A Convolutional Neural Network Algorithm for Pest Detection Using GoogleNet
The primary strategy for mitigating lost productivity entails promptly, accurately, and efficiently detecting plant pests. Although detection by humans can be useful in detecting certain pests, it is often slower compared to automated methods, such as machine learning. Hence, this study employs a Co...
Saved in:
| Published in | AgriEngineering Vol. 5; no. 4; pp. 2366 - 2380 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.12.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2624-7402 2624-7402 |
| DOI | 10.3390/agriengineering5040145 |
Cover
| Abstract | The primary strategy for mitigating lost productivity entails promptly, accurately, and efficiently detecting plant pests. Although detection by humans can be useful in detecting certain pests, it is often slower compared to automated methods, such as machine learning. Hence, this study employs a Convolutional Neural Network (CNN) model, specifically GoogleNet, to detect pests within mobile applications. The technique of detection involves the input of images depicting plant pests, which are subsequently subjected to further processing. This study employed many experimental methods to determine the most effective model. The model exhibiting a 93.78% accuracy stands out as the most superior model within the scope of this investigation. The aforementioned model has been included in a smartphone application with the purpose of facilitating Indonesian farmers in the identification of pests affecting their crops. The implementation of an Indonesian language application is a contribution to this research. Using this local language makes it easier for Indonesian farmers to use it. The potential impact of this application on Indonesian farmers is anticipated to be significant. By enhancing pest identification capabilities, farmers may employ more suitable pest management strategies, leading to improved crop yields in the long run. |
|---|---|
| AbstractList | The primary strategy for mitigating lost productivity entails promptly, accurately, and efficiently detecting plant pests. Although detection by humans can be useful in detecting certain pests, it is often slower compared to automated methods, such as machine learning. Hence, this study employs a Convolutional Neural Network (CNN) model, specifically GoogleNet, to detect pests within mobile applications. The technique of detection involves the input of images depicting plant pests, which are subsequently subjected to further processing. This study employed many experimental methods to determine the most effective model. The model exhibiting a 93.78% accuracy stands out as the most superior model within the scope of this investigation. The aforementioned model has been included in a smartphone application with the purpose of facilitating Indonesian farmers in the identification of pests affecting their crops. The implementation of an Indonesian language application is a contribution to this research. Using this local language makes it easier for Indonesian farmers to use it. The potential impact of this application on Indonesian farmers is anticipated to be significant. By enhancing pest identification capabilities, farmers may employ more suitable pest management strategies, leading to improved crop yields in the long run. |
| Author | Yulita, Intan Nurma Sholahuddin, Asep Prabuwono, Anton Satria Rambe, Muhamad Farid Ridho |
| Author_xml | – sequence: 1 givenname: Intan Nurma orcidid: 0000-0002-8539-3311 surname: Yulita fullname: Yulita, Intan Nurma – sequence: 2 givenname: Muhamad Farid Ridho surname: Rambe fullname: Rambe, Muhamad Farid Ridho – sequence: 3 givenname: Asep surname: Sholahuddin fullname: Sholahuddin, Asep – sequence: 4 givenname: Anton Satria orcidid: 0000-0003-3337-6605 surname: Prabuwono fullname: Prabuwono, Anton Satria |
| BookMark | eNqNkV9rVDEQxYNUsNZ-Bbngiy9r8-_e3IAvy1rbYlEf6nOYZifXrNlkTXIt_fZmuyJSBH2aIfzOycyZ5-QopoiEvGT0jRCansGUPcbJR8Ts49RTSZnsn5BjPnC5UJLyoz_6Z-S0lA2llDew1_qYfFh2qxR_pDBXnyKE7iPO-aHUu5S_dcswpezr123nUu4-Y6ndO6xo93T3pbQvu4uUpoBN8II8dRAKnv6qJ-Tm_fnN6nJx_eniarW8Xlg56LoQeqROCiWVUqwfkWspOVfWcadZIwQdNEeuemWpGDRah1Zyt-bMgRZKnJCrg-06wcbsst9CvjcJvHl4SHkykKu3AY3ioheaS307ajmCvAWka6YGBhRcr0TzUgevOe7g_g5C-G3IqNknbP6ecFO-Pih3OX2fWy5m64vFECBimotpW3FGR8V4Q189Qjdpzi3sPdXuMHLJZKPeHiibUykZnbG-wj7nmsGHf88zPJL_5yI_AUhytPM |
| CitedBy_id | crossref_primary_10_1016_j_mlwa_2024_100596 crossref_primary_10_1007_s10661_024_12667_2 crossref_primary_10_1016_j_atech_2024_100517 crossref_primary_10_3390_plants13213001 crossref_primary_10_1038_s41598_024_83012_3 crossref_primary_10_3390_agriculture15040418 |
| Cites_doi | 10.3389/fcomp.2022.1041703 10.1186/s13007-021-00745-2 10.1186/s40537-019-0197-0 10.3390/app10175841 10.1007/s10462-021-10066-4 10.1109/ACCESS.2021.3130035 10.1016/j.compag.2022.106827 10.1007/s13593-020-00657-w 10.1016/j.bbe.2021.11.004 10.1109/CVPR52729.2023.02271 10.1007/s11222-009-9153-8 10.20546/ijcmas.2019.801.264 10.1016/j.compag.2022.107017 10.1016/j.compbiomed.2023.106611 10.5573/IEIESPC.2015.4.1.035 10.3390/agriculture12020248 10.1109/ACCESS.2022.3220335 10.3390/electronics10040372 10.3390/agronomy11122494 10.1109/DeSE58274.2023.10099694 10.1080/09540091.2020.1841111 10.3390/ma15041477 10.22271/chemi.2020.v8.i5d.10529 10.1109/ICASSP40776.2020.9053228 10.31018/jans.v14iSI.3599 10.29103/micoms.v3i.230 10.1109/ACCESS.2019.2927169 10.1016/j.neucom.2020.04.157 10.1016/bs.agron.2020.03.001 10.1007/s10530-021-02631-3 10.1016/j.patcog.2023.109347 10.1186/s40537-020-00387-6 10.3391/mbi.2020.11.4.07 10.1007/s41348-022-00599-3 10.7831/ras.9.0_178 10.1016/j.isprsjprs.2020.12.010 10.21512/commit.v16i2.8144 10.1111/een.13073 10.1109/TKDE.2019.2912815 10.1109/ACCESS.2021.3105112 10.3390/insects14020148 10.3390/computation11020020 10.1080/01431161.2020.1842541 10.3389/fnins.2018.00818 10.1016/j.bspc.2023.105239 10.3390/ai1020021 10.14202/vetworld.2022.1154-1162 |
| ContentType | Journal Article |
| Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7X2 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI CCPQU COVID DWQXO HCIFZ M0K PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.3390/agriengineering5040145 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea SciTech Premium Collection (via ProQuest) Agriculture Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Agricultural Science Collection Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest SciTech Collection ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Agricultural Science Database AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 2624-7402 |
| EndPage | 2380 |
| ExternalDocumentID | oai_doaj_org_article_723539249b8948a4bae0d1761a0af573 10.3390/agriengineering5040145 10_3390_agriengineering5040145 |
| GeographicLocations | Taiwan Indonesia |
| GeographicLocations_xml | – name: Taiwan – name: Indonesia |
| GroupedDBID | 7X2 AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC M0K MODMG M~E OK1 PHGZM PHGZT PIMPY 3V. 8FE 8FH 8FK ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI 7S9 L.6 PUEGO ADTOC UNPAY |
| ID | FETCH-LOGICAL-c469t-3980f4374777158e2944227cf2f9146930692e2757c0369ecfec42fd21fa9373 |
| IEDL.DBID | BENPR |
| ISSN | 2624-7402 |
| IngestDate | Fri Oct 03 12:51:17 EDT 2025 Tue Aug 19 17:56:34 EDT 2025 Thu Oct 02 12:09:28 EDT 2025 Mon Jun 30 07:35:20 EDT 2025 Thu Apr 24 23:04:45 EDT 2025 Thu Oct 16 04:34:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-3980f4374777158e2944227cf2f9146930692e2757c0369ecfec42fd21fa9373 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8539-3311 0000-0003-3337-6605 |
| OpenAccessLink | https://www.proquest.com/docview/2904582414?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2904582414 |
| PQPubID | 5046921 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_723539249b8948a4bae0d1761a0af573 unpaywall_primary_10_3390_agriengineering5040145 proquest_miscellaneous_2942108712 proquest_journals_2904582414 crossref_citationtrail_10_3390_agriengineering5040145 crossref_primary_10_3390_agriengineering5040145 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | AgriEngineering |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Kasinathan (ref_22) 2021; 8 Shorten (ref_40) 2019; 6 Wong (ref_58) 2020; 32 Chithambarathanu (ref_25) 2023; 11 Lu (ref_46) 2021; 33 ref_14 Rejeb (ref_18) 2022; 198 ref_12 ref_56 Gondal (ref_20) 2022; 6 ref_19 Yu (ref_53) 2021; 444 Hao (ref_48) 2021; 9 Ardison (ref_47) 2022; 16 Wang (ref_50) 2018; 12 White (ref_11) 2022; 129 ref_23 ref_21 Kattenborn (ref_43) 2021; 173 Nuryitmawan (ref_4) 2021; 4 Wang (ref_8) 2021; 17 Safitri (ref_5) 2022; 27 Fushiki (ref_57) 2011; 21 ref_29 ref_26 Khalifa (ref_41) 2022; 55 Rozaki (ref_1) 2021; 9 Jiao (ref_27) 2022; 195 Yatoo (ref_3) 2021; 41 Kora (ref_51) 2022; 42 Gupta (ref_9) 2022; 24 ref_36 ref_35 Saleh (ref_39) 2021; 8 ref_34 (ref_38) 2021; 1 ref_31 Lei (ref_44) 2019; 7 Yuesheng (ref_32) 2021; 9 Panggabean (ref_30) 2020; 14 Ahirwar (ref_17) 2019; 8 Braga (ref_13) 2021; 46 Yoo (ref_52) 2015; 4 Burchfield (ref_15) 2020; 162 ref_37 Thao (ref_7) 2022; 36 Chen (ref_54) 2022; 10 Yilmaz (ref_55) 2021; 5 Dutta (ref_16) 2020; 8 Gandharum (ref_2) 2021; 42 Muhammad (ref_33) 2018; 12 Prabha (ref_28) 2022; 14 Tuggener (ref_45) 2022; 4 ref_49 Pocock (ref_10) 2020; 11 Agustina (ref_6) 2022; 15 Sangeetha (ref_24) 2022; 71 Xu (ref_42) 2023; 137 |
| References_xml | – volume: 12 start-page: 468 year: 2018 ident: ref_33 article-title: Evaluation of CNN, alexnet and GoogleNet for fruit recognition publication-title: Indones. J. Electr. Eng. Comput. Sci. – volume: 4 start-page: 1703 year: 2022 ident: ref_45 article-title: Is it enough to optimize CNN architectures on ImageNet? publication-title: Front. Comput. Sci. doi: 10.3389/fcomp.2022.1041703 – volume: 17 start-page: 43 year: 2021 ident: ref_8 article-title: Early real-time detection algorithm of tomato diseases and pests in the natural environment publication-title: Plant Methods doi: 10.1186/s13007-021-00745-2 – volume: 6 start-page: 59 year: 2022 ident: ref_20 article-title: Early pest detection from crop using image processing and computational intelligence publication-title: Int. J. Sci. Res. Eng. Manag. – volume: 6 start-page: 60 year: 2019 ident: ref_40 article-title: A survey on Image Data Augmentation for Deep Learning publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 – ident: ref_49 doi: 10.3390/app10175841 – volume: 4 start-page: 32 year: 2021 ident: ref_4 article-title: The Impact of Credit on Multidimensional Poverty in Rural Areas: A Case Study of the Indonesian Agricultural Sector publication-title: Agriecobis J. Agric. Socioecon. Bus. – volume: 1 start-page: 1 year: 2021 ident: ref_38 article-title: Performance comparison of deep learning frameworks publication-title: Comput. Inform. – volume: 55 start-page: 2351 year: 2022 ident: ref_41 article-title: A comprehensive survey of recent trends in deep learning for digital images augmentation publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-10066-4 – volume: 9 start-page: 159283 year: 2021 ident: ref_48 article-title: A Generalized Pooling for Brain Tumor Segmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3130035 – volume: 195 start-page: 106827 year: 2022 ident: ref_27 article-title: Adaptive feature fusion pyramid network for multi-classes agricultural pest detection publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.106827 – volume: 41 start-page: 7 year: 2021 ident: ref_3 article-title: Sustainable management of diseases and pests in crops by vermicompost and vermicompost tea. A review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-020-00657-w – volume: 42 start-page: 79 year: 2022 ident: ref_51 article-title: Transfer learning techniques for medical image analysis: A review publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2021.11.004 – ident: ref_37 doi: 10.1109/CVPR52729.2023.02271 – volume: 36 start-page: 209 year: 2022 ident: ref_7 article-title: Pest Early Detection in Greenhouse Using Machine Learning publication-title: Rev. D’intelligence Artif. – volume: 21 start-page: 137 year: 2011 ident: ref_57 article-title: Estimation of prediction error by using K-fold cross-validation publication-title: Stat. Comput. doi: 10.1007/s11222-009-9153-8 – volume: 8 start-page: 2500 year: 2019 ident: ref_17 article-title: Application of Drone in Agriculture publication-title: Int. J. Curr. Microbiol. Appl. Sci. doi: 10.20546/ijcmas.2019.801.264 – volume: 198 start-page: 107017 year: 2022 ident: ref_18 article-title: Drones in agriculture: A review and bibliometric analysis publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107017 – ident: ref_21 doi: 10.1016/j.compbiomed.2023.106611 – volume: 4 start-page: 35 year: 2015 ident: ref_52 article-title: Deep Convolution Neural Networks in Computer Vision: A Review publication-title: IEIE Trans. Smart Process. Comput. doi: 10.5573/IEIESPC.2015.4.1.035 – ident: ref_26 doi: 10.3390/agriculture12020248 – volume: 10 start-page: 118654 year: 2022 ident: ref_54 article-title: Missing Teeth and Restoration Detection Using Dental Panoramic Radiography Based on Transfer Learning with CNNs publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3220335 – ident: ref_29 doi: 10.3390/electronics10040372 – ident: ref_12 doi: 10.3390/agronomy11122494 – ident: ref_35 doi: 10.1109/DeSE58274.2023.10099694 – volume: 27 start-page: 1169 year: 2022 ident: ref_5 article-title: The Adaptation of Export-Scale Urban Farmers Amid the COVID-19 Pandemic in Bandung Metropolitan publication-title: Qual. Rep. – volume: 33 start-page: 482 year: 2021 ident: ref_46 article-title: CNN Convolutional layer optimisation based on quantum evolutionary algorithm publication-title: Conn. Sci. doi: 10.1080/09540091.2020.1841111 – ident: ref_56 doi: 10.3390/ma15041477 – volume: 8 start-page: 203 year: 2020 ident: ref_16 article-title: Application of drone in agriculture: A review publication-title: Int. J. Chem. Stud. doi: 10.22271/chemi.2020.v8.i5d.10529 – ident: ref_36 doi: 10.1109/ICASSP40776.2020.9053228 – volume: 71 start-page: 1399 year: 2022 ident: ref_24 article-title: A Novel Exploration of Plant Disease and Pest Detection Using Machine Learning and Deep Learning Algorithms publication-title: Publ. Issue – volume: 14 start-page: 138 year: 2022 ident: ref_28 article-title: Android application development for identifying maize infested with fall armyworms with Tamil Nadu Agricultural University Integrated proposed pest management (TNAU IPM) capsules publication-title: J. Appl. Nat. Sci. doi: 10.31018/jans.v14iSI.3599 – ident: ref_31 doi: 10.29103/micoms.v3i.230 – volume: 14 start-page: 588 year: 2020 ident: ref_30 article-title: Indonesia’s Ambivalent Language Policy on English: Cause and Effect publication-title: Int. J. Innov. Creat. Change – volume: 7 start-page: 124087 year: 2019 ident: ref_44 article-title: A dilated cnn model for image classification publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2927169 – volume: 444 start-page: 92 year: 2021 ident: ref_53 article-title: Convolutional neural networks for medical image analysis: State-of-the-art, comparisons, improvement and perspectives publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.157 – volume: 162 start-page: 1 year: 2020 ident: ref_15 article-title: Drones in agriculture publication-title: Adv. Agron. doi: 10.1016/bs.agron.2020.03.001 – volume: 24 start-page: 123 year: 2022 ident: ref_9 article-title: Using citizen science for early detection of tree pests and diseases: Perceptions of professional and public participants publication-title: Biol. Invasions doi: 10.1007/s10530-021-02631-3 – volume: 137 start-page: 109347 year: 2023 ident: ref_42 article-title: A Comprehensive Survey of Image Augmentation Techniques for Deep Learning publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2023.109347 – volume: 8 start-page: 1 year: 2021 ident: ref_39 article-title: Analysis and best parameters selection for person recognition based on gait model using CNN algorithm and image augmentation publication-title: J. Big Data doi: 10.1186/s40537-020-00387-6 – volume: 11 start-page: 720 year: 2020 ident: ref_10 article-title: Ethical dilemmas when using citizen science for early detection of invasive tree pests and diseases publication-title: Manag. Biol. Invasions doi: 10.3391/mbi.2020.11.4.07 – volume: 129 start-page: 1249 year: 2022 ident: ref_11 article-title: Technology development for the early detection of plant pests: A framework for assessing Technology Readiness Levels (TRLs) in environmental science publication-title: J. Plant Dis. Prot. doi: 10.1007/s41348-022-00599-3 – volume: 9 start-page: 178 year: 2021 ident: ref_1 article-title: Farmers’ disaster mitigation strategies in Indonesia publication-title: Rev. Agric. Sci. doi: 10.7831/ras.9.0_178 – volume: 8 start-page: 446 year: 2021 ident: ref_22 article-title: Insect classification and detection in field crops using modern machine learning techniques publication-title: Inf. Process. Agric. – volume: 173 start-page: 24 year: 2021 ident: ref_43 article-title: Review on Convolutional Neural Networks (CNN) in vegetation remote sensing publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.12.010 – volume: 16 start-page: 149 year: 2022 ident: ref_47 article-title: Observing Pre-Trained Convolutional Neural Network (CNN) Layers as Feature Extractor for Detecting Bias in Image Classification Data publication-title: CommIT J. doi: 10.21512/commit.v16i2.8144 – volume: 46 start-page: 1241 year: 2021 ident: ref_13 article-title: Host repertoires and changing insect–plant interactions publication-title: Ecol. Entomol. doi: 10.1111/een.13073 – volume: 5 start-page: 395 year: 2021 ident: ref_55 article-title: A modified version of GoogLeNet for melanoma diagnosis publication-title: J. Inf. Telecommun. – volume: 32 start-page: 1586 year: 2020 ident: ref_58 article-title: Reliable Accuracy Estimates from k-Fold Cross Validation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2912815 – volume: 9 start-page: 113599 year: 2021 ident: ref_32 article-title: Circular Fruit and Vegetable Classification Based on Optimized GoogLeNet publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3105112 – volume: 11 start-page: 1 year: 2023 ident: ref_25 article-title: Survey on crop pest detection using deep learning and machine learning approaches publication-title: Multimed. Tools Appl. – ident: ref_19 doi: 10.3390/insects14020148 – ident: ref_14 doi: 10.3390/computation11020020 – volume: 42 start-page: 1738 year: 2021 ident: ref_2 article-title: Remote sensing versus the area sampling frame method in paddy rice acreage estimation in Indramayu regency, West Java province, Indonesia publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2020.1842541 – volume: 12 start-page: 818 year: 2018 ident: ref_50 article-title: Multiple sclerosis identification by 14-layer convolutional neural network with batch normalization, dropout, and stochastic pooling publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00818 – ident: ref_34 doi: 10.1016/j.bspc.2023.105239 – ident: ref_23 doi: 10.3390/ai1020021 – volume: 15 start-page: 1154 year: 2022 ident: ref_6 article-title: The first report on the prevalence of soil-transmitted helminth infections and associated risk factors among traditional pig farmers in Bali Province, Indonesia publication-title: Vet. World doi: 10.14202/vetworld.2022.1154-1162 |
| SSID | ssj0002504599 |
| Score | 2.3068316 |
| Snippet | The primary strategy for mitigating lost productivity entails promptly, accurately, and efficiently detecting plant pests. Although detection by humans can be... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 2366 |
| SubjectTerms | Accuracy Agriculture Algorithms Applications programs Artificial intelligence Artificial neural networks Automation Convolutional Neural Network Corn Crop yield Crops Deep learning Experimental methods Farmers Farms GoogLeNet Identification Language Machine learning mobile application Mobile communications networks Mobile computing mobile telephones Neural networks Pest control pest detection pest identification pest management Pesticides Pests Smartphones Software |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yF_UgPrG-iOC1bJukm-a4vlEUDwp7K0marEJtZe0q_nsnaS27IKwHT4U8aJhMku8jk28QOkkjLkSey5DqgQqZTG2olBJhrmzMc5PH1L9Ku7sfXD-xm1Eymkn15WLCGnngxnB9TmhCHUlQqWCpZEqaKI-BfMtI2oR7nc8oFTNkyu3BTpgrEaJ5EkyB1_fl2OkGdxJ_UO8u1OZOIy_aP4c0l6flm_z6lEUxc-hcrqO1Fi3iYTPKDbRkyk20OhxPWsUMs4Vuh_isKj9aD4LGTm7Df3x8Nx4W42ryUj-_YoCn-AF-iM9N7QOwSuwDBvBVVY0LAx220ePlxePZddhmSAg10No6pCKNLKNACTiPk9QQwRghXFtiBWyBAviAIIbwhGs4qYTR1mhGbE5iKwGX0B3UK6vS7CJMB5HiOeCNVBumgYMJGw-A7kSGwzK1IkDJj6Ey3aqHuyQWRQYswhk4-93AAep3_d4a_YyFPU7dPHStnf61LwCvyFqvyBZ5RYAOfmYxaxfle0aEuxUGyMICdNxVw3JydySyNNXUtWFAgoFFkgBF3ez_ceh7_zH0fbTiUto3ITMHqFdPpuYQgE-tjryPfwPX4gEr priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbQ9gAceCMCBQWJa5r4FccnlBZKBaLqoZXKKbIdO1SEZLWbLYJf33HijQpC4nGKlHgkWzNjf188_ozQqyITUta1SqjJdcJU4RKttUxq7bCobY3peCrt43F-dMben_PzUJuzDmWVQMUvxkma5IQlAhhOylOWYsbTZe1eX4YfSVhkXqyc5sDYd3IOUHyBds6OT8pP_kK5rel0KpgCtU9V46WDZ5U_DvGL_TGmawvSqNv_E9i8uemW6vs31bbX1p3Du9PlqutRrtCXm3zZ2wx6z_z4Rczxv4d0D90JiDQupxC6j27Y7gG6XTaroMphH6IPZXzQd5chSqGxl_QYH2MNeVy2Tb-6GD5_jQECxycwoviNHcYiry4eixLid33ftBYMHqHTw7enB0dJuIUhMUCdh4TKInOMAu0QAvPCEskYIcI44iRMsxI4hySWCC4MdFxa46xhxNUEOwXYhz5Gi67v7BMUw7C0qAHTFMYyAzxPOpwDpcqsgKnAyQjxrScqExTK_UUZbQVMxXuw-r0HI5TOdstJo-OPFvve0XNrr7E9vuhXTRVSthKEcurpqS4kKxTTymY1FjlWmXJc0AjtbsOkCom_rsB7fieSYRahl_NnSFm_D6M62298GwZEG5gqiVA2h9dfdv3pv5s8Q7cIQLOpCGcXLYbVxj4HKDXoFyFhrgC2fRtx priority: 102 providerName: Unpaywall |
| Title | A Convolutional Neural Network Algorithm for Pest Detection Using GoogleNet |
| URI | https://www.proquest.com/docview/2904582414 https://www.proquest.com/docview/2942108712 https://www.mdpi.com/2624-7402/5/4/145/pdf?version=1702290360 https://doaj.org/article/723539249b8948a4bae0d1761a0af573 |
| UnpaywallVersion | publishedVersion |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2624-7402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002504599 issn: 2624-7402 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2624-7402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002504599 issn: 2624-7402 databaseCode: ABDBF dateStart: 20200301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2624-7402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002504599 issn: 2624-7402 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2624-7402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002504599 issn: 2624-7402 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE4IJ4iUKogcY02sZ04PiCUli0VqKsVaqVyihw_wiEk220WxIXfztibBCoh4JJIfsiJPWPPZ4-_AXiVx1wIrWVEVVZFTOY2qqpKRLqyCddGJ9TfSjtbZqcX7P1lerkHy_EujHOrHOdEP1HrTrk98jkR7kgP1xv2Zn0VuahR7nR1DKEhh9AK-rWnGLsF-8QxY81g_2ixXH2cdl0cYVcqxO6qMEW8P5e14xOeqP8w3x203VilPJn_DQv09rZdy-_fZNP8thid3Id7gxUZFrthfwB7pn0Id4t6MzBpmEfwoQiPu_brIFlY2NFw-Jf3-w6Lpsbf6z9_CdFsDVfYYPjW9N4xqw29I0H4ruvqxmCFx3B-sjg_Po2GyAmRQrjbR1TksWUUoQLnSZobIhgjhCtLrMCpUSBOEMQQnnKFK5gwyhrFiNUksRLtFfoEZm3XmqcQ0iyuuEY7JFeGKcRmwiYZwqDYcFRfKwJIx44q1cAq7oJbNCWiC9fB5Z87OID5VG-949X4Z40jNw5TaceL7RO6TV0OalZyQlPqIGWVC5ZLVkkT64RniYylTTkN4GAcxXJQ1uvyl2gF8HLKRjVzZyeyNd3WlWEoT4guSQDxNPr_-enP_t7qc7jjgtjvnGQOYNZvtuYFmjp9dTjI76HfKsDn2Y8Fpl0sV8WnnxAuBAQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeygcEE-RUsBIcIw2sZ04PlRo-2LLtqsKLVJvkeNHOIRku81S9cfx3xhnnUAlBFx6ihTbcTS2x_N5xt8g9C6LuBBay5CqtAiZzGxYFIUIdWFjro2OaXcr7WyWTr6wTxfJxQb60d-FcWGVvU7sFLVulDsjHxHhXHqw37APi8vQZY1y3tU-hYb0qRX0Xkcx5i92TM3NNUC4q72TQxjv94QcH80PJqHPMhAqgIZtSEUWWUbBrOY8TjJDBGOEcGWJFaBGBNjUghjCE65A2wujrFGMWE1iK2Fvp_DZe2iLUSYA-23tH83OPw-HPI4fLBFifTOZUhGNZOnoiwemQSh3fr1bm2KXO-CWwbu9qhfy5lpW1W973_Ej9NAbrXi8nmWP0Yapn6AH43LpiTvMUzQd44Om_u4nMlR2rB_dowszx-OqBGm2X79hsJLxOXSID03bxYHVuItbwB-bpqwMNHiG5nchwudos25q8wJhmkYF12D2ZMowBVBQ2DgF1BUZDtrCigAlvaBy5UnMXS6NKgcw4wSc_1nAARoN7RZrGo9_tth34zDUdjTc3YtmWeZ-Veec0IQ6BFtkgmWSFdJEOuZpLCNpE04DtNuPYu51w1X-ayYH6O1QDKvauWpkbZqVq8MAiwOYJQGKhtH_z1_f-Xuvb9D2ZH52mp-ezKYv0X0CVts6PmcXbbbLlXkFVlZbvPZzGaP8jlfPT53cOdo |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK_E4IJ4iUMBIcIw2sZ04PlRo2-3SsrBaoSL1Fjl-hEOabLdZqv5E_hXjrBOohIBLT5FiO45mxuMZz_gbhN5mERdCaxlSlRYhk5kNi6IQoS5szLXRMe1upX2ep0df2cfT5HQL_ejvwri0yl4ndopaN8qdkY-IcCE92G_YyPq0iMVk-n55HroKUi7S2pfTkL7Mgt7r4Mb8JY-ZuboEd-5i73gCvH9HyPTw5OAo9BUHQgVuYhtSkUWWUTCxOY-TzBDBGCFcWWIFqBQB9rUghvCEK9D8wihrFCNWk9hK2OcpfPYW2nGxL9ARO_uH88WX4cDHYYUlQmxuKVMqopEsHZTxgDoI7S7Gd22D7OoIXDN-76zrpby6lFX12z44fYDuewMWjzcS9xBtmfoRujcuVx7EwzxGszE-aOrvXqihs0MA6R5dyjkeVyVQs_12hsFixguYEE9M2-WE1bjLYcAfmqasDAx4gk5ugoRP0Xbd1OYZwjSNCq7BBMqUYQrcQmHjFDywyHDQHFYEKOkJlSsPaO7qalQ5ODaOwPmfCRyg0TBuuYH0-OeIfceHobeD5O5eNKsy9ys854Qm1HmzRSZYJlkhTaRjnsYykjbhNEC7PRdzrycu8l9SHaA3QzOscBe2kbVp1q4PA78cHFsSoGjg_n_--vO_z_oa3YZVlH86ns9eoLsEDLhNqs4u2m5Xa_MSDK62eOVFGaP8hhfPTxtnPgk |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbQ9gAceCMCBQWJa5r4FccnlBZKBaLqoZXKKbIdO1SEZLWbLYJf33HijQpC4nGKlHgkWzNjf188_ozQqyITUta1SqjJdcJU4RKttUxq7bCobY3peCrt43F-dMben_PzUJuzDmWVQMUvxkma5IQlAhhOylOWYsbTZe1eX4YfSVhkXqyc5sDYd3IOUHyBds6OT8pP_kK5rel0KpgCtU9V46WDZ5U_DvGL_TGmawvSqNv_E9i8uemW6vs31bbX1p3Du9PlqutRrtCXm3zZ2wx6z_z4Rczxv4d0D90JiDQupxC6j27Y7gG6XTaroMphH6IPZXzQd5chSqGxl_QYH2MNeVy2Tb-6GD5_jQECxycwoviNHcYiry4eixLid33ftBYMHqHTw7enB0dJuIUhMUCdh4TKInOMAu0QAvPCEskYIcI44iRMsxI4hySWCC4MdFxa46xhxNUEOwXYhz5Gi67v7BMUw7C0qAHTFMYyAzxPOpwDpcqsgKnAyQjxrScqExTK_UUZbQVMxXuw-r0HI5TOdstJo-OPFvve0XNrr7E9vuhXTRVSthKEcurpqS4kKxTTymY1FjlWmXJc0AjtbsOkCom_rsB7fieSYRahl_NnSFm_D6M62298GwZEG5gqiVA2h9dfdv3pv5s8Q7cIQLOpCGcXLYbVxj4HKDXoFyFhrgC2fRtx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Convolutional+Neural+Network+Algorithm+for+Pest+Detection+Using+GoogleNet&rft.jtitle=AgriEngineering&rft.au=Yulita%2C+Intan+Nurma&rft.au=Rambe%2C+Muhamad+Farid+Ridho&rft.au=Sholahuddin%2C+Asep&rft.au=Prabuwono%2C+Anton+Satria&rft.date=2023-12-01&rft.issn=2624-7402&rft.eissn=2624-7402&rft.volume=5&rft.issue=4&rft.spage=2366&rft.epage=2380&rft_id=info:doi/10.3390%2Fagriengineering5040145&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agriengineering5040145 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-7402&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-7402&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-7402&client=summon |