A Novel Runtime Algorithm for the Real-Time Analysis and Detection of Unexpected Changes in a Real-Size SHM Network with Quasi-Distributed FBG Sensors
The ability to track the structural condition of existing structures is one of the main concerns of bridge owners and operators. In the context of bridge maintenance programs, visual inspection predominates nowadays as the primary source of information. Yet, visual inspections alone are insufficient...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 21; no. 8; p. 2871 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
19.04.2021
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s21082871 |
Cover
| Abstract | The ability to track the structural condition of existing structures is one of the main concerns of bridge owners and operators. In the context of bridge maintenance programs, visual inspection predominates nowadays as the primary source of information. Yet, visual inspections alone are insufficient to satisfy the current needs for safety assessment. From this perspective, extensive research on structural health monitoring has been developed in recent decades. However, the transfer rate from laboratory experiments to real-case applications is still unsatisfactory. This paper addresses the main limitations that slow the deployment and the acceptance of real-size structural health monitoring systems (SHM) and presents a novel real-time analysis algorithm based on random variable correlation for condition monitoring. The proposed algorithm was designed to respond automatically to detect unexpected events, such as local structural failure, within a multitude of random dynamic loads. The results are part of a project on SHM, where a high sensor-count monitoring system based on long-gauge fiber Bragg grating sensors (LGFBG) was installed on a prestressed concrete bridge in Neckarsulm, Germany. The authors also present the data management system developed to handle a large amount of data, and demonstrate the results from one of the implemented post-processing methods, the principal component analysis (PCA). The results showed that the deployed SHM system successfully translates the massive raw data into meaningful information. The proposed real-time analysis algorithm delivers a reliable notification system that allows bridge managers to track unexpected events as a basis for decision-making. |
|---|---|
| AbstractList | The ability to track the structural condition of existing structures is one of the main concerns of bridge owners and operators. In the context of bridge maintenance programs, visual inspection predominates nowadays as the primary source of information. Yet, visual inspections alone are insufficient to satisfy the current needs for safety assessment. From this perspective, extensive research on structural health monitoring has been developed in recent decades. However, the transfer rate from laboratory experiments to real-case applications is still unsatisfactory. This paper addresses the main limitations that slow the deployment and the acceptance of real-size structural health monitoring systems (SHM) and presents a novel real-time analysis algorithm based on random variable correlation for condition monitoring. The proposed algorithm was designed to respond automatically to detect unexpected events, such as local structural failure, within a multitude of random dynamic loads. The results are part of a project on SHM, where a high sensor-count monitoring system based on long-gauge fiber Bragg grating sensors (LGFBG) was installed on a prestressed concrete bridge in Neckarsulm, Germany. The authors also present the data management system developed to handle a large amount of data, and demonstrate the results from one of the implemented post-processing methods, the principal component analysis (PCA). The results showed that the deployed SHM system successfully translates the massive raw data into meaningful information. The proposed real-time analysis algorithm delivers a reliable notification system that allows bridge managers to track unexpected events as a basis for decision-making. The ability to track the structural condition of existing structures is one of the main concerns of bridge owners and operators. In the context of bridge maintenance programs, visual inspection predominates nowadays as the primary source of information. Yet, visual inspections alone are insufficient to satisfy the current needs for safety assessment. From this perspective, extensive research on structural health monitoring has been developed in recent decades. However, the transfer rate from laboratory experiments to real-case applications is still unsatisfactory. This paper addresses the main limitations that slow the deployment and the acceptance of real-size structural health monitoring systems (SHM) and presents a novel real-time analysis algorithm based on random variable correlation for condition monitoring. The proposed algorithm was designed to respond automatically to detect unexpected events, such as local structural failure, within a multitude of random dynamic loads. The results are part of a project on SHM, where a high sensor-count monitoring system based on long-gauge fiber Bragg grating sensors (LGFBG) was installed on a prestressed concrete bridge in Neckarsulm, Germany. The authors also present the data management system developed to handle a large amount of data, and demonstrate the results from one of the implemented post-processing methods, the principal component analysis (PCA). The results showed that the deployed SHM system successfully translates the massive raw data into meaningful information. The proposed real-time analysis algorithm delivers a reliable notification system that allows bridge managers to track unexpected events as a basis for decision-making.The ability to track the structural condition of existing structures is one of the main concerns of bridge owners and operators. In the context of bridge maintenance programs, visual inspection predominates nowadays as the primary source of information. Yet, visual inspections alone are insufficient to satisfy the current needs for safety assessment. From this perspective, extensive research on structural health monitoring has been developed in recent decades. However, the transfer rate from laboratory experiments to real-case applications is still unsatisfactory. This paper addresses the main limitations that slow the deployment and the acceptance of real-size structural health monitoring systems (SHM) and presents a novel real-time analysis algorithm based on random variable correlation for condition monitoring. The proposed algorithm was designed to respond automatically to detect unexpected events, such as local structural failure, within a multitude of random dynamic loads. The results are part of a project on SHM, where a high sensor-count monitoring system based on long-gauge fiber Bragg grating sensors (LGFBG) was installed on a prestressed concrete bridge in Neckarsulm, Germany. The authors also present the data management system developed to handle a large amount of data, and demonstrate the results from one of the implemented post-processing methods, the principal component analysis (PCA). The results showed that the deployed SHM system successfully translates the massive raw data into meaningful information. The proposed real-time analysis algorithm delivers a reliable notification system that allows bridge managers to track unexpected events as a basis for decision-making. |
| Author | Sakiyama, Felipe Isamu H. Garrecht, Harald Lehmann, Frank |
| AuthorAffiliation | 1 Institute of Science, Engineering and Technology (ICET), Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Teófilo Otoni 39803-371, Brazil 2 Materials Testing Institute (MPA), University of Stuttgart, 70569 Stuttgart, Germany; frank.lehmann@mpa.uni-stuttgart.de (F.L.); harald.garrecht@mpa.uni-stuttgart.de (H.G.) |
| AuthorAffiliation_xml | – name: 1 Institute of Science, Engineering and Technology (ICET), Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Teófilo Otoni 39803-371, Brazil – name: 2 Materials Testing Institute (MPA), University of Stuttgart, 70569 Stuttgart, Germany; frank.lehmann@mpa.uni-stuttgart.de (F.L.); harald.garrecht@mpa.uni-stuttgart.de (H.G.) |
| Author_xml | – sequence: 1 givenname: Felipe Isamu H. orcidid: 0000-0003-1914-6686 surname: Sakiyama fullname: Sakiyama, Felipe Isamu H. – sequence: 2 givenname: Frank orcidid: 0000-0002-0192-7364 surname: Lehmann fullname: Lehmann, Frank – sequence: 3 givenname: Harald surname: Garrecht fullname: Garrecht, Harald |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33921865$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kttuEzEQhleoiB7gghdAlrgBpKVe78l7UymkR6kU0bTXlteeTRwcO9jepuFBeF6cpERtBVc-zP9_nvHMfrJjrIEkeZvhz3ne4ENPMkwJrbMXyV5WkCKlhOCdR_vdZN_7KcYkz3P6KtmNLpLRqtxLfg_Qlb0Dja57E9QM0ECPrVNhMkOddShMAF0D1-nNOma4XnrlETcSHUMAEZQ1yHbo1sD9PB5BouGEmzF4pAziG-9I_QI0Ov-KriAsrPuBFpGPvvfcq_RY-eBU26-cp1_O0AiMt86_Tl52XHt487AeJLenJzfD8_Ty29nFcHCZiqJqQkoAY1lmvCuasqV1TjKBKwwyl6XshJCkIXlVVJSIuqayxXUby6aQiYY3BNcyP0guNlxp-ZTNnZpxt2SWK7a-sG7MuAtKaGCUNxFQibYsaMHbnAtR8QYqnLWtbNesTxtWb-Z8ueBab4EZZqtGsW2jovhoI5737QykABMc108yeBoxasLG9o5RXJOqIhHw4QHg7M8efGAz5QVozQ3Y3jNSEkxLXJSrt94_k05t72IvV6oSk7rOmiqq3j3OaJvK31mJgsONQDjrvYOOCRX4agJigkr_s8iPzxz__5A_CmPdSw |
| CitedBy_id | crossref_primary_10_1109_JSEN_2022_3143854 crossref_primary_10_3390_buildings12111778 crossref_primary_10_1177_14759217221079295 crossref_primary_10_1063_5_0194678 |
| Cites_doi | 10.1061/(ASCE)BE.1943-5592.0000611 10.1016/j.aei.2011.01.001 10.1080/15732479.2013.858169 10.1201/9781315189390 10.1177/1475921712451955 10.1002/best.201800036 10.1177/1475921717750047 10.1093/acprof:oso/9780199895656.001.0001 10.1177/1475921704041866 10.2174/1872212113666190110124551 10.1002/best.201200053 10.1080/10168664.2018.1461536 10.1016/j.aei.2007.02.002 10.1061/(ASCE)ST.1943-541X.0000577 10.1002/stc.1782 10.1007/s11831-015-9150-3 10.1002/stc.1672 10.1016/j.ymssp.2015.02.021 10.1061/(ASCE)ST.1943-541X.0000232 10.1016/j.ymssp.2017.08.023 10.1002/best.201300079 10.1002/stc.1825 10.1098/rsta.2006.1932 10.1243/PIME_PROC_1985_199_062_02 10.3390/s19143047 10.1002/stc.48 10.1016/j.ymssp.2009.09.003 10.12989/sss.2012.9.1.001 10.1177/1550147721991712 10.1061/9780784411971 10.3390/app10051873 10.1177/0361198118756874 10.1088/0964-1726/24/12/125034 10.1177/1550147717707929 10.1098/rsta.2006.1928 10.1080/15732479.2012.674536 10.1016/j.compstruc.2010.01.001 10.1016/j.ress.2011.11.007 10.3390/s21041246 10.1109/TUFFC.2011.1782 10.1007/978-3-030-76465-4_17 10.1177/1045389X14523856 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s21082871 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_8a9b076cb5484ab3acc6a9e601bbdb7d 10.3390/s21082871 PMC8072662 33921865 10_3390_s21082871 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior grantid: 001 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c469t-2e00d51af495b87321c060ed3d5dfccd292364682c778db07b2188e1c9a9207d3 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 18:59:59 EDT 2025 Sun Oct 26 03:29:31 EDT 2025 Tue Sep 30 16:28:12 EDT 2025 Thu Oct 02 05:30:50 EDT 2025 Tue Oct 07 07:17:54 EDT 2025 Thu Apr 03 06:58:05 EDT 2025 Thu Apr 24 23:09:09 EDT 2025 Thu Oct 16 04:46:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | damage detection FBG sensors structural health monitoring |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-2e00d51af495b87321c060ed3d5dfccd292364682c778db07b2188e1c9a9207d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0192-7364 0000-0003-1914-6686 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21082871 |
| PMID | 33921865 |
| PQID | 2550277196 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8a9b076cb5484ab3acc6a9e601bbdb7d unpaywall_primary_10_3390_s21082871 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8072662 proquest_miscellaneous_2520850451 proquest_journals_2550277196 pubmed_primary_33921865 crossref_citationtrail_10_3390_s21082871 crossref_primary_10_3390_s21082871 |
| PublicationCentury | 2000 |
| PublicationDate | 20210419 |
| PublicationDateYYYYMMDD | 2021-04-19 |
| PublicationDate_xml | – month: 4 year: 2021 text: 20210419 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Sun (ref_28) 2015; 24 He (ref_32) 2018; 2018 ref_14 ref_13 ref_57 Cegla (ref_35) 2011; 58 Worden (ref_37) 2004; 3 ref_56 ref_55 ref_10 ref_54 Cho (ref_17) 2015; 22 Goulet (ref_34) 2013; 139 ref_53 Zhang (ref_48) 2015; 62–63 Santos (ref_50) 2015; 11 Lou (ref_9) 2018; 2672 ref_19 Catbas (ref_63) 2012; 11 ref_18 Song (ref_27) 2021; 17 Cawley (ref_26) 1985; 199 ref_59 Lehmann (ref_2) 2020; 19 ref_61 ref_60 Krawtschuk (ref_38) 2012; 107 Li (ref_16) 2016; 23 ref_23 Okasha (ref_40) 2012; 99 ref_21 ref_64 ref_62 Goulet (ref_45) 2010; 136 Flynn (ref_25) 2010; 24 Akgul (ref_15) 2013; 9 Hong (ref_42) 2015; 26 ref_36 Laory (ref_49) 2011; 25 ref_33 Cawley (ref_24) 2018; 17 Posenato (ref_47) 2010; 88 Posenato (ref_46) 2008; 22 Sanio (ref_12) 2018; 113 Santos (ref_51) 2016; 23 Xiao (ref_31) 2017; 13 Sehgal (ref_22) 2016; 23 Cremona (ref_52) 2018; 28 Lehmann (ref_58) 2019; 18 Sanio (ref_41) 2014; 109 ref_44 Strauss (ref_39) 2012; 9 ref_43 Spencer (ref_20) 2004; 11 Li (ref_30) 2020; 14 ref_1 ref_3 Ma (ref_11) 2014; 19 ref_8 ref_5 ref_4 ref_7 ref_6 Baqersad (ref_29) 2018; 101 |
| References_xml | – volume: 19 start-page: 4014037 year: 2014 ident: ref_11 article-title: Bridge Remaining Strength Prediction Integrated with Bayesian Network and In Situ Load Testing publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)BE.1943-5592.0000611 – volume: 25 start-page: 495 year: 2011 ident: ref_49 article-title: Evaluating two model-free data interpretation methods for measurements that are influenced by temperature publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2011.01.001 – volume: 11 start-page: 145 year: 2015 ident: ref_50 article-title: Baseline-free real-time assessment of structural changes publication-title: Struct. Infrastruct. Eng. doi: 10.1080/15732479.2013.858169 – ident: ref_5 – ident: ref_10 doi: 10.1201/9781315189390 – ident: ref_55 – volume: 18 start-page: 183 year: 2019 ident: ref_58 article-title: Fibre optic measurement systems for building monitoring publication-title: Otto Graf J. – volume: 11 start-page: 613 year: 2012 ident: ref_63 article-title: Nonparametric analysis of structural health monitoring data for identification and localization of changes: Concept, lab, and real-life studies publication-title: Struct. Health Monit. doi: 10.1177/1475921712451955 – ident: ref_43 doi: 10.1201/9781315189390 – volume: 113 start-page: 48 year: 2018 ident: ref_12 article-title: Tackling uncertainty in structural lifetime evaluations publication-title: Beton Stahlbetonbau doi: 10.1002/best.201800036 – volume: 17 start-page: 1225 year: 2018 ident: ref_24 article-title: Structural health monitoring: Closing the gap between research and industrial deployment publication-title: Struct. Health Monit. doi: 10.1177/1475921717750047 – ident: ref_1 doi: 10.1093/acprof:oso/9780199895656.001.0001 – volume: 3 start-page: 85 year: 2004 ident: ref_37 article-title: An Overview of Intelligent Fault Detection in Systems and Structures publication-title: Struct. Health Monit. doi: 10.1177/1475921704041866 – volume: 14 start-page: 69 year: 2020 ident: ref_30 article-title: Optimal Sensor Placement Algorithm for Structural Damage Identification publication-title: Recent Pat. Eng. doi: 10.2174/1872212113666190110124551 – ident: ref_61 – volume: 107 start-page: 824 year: 2012 ident: ref_38 article-title: Ermittlung von Modellunsicherheiten bei Stahlbetonstrukturen publication-title: Beton Stahlbetonbau doi: 10.1002/best.201200053 – volume: 2018 start-page: 1 year: 2018 ident: ref_32 article-title: Optimal Sensor Placement for Spatial Structure Based on Importance Coefficient and Randomness publication-title: Shock Vib. – volume: 28 start-page: 243 year: 2018 ident: ref_52 article-title: Structural Health Monitoring as a Big-Data Problem publication-title: Struct. Eng. Int. doi: 10.1080/10168664.2018.1461536 – volume: 22 start-page: 135 year: 2008 ident: ref_46 article-title: Model-free data interpretation for continuous monitoring of complex structures publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2007.02.002 – ident: ref_8 – volume: 139 start-page: 1716 year: 2013 ident: ref_34 article-title: Predicting the Usefulness of Monitoring for Identifying the Behavior of Structures publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0000577 – ident: ref_4 – ident: ref_56 – volume: 23 start-page: 470 year: 2016 ident: ref_16 article-title: Efficient time synchronization for structural health monitoring using wireless smart sensor networks publication-title: Struct. Control Health Monit. doi: 10.1002/stc.1782 – volume: 23 start-page: 515 year: 2016 ident: ref_22 article-title: Structural Dynamic Model Updating Techniques: A State of the Art Review publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-015-9150-3 – volume: 22 start-page: 255 year: 2015 ident: ref_17 article-title: System identification of a historic swing truss bridge using a wireless sensor network employing orientation correction publication-title: Struct. Control Health Monit. doi: 10.1002/stc.1672 – volume: 62–63 start-page: 272 year: 2015 ident: ref_48 article-title: Strain flexibility identification of bridges from long-gauge strain measurements publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.02.021 – volume: 136 start-page: 1309 year: 2010 ident: ref_45 article-title: Multimodel Structural Performance Monitoring publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0000232 – ident: ref_62 – volume: 101 start-page: 156 year: 2018 ident: ref_29 article-title: Strain expansion-reduction approach publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.08.023 – volume: 109 start-page: 128 year: 2014 ident: ref_41 article-title: Untersuchung einer 50 Jahre alten Spannbetonbrücke zur Genauigkeitssteigerung von Lebensdauerprognosen publication-title: Beton Stahlbetonbau doi: 10.1002/best.201300079 – volume: 23 start-page: 1047 year: 2016 ident: ref_51 article-title: On-line unsupervised detection of early damage publication-title: Struct. Control Health Monit. doi: 10.1002/stc.1825 – ident: ref_18 doi: 10.1098/rsta.2006.1932 – volume: 199 start-page: 161 year: 1985 ident: ref_26 article-title: Non-Destructive Testing of Mass Produced Components by Natural Frequency Measurements publication-title: Proc. Inst. Mech. Eng. doi: 10.1243/PIME_PROC_1985_199_062_02 – ident: ref_53 doi: 10.3390/s19143047 – ident: ref_59 – ident: ref_14 doi: 10.1201/9781315189390 – volume: 11 start-page: 349 year: 2004 ident: ref_20 article-title: Smart sensing technology: Opportunities and challenges publication-title: Struct. Control Health Monit. doi: 10.1002/stc.48 – volume: 24 start-page: 891 year: 2010 ident: ref_25 article-title: A Bayesian approach to optimal sensor placement for structural health monitoring with application to active sensing publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2009.09.003 – ident: ref_3 – volume: 9 start-page: 1 year: 2012 ident: ref_39 article-title: Influence line- model correction approach for the assessment of engineering structures using novel monitoring techniques publication-title: Smart Struct. Syst. doi: 10.12989/sss.2012.9.1.001 – volume: 17 start-page: 155014772199171 year: 2021 ident: ref_27 article-title: Optimal sensor placement through expansion of static strain measurements to static displacements publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1177/1550147721991712 – ident: ref_21 doi: 10.1061/9780784411971 – ident: ref_13 doi: 10.3390/app10051873 – ident: ref_44 – volume: 19 start-page: 119 year: 2020 ident: ref_2 article-title: Non-destructive testing and monitoring as elements of building inspection publication-title: Otto Graf J. – volume: 2672 start-page: 11 year: 2018 ident: ref_9 article-title: Development of Live Load Model for Strength II Limit State in AASHTO LRFD Design Specifications publication-title: Transp. Res. Rec. doi: 10.1177/0361198118756874 – ident: ref_7 doi: 10.1201/9781315189390 – volume: 24 start-page: 125034 year: 2015 ident: ref_28 article-title: Optimal sensor placement in structural health monitoring using discrete optimization publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/12/125034 – volume: 13 start-page: 155014771770792 year: 2017 ident: ref_31 article-title: Optimal static strain sensor placement for truss bridges publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1177/1550147717707929 – ident: ref_23 doi: 10.1098/rsta.2006.1928 – ident: ref_33 – volume: 9 start-page: 1206 year: 2013 ident: ref_15 article-title: Development of a bridge management system incorporating a newly developed model for element condition evaluation based on damage effects publication-title: Struct. Infrastruct. Eng. doi: 10.1080/15732479.2012.674536 – volume: 88 start-page: 467 year: 2010 ident: ref_47 article-title: Methodologies for model-free data interpretation of civil engineering structures publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2010.01.001 – ident: ref_6 doi: 10.1201/9781315189390 – volume: 99 start-page: 139 year: 2012 ident: ref_40 article-title: Automated finite element updating using strain data for the lifetime reliability assessment of bridges publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2011.11.007 – ident: ref_54 doi: 10.3390/s21041246 – ident: ref_64 – volume: 58 start-page: 156 year: 2011 ident: ref_35 article-title: High-temperature (500 °C) wall thickness monitoring using dry-coupled ultrasonic waveguide transducers publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2011.1782 – ident: ref_60 doi: 10.1007/978-3-030-76465-4_17 – volume: 26 start-page: 201 year: 2015 ident: ref_42 article-title: Finite element model updating of flexural structures based on modal parameters extracted from dynamic distributed macro-strain responses publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X14523856 – ident: ref_36 – ident: ref_19 – ident: ref_57 |
| SSID | ssj0023338 |
| Score | 2.382732 |
| Snippet | The ability to track the structural condition of existing structures is one of the main concerns of bridge owners and operators. In the context of bridge... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 2871 |
| SubjectTerms | Bridges Building codes Concrete damage detection Decision making Design Environmental conditions FBG sensors Infrastructure Laboratories Prestressed concrete Sensors structural health monitoring |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL4UDojwDBQ2PA5eoecc-binLCqkr0e1KvUV-ha6UOlWz26r9IfxeZpJstCuKuHCNbWnkGdvfF4-_YexTjtaFSmW-MjwkUW0q5C5j30apxONQp7aVYzieZpN58v0sPdso9UU5YZ08cDdxB1wKhVxbK4TWiVSx1DqTwiKPUMqo3NDuG3CxJlM91YqReXU6QjGS-oMGiQ0pu4dbp08r0n8fsvwzQXJ35S7l7Y2sqo3TZ_yEPe5hI4w6c_fYA-ueskcbYoLP2K8RTOtrW8EJVX-4sDCqftZI_c8vAIEpINCDE0SF_mnb1muRgHQGjuyyTchyUJcwdyT6rxGIQvfyoIGFA9mNnS3uLMwmxzDtsseBfuPCj5VsFv4RSfBS9SwcOT78BjMkyPVV85zNx19Pv0z8vuqCr5EqL_3IBoFJQ1kidVI8j6NQB1lgTWxSU2ptIkGa8xmPdJ5zg75RiBK4DbWQIgpyE79gO6529hWDUiSJoJe8EUfexg23MRKsNCh1EiqbKI99Xnuj0L0kOVXGqAqkJuS4YnCcxz4MXS87HY77Oh2SS4cOJJ3dfsCAKvqAKv4VUB7bXwdE0a_npkDiRZfduF157P3QjCuRrleks_WK-lC9U9Lr8djLLn4GS9BOKv6VeizfiqwtU7db3OK8VfvmQY4gKvLYxyEG_z4Dr__HDLxhDyPK3CFFS7HPdpZXK_sWoddSvWtX2W8C4C4H priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6V9AAcEG8MBS2PAxerfj8OCCW0IUKqBUkj9Wbty20k1w6xA4Ifwu9lxi8aUbh6x9LYM-udzzv7fQBvQvTOFiIwhYpsItUmIXfumtrxOS6H0tcNHcNJEsyW3qcz_2wPkv4sDLVV9t_E5kOtSkn_yA-x9KXtRkyY9-uvJqlG0e5qL6HBO2kF9a6hGLsB-w4xY41gf3KcfJ4PEMxFRNbyC7kI9g8rtCHGd3tnVWrI-6-rOP9unLy5Ldb8x3ee51dWpelduNOVk2zcxv8e7OniPty-QjL4AH6NWVJ-0zmbk-uXmo3zc3yw-uKSYcHKsABkc6wWzdNmrOMoYbxQ7EjXTaNWwcqMLQsSA5BYoLL2RELFVgXj7b2L1U_NFrMTlrRd5Yx-77IvW16tzCOi5iVVLbxzOvnIFgicy031EJbT49MPM7NTYzAlQujadLRlKd_mGUIqEYWuY0srsLRyla8yKZUTExd9EDkyDCMlrFBg9RBpW8Y8dqxQuY9gVJSFfgIsiz0vphO-ToR4LlKRdhF4-VYmPVtoTxjwto9GKjuqclLMyFOELBS4dAicAa8G03XLz3Gd0YRCOhgQpXZzodycp90MTSMeo9OBFIjhPC5cTKmAxxoBqxBKhMqAgz4h0m6eV-mfrDTg5TCMM5S2XXihyy3ZkA4q8fgY8LjNn8ET9JNEwXwDwp3M2nF1d6RYXTQs4JEVYnHlGPB6yMF_v4Gn_3f-GdxyqFeHOCzjAxjVm61-jsVWLV50M-g37GAqhg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtNAFB1BugAWvB-GgobHgo3rtz1eoZQSIqRG0DRSWbnzcmuR2lHsFNEP4Xu5155YDRQJiW3mjnST3Jk5x75zDiFvEsjOEyK2hWIeimqjkTsPbO1HHI5DGelWjmF_Eo9n4aej6Mj4nNamrRKoeNFu0ngLy4YTzHV8z2EOgntnofJ35-ZREoq9A36BHfY62YojAOMDsjWbfB5-be8UmcmdnlAA5N6pgeCgwru3cQq1Yv1XIcw_GyVvrMoF__Gdz-eXTqHRHXK8zr9rPvm2s2rEjrz4TdrxP77gXXLbIFQ67ErqHrmmy_vk1iXdwgfk55BOqnM9pwdoNHGm6XB-Ui2L5vSMAgamgCnpAQBQ-7AdM7InlJeK7umm7f0qaZXTWYn-AhIwL-0uOdS0KCnv5k6LC02n43066RrVKT4xpl9WvC7sPVT7RaMumDna_UinwMWrZf2QzEYfDt-PbWPwYEtg5Y3ta9dVkcdzYGmCJYHvSTd2tQpUpHIplZ-ivH3MfJkkTAk3EQBImPZkylPfTVTwiAzKqtRPCM3TMEzx0rDPgCIyxXQAXC5ycxl6QofCIm_Xf3gmjfo5mnDMM2BBWBtZXxsWedWHLjrJj6uCdrFq-gBU6W4_qJYnmVn0GeMpJB1LAbQw5CLgUsY81cCBhVAiURbZXtdcZraOOgOOh-_VYWe0yMt-GBY9vsnhpa5WGIPWqigNZJHHXYn2mUCe6DMWWSTZKN6NVDdHyuK0FRZnbgJ4zbfI677M__4LPP2nqGfkpo9dQKiOmW6TQbNc6ecA4xrxwizVX0yNQc0 priority: 102 providerName: Unpaywall |
| Title | A Novel Runtime Algorithm for the Real-Time Analysis and Detection of Unexpected Changes in a Real-Size SHM Network with Quasi-Distributed FBG Sensors |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33921865 https://www.proquest.com/docview/2550277196 https://www.proquest.com/docview/2520850451 https://pubmed.ncbi.nlm.nih.gov/PMC8072662 https://www.mdpi.com/1424-8220/21/8/2871/pdf?version=1618977284 https://doaj.org/article/8a9b076cb5484ab3acc6a9e601bbdb7d |
| UnpaywallVersion | publishedVersion |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9NAFB6V9gAcKnZcSjQsBy6m3md8QCihTSOkRCVppHCyZksbybWLnQDlh_B7ec92rEYEiYsPs0hPM2_83jfL9xHyloF1rpSRLTV3kVQbhdyFbxsvFBAOVWgqOobhKBpMg8-zcLZD1hqbzQCWW6Ed6klNi_T9z283H2HBf0DECZD9qATYgrztAIL2IEDFqOAwDNrDBM_3K0FrfNNlQzx0aoKhza4bYali79-Wcv59c_LuKrsWNz9Emt4KS_0HZL_JJ2m3doCHZMdkj8j9WyyDj8nvLh3l301KxygLcWVoN73Ii8Xy8opCxkohA6RjSBft86quISmhItP02Cyrm1oZzed0mqEagIIMldZPEkq6yKio-04WvwydDIZ0VF8rp7i_S7-sRLmwj5GbF2W1oGe_d0ongJzzonxCpv2T808Du5FjsBVg6KXtGcfRoSvmgKkkZ77nKidyjPZ1qOdKaS9GMvqIe4oxrqXDJKQP3LgqFrHnMO0_JbtZnpnnhM7jIIjxia_HAdBxzY0PyCt05ipwpQmkRd6tZyNRDVc5SmakCWAWnLiknTiLvG6bXtcEHdsa9XBK2wbIqV0V5MVF0izRhIsYjI6UBBAXCOkLpSIRG0CsUmrJtEUO1w6RrP00AUSGp-DwH7PIq7Yaliieu4jM5Ctsg0KoSORjkWe1_7SWgJ2oChZahG141oapmzXZ4rKiAecOg-zKs8ib1gf_PQIH_zNML8g9D6_sIJVlfEh2l8XKvIScayk75A6bMfjy_mmH7PVORmfjTrV_0anWGpRNR2fdr38AIvAutg |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigcEG8MBZaXxMWq348DQikhpLSJRJNIubn7chsptUOcUJUfws_gNzJjO24jCrdes-to5JnZnc87-30Ab0O0zhYiMIWKbCLVJiF37pra8Tluh9LXJR1Drx90R97XsT_egN-ruzDUVrlaE8uFWuWSvpHvYOlLx40YMB9n301SjaLT1ZWERhUW-_r8DCFb8WGvjf595zidz8NPXbNWFTAlQsGF6WjLUr7NU4QGIgpdx5ZWYGnlKl-lUionJk71IHJkGEZKWKHAXTDStox57FihcvF_b8BNz8W1BPMnHF8APBfxXsVe5LqxtVMgnCI-eXttzyulAa6qZ_9uy9xaZjN-fsan00t7Xucu3KmLVdaqousebOjsPty-RGH4AH61WD__oafskDQnTjVrTY_xtS1OThmWwwzLS3aItag5LMdqBhTGM8XaelG2gWUsT9koI6kBieUvq-47FGySMV49O5j81GzQ7bF-1bPO6OMx-7bkxcRsE_EvaXbhk53dL2yAsDyfFw9hdC1eeQSbWZ7pJ8DS2PNiuj_sRIgWIxVpF2Gdb6XSs4X2hAHvV95IZE2ETnoc0wQBETkuaRxnwOtm6qxi_7hq0i65tJlAhN3lD_n8OKnzP4l4jEYHUiBC9LhwuZQBjzXCYSGUCJUB26uASOpVpEguYt6AV80w5j8d6vBM50uaQyqrxBJkwOMqfhpL0E6SHPMNCNcia83U9ZFsclJyjEdWiKWbY8CbJgb__Qae_t_4l7DVHfYOkoO9_v4zuOVQVxCxZcbbsLmYL_VzLOsW4kWZSwyOrjt5_wAirl_h |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2VIgF9QNxrKLDcpL5YsdeXtR8QSgkhpTSCppHyZvbmNlJqhzihKh_Cx_B1zNiO24jCW1-z62jkmZ2d4509h5DXHKxzpQxtqSMXSbVRyF14tmGBgO1QBaakY9jvh72h_2kUjNbI7-VdGGyrXObEMlHrXOE38haUvnjcCAHTSuu2iC-d7rvpdxsVpPCkdSmnUYXInjk7BfhWvN3tgK_fMNb9cPi-Z9cKA7YCWDi3mXEcHbgiBZggI-4xVzmhY7SnA50qpVmM_OphxBTnkZYOl7AjRsZVsYiZw7UH_3uNXOeeF2M7IR-dgz0PsF_FZASDTqsAaIXc8u7K_lfKBFxW2_7donlzkU3F2amYTC7sf9075HZduNJ2FWl3yZrJ7pGNC3SG98mvNu3nP8yEHqD-xImh7ckRvLb58QmF0phCqUkPoC61D8uxmg2FikzTjpmXLWEZzVM6zFB2QEEpTKu7DwUdZ1RUzw7GPw0d9PZpv-pfp_ghmX5diGJsd5AEGPW74Mnuzkc6AIiez4oHZHglXnlI1rM8M5uEprHvx3iXmEWAHCMdGQ8gXuCkynel8aVFtpfeSFRNio7aHJMEwBE6LmkcZ5GXzdRpxQRy2aQddGkzAcm7yx_y2VFS54IkEjEYHSoJaNEX0hNKhSI2AI2l1JJri2wtAyKpM0qRnMe_RV40w5AL8IBHZCZf4BxUXEXGIIs8quKnsQTsRPmxwCJ8JbJWTF0dycbHJd945HAo45hFXjUx-O838Pj_xj8nN2DZJp93-3tPyC2GDUJInBlvkfX5bGGeQoU3l8_KpUTJt6teu38AuCVkJA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtNAFB1BugAWvB-GgobHgo3rtz1eoZQSIqRG0DRSWbnzcmuR2lHsFNEP4Xu5155YDRQJiW3mjnST3Jk5x75zDiFvEsjOEyK2hWIeimqjkTsPbO1HHI5DGelWjmF_Eo9n4aej6Mj4nNamrRKoeNFu0ngLy4YTzHV8z2EOgntnofJ35-ZREoq9A36BHfY62YojAOMDsjWbfB5-be8UmcmdnlAA5N6pgeCgwru3cQq1Yv1XIcw_GyVvrMoF__Gdz-eXTqHRHXK8zr9rPvm2s2rEjrz4TdrxP77gXXLbIFQ67ErqHrmmy_vk1iXdwgfk55BOqnM9pwdoNHGm6XB-Ui2L5vSMAgamgCnpAQBQ-7AdM7InlJeK7umm7f0qaZXTWYn-AhIwL-0uOdS0KCnv5k6LC02n43066RrVKT4xpl9WvC7sPVT7RaMumDna_UinwMWrZf2QzEYfDt-PbWPwYEtg5Y3ta9dVkcdzYGmCJYHvSTd2tQpUpHIplZ-ivH3MfJkkTAk3EQBImPZkylPfTVTwiAzKqtRPCM3TMEzx0rDPgCIyxXQAXC5ycxl6QofCIm_Xf3gmjfo5mnDMM2BBWBtZXxsWedWHLjrJj6uCdrFq-gBU6W4_qJYnmVn0GeMpJB1LAbQw5CLgUsY81cCBhVAiURbZXtdcZraOOgOOh-_VYWe0yMt-GBY9vsnhpa5WGIPWqigNZJHHXYn2mUCe6DMWWSTZKN6NVDdHyuK0FRZnbgJ4zbfI677M__4LPP2nqGfkpo9dQKiOmW6TQbNc6ecA4xrxwizVX0yNQc0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Runtime+Algorithm+for+the+Real-Time+Analysis+and+Detection+of+Unexpected+Changes+in+a+Real-Size+SHM+Network+with+Quasi-Distributed+FBG+Sensors&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sakiyama%2C+Felipe+Isamu+H.&rft.au=Lehmann%2C+Frank&rft.au=Garrecht%2C+Harald&rft.date=2021-04-19&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=8&rft.spage=2871&rft_id=info:doi/10.3390%2Fs21082871&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s21082871 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |