Replay-Based Incremental Learning Framework for Gesture Recognition Overcoming the Time-Varying Characteristics of sEMG Signals
Gesture recognition techniques based on surface electromyography (sEMG) signals face instability problems caused by electrode displacement and the time-varying characteristics of the signals in cross-time applications. This study proposes an incremental learning framework based on densely connected...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 24; no. 22; p. 7198 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
10.11.2024
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s24227198 |
Cover
| Abstract | Gesture recognition techniques based on surface electromyography (sEMG) signals face instability problems caused by electrode displacement and the time-varying characteristics of the signals in cross-time applications. This study proposes an incremental learning framework based on densely connected convolutional networks (DenseNet) to capture non-synchronous data features and overcome catastrophic forgetting by constructing replay datasets that store data with different time spans and jointly participate in model training. The results show that, after multiple increments, the framework achieves an average recognition rate of 96.5% from eight subjects, which is significantly better than that of cross-day analysis. The density-based spatial clustering of applications with noise (DBSCAN) algorithm is utilized to select representative samples to update the replayed dataset, achieving a 93.7% recognition rate with fewer samples, which is better than the other three conventional sample selection methods. In addition, a comparison of full dataset training with incremental learning training demonstrates that the framework improves the recognition rate by nearly 1%, exhibits better recognition performance, significantly shortens the training time, reduces the cost of model updating and iteration, and is more suitable for practical applications. This study also investigates the use of the incremental learning of action classes, achieving an average recognition rate of 88.6%, which facilitates the supplementation of action types according to the demand, and further improves the application value of the action pattern recognition technology based on sEMG signals. |
|---|---|
| AbstractList | Gesture recognition techniques based on surface electromyography (sEMG) signals face instability problems caused by electrode displacement and the time-varying characteristics of the signals in cross-time applications. This study proposes an incremental learning framework based on densely connected convolutional networks (DenseNet) to capture non-synchronous data features and overcome catastrophic forgetting by constructing replay datasets that store data with different time spans and jointly participate in model training. The results show that, after multiple increments, the framework achieves an average recognition rate of 96.5% from eight subjects, which is significantly better than that of cross-day analysis. The density-based spatial clustering of applications with noise (DBSCAN) algorithm is utilized to select representative samples to update the replayed dataset, achieving a 93.7% recognition rate with fewer samples, which is better than the other three conventional sample selection methods. In addition, a comparison of full dataset training with incremental learning training demonstrates that the framework improves the recognition rate by nearly 1%, exhibits better recognition performance, significantly shortens the training time, reduces the cost of model updating and iteration, and is more suitable for practical applications. This study also investigates the use of the incremental learning of action classes, achieving an average recognition rate of 88.6%, which facilitates the supplementation of action types according to the demand, and further improves the application value of the action pattern recognition technology based on sEMG signals. Gesture recognition techniques based on surface electromyography (sEMG) signals face instability problems caused by electrode displacement and the time-varying characteristics of the signals in cross-time applications. This study proposes an incremental learning framework based on densely connected convolutional networks (DenseNet) to capture non-synchronous data features and overcome catastrophic forgetting by constructing replay datasets that store data with different time spans and jointly participate in model training. The results show that, after multiple increments, the framework achieves an average recognition rate of 96.5% from eight subjects, which is significantly better than that of cross-day analysis. The density-based spatial clustering of applications with noise (DBSCAN) algorithm is utilized to select representative samples to update the replayed dataset, achieving a 93.7% recognition rate with fewer samples, which is better than the other three conventional sample selection methods. In addition, a comparison of full dataset training with incremental learning training demonstrates that the framework improves the recognition rate by nearly 1%, exhibits better recognition performance, significantly shortens the training time, reduces the cost of model updating and iteration, and is more suitable for practical applications. This study also investigates the use of the incremental learning of action classes, achieving an average recognition rate of 88.6%, which facilitates the supplementation of action types according to the demand, and further improves the application value of the action pattern recognition technology based on sEMG signals.Gesture recognition techniques based on surface electromyography (sEMG) signals face instability problems caused by electrode displacement and the time-varying characteristics of the signals in cross-time applications. This study proposes an incremental learning framework based on densely connected convolutional networks (DenseNet) to capture non-synchronous data features and overcome catastrophic forgetting by constructing replay datasets that store data with different time spans and jointly participate in model training. The results show that, after multiple increments, the framework achieves an average recognition rate of 96.5% from eight subjects, which is significantly better than that of cross-day analysis. The density-based spatial clustering of applications with noise (DBSCAN) algorithm is utilized to select representative samples to update the replayed dataset, achieving a 93.7% recognition rate with fewer samples, which is better than the other three conventional sample selection methods. In addition, a comparison of full dataset training with incremental learning training demonstrates that the framework improves the recognition rate by nearly 1%, exhibits better recognition performance, significantly shortens the training time, reduces the cost of model updating and iteration, and is more suitable for practical applications. This study also investigates the use of the incremental learning of action classes, achieving an average recognition rate of 88.6%, which facilitates the supplementation of action types according to the demand, and further improves the application value of the action pattern recognition technology based on sEMG signals. |
| Audience | Academic |
| Author | Zhang, Xingguo Zhang, Yue Zhang, Lei Zhang, Cheng Li, Tengfei Sun, Maoxun |
| AuthorAffiliation | 2 School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 1 School of Mechanical Engineering, Nantong University, Nantong 226019, China; zhang.xg@ntu.edu.cn (X.Z.) |
| AuthorAffiliation_xml | – name: 2 School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China – name: 1 School of Mechanical Engineering, Nantong University, Nantong 226019, China; zhang.xg@ntu.edu.cn (X.Z.) |
| Author_xml | – sequence: 1 givenname: Xingguo surname: Zhang fullname: Zhang, Xingguo – sequence: 2 givenname: Tengfei surname: Li fullname: Li, Tengfei – sequence: 3 givenname: Maoxun surname: Sun fullname: Sun, Maoxun – sequence: 4 givenname: Lei surname: Zhang fullname: Zhang, Lei – sequence: 5 givenname: Cheng surname: Zhang fullname: Zhang, Cheng – sequence: 6 givenname: Yue orcidid: 0000-0003-4285-2167 surname: Zhang fullname: Zhang, Yue |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39598975$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1v1DAQhiNURD_gwB9AlrgAUoq_kjgnVFbtstKiSqVwtRxnnPWS2IudtOqJv463W1YtB-TDWOPHr9-Z8XF24LyDLHtN8CljNf4YKae0IrV4lh0RTnkuKMUHj_aH2XGMa4wpY0y8yA5ZXdSiroqj7PcVbHp1l39WEVq0cDrAAG5UPVqCCs66Dl0ENcCtDz-R8QHNIY5TAHQF2nfOjtY7dHkDQfthC48rQNd2gPyHCnfbxGylgtIjBBtHqyPyBsXzr3P0zXZO9fFl9tykAK8e4kn2_eL8evYlX17OF7OzZa55WY85I4XiBIwWVJimwrgqecNaAwKzVlPMy5ameig3rVJFC5QQ1lS0MCVueNVodpItdrqtV2u5CXZI_qRXVt4nfOikCslgD9KUugZoOKkZ5xSUooIZ0WpctJoLXCetDzutyW3U3a3q-70gwXI7EbmfSII_7eDN1AzQ6tTcoPonDp6eOLuSnb-RhKQZ0Wqr8O5BIfhfU2q_HGzU0PfKgZ-iZIQxXtRlQRP69h907aew7fM9xYTAJUvU6Y7qVCrXOuPTwzqtFgar09cyNuXPBBG8wqwo0oU3j2vYm__7jRLwfgfo4GMMYP7TkD-ZPddP |
| Cites_doi | 10.1109/ACCESS.2023.3267674 10.1016/j.bspc.2021.102416 10.1109/JSEN.2023.3255408 10.1016/j.eswa.2022.117340 10.1016/j.bspc.2021.102592 10.1016/j.medengphy.2023.104060 10.1038/sdata.2014.53 10.1109/ACCESS.2023.3323586 10.1016/j.neucom.2021.11.026 10.1007/s00521-021-06729-6 10.1016/j.aej.2024.06.069 10.3390/mi13122108 10.1016/j.patrec.2022.11.021 10.1007/s40747-024-01541-w 10.1109/JSEN.2023.3326531 10.1016/j.cmpb.2022.107308 10.1016/j.eswa.2023.121635 10.1016/j.bspc.2023.104752 10.1016/j.compbiomed.2023.107497 10.1016/j.cmpb.2023.107897 10.1016/j.bspc.2024.106078 10.1016/j.imavis.2024.105187 10.1016/j.bspc.2023.104774 10.3233/JIFS-222985 10.1038/s42256-022-00568-3 10.1007/s40747-020-00232-6 10.1016/j.bspc.2023.105800 10.1016/j.eswa.2023.121972 10.1016/j.jbiomech.2024.111987 10.3390/s24123818 10.1016/j.bspc.2023.105935 10.1016/j.neunet.2023.05.006 10.1109/ACCESS.2024.3353044 10.3390/s24103140 10.3390/s20174966 10.1016/j.bspc.2022.104560 10.1109/IEMBS.2006.260681 10.1016/j.bspc.2023.104613 10.1109/JSEN.2019.2927325 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s24227198 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Complete ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_f6c9eeb4193442eaa283f8dc05dc4809 10.3390/s24227198 PMC11598278 A818470355 39598975 10_3390_s24227198 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Nantong Science and Technology Bureau grantid: JC22022073 – fundername: Shanghai Municipal Education Commission grantid: ZZ202203047 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 23YF1429200 – fundername: Shanghai Sailing Program, China grantid: 23YF1429200 – fundername: Shanghai University youth teacher training assistance scheme grantid: ZZ202203047 – fundername: Nantong fundamental Science Research Projects grantid: JC22022073 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c469t-315a41efc828fb700764b3dfe803dc2046d297524fdaa5de2113b725f60b47bc3 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:45:49 EDT 2025 Sun Oct 26 02:54:51 EDT 2025 Tue Sep 30 17:06:44 EDT 2025 Thu Oct 02 10:24:05 EDT 2025 Tue Oct 07 07:55:45 EDT 2025 Mon Oct 20 16:57:47 EDT 2025 Wed Feb 19 02:03:56 EST 2025 Thu Oct 16 04:33:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Keywords | time-varying characteristics DBSCAN sEMG class-increment incremental learning |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-315a41efc828fb700764b3dfe803dc2046d297524fdaa5de2113b725f60b47bc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4285-2167 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24227198 |
| PMID | 39598975 |
| PQID | 3133388063 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f6c9eeb4193442eaa283f8dc05dc4809 unpaywall_primary_10_3390_s24227198 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11598278 proquest_miscellaneous_3133459652 proquest_journals_3133388063 gale_infotracacademiconefile_A818470355 pubmed_primary_39598975 crossref_primary_10_3390_s24227198 |
| PublicationCentury | 2000 |
| PublicationDate | 20241110 |
| PublicationDateYYYYMMDD | 2024-11-10 |
| PublicationDate_xml | – month: 11 year: 2024 text: 20241110 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Jie (ref_2) 2021; 7 Zhang (ref_31) 2024; 124 Ezquerro (ref_6) 2023; 23 Atzori (ref_29) 2014; 1 Thandiackal (ref_37) 2024; 150 ref_14 ref_12 Zhang (ref_39) 2024; 10 ref_33 ref_10 ref_32 ref_30 Xue (ref_13) 2023; 165 ref_18 ref_16 ref_38 ref_15 Aviles (ref_7) 2024; 12 Qureshi (ref_17) 2023; 23 Prabhavathy (ref_9) 2024; 238 Lv (ref_3) 2023; 35 Hye (ref_11) 2023; 11 Lu (ref_20) 2022; 203 ref_25 ref_23 ref_21 Sun (ref_19) 2023; 11 Wu (ref_22) 2024; 237 Shi (ref_34) 2023; 164 Alaeiyan (ref_36) 2024; 105 ref_1 Li (ref_4) 2023; 44 ref_28 ref_26 ref_8 Tuytelaars (ref_27) 2022; 4 ref_5 He (ref_24) 2019; 19 Wong (ref_35) 2022; 486 |
| References_xml | – volume: 11 start-page: 38850 year: 2023 ident: ref_11 article-title: Artificial Intelligence for sEMG-based Muscular Movement Recognition for Hand Prosthesis publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3267674 – ident: ref_18 doi: 10.1016/j.bspc.2021.102416 – volume: 23 start-page: 989 year: 2023 ident: ref_17 article-title: E2cnn, An efficient concatenated cnn for classification of surface emg extracted from upper limb publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3255408 – volume: 203 start-page: 117340 year: 2022 ident: ref_20 article-title: Continuous and simultaneous estimation of lower limb multi-joint angles from sEMG signals based on stacked convolutional and LSTM models publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117340 – ident: ref_10 doi: 10.1016/j.bspc.2021.102592 – volume: 124 start-page: 104060 year: 2024 ident: ref_31 article-title: Mechanomyography signals pattern recognition in hand movements using swarm intelligence algorithm optimized support vector machine based on acceleration sensors publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2023.104060 – volume: 1 start-page: 140053 year: 2014 ident: ref_29 article-title: Electromyography data for non-invasive naturally-controlled robotic hand prostheses publication-title: Sci. Data doi: 10.1038/sdata.2014.53 – volume: 11 start-page: 18024 year: 2023 ident: ref_19 article-title: Continuous Gesture Recognition and Force Estimation using sEMG signal publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3323586 – volume: 486 start-page: 200 year: 2022 ident: ref_35 article-title: Noise/fault aware regularization for incremental learning in extreme learning machines publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.11.026 – volume: 35 start-page: 13839 year: 2023 ident: ref_3 article-title: Gesture recognition based on sEMG using multi-attention mechanism for remote control publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06729-6 – volume: 105 start-page: 137 year: 2024 ident: ref_36 article-title: Improving the performance of GPS/INS integration during GPS outage with incremental regularized LSTM learning publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2024.06.069 – ident: ref_8 doi: 10.3390/mi13122108 – volume: 165 start-page: 39 year: 2023 ident: ref_13 article-title: Underwater sEMG-based recognition of hand gestures using tensor decomposition publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2022.11.021 – volume: 10 start-page: 6953 year: 2024 ident: ref_39 article-title: An end-to-end hand action recognition framework based on cross-time mechanomyography signals publication-title: Complex Intell. Syst. doi: 10.1007/s40747-024-01541-w – volume: 23 start-page: 31117 year: 2023 ident: ref_6 article-title: Feasibility of an Intelligent Home-Based Neurorehabilitation System for Upper Extremity Mobility Assessment publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3326531 – ident: ref_33 doi: 10.1016/j.cmpb.2022.107308 – volume: 237 start-page: 121635 year: 2024 ident: ref_22 article-title: Prediction and classification of sEMG-based pinch force between different fingers publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121635 – ident: ref_38 doi: 10.1016/j.bspc.2023.104752 – ident: ref_15 doi: 10.1016/j.compbiomed.2023.107497 – ident: ref_23 doi: 10.1016/j.cmpb.2023.107897 – ident: ref_14 doi: 10.1016/j.bspc.2024.106078 – volume: 150 start-page: 105187 year: 2024 ident: ref_37 article-title: Generative feature-driven image replay for continual learning publication-title: Image Vision Comput. doi: 10.1016/j.imavis.2024.105187 – ident: ref_5 doi: 10.1016/j.bspc.2023.104774 – volume: 44 start-page: 4207 year: 2023 ident: ref_4 article-title: Myoelectric human computer interaction using CNN-LSTM neural network for dynamic hand gesture recognition publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-222985 – volume: 4 start-page: 1185 year: 2022 ident: ref_27 article-title: Three types of incremental learning publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-022-00568-3 – volume: 7 start-page: 1877 year: 2021 ident: ref_2 article-title: High dimensional feature data reduction of multichannel sEMG for gesture recognition based on double phases PSO publication-title: Complex Intell. Syst. doi: 10.1007/s40747-020-00232-6 – ident: ref_30 doi: 10.1016/j.bspc.2023.105800 – volume: 238 start-page: 121972 year: 2024 ident: ref_9 article-title: Hand gesture classification framework leveraging the entropy features from sEMG signals and VMD augmented multi-class SVM publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121972 – ident: ref_25 doi: 10.1016/j.jbiomech.2024.111987 – ident: ref_12 doi: 10.3390/s24123818 – ident: ref_16 doi: 10.1016/j.bspc.2023.105935 – volume: 164 start-page: 617 year: 2023 ident: ref_34 article-title: Multi-granularity knowledge distillation and prototype consistency regularization for class-incremental learning publication-title: Neural Netw. doi: 10.1016/j.neunet.2023.05.006 – volume: 12 start-page: 13962 year: 2024 ident: ref_7 article-title: Feature set to sEMG classification obtained with Fisher Score publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3353044 – ident: ref_32 doi: 10.3390/s24103140 – ident: ref_21 doi: 10.3390/s20174966 – ident: ref_1 doi: 10.1016/j.bspc.2022.104560 – ident: ref_26 doi: 10.1109/IEMBS.2006.260681 – ident: ref_28 doi: 10.1016/j.bspc.2023.104613 – volume: 19 start-page: 9859 year: 2019 ident: ref_24 article-title: A novel framework based on position verification for robust myoelectric control against sensor shift publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2927325 |
| SSID | ssj0023338 |
| Score | 2.4362192 |
| Snippet | Gesture recognition techniques based on surface electromyography (sEMG) signals face instability problems caused by electrode displacement and the time-varying... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 7198 |
| SubjectTerms | Accuracy Adult Algorithms class-increment Datasets DBSCAN Electrodes Electromyography Electromyography - methods Experiments Female Gestures Humans incremental learning Machine Learning Male Neural networks Neural Networks, Computer Pattern Recognition, Automated - methods sEMG Signal processing Signal Processing, Computer-Assisted time-varying characteristics |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JaxRBFC4kl-hBNG5tFsoFPBWZrq27j0nIJAhRUCO5Fa-2GBh6wixITvnrvuqNaUW8eJ2uGWreUu_7ut_7mpD33OXa-aAZWFcwqb1jWMcF07qQUXKw0qYb-hef9Pml_HilrjZe9ZV6wlp54NZwh1G7KgQrEWhIyQMA1sNYejdR3smyHd2blFVPpjqqJZB5tTpCAkn94RILES-QX4-qTyPS_-dRvFGLfu-T3F7Xt3D3E2azjSI0fUIed-iRHrW7fkoehHqHPNrQFHxG7hFSz-COHWN58hTTv70BiN_qpFSv6bRvyKKIWOkZbma9CPRL30o0r-lnDHAMxbQYASJNcyLsOyzSSBQ9GUs803mky9OLM_r15jppMT8nl9PTbyfnrHvLAnNIjVd4CCuQeYgOuVe0RXo0J63wMZQT4R1H_uzT9C2X0QMoH5AxCltwFfXEysI68YJs1fM6vCKUO2fBRlEIqyVACRCUxx_OQw4V8sCMvO2tb25bMQ2DJCS5yAwuyshx8suwIOlfNx9gVJguKsy_oiIjH5JXTcpSdJ2DbtgA95n0rswR4hSJh51SGdnrHW-69F0akacAKhG-ZeTNcBkTLz1NgTrM1-0aqSqteEZetnEy7FlUqirRaBkpRxE0-lPjK_XNj0bcGxF6VfICzfBuCLa_G-v1_zDWLnnIEaqxprlxj2ytFuuwj1BrZQ-arPoFGYIqWQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF6V9AAcEG8MBS0PiZPVZF-2Dwg1VdIKqQEVinqz9hkqRXbIQ6gn_jozfhGD4Bqvrc3M7Mw3uzPfEvKG2ZGyzqtYG5vEQjkbQxznsVKJCIJpIwxu6J_N1OmF-HApL_fIrO2FwbLK1idWjtqVFvfIDzkkU0hcovj75fcYb43C09X2Cg3dXK3g3lUUYzfIPkNmrAHZH09mn867FAy_UfMLcUj2D9cQoFgCeXcvKlXk_X-76J0Y9Wf95M1tsdTXP_RisROcpnfJnQZV0qPaDO6RPV_cJ7d3uAYfkJ8AtRf6Oh5D2HIU3EK9MQhvNRSrczptC7UoIFl6ApPZrjw9b0uMyoJ-BMMHceFgAI4U-0fir3qFrVL0uE_9TMtA15OzE_r5ao4czQ_JxXTy5fg0bm5fiC2kzBtwzlKLkQ8WcrJgEjyyE4a74NMhd5ZBXu2wK5eJ4LSWzkMmyU3CZFBDIxJj-SMyKMrCPyGUWWu0CTzhRgmtU629dPDhkR_pDPLDiLxqpZ8va5KNHJITVFHeqSgiY9RLNwB5sasfytU8b5ZZHpTNvDcCYKkQzGsN6Cmkzg6lsyIdZhF5i1rNcfWC6qxumhBgnsiDlR8BfhHgBKWMyEGr-LxZ1uv8txFG5GX3GBYknrLowpfbeoyQmZIsIo9rO-nmzDOZpSC0iKQ9C-r9qf6T4upbRfoNyD1LWQJieN0Z27-F9fT_s39GbjEAZ3FVznhABpvV1j8HcLUxL5oV8wt1QifM priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V9AA98H4YCtoCEicXZ1-2j2nVtEJqQUBQOVn7LFUjp0pioXLhrzPrR4iLQFztseWdndn5ZnfmM8BraobSWCdjpU0ac2lNjHGcxVKm3HOqNNdhQ__4RB5N-LtTcboBO10vzNr5PcN0_O0CQwhNMTO-AZtSINwewObk5MPoa901RHmMAS5pGIP68r04U9Px_7norkWd6xWRN6vyUl19V9PpWrgZ3_ndtNNUmVzsVku9a35c43D850juwu0WbJJRYx33YMOV92FrjYLwAfxEBD5VV_EeRjNLcLVo9gvxqZZ59YyMu_otggCXHOKIqrkjH7vKo1lJ3qM_oOUGYcSTJLSVxF_UPHRQkf0-IzSZebI4OD4kn87PAnXzQ5iMDz7vH8XtTxlig5n0EtdsofjQeYOpmtdpOMnjmlnvsoRZQzHdtqFZl3JvlRLWYYLJdEqFl4nmqTbsEQzKWemeAKHGaKU9S5mWXKlMKScsvnjohirHtDGCl90UFpcN90aBOUvQZrHSZgR7YXJXAoEuu76Aui9a7yu8NLlzmiNa5Zw6pRBU-cyaRFjDsySP4E0wjSI4Nc6_UW1vAn5noMcqRghrOK6NQkSw3VlP0Xr7omCY6AdSHcki2FndRj8Nhy-qdLOqkeFowIJG8LgxttU3s1zkGSotgqxnhr1B9e-U599qLnAE9HlGU1TDq5XF_l1ZT_9L6hncogjd4rrYcRsGy3nlniP0WuoXrfP9AnSVLMM priority: 102 providerName: Unpaywall |
| Title | Replay-Based Incremental Learning Framework for Gesture Recognition Overcoming the Time-Varying Characteristics of sEMG Signals |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39598975 https://www.proquest.com/docview/3133388063 https://www.proquest.com/docview/3133459652 https://pubmed.ncbi.nlm.nih.gov/PMC11598278 https://doi.org/10.3390/s24227198 https://doaj.org/article/f6c9eeb4193442eaa283f8dc05dc4809 |
| UnpaywallVersion | publishedVersion |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jj9MwFH6a5QAcEDuBoTKLxClM49hZDgi1o7YjpJbRQFE5Rd5SRqqSIW0FPfHXec6mhuXGJYfEiZz3nv2-z8tngFdUeYHSJnCFVKHLAq1czOO-GwQhSxkVkkk7oD-dBedz9n7BFwfQnLFZG3D9V2pnz5OaF6s3P77t3mGDf2sZJ1L20zWmGRoiez6EY0xQsT3BYcrayQTqIw2rRIW6xTupqFTs_7Nf3ktMvy-avLHNrsXuu1it9jLS-A7crqEkGVS-vwsHJrsHt_YEBu_DT8TXK7Fzh5irNMG-oBoNxLdqXdUlGTerswjCVzLBymwLQy6bdUV5Rj5gtGNc2sKIFondNOJ-FoXdH0XOunrPJE_JejSdkI9XS2vgBzAfjz6dnbv1kQuuQp68wR6ZC-aZVCERS2Vo5-mY9HVqor6vFUUyre1WXMpSLQTXBumjL0PK06AvWSiV_xCOsjwzj4FQpaSQqR_6MmBCREIYrvHDnvFEjKTQgReN9ZPrSlkjQUZiXZS0LnJgaP3SFrBi2OWNvFgmddtK0kDFxkiGWJQxaoRAyJRGWvW5Vizqxw68tl5NbBCh65Sodx5gPa34VTJA0MKw5-PcgZPG8UkTionv2QCKEMs58Lx9jK3QTq2IzOTbqgzjccCpA4-qOGnr7Mc8jtBoDkSdCOr8VPdJdvW1VPpGuB5HNEQzvGyD7d_GevI_jPUUblLEbW650vEEjjbF1jxD3LWRPTgMFyFeo_GkB8fD0ezisleOYfTK9ob35rOLwZdfd3c2DA |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4q5VB6QOwYCgybOFlNZrN9QKgtTVPaFAlalJuZzWmlyA5ZVOXEP-I38sZLmoDg1ms8tibz1m_mvW8A3lDTlsY6GSptopBLa0KM4yyUMuIZp0pz7Tf0eyeye8Y_9UV_DX41vTC-rLLxiaWjtoXxe-TbDMGUJy6R7MPoR-hvjfKnq80VGpVaHLn5JUK2yfvDjyjft5R29k_3umF9q0BoEApO0ekIxdsuM4g1Mh35oyiumc1c3GLWUMSL1nebUp5ZpYR1iJCYjqjIZEvzSBuG370BNzlDX4L2E_WvAJ6fYcVexFjS2p5g-KMRovqVmFdeDfB3AFiKgH9WZ27M8pGaX6rhcCn0de7A7TpnJTuVkt2FNZffg80lJsP78BMT-aGah7sYFC1Bp1NtO-JbNYHrgHSaMjCCeTI5wMnMxo58aQqYipx8RrNCYfjBmJYS350SflNj34hF9laJpUmRkcl-74B8vRh4BugHcHYtUngI63mRu8dAqDFa6YxFTEuuVKyUExY_3HZtlSD6DOBVs_rpqKLwSBH6eBGlCxEFsOvlshjgWbfLH4rxIK2NOM2kSZzTHJNezqlTCnOzLLamJazhcSsJ4J2Xaup9A4rOqLrFAefpWbbSHcyOOLpYIQLYagSf1k5jkl6peAAvF4_R3P0ZjspdMavGcJFIQQN4VOnJYs4sEUmMixZAvKJBK39q9Ul-cV5SiiMuSGIa4TK8Xijbvxfryf9n_wI2uqe94_T48OToKdyimAaGZeHkFqxPxzP3DNO4qX5e2g6B79dtrL8BJCBdxw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRWI5IHYCBcwmTtFkbMdJDgh1m7aUFgQUzS14HSqNkmEWVXPif_HreM4ynQHBrdfYiV781s9-7xngJdVdoY0VoVQ6CbkwOkQ_zkIhEu44lYorv6F_dCz2T_i7ftxfg19tLYxPq2xtYmWoTan9HnmHIZjyjUsE67gmLeLjTu_t6Efob5DyJ63tdRq1iBza-RnCt8mbgx3k9StKe7tftvfD5oaBUCMsnKIBiiXvWqcRdziV-GMprphxNo2Y0RSxo_GVp5Q7I2VsLKIlphIaOxEpnijN8LuX4HLCWObTCZP-Odjz1NadjHAw6kzQFdIEEf6K_6uuCfjbGSx5wz8zNa_OipGcn8nhcMkN9m7CjSZ-JZu1wN2CNVvchutLXQ3vwE8M6odyHm6hgzQEDVC9BYlvNc1cB6TXpoQRjJnJHhIzG1vyqU1mKgvyAVUMGeMnY4hKfKVK-FWOfVEW2V5tMk1KRya7R3vk8-nAd4O-CycXwoV7sF6UhX0AhGqtpHIsYUpwKVMpbWzww13blRki0QCet6ufj-p2HjnCIM-ifMGiALY8XxYTfAfu6kE5HuSNQudO6MxaxTEA5pxaKTFOc6nRUWw0T6MsgNeeq7m3E8g6LZtyB6TTd9zKNzFS4mhu4ziAjZbxeWNAJvm5uAfwbDGMqu_Pc2Rhy1k9h8eZiGkA92s5WdCMApmluGgBpCsStPJTqyPF6feqvThihCylCS7Di4Ww_XuxHv6f-qdwBdU0f39wfPgIrlGMCMMqh3ID1qfjmX2MEd1UPalUh8C3i9bV33OJYgo |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V9AA98H4YCtoCEicXZ1-2j2nVtEJqQUBQOVn7LFUjp0pioXLhrzPrR4iLQFztseWdndn5ZnfmM8BraobSWCdjpU0ac2lNjHGcxVKm3HOqNNdhQ__4RB5N-LtTcboBO10vzNr5PcN0_O0CQwhNMTO-AZtSINwewObk5MPoa901RHmMAS5pGIP68r04U9Px_7norkWd6xWRN6vyUl19V9PpWrgZ3_ndtNNUmVzsVku9a35c43D850juwu0WbJJRYx33YMOV92FrjYLwAfxEBD5VV_EeRjNLcLVo9gvxqZZ59YyMu_otggCXHOKIqrkjH7vKo1lJ3qM_oOUGYcSTJLSVxF_UPHRQkf0-IzSZebI4OD4kn87PAnXzQ5iMDz7vH8XtTxlig5n0EtdsofjQeYOpmtdpOMnjmlnvsoRZQzHdtqFZl3JvlRLWYYLJdEqFl4nmqTbsEQzKWemeAKHGaKU9S5mWXKlMKScsvnjohirHtDGCl90UFpcN90aBOUvQZrHSZgR7YXJXAoEuu76Aui9a7yu8NLlzmiNa5Zw6pRBU-cyaRFjDsySP4E0wjSI4Nc6_UW1vAn5noMcqRghrOK6NQkSw3VlP0Xr7omCY6AdSHcki2FndRj8Nhy-qdLOqkeFowIJG8LgxttU3s1zkGSotgqxnhr1B9e-U599qLnAE9HlGU1TDq5XF_l1ZT_9L6hncogjd4rrYcRsGy3nlniP0WuoXrfP9AnSVLMM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Replay-Based+Incremental+Learning+Framework+for+Gesture+Recognition+Overcoming+the+Time-Varying+Characteristics+of+sEMG+Signals&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Xingguo+Zhang&rft.au=Tengfei+Li&rft.au=Maoxun+Sun&rft.au=Lei+Zhang&rft.date=2024-11-10&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=22&rft.spage=7198&rft_id=info:doi/10.3390%2Fs24227198&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f6c9eeb4193442eaa283f8dc05dc4809 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |