A Pedestrian Detection Algorithm Based on Score Fusion for Multi-LiDAR Systems
Pedestrian detection plays an essential role in the navigation system of autonomous vehicles. Multisensor fusion-based approaches are usually used to improve detection performance. In this study, we aimed to develop a score fusion-based pedestrian detection algorithm by integrating the data of two l...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 21; no. 4; p. 1159 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
07.02.2021
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s21041159 |
Cover
| Abstract | Pedestrian detection plays an essential role in the navigation system of autonomous vehicles. Multisensor fusion-based approaches are usually used to improve detection performance. In this study, we aimed to develop a score fusion-based pedestrian detection algorithm by integrating the data of two light detection and ranging systems (LiDARs). We first evaluated a two-stage object-detection pipeline for each LiDAR, including object proposal and fine classification. The scores from these two different classifiers were then fused to generate the result using the Bayesian rule. To improve proposal performance, we applied two features: the central points density feature, which acts as a filter to speed up the process and reduce false alarms; and the location feature, including the density distribution and height difference distribution of the point cloud, which describes an object’s profile and location in a sliding window. Extensive experiments tested in KITTI and the self-built dataset show that our method could produce highly accurate pedestrian detection results in real-time. The proposed method not only considers the accuracy and efficiency but also the flexibility for different modalities. |
|---|---|
| AbstractList | Pedestrian detection plays an essential role in the navigation system of autonomous vehicles. Multisensor fusion-based approaches are usually used to improve detection performance. In this study, we aimed to develop a score fusion-based pedestrian detection algorithm by integrating the data of two light detection and ranging systems (LiDARs). We first evaluated a two-stage object-detection pipeline for each LiDAR, including object proposal and fine classification. The scores from these two different classifiers were then fused to generate the result using the Bayesian rule. To improve proposal performance, we applied two features: the central points density feature, which acts as a filter to speed up the process and reduce false alarms; and the location feature, including the density distribution and height difference distribution of the point cloud, which describes an object's profile and location in a sliding window. Extensive experiments tested in KITTI and the self-built dataset show that our method could produce highly accurate pedestrian detection results in real-time. The proposed method not only considers the accuracy and efficiency but also the flexibility for different modalities. Pedestrian detection plays an essential role in the navigation system of autonomous vehicles. Multisensor fusion-based approaches are usually used to improve detection performance. In this study, we aimed to develop a score fusion-based pedestrian detection algorithm by integrating the data of two light detection and ranging systems (LiDARs). We first evaluated a two-stage object-detection pipeline for each LiDAR, including object proposal and fine classification. The scores from these two different classifiers were then fused to generate the result using the Bayesian rule. To improve proposal performance, we applied two features: the central points density feature, which acts as a filter to speed up the process and reduce false alarms; and the location feature, including the density distribution and height difference distribution of the point cloud, which describes an object's profile and location in a sliding window. Extensive experiments tested in KITTI and the self-built dataset show that our method could produce highly accurate pedestrian detection results in real-time. The proposed method not only considers the accuracy and efficiency but also the flexibility for different modalities.Pedestrian detection plays an essential role in the navigation system of autonomous vehicles. Multisensor fusion-based approaches are usually used to improve detection performance. In this study, we aimed to develop a score fusion-based pedestrian detection algorithm by integrating the data of two light detection and ranging systems (LiDARs). We first evaluated a two-stage object-detection pipeline for each LiDAR, including object proposal and fine classification. The scores from these two different classifiers were then fused to generate the result using the Bayesian rule. To improve proposal performance, we applied two features: the central points density feature, which acts as a filter to speed up the process and reduce false alarms; and the location feature, including the density distribution and height difference distribution of the point cloud, which describes an object's profile and location in a sliding window. Extensive experiments tested in KITTI and the self-built dataset show that our method could produce highly accurate pedestrian detection results in real-time. The proposed method not only considers the accuracy and efficiency but also the flexibility for different modalities. |
| Author | Wu, Tao Hu, Jun Ding, Kai Ye, Lei |
| AuthorAffiliation | 2 Science and Technology on Near-Surface Detection Laboratory, Wuxi 214035, China 1 College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; wutao@nudt.edu.cn (T.W.); hujun17@nudt.edu.cn (J.H.) |
| AuthorAffiliation_xml | – name: 1 College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; wutao@nudt.edu.cn (T.W.); hujun17@nudt.edu.cn (J.H.) – name: 2 Science and Technology on Near-Surface Detection Laboratory, Wuxi 214035, China |
| Author_xml | – sequence: 1 givenname: Tao surname: Wu fullname: Wu, Tao – sequence: 2 givenname: Jun surname: Hu fullname: Hu, Jun – sequence: 3 givenname: Lei surname: Ye fullname: Ye, Lei – sequence: 4 givenname: Kai surname: Ding fullname: Ding, Kai |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33562199$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kttuEzEQhi1URA9wwQuglbgBpKU-rde-qRRaCpXCQRSurYnXmzpy1sH2tsrb4zQlaivEhTWjmc-_Zn77EO0NYbAIvST4PWMKHydKMCekUU_QAeGU15JSvHcv30eHKS0wpowx-QztM9YISpQ6QF8n1Xfb2ZSjg6E6s9ma7MJQTfw8RJevltUHSLarSunShGir8zFt-n2I1ZfRZ1dP3dnkR3W5Ttku03P0tAef7Iu7eIR-nX_8efq5nn77dHE6mdaGC5VrphqGVYsb0QtqGAhpSWOkFQ0AN6KlGMopRS4I6yRlsi9pTyTpOimEYkfoYqvbBVjoVXRLiGsdwOnbQohzDTE74602ACBnWMhGdbw3VPUSq1mrZM9mihBRtN5ttcZhBesb8H4nSLDeGKx3Bhf4ZAuvxtnSdsYOOYJ_MMHDzuCu9Dxc61YRzpu2CLy5E4jh91iM10uXjPUeBhvGpCmXkrSYCVzQ14_QRRjjUHy9pRpGGeGFenV_ot0of9-4AG-3gIkhpWj7_653_Ig1LsPmR5RlnP_HjT_UJ8HZ |
| CitedBy_id | crossref_primary_10_3390_s24103185 crossref_primary_10_1016_j_trip_2023_100980 crossref_primary_10_3390_rs13204123 crossref_primary_10_1016_j_eswa_2022_119006 crossref_primary_10_1016_j_measurement_2022_110718 crossref_primary_10_3390_s21238147 crossref_primary_10_1299_transjsme_22_00139 crossref_primary_10_3390_su14063317 crossref_primary_10_1007_s42154_023_00245_0 crossref_primary_10_3390_rs13152952 |
| Cites_doi | 10.1002/rob.20312 10.1109/ICPR.1996.547205 10.1117/12.720513 10.1016/j.patcog.2005.01.012 10.1109/MC.2014.42 10.1007/s10846-013-9889-4 10.1109/ITSC.2018.8569433 10.3390/s20216264 10.1002/rob.21609 10.1109/IROS.2018.8594049 10.1109/ITSC.2011.6083105 10.3390/s17030539 10.1109/ITSC.2018.8569311 10.1007/s10514-009-9113-3 10.1007/978-3-642-13408-1_10 10.1109/ICCV.2015.510 10.1109/TNN.2010.2044802 10.3390/s151229867 10.1109/ICVES.2006.371554 10.1109/CVPR.2017.691 10.1109/ITSC.2009.5309697 10.3390/s17102346 10.1007/s11263-013-0627-y 10.3390/s17010207 10.1109/IROS.2008.4651161 10.1002/rob.21430 10.1093/her/cyp003 10.1109/CVPR.2012.6248074 10.1109/JSEN.2020.2966034 10.1162/089976601750264965 10.1109/CVPRW.2019.00158 |
| ContentType | Journal Article |
| Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s21041159 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_caaa8b06859d4fc29f809b798f3b9116 10.3390/s21041159 PMC7914457 33562199 10_3390_s21041159 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Foundation of Science and Technology on Near-Surface Detection Laboratory grantid: No.6142414180207 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c469t-3953097056f62c3a68e15c8e65aa4c6720a7208e14613d8238f146f181dd86693 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 18:56:54 EDT 2025 Sun Oct 26 04:03:21 EDT 2025 Tue Sep 30 16:56:21 EDT 2025 Fri Sep 05 13:36:18 EDT 2025 Tue Oct 07 07:12:51 EDT 2025 Wed Feb 19 02:29:02 EST 2025 Thu Oct 16 04:49:00 EDT 2025 Thu Apr 24 23:02:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | sensor fusion autonomous vehicles sliding window pedestrian detection |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-3953097056f62c3a68e15c8e65aa4c6720a7208e14613d8238f146f181dd86693 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1424-8220/21/4/1159/pdf?version=1612683387 |
| PMID | 33562199 |
| PQID | 2488532314 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_caaa8b06859d4fc29f809b798f3b9116 unpaywall_primary_10_3390_s21041159 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7914457 proquest_miscellaneous_2488170360 proquest_journals_2488532314 pubmed_primary_33562199 crossref_primary_10_3390_s21041159 crossref_citationtrail_10_3390_s21041159 |
| PublicationCentury | 2000 |
| PublicationDate | 20210207 |
| PublicationDateYYYYMMDD | 2021-02-07 |
| PublicationDate_xml | – month: 2 year: 2021 text: 20210207 day: 7 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | He (ref_20) 2015; 15 Zitnick (ref_33) 2014; Volume 8693 ref_36 ref_13 ref_12 ref_10 ref_32 ref_30 Mertz (ref_39) 2010; 62 ref_19 ref_38 Song (ref_23) 2014; Volume 8694 Zhao (ref_18) 2020; 20 Kittler (ref_41) 1996; 2 Premebida (ref_16) 2009; 26 Mertz (ref_14) 2013; 30 Chen (ref_35) 2014; 76 Huang (ref_17) 2009; 26 ref_25 Rankin (ref_31) 2007; 6561 ref_24 ref_22 ref_21 ref_43 ref_42 Guo (ref_40) 2013; 105 ref_3 ref_2 ref_29 Forsyth (ref_5) 2014; 47 ref_28 ref_27 ref_26 ref_9 ref_8 Holland (ref_1) 2009; 24 ref_4 Shang (ref_15) 2016; 33 Platt (ref_37) 2001; 13 ref_7 Jain (ref_11) 2005; 38 Pinheiro (ref_34) 2015; 2015 ref_6 |
| References_xml | – ident: ref_7 – volume: 26 start-page: 696 year: 2009 ident: ref_16 article-title: LIDAR and vision-based pedestrian detection system publication-title: J. Field Robot. doi: 10.1002/rob.20312 – ident: ref_28 – volume: 2 start-page: 897 year: 1996 ident: ref_41 article-title: Combining classifiers publication-title: Proc. Int. Conf. Pattern Recognit. doi: 10.1109/ICPR.1996.547205 – volume: 6561 start-page: 656103 year: 2007 ident: ref_31 article-title: Night-time negative obstacle detection for off-road autonomous navigation publication-title: Unmanned Syst. Technol. IX doi: 10.1117/12.720513 – volume: 38 start-page: 2270 year: 2005 ident: ref_11 article-title: Score normalization in multimodal biometric systems publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2005.01.012 – volume: 47 start-page: 6 year: 2014 ident: ref_5 article-title: Object detection with discriminatively trained part-based models publication-title: Computer doi: 10.1109/MC.2014.42 – volume: 76 start-page: 563 year: 2014 ident: ref_35 article-title: Gaussian-Process-Based Real-Time Ground Segmentation for Autonomous Land Vehicles publication-title: J. Intell. Robot. Syst. Theory Appl. doi: 10.1007/s10846-013-9889-4 – ident: ref_24 doi: 10.1109/ITSC.2018.8569433 – ident: ref_13 doi: 10.3390/s20216264 – volume: 33 start-page: 591 year: 2016 ident: ref_15 article-title: LiDAR Based Negative Obstacle Detection for Field Autonomous Land Vehicles publication-title: J. Field Robot. doi: 10.1002/rob.21609 – ident: ref_25 doi: 10.1109/IROS.2018.8594049 – volume: Volume 8694 start-page: 634 year: 2014 ident: ref_23 article-title: Sliding shapes for 3D object detection in depth images publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: Volume 8693 start-page: 391 year: 2014 ident: ref_33 article-title: Edge boxes: Locating object proposals from edges publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – ident: ref_42 – ident: ref_32 doi: 10.1109/ITSC.2011.6083105 – ident: ref_22 doi: 10.3390/s17030539 – ident: ref_10 doi: 10.1109/ITSC.2018.8569311 – volume: 26 start-page: 103 year: 2009 ident: ref_17 article-title: Finding multiple lanes in urban road networks with vision and lidar publication-title: Auton. Robot. doi: 10.1007/s10514-009-9113-3 – volume: 62 start-page: 103 year: 2010 ident: ref_39 article-title: Pedestrian detection and tracking using three-dimensional LADAR data publication-title: Springer Tracts Adv. Robot. doi: 10.1007/978-3-642-13408-1_10 – ident: ref_6 doi: 10.1109/ICCV.2015.510 – ident: ref_9 doi: 10.1109/TNN.2010.2044802 – volume: 15 start-page: 31464 year: 2015 ident: ref_20 article-title: Probabilistic multi-sensor fusion based indoor positioning system on a mobile device publication-title: Sensors doi: 10.3390/s151229867 – ident: ref_3 doi: 10.1109/ICVES.2006.371554 – ident: ref_8 – ident: ref_26 doi: 10.1109/CVPR.2017.691 – ident: ref_38 doi: 10.1109/ITSC.2009.5309697 – ident: ref_4 – ident: ref_21 doi: 10.3390/s17102346 – ident: ref_27 – ident: ref_2 – volume: 105 start-page: 63 year: 2013 ident: ref_40 article-title: Rotational projection statistics for 3D local surface description and object recognition publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-013-0627-y – ident: ref_12 – ident: ref_19 doi: 10.3390/s17010207 – ident: ref_30 doi: 10.1109/IROS.2008.4651161 – volume: 30 start-page: 17 year: 2013 ident: ref_14 article-title: Moving object detection with laser scanners publication-title: J. Field Robot. doi: 10.1002/rob.21430 – volume: 2015 start-page: 1990 year: 2015 ident: ref_34 article-title: Learning to segment object candidates publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_36 – volume: 24 start-page: 674 year: 2009 ident: ref_1 article-title: Understanding the role of self-identity in habitual risky behaviours: Pedestrian road-crossing decisions across the lifespan publication-title: Health Educ. Res. doi: 10.1093/her/cyp003 – ident: ref_43 doi: 10.1109/CVPR.2012.6248074 – volume: 20 start-page: 4901 year: 2020 ident: ref_18 article-title: Fusion of 3D LIDAR and Camera Data for Object Detection in Autonomous Vehicle Applications publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2966034 – volume: 13 start-page: 1443 year: 2001 ident: ref_37 article-title: Estimating the support of a high-dimensional distribution publication-title: Neural Comput. doi: 10.1162/089976601750264965 – ident: ref_29 doi: 10.1109/CVPRW.2019.00158 |
| SSID | ssj0023338 |
| Score | 2.3965716 |
| Snippet | Pedestrian detection plays an essential role in the navigation system of autonomous vehicles. Multisensor fusion-based approaches are usually used to improve... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1159 |
| SubjectTerms | Algorithms Autonomous vehicles Cameras Candidates Classification Data compression Efficiency Methods Neural networks pedestrian detection sensor fusion Sensors sliding window Support vector machines |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hLm0PiFJawkum7aGXiCSOX8flsUKIogqKxC2yHRtWWrIIskL8e8ZJNtoVoF56iBTZc7DmkfkmmXwD8NNb6k3OTWy8FTHmaxnrRPo4zbgwoqTa6PC-4_c5P7nKT6_Z9dyor9AT1tIDt4rbt1praRIumSpzbzPlZaKMUNJTg4HakG0nUs2Kqa7Uolh5tTxCFIv6_UcsbHLEPmoh-zQk_W8hy9cNkh-m1b1-ftLj8Vz2Ga7CSgcbyaA97mdYctUafJojE_wC5wPyx5WumcNRkSNXN01WFRmMbyYPo_r2jhxgxioJLl0G7koynIY3ZQRRK2l-w43PRkeDC9JxmK_D1fD47-FJ3E1LiC2WuHVMFaOJEghoPM8s1Vy6lFnpONM6t1xkicYLF3PM4KVEq3i89Zjhy1JyruhXWK4mldsA4oOSpXHe5SkmOWkyg1b03oiMlYy5CH7NtFjYjko8TLQYF1hSBIUXvcIj-N6L3rf8GW8JHQRT9AKB8rpZQEcoOkco_uUIEWzPDFl0cfhYZPh8YhQxbB7BXr-NERQ-i-jKTaatTBp4yJIIvrV2709CKeLDVOEJxYJHLBx1caca3TYs3UJhrcpEBD9633lfA5v_QwNb8DELHTehp1xsw3L9MHU7CJlqs9tExwtOoRK6 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9RADLbK9gAcEM8SKGh4HLhETTKZ1wGhXdpVhWBVFSr1Fs2zrbRklzYrxL_Hk2RDVxQOkaKJD47tGdszns8Ab4OlwZTcpCZYkaK_lqnOZEjzggsjHNVGx_2OLzN-eFJ-OmWnWzBb34WJZZXrNbFdqN3Cxj3yvQItjVGMRsoPyx9p7BoVT1fXLTR031rBvW8hxm7BdhGRsUawPTmYHR0PKRjFjKzDF6KY7O9dIU2JMZHa8EoteP9NEeffhZO3V_VS__qp5_NrXml6H-714SQZd_p_AFu-fgh3r4EMPoLZmBx559v-HDXZ901bfFWT8fwM_685_04m6MkcwaGvEdOSTFdxB41gNEva67np54v98THpsc0fw8n04NvHw7TvopBaTH2blCpGMyUw0Am8sFRz6XNmpedM69JyUWQaHxws0bM7idoK-BrQ8zsnOVf0CYzqRe2fAgkqyEwaH3yZo_OTpjCo3RCMKJhjzCfwbi3FyvYQ47HTxbzCVCMKvBoEnsDrgXTZ4WrcRDSJqhgIIhR2O7C4PKv6mVVZrbU0GZdMuTLYIvKojFAyUIMrOU9gd63Iqp-fV9Ufa0rg1fAZZ1Y8LtG1X6w6mjzik2UJ7HR6HzihFOPGXCGHYsMiNljd_FJfnLfo3UJhDstEAm8G2_m3BJ79n_nncKeINTaxilzswqi5XPkXGCQ15mVv-b8BQZUQeQ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgewAOvB-BgszjwCXNw_HrhFLKqkKwqoCVyim1E7tdsWRXuwkIfj3jxBt1oUhIHCJF9iSZxGPPN874M0IvbEmszpgOtS15CP5ahCoWNkxSxjWviNLKzXe8n7DDafb2mB77fU7XPq0SQvFZN0i7VVgheLA4SpMoiwC8yGhZ2Vff_FQSoJWUCQiy-GW0wyiA8RHamU6O8s_dmiJ_cc8nRCC4j9YQ4GTuNlteqCPrvwhh_pkoeaWtl-rHdzWfn_NC4xvoZKN_n3zyZa9t9F758zdqx_94wZvoukeoOO9N6ha6ZOrb6No53sI7aJLjI1OZbsuPGh-YpsvnqnE-P12sZs3ZV7wPzrHCUPTR0WTicesehAEg427Fb_hudpB_wJ4u_S6ajt98en0Y-o0ZwhKi6SYkkpJYcsBOlqUlUUyYhJbCMKpUVjKexgoOKMwALFQCDMDCqQUwUVWCMUnuoVG9qM0DhK20IhbaWJMl4E-FTjUYjLWap7Si1ATo5aahitKzlrvNM-YFRC-uTYuhTQP0bBBd9lQdFwntu9YeBBy7dlewWJ0WvrMWpVJK6JgJKqvMlqnTUWouhSUanAML0O7GVgrf5ddFCkMhJQCXswA9Haqhs7o_MKo2i7aXSRzlWRyg-71pDZoQAlA0kaAh3zK6LVW3a-rZWUcIziWExZQH6Plgnn__Ag__SeoRupq67B2Xn8530ahZteYxwK9GP_Fd7BfORCem priority: 102 providerName: Unpaywall |
| Title | A Pedestrian Detection Algorithm Based on Score Fusion for Multi-LiDAR Systems |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33562199 https://www.proquest.com/docview/2488532314 https://www.proquest.com/docview/2488170360 https://pubmed.ncbi.nlm.nih.gov/PMC7914457 https://www.mdpi.com/1424-8220/21/4/1159/pdf?version=1612683387 https://doaj.org/article/caaa8b06859d4fc29f809b798f3b9116 |
| UnpaywallVersion | publishedVersion |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry (Selected full-text) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wAcEG8CS2UeBy5hkzjx44BQym5ZIbaqFiqVU2Qn9m6lkC7dVLD_nnGSRltRJA6JItuRRjO2vxk_vgF4Y3Nqdcy0r23OfcRr4atAWD-MGNe8oEort95xOmYn0_jzLJntwDrHZqfAq62hncsnNV2W737_vP6AA_69izgxZD-8wrAlRs9G7sI-ApR0GRxO434zIaK0SWjt7nT5iIdBSzC0-esGLDXs_dtczr9PTt5aVZfq-pcqyxuwNLoHdzt_kqRtB7gPO6Z6AHdusAw-hHFKJqYwTYKOihyZujl9VZG0PF8s5_XFDzJEKCsIFn11pJZktHJLaATdWdLcz_W_zI_SM9KRmz-C6ej428cTv0uj4OcY-9Y-lQkNJEdPx7Iop4oJEya5MCxRKs4ZjwKFDxbGCO2FQHNZ_LQI_UUhGJP0MexVi8o8BWKlFYHQxpo4RPQTOtJoXms1j5IiSYwHb9dazPKOY9yluigzjDWcwrNe4R686ptetsQa2xoNnSn6Bo4LuylYLM-zbmhluVJK6ICJRBaxzSMno9RcCks1TuXMg4O1IbN1_8oinLgSis5t7MHLvhqHltsvUZVZrNo2oSMoCzx40tq9l4RSdBxDiRLyjR6xIepmTTW_aOi7ucQgNuEevO77zr818Ox_1PQcbkfuqI07TM4PYK9erswL9JVqPYBdPuP4FqNPA9gfHo8nZ4Nm3WHQjBEsm44n6fc_S3gUpQ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcigcUHmHFjAviUvUxI4fOSC0ZVlt6XaFoJX2ltqO3VZasks3q6p_it_IOK92ReHWQ6TI8WE0nvE3Y0--QeidM9TphOtQOyNCwGsZqki6MCZcaJFTpZU_7zgY8-FR8nXCJmvod_svjC-rbPfEaqPOZ8afke8QsDRGIRpJPs1_hb5rlL9dbVto1Gaxby8vIGVbfNzrw_q-J2Tw5fDzMGy6CoQGUsEypCmjUSoA-B0nhioubcyMtJwplRguSKTggcEEkC6XIL2DVwdImOeSc0--BFv-nYTCXgL-IyZXCR6FfK9mL6I0jXYWkE4lEHGlK5hXtQa4KZ79uyxzY1nM1eWFmk6vYd5gE91vglXcq63rAVqzxUN07xqF4SM07uFvNrdV948C921ZlXYVuDc9Ae2Vpz_xLuBkjmHoh2fMxIOlP5_DECvj6uffcHTW733HDXP6Y3R0K9p8gtaLWWGfIexSJyOprbNJDNAqNdFgO85pQVjOmA3Qh1aLmWkIzH0fjWkGiYxXeNYpPEBvuqnzmrXjpkm7fim6CZ5ouxqYnZ9kjd9mRikldcQlS_PEGeJlTLVIpaMacIIHaLtdyKzx_kV2ZasBet19Br_1lzGqsLNlPSf27GdRgJ7W695JQilEpXEKEooVi1gRdfVLcXZacYOLFDJkJgL0trOdf2vg-f-Ff4U2hocHo2y0N97fQneJr-bx9epiG62X50v7AsKxUr-sfACj49t2uj9gI0O8 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NQ-LjAfFNxgDzJfESNbET23lAqKNUGxvVBEzqW7Ade5vUpWVNNe1f46_jnKTZKgZve4gU2VZ0Od_57uzz7wDeOsOcTrgOtTMiRHstQxVJF8aUCy0KprTy-x1fR3z7IPkyTsdr8Ht5F8anVS7XxHqhLqbG75H3KEpaytAbSXquTYvYHww_zn6FvoKUP2ldltNoRGTXnp9h-Db_sDPAuX5H6fDzj0_bYVthIDQYFlYhy1IWZQKdAMepYYpLG6dGWp4qlRguaKTwwcYErV4h8U8cvjq0ikUhOfdATLj83xAMP4S6JMYXwR7D2K9BMsLOqDfH0CpB7ytbsX91mYCrfNu_UzRvLcqZOj9Tk8kl-ze8B3dbx5X0G0m7D2u2fAB3LsEZPoRRn-zbwtaVQEoysFWd5lWS_uQQuVcdnZAttJkFwabvHj2TDBd-r46g30zqi8Dh3vGg_420KOqP4OBauPkY1stpaZ8CcZmTkdTW2SRGMys11ShHzmlB0yJNbQDvl1zMTQtm7mtqTHIMajzD847hAbzuhs4aBI-rBm35qegGeNDtumF6epi3OpwbpZTUEZdpViTOUE9jpkUmHdNoM3gAm8uJzNuVYJ5fyG0Ar7pu1GF_MKNKO100Y2KPhBYF8KSZ944SxtBDjTOkUKxIxAqpqz3l8VGNEy4yjJZTEcCbTnb-zYGN_xP_Em6iuuV7O6PdZ3Cb-sQen7ouNmG9Ol3Y5-iZVfpFrQIEfl63zv0BygtH_w |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgewAOvB-BgszjwCXNw_HrhFLKqkKwqoCVyim1E7tdsWRXuwkIfj3jxBt1oUhIHCJF9iSZxGPPN874M0IvbEmszpgOtS15CP5ahCoWNkxSxjWviNLKzXe8n7DDafb2mB77fU7XPq0SQvFZN0i7VVgheLA4SpMoiwC8yGhZ2Vff_FQSoJWUCQiy-GW0wyiA8RHamU6O8s_dmiJ_cc8nRCC4j9YQ4GTuNlteqCPrvwhh_pkoeaWtl-rHdzWfn_NC4xvoZKN_n3zyZa9t9F758zdqx_94wZvoukeoOO9N6ha6ZOrb6No53sI7aJLjI1OZbsuPGh-YpsvnqnE-P12sZs3ZV7wPzrHCUPTR0WTicesehAEg427Fb_hudpB_wJ4u_S6ajt98en0Y-o0ZwhKi6SYkkpJYcsBOlqUlUUyYhJbCMKpUVjKexgoOKMwALFQCDMDCqQUwUVWCMUnuoVG9qM0DhK20IhbaWJMl4E-FTjUYjLWap7Si1ATo5aahitKzlrvNM-YFRC-uTYuhTQP0bBBd9lQdFwntu9YeBBy7dlewWJ0WvrMWpVJK6JgJKqvMlqnTUWouhSUanAML0O7GVgrf5ddFCkMhJQCXswA9Haqhs7o_MKo2i7aXSRzlWRyg-71pDZoQAlA0kaAh3zK6LVW3a-rZWUcIziWExZQH6Plgnn__Ag__SeoRupq67B2Xn8530ahZteYxwK9GP_Fd7BfORCem |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Pedestrian+Detection+Algorithm+Based+on+Score+Fusion+for+Multi-LiDAR+Systems&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wu%2C+Tao&rft.au=Hu%2C+Jun&rft.au=Ye%2C+Lei&rft.au=Ding%2C+Kai&rft.date=2021-02-07&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=4&rft.spage=1159&rft_id=info:doi/10.3390%2Fs21041159&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s21041159 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |