6XTaroMphH6IPZXzQd5chSqGxl_QYH2MNeVy2Tb-6GD5_jQECxycwoviNHcYiry4eixLid33ftBYMHqHTw7enB0dJuIUhMUCdh4TKInOMAu0QAvPCEskYIcI44iRMsxI4hySWCC4MdFxa46xhxNUEOwXYhz5Gi67v7BMUw7C0qAHTFMYyAzxPOpwDpcqsgKnAyQjxrScqExTK_UUZbQVMxXuw-r0HI5TOdstJo-OPFvve0XNrr7E9vuhXTRVSthKEcurpqS4kKxTTymY1FjlWmXJc0AjtbsOkCom_rsB7fieSYRahl_NnSFm_D6M62298GwZEG5gqiVA2h9dfdv3pv5s8Q7cIQLOpCGcXLYbVxj4HKDXoFyFhrgC2fRtx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Convolutional+Neural+Network+Algorithm+for+Pest+Detection+Using+GoogleNet&rft.jtitle=AgriEngineering&rft.au=Yulita%2C+Intan+Nurma&rft.au=Rambe%2C+Muhamad+Farid+Ridho&rft.au=Sholahuddin%2C+Asep&rft.au=Prabuwono%2C+Anton+Satria&rft.date=2023-12-01&rft.issn=2624-7402&rft.eissn=2624-7402&rft.volume=5&rft.issue=4&rft.spage=2366&rft.epage=2380&rft_id=info:doi/10.3390%2Fagriengineering5040145&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agriengineering5040145
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-7402&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-7402&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-7402&client=summon