Adaptive data-derived anomaly detection in the activated sludge process of a large-scale wastewater treatment plant

This work examines real-time anomaly detection and isolation in a full-scale wastewater treatment application. The Viikinmäki plant is the largest municipal wastewater treatment facility in Finland. It is monitored with ample instrumentation, though their potential is not yet fully exploited. One re...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 52; pp. 65 - 80
Main Authors Haimi, Henri, Mulas, Michela, Corona, Francesco, Marsili-Libelli, Stefano, Lindell, Paula, Heinonen, Mari, Vahala, Riku
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2016
Subjects
Online AccessGet full text
ISSN0952-1976
1873-6769
DOI10.1016/j.engappai.2016.02.003

Cover

Abstract This work examines real-time anomaly detection and isolation in a full-scale wastewater treatment application. The Viikinmäki plant is the largest municipal wastewater treatment facility in Finland. It is monitored with ample instrumentation, though their potential is not yet fully exploited. One reason that prevents the use of the instrumentation in plant control is the occasional insufficient measurement performance. Therefore, we investigate an intelligent anomaly detection system for the activated sludge process in order to motivate a more efficient use of sensors in the process operation. The anomaly detection methodology is based on principal component analysis. Because the state of the process fluctuates, moving-window extensions are used to adapt the analysis to the time-varying conditions. The results show that both instrument and process anomalies were successfully detected using the proposed algorithm and the variables responsible for the anomalies correctly isolated. We also demonstrate that the proposed algorithm represents a convenient improvement for supporting the efficient operation of wastewater treatment plants. •Anomaly detection is investigated in a biological process of a full-scale WWTP.•The aim is to design a system motivating an efficient use of sensors in the operation.•The proposed intelligent anomaly detection system is used for real-time monitoring.•Adaptive techniques are used to adjust to the time-varying process conditions.•Instrument and process anomalies are successfully detected with the proposed system.
AbstractList This work examines real-time anomaly detection and isolation in a full-scale wastewater treatment application. The Viikinmaeki plant is the largest municipal wastewater treatment facility in Finland. It is monitored with ample instrumentation, though their potential is not yet fully exploited. One reason that prevents the use of the instrumentation in plant control is the occasional insufficient measurement performance. Therefore, we investigate an intelligent anomaly detection system for the activated sludge process in order to motivate a more efficient use of sensors in the process operation. The anomaly detection methodology is based on principal component analysis. Because the state of the process fluctuates, moving-window extensions are used to adapt the analysis to the time-varying conditions. The results show that both instrument and process anomalies were successfully detected using the proposed algorithm and the variables responsible for the anomalies correctly isolated. We also demonstrate that the proposed algorithm represents a convenient improvement for supporting the efficient operation of wastewater treatment plants.
This work examines real-time anomaly detection and isolation in a full-scale wastewater treatment application. The Viikinmäki plant is the largest municipal wastewater treatment facility in Finland. It is monitored with ample instrumentation, though their potential is not yet fully exploited. One reason that prevents the use of the instrumentation in plant control is the occasional insufficient measurement performance. Therefore, we investigate an intelligent anomaly detection system for the activated sludge process in order to motivate a more efficient use of sensors in the process operation. The anomaly detection methodology is based on principal component analysis. Because the state of the process fluctuates, moving-window extensions are used to adapt the analysis to the time-varying conditions. The results show that both instrument and process anomalies were successfully detected using the proposed algorithm and the variables responsible for the anomalies correctly isolated. We also demonstrate that the proposed algorithm represents a convenient improvement for supporting the efficient operation of wastewater treatment plants. •Anomaly detection is investigated in a biological process of a full-scale WWTP.•The aim is to design a system motivating an efficient use of sensors in the operation.•The proposed intelligent anomaly detection system is used for real-time monitoring.•Adaptive techniques are used to adjust to the time-varying process conditions.•Instrument and process anomalies are successfully detected with the proposed system.
Author Marsili-Libelli, Stefano
Haimi, Henri
Mulas, Michela
Corona, Francesco
Lindell, Paula
Heinonen, Mari
Vahala, Riku
Author_xml – sequence: 1
  givenname: Henri
  surname: Haimi
  fullname: Haimi, Henri
  email: henri.haimi@aalto.fi
  organization: Department of Built Environment, Aalto University, School of Engineering, P.O. Box 15200, FI-00076 Aalto, Finland
– sequence: 2
  givenname: Michela
  surname: Mulas
  fullname: Mulas, Michela
  organization: Department of Built Environment, Aalto University, School of Engineering, P.O. Box 15200, FI-00076 Aalto, Finland
– sequence: 3
  givenname: Francesco
  surname: Corona
  fullname: Corona, Francesco
  organization: Department of Information and Computer Science, Aalto University, School of Science, P.O. Box 15400, FI-00076 Aalto, Finland
– sequence: 4
  givenname: Stefano
  surname: Marsili-Libelli
  fullname: Marsili-Libelli, Stefano
  organization: Department of Information Technology, University of Florence, Via S. Marta 3, 50139 Florence, Italy
– sequence: 5
  givenname: Paula
  surname: Lindell
  fullname: Lindell, Paula
  organization: HSY Helsinki Region Environmental Services Authority, P.O. Box 100, FI-00066 HSY, Finland
– sequence: 6
  givenname: Mari
  surname: Heinonen
  fullname: Heinonen, Mari
  organization: HSY Helsinki Region Environmental Services Authority, P.O. Box 100, FI-00066 HSY, Finland
– sequence: 7
  givenname: Riku
  surname: Vahala
  fullname: Vahala, Riku
  organization: Department of Built Environment, Aalto University, School of Engineering, P.O. Box 15200, FI-00076 Aalto, Finland
BookMark eNqFkE1PGzEQhq2KSg2Uv4B85LKLv-LNShxAiBYkJC70bI3t2dTRxrvYThD_vo5SLlw4zYz0vKOZ55ScxCkiIRectZxxfbVpMa5hniG0os4tEy1j8htZ8FUnG93p_oQsWL8UDe87_YOc5rxhlVgpvSD51sNcwh6phwKNx1R7TyFOWxjfqceCroQp0hBp-YsU6rSHUpE87vwa6ZwmhznTaaBAR0hrbLKDEekb5IJvFU20JISyxVjoPEIsP8n3AcaM5__rGfnz6_7l7qF5ev79eHf71Dil-9KIjmkhpRVOOYVy4NLLwS6ZHcBpZ8H2Qtless5ba5dOe-V1DwdYoRPKyTNyedxbb3zdYS5mG7LDsd6A0y4bvuKaraTq-opeH1GXppwTDsaFAofHS4IwGs7MwbXZmA_X5uDaMGGqyRrXn-JzCltI718Hb45BrB72AZPJLmB06EOq4o2fwlcr_gEMdaLF
CitedBy_id crossref_primary_10_1186_s13007_022_00927_6
crossref_primary_10_1177_1475921717717310
crossref_primary_10_1016_j_engappai_2017_10_016
crossref_primary_10_3390_pr12061218
crossref_primary_10_1016_j_watres_2020_116227
crossref_primary_10_1016_j_psep_2023_02_043
crossref_primary_10_1109_TII_2022_3216809
crossref_primary_10_2166_wst_2022_115
crossref_primary_10_1088_1742_5468_ad0033
crossref_primary_10_1016_j_engappai_2023_106052
crossref_primary_10_3390_w14030332
crossref_primary_10_1016_j_jprocont_2019_03_005
crossref_primary_10_1109_ACCESS_2021_3058887
crossref_primary_10_1016_j_engappai_2019_03_011
crossref_primary_10_2166_wst_2020_026
crossref_primary_10_2166_wst_2020_368
crossref_primary_10_1021_acs_iecr_2c00335
crossref_primary_10_3390_s18082491
crossref_primary_10_1016_j_envres_2025_120822
crossref_primary_10_1016_j_watres_2018_04_052
crossref_primary_10_1016_j_jprocont_2018_07_017
crossref_primary_10_1016_j_molliq_2024_125592
crossref_primary_10_1016_j_engappai_2022_105709
crossref_primary_10_1016_j_engappai_2018_02_013
crossref_primary_10_1016_j_scitotenv_2021_150724
crossref_primary_10_1061_JHYEFF_HEENG_6206
crossref_primary_10_1016_j_chemosphere_2021_132483
crossref_primary_10_2166_wst_2020_298
Cites_doi 10.1016/j.jprocont.2015.08.005
10.2166/wst.2009.723
10.1016/j.jprocont.2012.09.011
10.1177/1087724X0044005
10.1021/ie050391w
10.1016/j.compchemeng.2010.07.034
10.1021/ie990110i
10.1016/j.envsoft.2013.05.009
10.2166/wst.2001.0411
10.1080/1573062X.2013.763996
10.1016/j.watres.2011.12.054
10.3182/20120829-3-MX-2028.00198
10.1016/0169-7439(95)00076-3
10.1016/j.arcontrol.2012.09.004
10.1137/0707001
10.2166/wst.2003.0074
10.1021/ie070712z
10.1016/j.chemolab.2013.07.012
10.1080/00401706.1979.10489779
10.1007/s11390-012-1227-y
10.1002/env.724
10.1016/j.envsoft.2014.05.008
10.1080/00401706.1995.10485888
10.2166/wst.2006.027
10.1016/S0098-1354(02)00162-X
10.1002/aic.690400509
10.1016/j.engappai.2007.08.001
10.2166/wst.2013.302
10.1016/j.compchemeng.2008.12.012
10.1039/C3AY41907J
10.1016/j.engappai.2010.01.026
10.1016/j.compchemeng.2006.09.004
10.2166/wst.2013.246
10.1016/j.chemolab.2003.10.011
10.1016/S0169-7439(98)00087-2
10.1021/ie302069q
10.1007/978-0-387-21840-3_2
10.1016/j.compchemeng.2006.01.001
10.1016/j.engappai.2007.08.004
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.engappai.2016.02.003
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
EndPage 80
ExternalDocumentID 10_1016_j_engappai_2016_02_003
S0952197616300124
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7TB
8FD
F28
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c469t-2706233b2c4c4e3f13d3fb50bfac6cbab924b9307dbbb5c6d4d69ac4c44ec24c3
IEDL.DBID .~1
ISSN 0952-1976
IngestDate Sat Sep 27 19:28:44 EDT 2025
Wed Oct 01 01:51:01 EDT 2025
Thu Apr 24 22:56:16 EDT 2025
Fri Feb 23 02:28:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wastewater treatment
Adaptive process monitoring
Anomaly detection
Principal component analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-2706233b2c4c4e3f13d3fb50bfac6cbab924b9307dbbb5c6d4d69ac4c44ec24c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1816083479
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_1816083479
crossref_citationtrail_10_1016_j_engappai_2016_02_003
crossref_primary_10_1016_j_engappai_2016_02_003
elsevier_sciencedirect_doi_10_1016_j_engappai_2016_02_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Olsson (bib33) 2014; 46
Jeppsson, Alex, Batstone, Benedetti, Comas, Copp, Corominas, Flores-Alsina, Gernaey, Nopens, Pons, Rodríguez-Roda, Rosen, Steyer, Vanrolleghem, Volcke, Vrecko (bib17) 2013; 68
Rosen, C., 2001. A Chemometric Approach to Process Monitoring and Control: With Applications to Wastewater Treatment Operation (Ph.D. thesis). Lund University. Lund, Sweden.
Kadlec, Gabrys, Strandt (bib20) 2009; 33
Campisano, Ple, Muschalla, Pleau, Vanrolleghem (bib8) 2013; 10
Thomsen, H.R., Önnerth, T.B., 2009. Results and benefits from practical application of ICA on more than 50 wastewater systems over a period of 15 years. In: Proceedings of the 10th IWA Conference on Instrumentation, Control and Automation, Cairns, Australia (Keynote paper).
Valle, Li, Qin (bib43) 1999; 38
Tao, Shen, Liu, Chen (bib40) 2013; 128
He, Yang (bib14) 2008; 47
Mulas, Tronci, Corona, Haimi, Lindell, Heinonen, Vahala, Baratti (bib30) 2015; 35
Lieftucht, Kruger, Irwin (bib27) 2006; 30
Olsson, G., Nielsen, M., Yuan, Z., Lynggaard-Jensen, A., Steyer, J.P., 2005. Instrumentation, Control and Automation in Wastewater Systems. Scientific and Technical Report No. 15. International Water Association. London.
Martin, Vanrolleghem (bib29) 2014; 60
Corona, Mulas, Haimi, Sundell, Heinonen, Vahala (bib10) 2013; 23
Aguado, Montoya, Borras, Seco, Ferrer (bib1) 2008; 21
Lee, Choi, Lee (bib24) 2004; 70
Aguado, Rosen (bib2) 2008; 21
Rosen, Yuan (bib37) 2001; 43
Jackson, Mudholkar (bib16) 1979; 21
Baggiani, Marsili-Libelli (bib6) 2009; 60
Le Bonté, Potier, Pons (bib23) 2005; 16
Katko (bib21) 2000; 4
Atkinson, Riani, Cerioli (bib4) 2004
Lee, Choi, Lee (bib25) 2006; 53
Tamura, Tsujita (bib39) 2007; 31
Ku, Storer, Georgakis (bib22) 1995; 30
Jolliffe (bib18) 2002
Teppola, Mujunen, Minkkinen (bib41) 1999; 45
Henze, van Loosdrecht, Ekama, Brdjanovic (bib15) 2008
MacGregor, Jaeckle, Kiparissides, Koutoudi (bib28) 1994; 40
Ge, Song, Gao (bib12) 2013; 52
Alferes, Tik, Copp, Vanrolleghem (bib3) 2013; 68
Shen, Cheng, Wang, Chen (bib38) 2012; 27
Venkatasubramanian, Rengaswamy, Kavuri, Yin (bib45) 2003; 27
Kadlec, Gabrys, Grbic (bib19) 2011; 35
Vanrolleghem, Lee (bib44) 2003; 47
Qin (bib35) 2011; 36
Choi, Martin, Morris, Lee (bib9) 2006; 45
Bro, Smilde (bib7) 2014; 6
Davis, Kahan (bib11) 1970; 7
Lennox, J., 2002. Multivariate Subspaces for Fault Detection and Isolation: With Application to the Wastewater Treatment Process (Ph.D. thesis). University of Queensland. Brisbane, Australia.
Ayech, N., Chakour, C., Harkat, M.F., 2012. New adaptive moving window PCA for process monitoring fault detection. In: Proceedings of the 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes. Mexico City, Mexico. pp. 606–611.
Haimi, Mulas, Corona, Vahala (bib13) 2013; 47
Ng, Srinivasan (bib31) 2010; 23
Nomikos, MacGregor (bib32) 1995; 37
Ng (10.1016/j.engappai.2016.02.003_bib31) 2010; 23
Rosen (10.1016/j.engappai.2016.02.003_bib37) 2001; 43
Lee (10.1016/j.engappai.2016.02.003_bib24) 2004; 70
Lieftucht (10.1016/j.engappai.2016.02.003_bib27) 2006; 30
Aguado (10.1016/j.engappai.2016.02.003_bib2) 2008; 21
He (10.1016/j.engappai.2016.02.003_bib14) 2008; 47
Venkatasubramanian (10.1016/j.engappai.2016.02.003_bib45) 2003; 27
Baggiani (10.1016/j.engappai.2016.02.003_bib6) 2009; 60
Le Bonté (10.1016/j.engappai.2016.02.003_bib23) 2005; 16
Nomikos (10.1016/j.engappai.2016.02.003_bib32) 1995; 37
Tamura (10.1016/j.engappai.2016.02.003_bib39) 2007; 31
Jeppsson (10.1016/j.engappai.2016.02.003_bib17) 2013; 68
Alferes (10.1016/j.engappai.2016.02.003_bib3) 2013; 68
Davis (10.1016/j.engappai.2016.02.003_bib11) 1970; 7
Haimi (10.1016/j.engappai.2016.02.003_bib13) 2013; 47
Kadlec (10.1016/j.engappai.2016.02.003_bib20) 2009; 33
Katko (10.1016/j.engappai.2016.02.003_bib21) 2000; 4
Olsson (10.1016/j.engappai.2016.02.003_bib33) 2014; 46
Campisano (10.1016/j.engappai.2016.02.003_bib8) 2013; 10
Qin (10.1016/j.engappai.2016.02.003_bib35) 2011; 36
10.1016/j.engappai.2016.02.003_bib36
10.1016/j.engappai.2016.02.003_bib34
Atkinson (10.1016/j.engappai.2016.02.003_bib4) 2004
Aguado (10.1016/j.engappai.2016.02.003_bib1) 2008; 21
Henze (10.1016/j.engappai.2016.02.003_bib15) 2008
Corona (10.1016/j.engappai.2016.02.003_bib10) 2013; 23
Jackson (10.1016/j.engappai.2016.02.003_bib16) 1979; 21
Bro (10.1016/j.engappai.2016.02.003_bib7) 2014; 6
Teppola (10.1016/j.engappai.2016.02.003_bib41) 1999; 45
MacGregor (10.1016/j.engappai.2016.02.003_bib28) 1994; 40
Tao (10.1016/j.engappai.2016.02.003_bib40) 2013; 128
Mulas (10.1016/j.engappai.2016.02.003_bib30) 2015; 35
Ge (10.1016/j.engappai.2016.02.003_bib12) 2013; 52
Jolliffe (10.1016/j.engappai.2016.02.003_bib18) 2002
Valle (10.1016/j.engappai.2016.02.003_bib43) 1999; 38
Shen (10.1016/j.engappai.2016.02.003_bib38) 2012; 27
Vanrolleghem (10.1016/j.engappai.2016.02.003_bib44) 2003; 47
Kadlec (10.1016/j.engappai.2016.02.003_bib19) 2011; 35
Choi (10.1016/j.engappai.2016.02.003_bib9) 2006; 45
Martin (10.1016/j.engappai.2016.02.003_bib29) 2014; 60
10.1016/j.engappai.2016.02.003_bib42
Ku (10.1016/j.engappai.2016.02.003_bib22) 1995; 30
10.1016/j.engappai.2016.02.003_bib26
10.1016/j.engappai.2016.02.003_bib5
Lee (10.1016/j.engappai.2016.02.003_bib25) 2006; 53
References_xml – volume: 128
  start-page: 49
  year: 2013
  end-page: 55
  ident: bib40
  article-title: Fault diagnosis based on PCA for sensors of laboratorial wastewater treatment process
  publication-title: Chemometr. Intell. Lab.
– reference: Ayech, N., Chakour, C., Harkat, M.F., 2012. New adaptive moving window PCA for process monitoring fault detection. In: Proceedings of the 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes. Mexico City, Mexico. pp. 606–611.
– volume: 37
  start-page: 41
  year: 1995
  end-page: 59
  ident: bib32
  article-title: Multivariate SPC charts for monitoring batch processes
  publication-title: Technometrics
– volume: 23
  start-page: 158
  year: 2013
  end-page: 170
  ident: bib10
  article-title: Monitoring nitrate concentrations in the denitrifying post-filtration unit of a municipal wastewater treatment plant
  publication-title: J. Process Control
– reference: Olsson, G., Nielsen, M., Yuan, Z., Lynggaard-Jensen, A., Steyer, J.P., 2005. Instrumentation, Control and Automation in Wastewater Systems. Scientific and Technical Report No. 15. International Water Association. London.
– volume: 40
  start-page: 826
  year: 1994
  end-page: 838
  ident: bib28
  article-title: Process monitoring and diagnosis by multiblock PLS methods
  publication-title: A.I.Ch.E. J.
– volume: 36
  start-page: 220
  year: 2011
  end-page: 234
  ident: bib35
  article-title: Survey on data-driven industrial process monitoring and diagnosis
  publication-title: Annu. Rev. Control
– volume: 7
  start-page: 1
  year: 1970
  end-page: 46
  ident: bib11
  article-title: The rotation of eigenvectors by a perturbation. III
  publication-title: SIAM J. Numer. Anal.
– volume: 38
  start-page: 4389
  year: 1999
  end-page: 4401
  ident: bib43
  article-title: Selection of the number of principal components
  publication-title: Ind. Eng. Chem. Res.
– volume: 4
  start-page: 305
  year: 2000
  end-page: 318
  ident: bib21
  article-title: Long-term development of water and sewage services in Finland
  publication-title: Publ. Works Manag. Policy
– volume: 47
  start-page: 1
  year: 2003
  end-page: 34
  ident: bib44
  article-title: On-line monitoring equipment for wastewater treatment processes
  publication-title: Water Sci. Technol.
– volume: 33
  start-page: 795
  year: 2009
  end-page: 814
  ident: bib20
  article-title: Data-driven soft sensors in the process industry
  publication-title: Comput. Chem. Eng.
– volume: 60
  start-page: 188
  year: 2014
  end-page: 201
  ident: bib29
  article-title: Analysing, completing, and generating influent data for WWTP modelling
  publication-title: Environ. Modell. Softw.
– volume: 68
  start-page: 1022
  year: 2013
  end-page: 1030
  ident: bib3
  article-title: Advanced monitoring of water systems using in situ measurement stations
  publication-title: Water Sci. Technol.
– volume: 35
  start-page: 1
  year: 2011
  end-page: 24
  ident: bib19
  article-title: Review of adaptation mechanisms for data-driven soft sensors
  publication-title: Comput. Chem. Eng.
– reference: Lennox, J., 2002. Multivariate Subspaces for Fault Detection and Isolation: With Application to the Wastewater Treatment Process (Ph.D. thesis). University of Queensland. Brisbane, Australia.
– volume: 21
  start-page: 341
  year: 1979
  end-page: 349
  ident: bib16
  article-title: Control procedures for residual associated with principal component analysis
  publication-title: Technometrics
– reference: Thomsen, H.R., Önnerth, T.B., 2009. Results and benefits from practical application of ICA on more than 50 wastewater systems over a period of 15 years. In: Proceedings of the 10th IWA Conference on Instrumentation, Control and Automation, Cairns, Australia (Keynote paper).
– volume: 6
  start-page: 2812
  year: 2014
  end-page: 2831
  ident: bib7
  article-title: Principal component analysis
  publication-title: Anal. Methods
– volume: 30
  start-page: 179
  year: 1995
  end-page: 196
  ident: bib22
  article-title: Disturbance detection and isolation by dynamic principal component analysis
  publication-title: Chemometr. Intell. Lab.
– volume: 53
  start-page: 251
  year: 2006
  end-page: 257
  ident: bib25
  article-title: Sensor fault diagnosis in a wastewater treatment process
  publication-title: Water Sci. Technol.
– volume: 47
  start-page: 88
  year: 2013
  end-page: 107
  ident: bib13
  article-title: Data-derived soft-sensors for biological wastewater treatment plants
  publication-title: Environ. Modell. Softw.
– reference: Rosen, C., 2001. A Chemometric Approach to Process Monitoring and Control: With Applications to Wastewater Treatment Operation (Ph.D. thesis). Lund University. Lund, Sweden.
– volume: 21
  start-page: 919
  year: 2008
  end-page: 930
  ident: bib1
  article-title: Using SOM and PCA for analysing and interpreting data from a P-removal SBR
  publication-title: Eng. Appl. Artif. Intell.
– volume: 45
  start-page: 3108
  year: 2006
  end-page: 3118
  ident: bib9
  article-title: Adaptive multivariate statistical process control for monitoring time-varying processes
  publication-title: Ind. Eng. Chem. Res.
– volume: 52
  start-page: 3543
  year: 2013
  end-page: 3562
  ident: bib12
  article-title: Review of recent research on data-based process monitoring
  publication-title: Ind. Eng. Chem. Res.
– volume: 21
  start-page: 1080
  year: 2008
  end-page: 1091
  ident: bib2
  article-title: Multivariate statistical monitoring of continuous wastewater treatment plants
  publication-title: Eng. Appl. Artif. Intell.
– volume: 27
  start-page: 327
  year: 2003
  end-page: 346
  ident: bib45
  article-title: A review of process fault detection and diagnosis. Part III
  publication-title: Comput. Chem. Eng.
– volume: 70
  start-page: 165
  year: 2004
  end-page: 178
  ident: bib24
  article-title: Sensor fault identification based on time-lagged PCA in dynamic processes
  publication-title: Chemometr. Intell. Lab.
– volume: 35
  start-page: 89
  year: 2015
  end-page: 100
  ident: bib30
  article-title: Predictive control of an activated sludge process
  publication-title: J. Process Control
– year: 2004
  ident: bib4
  article-title: Exploring multivariate data with the forward search
  publication-title: Springer Series in Statistics
– year: 2008
  ident: bib15
  publication-title: Biological Wastewater Treatment—Principles, Modelling and Design
– volume: 31
  start-page: 1035
  year: 2007
  end-page: 1046
  ident: bib39
  article-title: A study on the number of principal components and sensitivity of fault detection using PCA
  publication-title: Comput. Chem. Eng.
– volume: 47
  start-page: 419
  year: 2008
  end-page: 427
  ident: bib14
  article-title: Variable MWPCA for adaptive process monitoring
  publication-title: Ind. Eng. Chem. Res.
– year: 2002
  ident: bib18
  article-title: Principal Component Analysis
– volume: 10
  start-page: 300
  year: 2013
  end-page: 311
  ident: bib8
  article-title: Potential and limitations of modern equipment for real time control of urban wastewater systems
  publication-title: Urban Water J.
– volume: 16
  start-page: 589
  year: 2005
  end-page: 601
  ident: bib23
  article-title: Toxic event detection by respirometry and adaptive principal components analysis
  publication-title: Environmetrics
– volume: 30
  start-page: 901
  year: 2006
  end-page: 912
  ident: bib27
  article-title: Improved reliability in diagnosing faults using multivariate statistics
  publication-title: Comput. Chem. Eng.
– volume: 60
  start-page: 2949
  year: 2009
  end-page: 2961
  ident: bib6
  article-title: Real-time fault detection and isolation in biological wastewater treatment plants
  publication-title: Water Sci. Technol.
– volume: 27
  start-page: 341
  year: 2012
  end-page: 357
  ident: bib38
  article-title: A dimensionality reduction framework for detection of multiscale structure in heterogeneous networks
  publication-title: J. Comput. Sci. Technol.
– volume: 45
  start-page: 23
  year: 1999
  end-page: 38
  ident: bib41
  article-title: Adaptive fuzzy C-means clustering in process monitoring
  publication-title: Chemometr. Intell. Lab.
– volume: 23
  start-page: 934
  year: 2010
  end-page: 949
  ident: bib31
  article-title: Multi-agent based collaborative fault detection and identification in chemical processes
  publication-title: Eng. Appl. Artif. Intell.
– volume: 68
  start-page: 1
  year: 2013
  end-page: 15
  ident: bib17
  article-title: Benchmark simulation models, quo vadis?
  publication-title: Water Sci. Technol.
– volume: 46
  start-page: 1585
  year: 2014
  end-page: 1624
  ident: bib33
  article-title: ICA and me—a subjective review
  publication-title: Water Res.
– volume: 43
  start-page: 147
  year: 2001
  end-page: 156
  ident: bib37
  article-title: Supervisory control of wastewater treatment plants by combining principal component analysis and fuzzy c-means clustering
  publication-title: Water Sci. Technol.
– volume: 35
  start-page: 89
  year: 2015
  ident: 10.1016/j.engappai.2016.02.003_bib30
  article-title: Predictive control of an activated sludge process
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2015.08.005
– volume: 60
  start-page: 2949
  year: 2009
  ident: 10.1016/j.engappai.2016.02.003_bib6
  article-title: Real-time fault detection and isolation in biological wastewater treatment plants
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2009.723
– volume: 23
  start-page: 158
  year: 2013
  ident: 10.1016/j.engappai.2016.02.003_bib10
  article-title: Monitoring nitrate concentrations in the denitrifying post-filtration unit of a municipal wastewater treatment plant
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2012.09.011
– year: 2008
  ident: 10.1016/j.engappai.2016.02.003_bib15
– volume: 4
  start-page: 305
  year: 2000
  ident: 10.1016/j.engappai.2016.02.003_bib21
  article-title: Long-term development of water and sewage services in Finland
  publication-title: Publ. Works Manag. Policy
  doi: 10.1177/1087724X0044005
– volume: 45
  start-page: 3108
  year: 2006
  ident: 10.1016/j.engappai.2016.02.003_bib9
  article-title: Adaptive multivariate statistical process control for monitoring time-varying processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie050391w
– volume: 35
  start-page: 1
  year: 2011
  ident: 10.1016/j.engappai.2016.02.003_bib19
  article-title: Review of adaptation mechanisms for data-driven soft sensors
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2010.07.034
– volume: 38
  start-page: 4389
  year: 1999
  ident: 10.1016/j.engappai.2016.02.003_bib43
  article-title: Selection of the number of principal components
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie990110i
– volume: 47
  start-page: 88
  year: 2013
  ident: 10.1016/j.engappai.2016.02.003_bib13
  article-title: Data-derived soft-sensors for biological wastewater treatment plants
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2013.05.009
– volume: 43
  start-page: 147
  year: 2001
  ident: 10.1016/j.engappai.2016.02.003_bib37
  article-title: Supervisory control of wastewater treatment plants by combining principal component analysis and fuzzy c-means clustering
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2001.0411
– volume: 10
  start-page: 300
  year: 2013
  ident: 10.1016/j.engappai.2016.02.003_bib8
  article-title: Potential and limitations of modern equipment for real time control of urban wastewater systems
  publication-title: Urban Water J.
  doi: 10.1080/1573062X.2013.763996
– volume: 46
  start-page: 1585
  year: 2014
  ident: 10.1016/j.engappai.2016.02.003_bib33
  article-title: ICA and me—a subjective review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.12.054
– ident: 10.1016/j.engappai.2016.02.003_bib34
– ident: 10.1016/j.engappai.2016.02.003_bib5
  doi: 10.3182/20120829-3-MX-2028.00198
– volume: 30
  start-page: 179
  year: 1995
  ident: 10.1016/j.engappai.2016.02.003_bib22
  article-title: Disturbance detection and isolation by dynamic principal component analysis
  publication-title: Chemometr. Intell. Lab.
  doi: 10.1016/0169-7439(95)00076-3
– volume: 36
  start-page: 220
  year: 2011
  ident: 10.1016/j.engappai.2016.02.003_bib35
  article-title: Survey on data-driven industrial process monitoring and diagnosis
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2012.09.004
– volume: 7
  start-page: 1
  year: 1970
  ident: 10.1016/j.engappai.2016.02.003_bib11
  article-title: The rotation of eigenvectors by a perturbation. III
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0707001
– volume: 47
  start-page: 1
  year: 2003
  ident: 10.1016/j.engappai.2016.02.003_bib44
  article-title: On-line monitoring equipment for wastewater treatment processes
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2003.0074
– volume: 47
  start-page: 419
  year: 2008
  ident: 10.1016/j.engappai.2016.02.003_bib14
  article-title: Variable MWPCA for adaptive process monitoring
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie070712z
– year: 2002
  ident: 10.1016/j.engappai.2016.02.003_bib18
– volume: 128
  start-page: 49
  year: 2013
  ident: 10.1016/j.engappai.2016.02.003_bib40
  article-title: Fault diagnosis based on PCA for sensors of laboratorial wastewater treatment process
  publication-title: Chemometr. Intell. Lab.
  doi: 10.1016/j.chemolab.2013.07.012
– volume: 21
  start-page: 341
  year: 1979
  ident: 10.1016/j.engappai.2016.02.003_bib16
  article-title: Control procedures for residual associated with principal component analysis
  publication-title: Technometrics
  doi: 10.1080/00401706.1979.10489779
– volume: 27
  start-page: 341
  year: 2012
  ident: 10.1016/j.engappai.2016.02.003_bib38
  article-title: A dimensionality reduction framework for detection of multiscale structure in heterogeneous networks
  publication-title: J. Comput. Sci. Technol.
  doi: 10.1007/s11390-012-1227-y
– volume: 16
  start-page: 589
  year: 2005
  ident: 10.1016/j.engappai.2016.02.003_bib23
  article-title: Toxic event detection by respirometry and adaptive principal components analysis
  publication-title: Environmetrics
  doi: 10.1002/env.724
– volume: 60
  start-page: 188
  year: 2014
  ident: 10.1016/j.engappai.2016.02.003_bib29
  article-title: Analysing, completing, and generating influent data for WWTP modelling
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2014.05.008
– volume: 37
  start-page: 41
  year: 1995
  ident: 10.1016/j.engappai.2016.02.003_bib32
  article-title: Multivariate SPC charts for monitoring batch processes
  publication-title: Technometrics
  doi: 10.1080/00401706.1995.10485888
– volume: 53
  start-page: 251
  year: 2006
  ident: 10.1016/j.engappai.2016.02.003_bib25
  article-title: Sensor fault diagnosis in a wastewater treatment process
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2006.027
– volume: 27
  start-page: 327
  year: 2003
  ident: 10.1016/j.engappai.2016.02.003_bib45
  article-title: A review of process fault detection and diagnosis. Part III
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(02)00162-X
– volume: 40
  start-page: 826
  year: 1994
  ident: 10.1016/j.engappai.2016.02.003_bib28
  article-title: Process monitoring and diagnosis by multiblock PLS methods
  publication-title: A.I.Ch.E. J.
  doi: 10.1002/aic.690400509
– ident: 10.1016/j.engappai.2016.02.003_bib42
– volume: 21
  start-page: 919
  year: 2008
  ident: 10.1016/j.engappai.2016.02.003_bib1
  article-title: Using SOM and PCA for analysing and interpreting data from a P-removal SBR
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2007.08.001
– volume: 68
  start-page: 1022
  year: 2013
  ident: 10.1016/j.engappai.2016.02.003_bib3
  article-title: Advanced monitoring of water systems using in situ measurement stations
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2013.302
– ident: 10.1016/j.engappai.2016.02.003_bib36
– volume: 33
  start-page: 795
  year: 2009
  ident: 10.1016/j.engappai.2016.02.003_bib20
  article-title: Data-driven soft sensors in the process industry
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2008.12.012
– volume: 6
  start-page: 2812
  year: 2014
  ident: 10.1016/j.engappai.2016.02.003_bib7
  article-title: Principal component analysis
  publication-title: Anal. Methods
  doi: 10.1039/C3AY41907J
– volume: 23
  start-page: 934
  year: 2010
  ident: 10.1016/j.engappai.2016.02.003_bib31
  article-title: Multi-agent based collaborative fault detection and identification in chemical processes
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2010.01.026
– volume: 31
  start-page: 1035
  year: 2007
  ident: 10.1016/j.engappai.2016.02.003_bib39
  article-title: A study on the number of principal components and sensitivity of fault detection using PCA
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2006.09.004
– volume: 68
  start-page: 1
  year: 2013
  ident: 10.1016/j.engappai.2016.02.003_bib17
  article-title: Benchmark simulation models, quo vadis?
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2013.246
– volume: 70
  start-page: 165
  year: 2004
  ident: 10.1016/j.engappai.2016.02.003_bib24
  article-title: Sensor fault identification based on time-lagged PCA in dynamic processes
  publication-title: Chemometr. Intell. Lab.
  doi: 10.1016/j.chemolab.2003.10.011
– volume: 45
  start-page: 23
  year: 1999
  ident: 10.1016/j.engappai.2016.02.003_bib41
  article-title: Adaptive fuzzy C-means clustering in process monitoring
  publication-title: Chemometr. Intell. Lab.
  doi: 10.1016/S0169-7439(98)00087-2
– ident: 10.1016/j.engappai.2016.02.003_bib26
– volume: 52
  start-page: 3543
  year: 2013
  ident: 10.1016/j.engappai.2016.02.003_bib12
  article-title: Review of recent research on data-based process monitoring
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie302069q
– year: 2004
  ident: 10.1016/j.engappai.2016.02.003_bib4
  article-title: Exploring multivariate data with the forward search
  doi: 10.1007/978-0-387-21840-3_2
– volume: 30
  start-page: 901
  year: 2006
  ident: 10.1016/j.engappai.2016.02.003_bib27
  article-title: Improved reliability in diagnosing faults using multivariate statistics
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2006.01.001
– volume: 21
  start-page: 1080
  year: 2008
  ident: 10.1016/j.engappai.2016.02.003_bib2
  article-title: Multivariate statistical monitoring of continuous wastewater treatment plants
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2007.08.004
SSID ssj0003846
Score 2.321122
Snippet This work examines real-time anomaly detection and isolation in a full-scale wastewater treatment application. The Viikinmäki plant is the largest municipal...
This work examines real-time anomaly detection and isolation in a full-scale wastewater treatment application. The Viikinmaeki plant is the largest municipal...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 65
SubjectTerms Activated sludge process
Adaptive process monitoring
Algorithms
Anomalies
Anomaly detection
Artificial intelligence
Expert systems
Fluctuation
Instrumentation
Principal component analysis
Wastewater treatment
Title Adaptive data-derived anomaly detection in the activated sludge process of a large-scale wastewater treatment plant
URI https://dx.doi.org/10.1016/j.engappai.2016.02.003
https://www.proquest.com/docview/1816083479
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AKRWK
  dateStart: 19880301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QXLjwRrwVJK5lXZt263GamAYTHHgIbpHz6LSpdBXdhrjw27H7GA8JceBUNUraqo7tz8lnh7Ez9PGAeoT6HbjgCAsubRJGqO6tpgbTjP1iKfv6Juw_iKun4GmJdetcGKJVVra_tOmFta5aGtXfbGSjUeMOwQGqG4bhVDUK3RRlsIsWnWJw_v5J8_DbZbIOdnao95cs4fG5TYeQZTAiildY1u70f3NQP0x14X96G2ytAo68U37bJluy6RZbr0Akr1Q0x6b6nIa6bZvlHQMZmTVOfFDH4KSb4xhIJ8-QvHFjpwUfK-WjlCMe5JTrMEcManiezMzQ8qzMJuCTmANPiDvu5Chby18hp8U3etuCsc6zBKW1wx56F_fdvlMdtuBojJCnlJeGSMhXnhZaWD9u-saPVeCqGHSoFSgM1FSEFsEopQIdGmHCCKizsNoT2t9ly-kktXuMB16rHRa2JGoLaLptKzwPMBQGqjxj9D4L6j8sdVWJnA7ESGRNORvLWjKSJCNdj2qY7rPGYlxW1uL4c0RUC1B-m1USHcafY09riUtUOdpHgdROZrlEUBQichWt6OAfzz9kq3RX0s6O2PL0ZWaPEeBM1Ukxg0_YSudy0L-h6-D2cfABaNL96g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4GHODCG_EmSFzLujbt1uM0gcbzApN2i5xH0VDpKrqBuPDbsfsYDwlx4JombRXH9ufks8PYCfp4QD1C_Q5ccIQFlw4JI1T3dkuDacV-sZV9cxv2B-JyGAwbrFfnwhCtsrL9pU0vrHXV0qxms5mNRs07BAeobhiGU9UodFNzbEEEXpsisNP3T56H3ymzdbC3Q92_pAk_ntr0AbIMRsTxCsvinf5vHuqHrS4c0PkqW66QI--WP7fGGjZdZysViuSVjubYVF_UULdtsLxrICO7xokQ6hhcdS84BtLxEyRv3NhJQchK-SjlCAg5JTu8IAg1PE-m5sHyrEwn4OOYA0-IPO7kKFzLXyGn3Tf62oyyzrMExbXJBudn972-U9224GgMkSeUmIZQyFeeFlpYP275xo9V4KoYdKgVKIzUVIQmwSilAh0aYcIIqLOw2hPa32Lz6Ti124yjFDphYUyijoCW27HC8wBjYaDSM0bvsKCeYamrUuR0I0Yia87Zo6wlI0ky0vWoiOkOa87GZWUxjj9HRLUA5bdlJdFj_Dn2uJa4RJ2jgxRI7XiaS0RFIUJX0Y52__H-I7bYv7-5ltcXt1d7bImelBy0fTY_eZ7aA0Q7E3VYrOYPTAP93A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+data-derived+anomaly+detection+in+the+activated+sludge+process+of+a+large-scale+wastewater+treatment+plant&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Haimia%2C+Henri&rft.au=Mulasa%2C+Michela&rft.au=Coronac%2C+Francesco&rft.au=Marsili-Libellie%2C+Stefano&rft.date=2016-06-01&rft.issn=0952-1976&rft.volume=52&rft.spage=65&rft.epage=80&rft_id=info:doi/10.1016%2Fj.engappai.2016.02.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon