Replay-Based Incremental Learning Framework for Gesture Recognition Overcoming the Time-Varying Characteristics of sEMG Signals

Gesture recognition techniques based on surface electromyography (sEMG) signals face instability problems caused by electrode displacement and the time-varying characteristics of the signals in cross-time applications. This study proposes an incremental learning framework based on densely connected...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 22; p. 7198
Main Authors Zhang, Xingguo, Li, Tengfei, Sun, Maoxun, Zhang, Lei, Zhang, Cheng, Zhang, Yue
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 10.11.2024
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s24227198

Cover

Abstract Gesture recognition techniques based on surface electromyography (sEMG) signals face instability problems caused by electrode displacement and the time-varying characteristics of the signals in cross-time applications. This study proposes an incremental learning framework based on densely connected convolutional networks (DenseNet) to capture non-synchronous data features and overcome catastrophic forgetting by constructing replay datasets that store data with different time spans and jointly participate in model training. The results show that, after multiple increments, the framework achieves an average recognition rate of 96.5% from eight subjects, which is significantly better than that of cross-day analysis. The density-based spatial clustering of applications with noise (DBSCAN) algorithm is utilized to select representative samples to update the replayed dataset, achieving a 93.7% recognition rate with fewer samples, which is better than the other three conventional sample selection methods. In addition, a comparison of full dataset training with incremental learning training demonstrates that the framework improves the recognition rate by nearly 1%, exhibits better recognition performance, significantly shortens the training time, reduces the cost of model updating and iteration, and is more suitable for practical applications. This study also investigates the use of the incremental learning of action classes, achieving an average recognition rate of 88.6%, which facilitates the supplementation of action types according to the demand, and further improves the application value of the action pattern recognition technology based on sEMG signals.
AbstractList Gesture recognition techniques based on surface electromyography (sEMG) signals face instability problems caused by electrode displacement and the time-varying characteristics of the signals in cross-time applications. This study proposes an incremental learning framework based on densely connected convolutional networks (DenseNet) to capture non-synchronous data features and overcome catastrophic forgetting by constructing replay datasets that store data with different time spans and jointly participate in model training. The results show that, after multiple increments, the framework achieves an average recognition rate of 96.5% from eight subjects, which is significantly better than that of cross-day analysis. The density-based spatial clustering of applications with noise (DBSCAN) algorithm is utilized to select representative samples to update the replayed dataset, achieving a 93.7% recognition rate with fewer samples, which is better than the other three conventional sample selection methods. In addition, a comparison of full dataset training with incremental learning training demonstrates that the framework improves the recognition rate by nearly 1%, exhibits better recognition performance, significantly shortens the training time, reduces the cost of model updating and iteration, and is more suitable for practical applications. This study also investigates the use of the incremental learning of action classes, achieving an average recognition rate of 88.6%, which facilitates the supplementation of action types according to the demand, and further improves the application value of the action pattern recognition technology based on sEMG signals.
Gesture recognition techniques based on surface electromyography (sEMG) signals face instability problems caused by electrode displacement and the time-varying characteristics of the signals in cross-time applications. This study proposes an incremental learning framework based on densely connected convolutional networks (DenseNet) to capture non-synchronous data features and overcome catastrophic forgetting by constructing replay datasets that store data with different time spans and jointly participate in model training. The results show that, after multiple increments, the framework achieves an average recognition rate of 96.5% from eight subjects, which is significantly better than that of cross-day analysis. The density-based spatial clustering of applications with noise (DBSCAN) algorithm is utilized to select representative samples to update the replayed dataset, achieving a 93.7% recognition rate with fewer samples, which is better than the other three conventional sample selection methods. In addition, a comparison of full dataset training with incremental learning training demonstrates that the framework improves the recognition rate by nearly 1%, exhibits better recognition performance, significantly shortens the training time, reduces the cost of model updating and iteration, and is more suitable for practical applications. This study also investigates the use of the incremental learning of action classes, achieving an average recognition rate of 88.6%, which facilitates the supplementation of action types according to the demand, and further improves the application value of the action pattern recognition technology based on sEMG signals.Gesture recognition techniques based on surface electromyography (sEMG) signals face instability problems caused by electrode displacement and the time-varying characteristics of the signals in cross-time applications. This study proposes an incremental learning framework based on densely connected convolutional networks (DenseNet) to capture non-synchronous data features and overcome catastrophic forgetting by constructing replay datasets that store data with different time spans and jointly participate in model training. The results show that, after multiple increments, the framework achieves an average recognition rate of 96.5% from eight subjects, which is significantly better than that of cross-day analysis. The density-based spatial clustering of applications with noise (DBSCAN) algorithm is utilized to select representative samples to update the replayed dataset, achieving a 93.7% recognition rate with fewer samples, which is better than the other three conventional sample selection methods. In addition, a comparison of full dataset training with incremental learning training demonstrates that the framework improves the recognition rate by nearly 1%, exhibits better recognition performance, significantly shortens the training time, reduces the cost of model updating and iteration, and is more suitable for practical applications. This study also investigates the use of the incremental learning of action classes, achieving an average recognition rate of 88.6%, which facilitates the supplementation of action types according to the demand, and further improves the application value of the action pattern recognition technology based on sEMG signals.
Audience Academic
Author Zhang, Xingguo
Zhang, Yue
Zhang, Lei
Zhang, Cheng
Li, Tengfei
Sun, Maoxun
AuthorAffiliation 2 School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
1 School of Mechanical Engineering, Nantong University, Nantong 226019, China; zhang.xg@ntu.edu.cn (X.Z.)
AuthorAffiliation_xml – name: 2 School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
– name: 1 School of Mechanical Engineering, Nantong University, Nantong 226019, China; zhang.xg@ntu.edu.cn (X.Z.)
Author_xml – sequence: 1
  givenname: Xingguo
  surname: Zhang
  fullname: Zhang, Xingguo
– sequence: 2
  givenname: Tengfei
  surname: Li
  fullname: Li, Tengfei
– sequence: 3
  givenname: Maoxun
  surname: Sun
  fullname: Sun, Maoxun
– sequence: 4
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
– sequence: 5
  givenname: Cheng
  surname: Zhang
  fullname: Zhang, Cheng
– sequence: 6
  givenname: Yue
  orcidid: 0000-0003-4285-2167
  surname: Zhang
  fullname: Zhang, Yue
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39598975$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNURD_gwB9AlrgAUoq_kjgnVFbtstKiSqVwtRxnnPWS2IudtOqJv463W1YtB-TDWOPHr9-Z8XF24LyDLHtN8CljNf4YKae0IrV4lh0RTnkuKMUHj_aH2XGMa4wpY0y8yA5ZXdSiroqj7PcVbHp1l39WEVq0cDrAAG5UPVqCCs66Dl0ENcCtDz-R8QHNIY5TAHQF2nfOjtY7dHkDQfthC48rQNd2gPyHCnfbxGylgtIjBBtHqyPyBsXzr3P0zXZO9fFl9tykAK8e4kn2_eL8evYlX17OF7OzZa55WY85I4XiBIwWVJimwrgqecNaAwKzVlPMy5ameig3rVJFC5QQ1lS0MCVueNVodpItdrqtV2u5CXZI_qRXVt4nfOikCslgD9KUugZoOKkZ5xSUooIZ0WpctJoLXCetDzutyW3U3a3q-70gwXI7EbmfSII_7eDN1AzQ6tTcoPonDp6eOLuSnb-RhKQZ0Wqr8O5BIfhfU2q_HGzU0PfKgZ-iZIQxXtRlQRP69h907aew7fM9xYTAJUvU6Y7qVCrXOuPTwzqtFgar09cyNuXPBBG8wqwo0oU3j2vYm__7jRLwfgfo4GMMYP7TkD-ZPddP
Cites_doi 10.1109/ACCESS.2023.3267674
10.1016/j.bspc.2021.102416
10.1109/JSEN.2023.3255408
10.1016/j.eswa.2022.117340
10.1016/j.bspc.2021.102592
10.1016/j.medengphy.2023.104060
10.1038/sdata.2014.53
10.1109/ACCESS.2023.3323586
10.1016/j.neucom.2021.11.026
10.1007/s00521-021-06729-6
10.1016/j.aej.2024.06.069
10.3390/mi13122108
10.1016/j.patrec.2022.11.021
10.1007/s40747-024-01541-w
10.1109/JSEN.2023.3326531
10.1016/j.cmpb.2022.107308
10.1016/j.eswa.2023.121635
10.1016/j.bspc.2023.104752
10.1016/j.compbiomed.2023.107497
10.1016/j.cmpb.2023.107897
10.1016/j.bspc.2024.106078
10.1016/j.imavis.2024.105187
10.1016/j.bspc.2023.104774
10.3233/JIFS-222985
10.1038/s42256-022-00568-3
10.1007/s40747-020-00232-6
10.1016/j.bspc.2023.105800
10.1016/j.eswa.2023.121972
10.1016/j.jbiomech.2024.111987
10.3390/s24123818
10.1016/j.bspc.2023.105935
10.1016/j.neunet.2023.05.006
10.1109/ACCESS.2024.3353044
10.3390/s24103140
10.3390/s20174966
10.1016/j.bspc.2022.104560
10.1109/IEMBS.2006.260681
10.1016/j.bspc.2023.104613
10.1109/JSEN.2019.2927325
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s24227198
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Complete
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE
MEDLINE - Academic
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_f6c9eeb4193442eaa283f8dc05dc4809
10.3390/s24227198
PMC11598278
A818470355
39598975
10_3390_s24227198
Genre Journal Article
GrantInformation_xml – fundername: Nantong Science and Technology Bureau
  grantid: JC22022073
– fundername: Shanghai Municipal Education Commission
  grantid: ZZ202203047
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 23YF1429200
– fundername: Shanghai Sailing Program, China
  grantid: 23YF1429200
– fundername: Shanghai University youth teacher training assistance scheme
  grantid: ZZ202203047
– fundername: Nantong fundamental Science Research Projects
  grantid: JC22022073
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c469t-315a41efc828fb700764b3dfe803dc2046d297524fdaa5de2113b725f60b47bc3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:45:49 EDT 2025
Sun Oct 26 02:54:51 EDT 2025
Tue Sep 30 17:06:44 EDT 2025
Thu Oct 02 10:24:05 EDT 2025
Tue Oct 07 07:55:45 EDT 2025
Mon Oct 20 16:57:47 EDT 2025
Wed Feb 19 02:03:56 EST 2025
Thu Oct 16 04:33:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords time-varying characteristics
DBSCAN
sEMG
class-increment
incremental learning
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-315a41efc828fb700764b3dfe803dc2046d297524fdaa5de2113b725f60b47bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4285-2167
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24227198
PMID 39598975
PQID 3133388063
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_f6c9eeb4193442eaa283f8dc05dc4809
unpaywall_primary_10_3390_s24227198
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11598278
proquest_miscellaneous_3133459652
proquest_journals_3133388063
gale_infotracacademiconefile_A818470355
pubmed_primary_39598975
crossref_primary_10_3390_s24227198
PublicationCentury 2000
PublicationDate 20241110
PublicationDateYYYYMMDD 2024-11-10
PublicationDate_xml – month: 11
  year: 2024
  text: 20241110
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Jie (ref_2) 2021; 7
Zhang (ref_31) 2024; 124
Ezquerro (ref_6) 2023; 23
Atzori (ref_29) 2014; 1
Thandiackal (ref_37) 2024; 150
ref_14
ref_12
Zhang (ref_39) 2024; 10
ref_33
ref_10
ref_32
ref_30
Xue (ref_13) 2023; 165
ref_18
ref_16
ref_38
ref_15
Aviles (ref_7) 2024; 12
Qureshi (ref_17) 2023; 23
Prabhavathy (ref_9) 2024; 238
Lv (ref_3) 2023; 35
Hye (ref_11) 2023; 11
Lu (ref_20) 2022; 203
ref_25
ref_23
ref_21
Sun (ref_19) 2023; 11
Wu (ref_22) 2024; 237
Shi (ref_34) 2023; 164
Alaeiyan (ref_36) 2024; 105
ref_1
Li (ref_4) 2023; 44
ref_28
ref_26
ref_8
Tuytelaars (ref_27) 2022; 4
ref_5
He (ref_24) 2019; 19
Wong (ref_35) 2022; 486
References_xml – volume: 11
  start-page: 38850
  year: 2023
  ident: ref_11
  article-title: Artificial Intelligence for sEMG-based Muscular Movement Recognition for Hand Prosthesis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3267674
– ident: ref_18
  doi: 10.1016/j.bspc.2021.102416
– volume: 23
  start-page: 989
  year: 2023
  ident: ref_17
  article-title: E2cnn, An efficient concatenated cnn for classification of surface emg extracted from upper limb
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3255408
– volume: 203
  start-page: 117340
  year: 2022
  ident: ref_20
  article-title: Continuous and simultaneous estimation of lower limb multi-joint angles from sEMG signals based on stacked convolutional and LSTM models
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117340
– ident: ref_10
  doi: 10.1016/j.bspc.2021.102592
– volume: 124
  start-page: 104060
  year: 2024
  ident: ref_31
  article-title: Mechanomyography signals pattern recognition in hand movements using swarm intelligence algorithm optimized support vector machine based on acceleration sensors
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2023.104060
– volume: 1
  start-page: 140053
  year: 2014
  ident: ref_29
  article-title: Electromyography data for non-invasive naturally-controlled robotic hand prostheses
  publication-title: Sci. Data
  doi: 10.1038/sdata.2014.53
– volume: 11
  start-page: 18024
  year: 2023
  ident: ref_19
  article-title: Continuous Gesture Recognition and Force Estimation using sEMG signal
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3323586
– volume: 486
  start-page: 200
  year: 2022
  ident: ref_35
  article-title: Noise/fault aware regularization for incremental learning in extreme learning machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.11.026
– volume: 35
  start-page: 13839
  year: 2023
  ident: ref_3
  article-title: Gesture recognition based on sEMG using multi-attention mechanism for remote control
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06729-6
– volume: 105
  start-page: 137
  year: 2024
  ident: ref_36
  article-title: Improving the performance of GPS/INS integration during GPS outage with incremental regularized LSTM learning
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2024.06.069
– ident: ref_8
  doi: 10.3390/mi13122108
– volume: 165
  start-page: 39
  year: 2023
  ident: ref_13
  article-title: Underwater sEMG-based recognition of hand gestures using tensor decomposition
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2022.11.021
– volume: 10
  start-page: 6953
  year: 2024
  ident: ref_39
  article-title: An end-to-end hand action recognition framework based on cross-time mechanomyography signals
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-024-01541-w
– volume: 23
  start-page: 31117
  year: 2023
  ident: ref_6
  article-title: Feasibility of an Intelligent Home-Based Neurorehabilitation System for Upper Extremity Mobility Assessment
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3326531
– ident: ref_33
  doi: 10.1016/j.cmpb.2022.107308
– volume: 237
  start-page: 121635
  year: 2024
  ident: ref_22
  article-title: Prediction and classification of sEMG-based pinch force between different fingers
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121635
– ident: ref_38
  doi: 10.1016/j.bspc.2023.104752
– ident: ref_15
  doi: 10.1016/j.compbiomed.2023.107497
– ident: ref_23
  doi: 10.1016/j.cmpb.2023.107897
– ident: ref_14
  doi: 10.1016/j.bspc.2024.106078
– volume: 150
  start-page: 105187
  year: 2024
  ident: ref_37
  article-title: Generative feature-driven image replay for continual learning
  publication-title: Image Vision Comput.
  doi: 10.1016/j.imavis.2024.105187
– ident: ref_5
  doi: 10.1016/j.bspc.2023.104774
– volume: 44
  start-page: 4207
  year: 2023
  ident: ref_4
  article-title: Myoelectric human computer interaction using CNN-LSTM neural network for dynamic hand gesture recognition
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-222985
– volume: 4
  start-page: 1185
  year: 2022
  ident: ref_27
  article-title: Three types of incremental learning
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-022-00568-3
– volume: 7
  start-page: 1877
  year: 2021
  ident: ref_2
  article-title: High dimensional feature data reduction of multichannel sEMG for gesture recognition based on double phases PSO
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-020-00232-6
– ident: ref_30
  doi: 10.1016/j.bspc.2023.105800
– volume: 238
  start-page: 121972
  year: 2024
  ident: ref_9
  article-title: Hand gesture classification framework leveraging the entropy features from sEMG signals and VMD augmented multi-class SVM
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121972
– ident: ref_25
  doi: 10.1016/j.jbiomech.2024.111987
– ident: ref_12
  doi: 10.3390/s24123818
– ident: ref_16
  doi: 10.1016/j.bspc.2023.105935
– volume: 164
  start-page: 617
  year: 2023
  ident: ref_34
  article-title: Multi-granularity knowledge distillation and prototype consistency regularization for class-incremental learning
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2023.05.006
– volume: 12
  start-page: 13962
  year: 2024
  ident: ref_7
  article-title: Feature set to sEMG classification obtained with Fisher Score
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3353044
– ident: ref_32
  doi: 10.3390/s24103140
– ident: ref_21
  doi: 10.3390/s20174966
– ident: ref_1
  doi: 10.1016/j.bspc.2022.104560
– ident: ref_26
  doi: 10.1109/IEMBS.2006.260681
– ident: ref_28
  doi: 10.1016/j.bspc.2023.104613
– volume: 19
  start-page: 9859
  year: 2019
  ident: ref_24
  article-title: A novel framework based on position verification for robust myoelectric control against sensor shift
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2927325
SSID ssj0023338
Score 2.4362192
Snippet Gesture recognition techniques based on surface electromyography (sEMG) signals face instability problems caused by electrode displacement and the time-varying...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 7198
SubjectTerms Accuracy
Adult
Algorithms
class-increment
Datasets
DBSCAN
Electrodes
Electromyography
Electromyography - methods
Experiments
Female
Gestures
Humans
incremental learning
Machine Learning
Male
Neural networks
Neural Networks, Computer
Pattern Recognition, Automated - methods
sEMG
Signal processing
Signal Processing, Computer-Assisted
time-varying characteristics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JaxRBFC4kl-hBNG5tFsoFPBWZrq27j0nIJAhRUCO5Fa-2GBh6wixITvnrvuqNaUW8eJ2uGWreUu_7ut_7mpD33OXa-aAZWFcwqb1jWMcF07qQUXKw0qYb-hef9Pml_HilrjZe9ZV6wlp54NZwh1G7KgQrEWhIyQMA1sNYejdR3smyHd2blFVPpjqqJZB5tTpCAkn94RILES-QX4-qTyPS_-dRvFGLfu-T3F7Xt3D3E2azjSI0fUIed-iRHrW7fkoehHqHPNrQFHxG7hFSz-COHWN58hTTv70BiN_qpFSv6bRvyKKIWOkZbma9CPRL30o0r-lnDHAMxbQYASJNcyLsOyzSSBQ9GUs803mky9OLM_r15jppMT8nl9PTbyfnrHvLAnNIjVd4CCuQeYgOuVe0RXo0J63wMZQT4R1H_uzT9C2X0QMoH5AxCltwFfXEysI68YJs1fM6vCKUO2fBRlEIqyVACRCUxx_OQw4V8sCMvO2tb25bMQ2DJCS5yAwuyshx8suwIOlfNx9gVJguKsy_oiIjH5JXTcpSdJ2DbtgA95n0rswR4hSJh51SGdnrHW-69F0akacAKhG-ZeTNcBkTLz1NgTrM1-0aqSqteEZetnEy7FlUqirRaBkpRxE0-lPjK_XNj0bcGxF6VfICzfBuCLa_G-v1_zDWLnnIEaqxprlxj2ytFuuwj1BrZQ-arPoFGYIqWQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF6V9AAcEG8MBS0PiZPVZF-2Dwg1VdIKqQEVinqz9hkqRXbIQ6gn_jozfhGD4Bqvrc3M7Mw3uzPfEvKG2ZGyzqtYG5vEQjkbQxznsVKJCIJpIwxu6J_N1OmF-HApL_fIrO2FwbLK1idWjtqVFvfIDzkkU0hcovj75fcYb43C09X2Cg3dXK3g3lUUYzfIPkNmrAHZH09mn867FAy_UfMLcUj2D9cQoFgCeXcvKlXk_X-76J0Y9Wf95M1tsdTXP_RisROcpnfJnQZV0qPaDO6RPV_cJ7d3uAYfkJ8AtRf6Oh5D2HIU3EK9MQhvNRSrczptC7UoIFl6ApPZrjw9b0uMyoJ-BMMHceFgAI4U-0fir3qFrVL0uE_9TMtA15OzE_r5ao4czQ_JxXTy5fg0bm5fiC2kzBtwzlKLkQ8WcrJgEjyyE4a74NMhd5ZBXu2wK5eJ4LSWzkMmyU3CZFBDIxJj-SMyKMrCPyGUWWu0CTzhRgmtU629dPDhkR_pDPLDiLxqpZ8va5KNHJITVFHeqSgiY9RLNwB5sasfytU8b5ZZHpTNvDcCYKkQzGsN6Cmkzg6lsyIdZhF5i1rNcfWC6qxumhBgnsiDlR8BfhHgBKWMyEGr-LxZ1uv8txFG5GX3GBYknrLowpfbeoyQmZIsIo9rO-nmzDOZpSC0iKQ9C-r9qf6T4upbRfoNyD1LWQJieN0Z27-F9fT_s39GbjEAZ3FVznhABpvV1j8HcLUxL5oV8wt1QifM
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V9AA98H4YCtoCEicXZ1-2j2nVtEJqQUBQOVn7LFUjp0pioXLhrzPrR4iLQFztseWdndn5ZnfmM8BraobSWCdjpU0ac2lNjHGcxVKm3HOqNNdhQ__4RB5N-LtTcboBO10vzNr5PcN0_O0CQwhNMTO-AZtSINwewObk5MPoa901RHmMAS5pGIP68r04U9Px_7norkWd6xWRN6vyUl19V9PpWrgZ3_ndtNNUmVzsVku9a35c43D850juwu0WbJJRYx33YMOV92FrjYLwAfxEBD5VV_EeRjNLcLVo9gvxqZZ59YyMu_otggCXHOKIqrkjH7vKo1lJ3qM_oOUGYcSTJLSVxF_UPHRQkf0-IzSZebI4OD4kn87PAnXzQ5iMDz7vH8XtTxlig5n0EtdsofjQeYOpmtdpOMnjmlnvsoRZQzHdtqFZl3JvlRLWYYLJdEqFl4nmqTbsEQzKWemeAKHGaKU9S5mWXKlMKScsvnjohirHtDGCl90UFpcN90aBOUvQZrHSZgR7YXJXAoEuu76Aui9a7yu8NLlzmiNa5Zw6pRBU-cyaRFjDsySP4E0wjSI4Nc6_UW1vAn5noMcqRghrOK6NQkSw3VlP0Xr7omCY6AdSHcki2FndRj8Nhy-qdLOqkeFowIJG8LgxttU3s1zkGSotgqxnhr1B9e-U599qLnAE9HlGU1TDq5XF_l1ZT_9L6hncogjd4rrYcRsGy3nlniP0WuoXrfP9AnSVLMM
  priority: 102
  providerName: Unpaywall
Title Replay-Based Incremental Learning Framework for Gesture Recognition Overcoming the Time-Varying Characteristics of sEMG Signals
URI https://www.ncbi.nlm.nih.gov/pubmed/39598975
https://www.proquest.com/docview/3133388063
https://www.proquest.com/docview/3133459652
https://pubmed.ncbi.nlm.nih.gov/PMC11598278
https://doi.org/10.3390/s24227198
https://doaj.org/article/f6c9eeb4193442eaa283f8dc05dc4809
UnpaywallVersion publishedVersion
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jj9MwFH6a5QAcEDuBoTKLxClM49hZDgi1o7YjpJbRQFE5Rd5SRqqSIW0FPfHXec6mhuXGJYfEiZz3nv2-z8tngFdUeYHSJnCFVKHLAq1czOO-GwQhSxkVkkk7oD-dBedz9n7BFwfQnLFZG3D9V2pnz5OaF6s3P77t3mGDf2sZJ1L20zWmGRoiez6EY0xQsT3BYcrayQTqIw2rRIW6xTupqFTs_7Nf3ktMvy-avLHNrsXuu1it9jLS-A7crqEkGVS-vwsHJrsHt_YEBu_DT8TXK7Fzh5irNMG-oBoNxLdqXdUlGTerswjCVzLBymwLQy6bdUV5Rj5gtGNc2sKIFondNOJ-FoXdH0XOunrPJE_JejSdkI9XS2vgBzAfjz6dnbv1kQuuQp68wR6ZC-aZVCERS2Vo5-mY9HVqor6vFUUyre1WXMpSLQTXBumjL0PK06AvWSiV_xCOsjwzj4FQpaSQqR_6MmBCREIYrvHDnvFEjKTQgReN9ZPrSlkjQUZiXZS0LnJgaP3SFrBi2OWNvFgmddtK0kDFxkiGWJQxaoRAyJRGWvW5Vizqxw68tl5NbBCh65Sodx5gPa34VTJA0MKw5-PcgZPG8UkTionv2QCKEMs58Lx9jK3QTq2IzOTbqgzjccCpA4-qOGnr7Mc8jtBoDkSdCOr8VPdJdvW1VPpGuB5HNEQzvGyD7d_GevI_jPUUblLEbW650vEEjjbF1jxD3LWRPTgMFyFeo_GkB8fD0ezisleOYfTK9ob35rOLwZdfd3c2DA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4q5VB6QOwYCgybOFlNZrN9QKgtTVPaFAlalJuZzWmlyA5ZVOXEP-I38sZLmoDg1ms8tibz1m_mvW8A3lDTlsY6GSptopBLa0KM4yyUMuIZp0pz7Tf0eyeye8Y_9UV_DX41vTC-rLLxiaWjtoXxe-TbDMGUJy6R7MPoR-hvjfKnq80VGpVaHLn5JUK2yfvDjyjft5R29k_3umF9q0BoEApO0ekIxdsuM4g1Mh35oyiumc1c3GLWUMSL1nebUp5ZpYR1iJCYjqjIZEvzSBuG370BNzlDX4L2E_WvAJ6fYcVexFjS2p5g-KMRovqVmFdeDfB3AFiKgH9WZ27M8pGaX6rhcCn0de7A7TpnJTuVkt2FNZffg80lJsP78BMT-aGah7sYFC1Bp1NtO-JbNYHrgHSaMjCCeTI5wMnMxo58aQqYipx8RrNCYfjBmJYS350SflNj34hF9laJpUmRkcl-74B8vRh4BugHcHYtUngI63mRu8dAqDFa6YxFTEuuVKyUExY_3HZtlSD6DOBVs_rpqKLwSBH6eBGlCxEFsOvlshjgWbfLH4rxIK2NOM2kSZzTHJNezqlTCnOzLLamJazhcSsJ4J2Xaup9A4rOqLrFAefpWbbSHcyOOLpYIQLYagSf1k5jkl6peAAvF4_R3P0ZjspdMavGcJFIQQN4VOnJYs4sEUmMixZAvKJBK39q9Ul-cV5SiiMuSGIa4TK8Xijbvxfryf9n_wI2uqe94_T48OToKdyimAaGZeHkFqxPxzP3DNO4qX5e2g6B79dtrL8BJCBdxw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRWI5IHYCBcwmTtFkbMdJDgh1m7aUFgQUzS14HSqNkmEWVXPif_HreM4ynQHBrdfYiV781s9-7xngJdVdoY0VoVQ6CbkwOkQ_zkIhEu44lYorv6F_dCz2T_i7ftxfg19tLYxPq2xtYmWoTan9HnmHIZjyjUsE67gmLeLjTu_t6Efob5DyJ63tdRq1iBza-RnCt8mbgx3k9StKe7tftvfD5oaBUCMsnKIBiiXvWqcRdziV-GMprphxNo2Y0RSxo_GVp5Q7I2VsLKIlphIaOxEpnijN8LuX4HLCWObTCZP-Odjz1NadjHAw6kzQFdIEEf6K_6uuCfjbGSx5wz8zNa_OipGcn8nhcMkN9m7CjSZ-JZu1wN2CNVvchutLXQ3vwE8M6odyHm6hgzQEDVC9BYlvNc1cB6TXpoQRjJnJHhIzG1vyqU1mKgvyAVUMGeMnY4hKfKVK-FWOfVEW2V5tMk1KRya7R3vk8-nAd4O-CycXwoV7sF6UhX0AhGqtpHIsYUpwKVMpbWzww13blRki0QCet6ufj-p2HjnCIM-ifMGiALY8XxYTfAfu6kE5HuSNQudO6MxaxTEA5pxaKTFOc6nRUWw0T6MsgNeeq7m3E8g6LZtyB6TTd9zKNzFS4mhu4ziAjZbxeWNAJvm5uAfwbDGMqu_Pc2Rhy1k9h8eZiGkA92s5WdCMApmluGgBpCsStPJTqyPF6feqvThihCylCS7Di4Ww_XuxHv6f-qdwBdU0f39wfPgIrlGMCMMqh3ID1qfjmX2MEd1UPalUh8C3i9bV33OJYgo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V9AA98H4YCtoCEicXZ1-2j2nVtEJqQUBQOVn7LFUjp0pioXLhrzPrR4iLQFztseWdndn5ZnfmM8BraobSWCdjpU0ac2lNjHGcxVKm3HOqNNdhQ__4RB5N-LtTcboBO10vzNr5PcN0_O0CQwhNMTO-AZtSINwewObk5MPoa901RHmMAS5pGIP68r04U9Px_7norkWd6xWRN6vyUl19V9PpWrgZ3_ndtNNUmVzsVku9a35c43D850juwu0WbJJRYx33YMOV92FrjYLwAfxEBD5VV_EeRjNLcLVo9gvxqZZ59YyMu_otggCXHOKIqrkjH7vKo1lJ3qM_oOUGYcSTJLSVxF_UPHRQkf0-IzSZebI4OD4kn87PAnXzQ5iMDz7vH8XtTxlig5n0EtdsofjQeYOpmtdpOMnjmlnvsoRZQzHdtqFZl3JvlRLWYYLJdEqFl4nmqTbsEQzKWemeAKHGaKU9S5mWXKlMKScsvnjohirHtDGCl90UFpcN90aBOUvQZrHSZgR7YXJXAoEuu76Aui9a7yu8NLlzmiNa5Zw6pRBU-cyaRFjDsySP4E0wjSI4Nc6_UW1vAn5noMcqRghrOK6NQkSw3VlP0Xr7omCY6AdSHcki2FndRj8Nhy-qdLOqkeFowIJG8LgxttU3s1zkGSotgqxnhr1B9e-U599qLnAE9HlGU1TDq5XF_l1ZT_9L6hncogjd4rrYcRsGy3nlniP0WuoXrfP9AnSVLMM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Replay-Based+Incremental+Learning+Framework+for+Gesture+Recognition+Overcoming+the+Time-Varying+Characteristics+of+sEMG+Signals&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Xingguo+Zhang&rft.au=Tengfei+Li&rft.au=Maoxun+Sun&rft.au=Lei+Zhang&rft.date=2024-11-10&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=22&rft.spage=7198&rft_id=info:doi/10.3390%2Fs24227198&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f6c9eeb4193442eaa283f8dc05dc4809
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon