A Correlation-Based Anomaly Detection Model for Wireless Body Area Networks Using Convolutional Long Short-Term Memory Neural Network
As the Internet of Healthcare Things (IoHT) concept emerges today, Wireless Body Area Networks (WBAN) constitute one of the most prominent technologies for improving healthcare services. WBANs are made up of tiny devices that can effectively enhance patient quality of life by collecting and monitori...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 22; no. 5; p. 1951 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
02.03.2022
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s22051951 |
Cover
| Abstract | As the Internet of Healthcare Things (IoHT) concept emerges today, Wireless Body Area Networks (WBAN) constitute one of the most prominent technologies for improving healthcare services. WBANs are made up of tiny devices that can effectively enhance patient quality of life by collecting and monitoring physiological data and sending it to healthcare givers to assess the criticality of a patient and act accordingly. The collected data must be reliable and correct, and represent the real context to facilitate right and prompt decisions by healthcare personnel. Anomaly detection becomes a field of interest to ensure the reliability of collected data by detecting malicious data patterns that result due to various reasons such as sensor faults, error readings and possible malicious activities. Various anomaly detection solutions have been proposed for WBAN. However, existing detection approaches, which are mostly based on statistical and machine learning techniques, become ineffective in dealing with big data streams and novel context anomalous patterns in WBAN. Therefore, this paper proposed a model that employs the correlations that exist in the different physiological data attributes with the ability of the hybrid Convolutional Long Short-Term Memory (ConvLSTM) techniques to detect both simple point anomalies as well as contextual anomalies in the big data stream of WBAN. Experimental evaluations revealed that an average of 98% of F1-measure and 99% accuracy were reported by the proposed model on different subjects of the datasets compared to 64% achieved by both CNN and LSTM separately. |
|---|---|
| AbstractList | As the Internet of Healthcare Things (IoHT) concept emerges today, Wireless Body Area Networks (WBAN) constitute one of the most prominent technologies for improving healthcare services. WBANs are made up of tiny devices that can effectively enhance patient quality of life by collecting and monitoring physiological data and sending it to healthcare givers to assess the criticality of a patient and act accordingly. The collected data must be reliable and correct, and represent the real context to facilitate right and prompt decisions by healthcare personnel. Anomaly detection becomes a field of interest to ensure the reliability of collected data by detecting malicious data patterns that result due to various reasons such as sensor faults, error readings and possible malicious activities. Various anomaly detection solutions have been proposed for WBAN. However, existing detection approaches, which are mostly based on statistical and machine learning techniques, become ineffective in dealing with big data streams and novel context anomalous patterns in WBAN. Therefore, this paper proposed a model that employs the correlations that exist in the different physiological data attributes with the ability of the hybrid Convolutional Long Short-Term Memory (ConvLSTM) techniques to detect both simple point anomalies as well as contextual anomalies in the big data stream of WBAN. Experimental evaluations revealed that an average of 98% of F1-measure and 99% accuracy were reported by the proposed model on different subjects of the datasets compared to 64% achieved by both CNN and LSTM separately. As the Internet of Healthcare Things (IoHT) concept emerges today, Wireless Body Area Networks (WBAN) constitute one of the most prominent technologies for improving healthcare services. WBANs are made up of tiny devices that can effectively enhance patient quality of life by collecting and monitoring physiological data and sending it to healthcare givers to assess the criticality of a patient and act accordingly. The collected data must be reliable and correct, and represent the real context to facilitate right and prompt decisions by healthcare personnel. Anomaly detection becomes a field of interest to ensure the reliability of collected data by detecting malicious data patterns that result due to various reasons such as sensor faults, error readings and possible malicious activities. Various anomaly detection solutions have been proposed for WBAN. However, existing detection approaches, which are mostly based on statistical and machine learning techniques, become ineffective in dealing with big data streams and novel context anomalous patterns in WBAN. Therefore, this paper proposed a model that employs the correlations that exist in the different physiological data attributes with the ability of the hybrid Convolutional Long Short-Term Memory (ConvLSTM) techniques to detect both simple point anomalies as well as contextual anomalies in the big data stream of WBAN. Experimental evaluations revealed that an average of 98% of F1-measure and 99% accuracy were reported by the proposed model on different subjects of the datasets compared to 64% achieved by both CNN and LSTM separately.As the Internet of Healthcare Things (IoHT) concept emerges today, Wireless Body Area Networks (WBAN) constitute one of the most prominent technologies for improving healthcare services. WBANs are made up of tiny devices that can effectively enhance patient quality of life by collecting and monitoring physiological data and sending it to healthcare givers to assess the criticality of a patient and act accordingly. The collected data must be reliable and correct, and represent the real context to facilitate right and prompt decisions by healthcare personnel. Anomaly detection becomes a field of interest to ensure the reliability of collected data by detecting malicious data patterns that result due to various reasons such as sensor faults, error readings and possible malicious activities. Various anomaly detection solutions have been proposed for WBAN. However, existing detection approaches, which are mostly based on statistical and machine learning techniques, become ineffective in dealing with big data streams and novel context anomalous patterns in WBAN. Therefore, this paper proposed a model that employs the correlations that exist in the different physiological data attributes with the ability of the hybrid Convolutional Long Short-Term Memory (ConvLSTM) techniques to detect both simple point anomalies as well as contextual anomalies in the big data stream of WBAN. Experimental evaluations revealed that an average of 98% of F1-measure and 99% accuracy were reported by the proposed model on different subjects of the datasets compared to 64% achieved by both CNN and LSTM separately. |
| Author | Rassam, Murad A. Albattah, Albatul |
| AuthorAffiliation | 2 Faculty of Engineering and Information Technology, Taiz University, Taiz 6803, Yemen 1 Department of Information Technology, College of Computer, Qassim University, Buraidah 52571, Saudi Arabia; 411207333@qu.edu.sa |
| AuthorAffiliation_xml | – name: 1 Department of Information Technology, College of Computer, Qassim University, Buraidah 52571, Saudi Arabia; 411207333@qu.edu.sa – name: 2 Faculty of Engineering and Information Technology, Taiz University, Taiz 6803, Yemen |
| Author_xml | – sequence: 1 givenname: Albatul orcidid: 0000-0002-4044-9457 surname: Albattah fullname: Albattah, Albatul – sequence: 2 givenname: Murad A. orcidid: 0000-0003-3558-6737 surname: Rassam fullname: Rassam, Murad A. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35271097$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kttu1DAQhiNURA9wwQsgS9wAUqgPSWzfVNoup0pbuKAVl5ZjT7ZZnHixk1b7ALw33gOrtkJc2Zr5_n9mNHOcHfS-hyx7SfB7xiQ-jZTiksiSPMmOSEGLXKTAwb3_YXYc4wJjyhgTz7JDVlJOsORH2e8JmvoQwOmh9X1-riNYNOl9p90KfYABzDqOLr0Fhxof0I82wRAjOvd2hSYBNPoKw50PPyO6jm0_T379rXfjWqcdmvkU-n7jw5BfQejQJXQ-rJJmDCm7kz7PnjbaRXixe0-y608fr6Zf8tm3zxfTySw3RSWHnBLLal3VhlVSa2aFMLaQdS05trIucFFawQ2zuKllwSm2hahtZUsC3HLKK3aSXWx9rdcLtQxtp8NKed2qTcCHudJhaI0DVdWC00Yb0pSi0CUWlKSiWEJDK17VMnm923qN_VKv7rRze0OC1Xovar-XBJ9t4eVYd2AN9EMa_0EHDzN9e6Pm_lYJSVLtMhm82RkE_2uEOKiujQac0z34MSpaMcEJlZwm9PUjdOHHkHaxoTgXvBJFol7d72jfyt_TSMDbLWCCjzFA89_xTh-xph02F5WGad0_FH8AZ6nYMw |
| CitedBy_id | crossref_primary_10_1016_j_iot_2024_101420 crossref_primary_10_3390_iot5040039 crossref_primary_10_3390_technologies11040101 crossref_primary_10_3390_app13116807 crossref_primary_10_3390_technologies12120258 crossref_primary_10_1016_j_csbr_2025_100031 crossref_primary_10_1002_cpe_8075 crossref_primary_10_1016_j_artmed_2024_102779 crossref_primary_10_56294_hl2024_180 crossref_primary_10_2174_0118722121255695231008171935 crossref_primary_10_1007_s10586_024_04461_z |
| Cites_doi | 10.1016/j.procs.2015.10.026 10.1109/SNAMS.2019.8931716 10.1007/s12652-020-02219-0 10.1109/IranianCEE.2019.8786588 10.1145/3394486.3406704 10.1016/j.future.2015.01.001 10.1109/TNSM.2018.2842195 10.1016/j.chaos.2020.110227 10.1504/IJSNET.2019.097806 10.1007/s12559-019-09636-0 10.1049/iet-wss.2019.0134 10.1016/j.comnet.2019.04.031 10.1007/s40012-018-0192-1 10.1007/s00146-020-00985-1 10.1109/ACCESS.2018.2886457 10.1007/978-981-10-7641-1_8 10.1109/IBSSC47189.2019.8973004 10.1109/JIOT.2018.2844296 10.1016/j.comnet.2019.106870 10.1002/dac.3352 10.3390/s150408764 10.1007/s11276-019-02197-y 10.1016/j.envsoft.2019.104502 10.1109/JSEN.2020.3045135 10.1109/ACCESS.2019.2921912 10.1186/s12864-019-6413-7 10.1109/IWCMC.2018.8450283 10.1109/JSAC.2020.3020602 10.1142/S0217984918502834 10.1080/19361610.2020.1815491 10.1007/978-3-319-93034-3_46 10.1016/j.nahs.2014.10.001 10.1109/ACCESS.2017.2714258 10.1109/IranianCEE.2017.7985142 10.1109/ACCESS.2020.3011060 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s22051951 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_6b872fac1f584a5082169a09ef2676b9 10.3390/s22051951 PMC8915085 35271097 10_3390_s22051951 |
| Genre | Journal Article |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c469t-21d3ba6bc369aa3d88cd49bb970d9b4045d87c3d0fb94720d48bd6d51e7d72763 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:51:49 EDT 2025 Sun Oct 26 04:11:18 EDT 2025 Tue Sep 30 16:48:32 EDT 2025 Thu Sep 04 17:13:22 EDT 2025 Tue Oct 07 07:21:16 EDT 2025 Mon Jul 21 05:46:01 EDT 2025 Thu Apr 24 23:08:04 EDT 2025 Thu Oct 16 04:37:59 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | spatiotemporal correlation deep learning anomaly detection wireless body area networks convolutional neural networks long short-term memory |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-21d3ba6bc369aa3d88cd49bb970d9b4045d87c3d0fb94720d48bd6d51e7d72763 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3558-6737 0000-0002-4044-9457 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22051951 |
| PMID | 35271097 |
| PQID | 2637787684 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6b872fac1f584a5082169a09ef2676b9 unpaywall_primary_10_3390_s22051951 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8915085 proquest_miscellaneous_2638712972 proquest_journals_2637787684 pubmed_primary_35271097 crossref_primary_10_3390_s22051951 crossref_citationtrail_10_3390_s22051951 |
| PublicationCentury | 2000 |
| PublicationDate | 20220302 |
| PublicationDateYYYYMMDD | 2022-03-02 |
| PublicationDate_xml | – month: 3 year: 2022 text: 20220302 day: 2 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Sachnev (ref_31) 2019; 11 Elijah (ref_1) 2018; 5 Fahim (ref_5) 2019; 7 ref_14 Munir (ref_33) 2018; 7 ref_13 ref_35 ref_12 Singh (ref_41) 2020; 21 Pachauri (ref_10) 2015; 70 Alghofaili (ref_32) 2020; 15 Sun (ref_37) 2020; 8 ref_19 ref_17 Saraswathi (ref_7) 2021; 27 Salem (ref_8) 2018; 15 ref_38 Kumar (ref_23) 2021; 12 Zhang (ref_4) 2015; 16 Arfaoui (ref_30) 2019; 159 Arfaoui (ref_16) 2019; 163 Nair (ref_15) 2018; 6 Ahmed (ref_39) 2016; 55 ref_24 Haque (ref_3) 2015; 15 Shastri (ref_34) 2020; 140 ref_42 Salem (ref_21) 2020; 39 ref_40 Khan (ref_11) 2017; 5 Faizal (ref_26) 2010; 4 Xiao (ref_36) 2019; 120 ref_2 Keeley (ref_22) 2021; 36 ref_28 ref_27 Saneja (ref_29) 2017; 30 Sun (ref_18) 2019; 29 Bhojannawar (ref_25) 2013; 2 Boudargham (ref_20) 2020; 10 Saneja (ref_9) 2018; 32 ref_6 |
| References_xml | – volume: 70 start-page: 325 year: 2015 ident: ref_10 article-title: Anomaly detection in medical wireless sensor networks using machine learning algorithms publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.10.026 – ident: ref_28 – ident: ref_2 doi: 10.1109/SNAMS.2019.8931716 – volume: 12 start-page: 3515 year: 2021 ident: ref_23 article-title: Fuzzy unordered rule induction algorithm based classification for reliable communication using wearable computing devices in healthcare publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/s12652-020-02219-0 – ident: ref_17 doi: 10.1109/IranianCEE.2019.8786588 – ident: ref_27 doi: 10.1145/3394486.3406704 – volume: 55 start-page: 278 year: 2016 ident: ref_39 article-title: A survey of anomaly detection techniques in financial domain publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2015.01.001 – volume: 15 start-page: 1018 year: 2018 ident: ref_8 article-title: Event detection in wireless body area networks using Kalman filter and power divergence publication-title: IEEE Trans. Netw. Serv. Manag. doi: 10.1109/TNSM.2018.2842195 – ident: ref_24 – volume: 140 start-page: 110227 year: 2020 ident: ref_34 article-title: Time series forecasting of Covid-19 using deep learning models: India-USA comparative case study publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110227 – volume: 29 start-page: 101 year: 2019 ident: ref_18 article-title: An extensible framework for ECG anomaly detection in wireless body sensor monitoring systems publication-title: Int. J. Sens. Netw. doi: 10.1504/IJSNET.2019.097806 – volume: 4 start-page: 53 year: 2010 ident: ref_26 article-title: Statistical Approach for Validating Static Threshold in Fast Attack Detection publication-title: J. Adv. Manuf. Technol. – volume: 11 start-page: 545 year: 2019 ident: ref_31 article-title: Multi-region risk-sensitive cognitive ensembler for accurate detection of attention-Deficit/Hyperactivity disorder publication-title: Cogn. Comput. doi: 10.1007/s12559-019-09636-0 – volume: 10 start-page: 47 year: 2020 ident: ref_20 article-title: Toward fast and accurate emergency cases detection in BSNs publication-title: IET Wirel. Sens. Syst. doi: 10.1049/iet-wss.2019.0134 – volume: 2 start-page: 3852 year: 2013 ident: ref_25 article-title: Anomaly detection techniques for wireless sensor networks-a survey publication-title: Int. J. Adv. Res. Comput. Commun. Eng. – volume: 159 start-page: 23 year: 2019 ident: ref_30 article-title: Context-aware anonymous authentication protocols in the internet of things dedicated to e-health applications publication-title: Comput. Netw. doi: 10.1016/j.comnet.2019.04.031 – ident: ref_40 – volume: 6 start-page: 203 year: 2018 ident: ref_15 article-title: Mitigating false alarms using accumulator rule and dynamic sliding window in wireless body area publication-title: CSI Trans. ICT doi: 10.1007/s40012-018-0192-1 – volume: 36 start-page: 149 year: 2021 ident: ref_22 article-title: Healthcare and anomaly detection: Using machine learning to predict anomalies in heart rate data publication-title: AI Soc. doi: 10.1007/s00146-020-00985-1 – volume: 7 start-page: 1991 year: 2018 ident: ref_33 article-title: DeepAnT: A deep learning approach for unsupervised anomaly detection in time series publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2886457 – ident: ref_14 doi: 10.1007/978-981-10-7641-1_8 – ident: ref_19 doi: 10.1109/IBSSC47189.2019.8973004 – volume: 5 start-page: 3758 year: 2018 ident: ref_1 article-title: An overview of Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2844296 – ident: ref_35 – volume: 163 start-page: 106870 year: 2019 ident: ref_16 article-title: Game-based adaptive anomaly detection in wireless body area networks publication-title: Comput. Netw. doi: 10.1016/j.comnet.2019.106870 – volume: 30 start-page: e3352 year: 2017 ident: ref_29 article-title: An efficient approach for outlier detection in big sensor data of health care publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.3352 – volume: 15 start-page: 8764 year: 2015 ident: ref_3 article-title: Sensor anomaly detection in wireless sensor networks for healthcare publication-title: Sensors doi: 10.3390/s150408764 – volume: 27 start-page: 925 year: 2021 ident: ref_7 article-title: False alarm detection using dynamic threshold in medical wireless sensor networks publication-title: Wirel. Netw. doi: 10.1007/s11276-019-02197-y – volume: 120 start-page: 104502 year: 2019 ident: ref_36 article-title: A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2019.104502 – volume: 21 start-page: 8575 year: 2020 ident: ref_41 article-title: Deep ConvLSTM with self-attention for human activity decoding using wearable sensors publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3045135 – volume: 7 start-page: 81664 year: 2019 ident: ref_5 article-title: Anomaly detection, analysis and prediction techniques in iot environment: A systematic literature review publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921912 – ident: ref_38 doi: 10.1186/s12864-019-6413-7 – ident: ref_12 – ident: ref_13 doi: 10.1109/IWCMC.2018.8450283 – volume: 39 start-page: 526 year: 2020 ident: ref_21 article-title: Markov models for anomaly detection in wireless body area networks for secure health monitoring publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2020.3020602 – volume: 32 start-page: 1850283 year: 2018 ident: ref_9 article-title: An integrated framework for anomaly detection in big data of medical wireless sensors publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984918502834 – volume: 15 start-page: 498 year: 2020 ident: ref_32 article-title: A Financial Fraud Detection Model Based on LSTM Deep Learning Technique publication-title: J. Appl. Secur. Res. doi: 10.1080/19361610.2020.1815491 – ident: ref_42 doi: 10.1007/978-3-319-93034-3_46 – volume: 16 start-page: 104 year: 2015 ident: ref_4 article-title: Mittag-Leffler stability of fractional-order Hopfield neural networks publication-title: Nonlinear Anal. Hybrid Syst. doi: 10.1016/j.nahs.2014.10.001 – volume: 5 start-page: 13531 year: 2017 ident: ref_11 article-title: A continuous change detection mechanism to identify anomalies in ECG signals for WBAN-based healthcare environments publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2714258 – ident: ref_6 doi: 10.1109/IranianCEE.2017.7985142 – volume: 8 start-page: 134422 year: 2020 ident: ref_37 article-title: Short-term wind power forecasting based on VMD decomposition, ConvLSTM networks and error analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011060 |
| SSID | ssj0023338 |
| Score | 2.455146 |
| Snippet | As the Internet of Healthcare Things (IoHT) concept emerges today, Wireless Body Area Networks (WBAN) constitute one of the most prominent technologies for... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1951 |
| SubjectTerms | Accuracy Algorithms anomaly detection Big Data Computer Communication Networks convolutional neural networks Data compression Deep learning False alarms Humans Internet of Things long short-term memory Neural Networks, Computer Physiology Quality of Life Reproducibility of Results Sensors spatiotemporal correlation wireless body area networks Wireless Technology |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL4UDojwDLXKhBy5W40f8OHYLVVXRXmil3iK_oiKFbMXugvYH8L87drLRrlrEhWNib-KdGdvfKJ-_QejAayoi-JlI03AibOWI1hUjPmhqjYPrXD_l_EKeXomz6-p6rdRX4oT18sC94Q6l04o11tMGtkoLcIJRaWxpYsOkki4f3Su1WSVTQ6rFIfPqdYQ4JPWHs3SclJqKbuw-WaT_IWR5nyC5vehu7fK3bdu13efkGXo6wEZ81A93Bz2K3XP0ZE1M8AX6c4SPU6mNntxGJrA9BQzZ_Q_bLvHnOM-cqw6n4mctBqiKE_G1hYUOT6ZhCY-OFl_0pPAZzkwCeF73awhNePnXKdz6dgN4nVzCeo7PE0l3iZO8B7QOP32Jrk6-XB6fkqHIAvGQGc8Jo4E7K53nYFbLg07VjIxzRpXBOAGIL2jleSgbZ4RiZRDaBRkqGlUA7CP5K7TVTbv4BmEbdfCCBQBxTOggbEktZN6elY1qfFQF-rQyfu0HBfJUCKOtIRNJfqpHPxXow9j1tpfdeKjTJHlw7JCUsvMNiJ96iJ_6X_FToN2V_-th-s5qJrmClUxqUaD9sRkmXvqaYrs4XeQ-kGwyo1iBXvfhMo4EUG3iuMI_VhuBtDHUzZbu-00W99YmKfRXBfo4htzfLfD2f1jgHXrM0pmORKxju2hr_nMR9wBpzd37PKnuAOuqJ5E priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9gAcEG8CBZnHgYvVxEn8OCDULa0qRFcIWqm3yK9QpJAs3V3Q_gD-NzN50RWFY2InsTNj-5vk8zeEvHIqyQLYmQldpiwzuWVK5Zw5rxKjLRy3-VOOZ-LoNHt_lp9tkdmwFwZplcOc2E7UvnH4jXyXi1SCcwmVvZ1_Z5g1Cv-uDik0TJ9awb9pJcaukW2OylgTsj09mH38NIZgKURknb5QCsH-7gK3mSY6TzZWpVa8_yrE-Tdx8vqqnpv1T1NVl1alw9vkVg8n6V5n_ztkK9R3yc1LIoP3yK89uo8pODrSG5vCsuUpRP3fTLWm78Ky5WLVFJOiVRQgLEVCbAUTIJ02fg23DobOOrL4grYMA7hf_aN3WXj4hwZOfT4HHM9OYJ6nx0jeXVOU_YDS_tL75PTw4GT_iPXJF5iDiHnJeOJTa4R1qdDGpF5hliNtrZax1zYDJOiVdKmPS6szyWOfKeuFz5MgPWAikT4gk7qpwyNCTVDeZdwDuOOZ8pmJEwMRueNxKUsXZEReDy-_cL0yOSbIqAqIUNBOxWiniLwYq847OY6rKk3RgmMFVNBuTzQXX4p-QBbCKslL45ISIJgBmMoT6GisQ8mFFFZHZGewf9EP60Xxxwkj8nwshgGJf1lMHZpVWweCUK4lj8jDzl3GlgDaRe4r9FhuONJGUzdL6q_nrei30qjcn0fk5ehy_34Dj__f-CfkBsddHEil4ztksrxYhaeArZb2WT9gfgOxvCY- priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6h9AAceD8MBS2PAxfX9trexwklhapCNEKikcrJ7Mu0qmtHjVMU7vxvZu2N1UCRkDjGO97sxrM73zjffoPQa82TzMJzDqko0zCTuQo5z0moDU-kUPC5q59yMKX7s-zDUX7k65wuPK0SUvGTbpN2p7BCiGBxREiURwmggWhuyrcX_lWS08ZyStsu_dmiOYDxEdqaTT-Nv3RnivzNvZ5QCsl9tHDHSl03G1GoE-u_CmH-SZS8vqzncvVdVtWlKLR3G31dj78nn5zuLFu1o3_8Ju34HxO8g255hIrHvUvdRddsfQ_dvKRbeB_9HONdV9Wj59GFE4iEBo_r5kxWK_zOth29q8auzlqFARVjx7GtYE_Fk8asoGsr8bTnny9wR1qA_uoLvwrgyz82cOnzMaQG4SGEDnzg-MAr7JREoNXf-gDN9t4f7u6Hvp5DqCEJb0OSmFRJqnRKhZSp4a5wklBKsNgIlQG4NJzp1MSlEhkjscm4MtTkiWUGYBZNH6JR3dT2McLScqMzYgAvkoybTMaJhCRfk7hkpbYsQG_Wz7fQXuzc1dyoCkh6nCsUgysE6OVgOu8VPq4ymjgnGQycKHd3oTn_Vvg1XlDFGSmlTkpAdRKQL0lgorGwJaGMKhGg7bWLFX6nWBSEpgw2TcqzAL0YmmGNuz9uZG2bZWcDeS0RjAToUe-Rw0gAQDs6LcyYbfjqxlA3W-qT405HnAtXDCAP0KvBq__-Czz5J6un6AZx50McSY9so1F7vrTPALW16rlfmb8AwR09Ow priority: 102 providerName: Unpaywall |
| Title | A Correlation-Based Anomaly Detection Model for Wireless Body Area Networks Using Convolutional Long Short-Term Memory Neural Network |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35271097 https://www.proquest.com/docview/2637787684 https://www.proquest.com/docview/2638712972 https://pubmed.ncbi.nlm.nih.gov/PMC8915085 https://www.mdpi.com/1424-8220/22/5/1951/pdf?version=1646214561 https://doaj.org/article/6b872fac1f584a5082169a09ef2676b9 |
| UnpaywallVersion | publishedVersion |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaW3QNwQLwJLJV5HLgEEsfx44BQu2xZIVqtYCuVU-RXWKSQLH0A-QH8b8ZJGm1FuXGJVHvymhnb39eMZxB6bkRMHdg5ZDJPQqpSHQqRktBYESup4XdTP2UyZScz-n6ezvfQpsZmp8DlTmrn60nNFsXLX9_rNzDgX3vGCZT91dJvFo2l30h9AAuU9BUcJrT_mEASoGFtUqFt8a2lqMnYvwtm_h0teXVdXqj6pyqKS0vR-Ca60WFIPGyNfgvtufI2un4ps-Ad9HuIj3zdjTbSLRzBWmUxUP1vqqjxW7dqArBK7CuhFRhwK_ZRsAXMenhU2Rou7RSethHiS9yEFcD1yh-dn8LNP1TQ9Okc9BaeweSOJz5it8Y-1wf0dqfeRbPx8dnRSdhVXAgN0ORVSGKbaMW0SZhUKrHClzaSWkseWakpwD8ruElslGtJOYksFdoym8aOWwBCLLmH9suqdA8QVk5YQ4kFREeosFRFsQIabkiU89w4HqAXG-VnpktH7qtiFBnQEm-nrLdTgJ72ohdtDo5dQiNvwV7Ap81uGqrFl6wbhRnTgpNcmTgH3KUAm5IYXjSSLieMMy0DdLixf7ZxxYywhMO0xgQN0JO-G0ah_7SiSletGxlgnkRyEqD7rbv0TwIQ1we8whvzLUfaetTtnvLreZPpW0ifrj8N0LPe5f6tgYf_QwOP0DXiN3j4KDtyiPZXi7V7DLBrpQfoCp9zOIrxuwE6GB1PTz8Omr8wBs1wg7bZ9HT4-Q-q3TPD |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLbGOAwOiG8CA8yXxCVaYjuxfUCo3Zg61vZCJ-2W-SsMKSRlbZn6A_g7_EZeJ2m2isFtx8au6-T9bh6_D0JvjYiZAzmHqcxpyFSiQyESEhorYiU1fK75U0bjdHDEPh8nxxvo9-osjIdVrnxi7ahtZfx_5DskpRyUKxXs4_RH6Fmj_NvVFYVGoxaHbnkOJdvsw8EeyPcdIfufJruDsGUVCA2UgvOQxJZqlWpDU6kUtcLT90itJY-s1AxSHCu4oTbKtWScRJYJbVObxI5bCPYphXVvoJuMgi8B--HHFwUehXqv6V5EqYx2Zv4QayyTeC3m1dQAV-Wzf8MytxblVC3PVVFcinn7d9GdNlnFvUa77qENV95Hty-1MHyAfvXwrif4aCB1YR-CosW9svquiiXec_Ma6VViT7lWYEiQsYfbFuBecb-yS1jaKTxuoOgzXOMXYL3yZ2sQ8OPDCi59OYUqIZxAFMEjDw1eYt9UBEbbrz5ER9cihEdos6xK9wRh5YQ1jFhIHQkTlqkoVlDvGxLlPDeOB-j96uFnpu177uk3igzqHy-nrJNTgF53U6dNs4-rJvW9BLsJvj93faE6-5q15p6lWnCSKxPnkOApSIJJDDcaSZeTlKdaBmh7Jf-sdRqz7ELFA_SqGwZz9-9wVOmqRT0HSlwiOQnQ40Zdup1ALu2RtXDHfE2R1ra6PlJ-O61bigvpeQGSAL3pVO7fT-Dp_zf_Em0NJqNhNjwYHz5Dt4g_L-JBe2Qbbc7PFu45ZHFz_aI2HYxOrttW_wDaNlzT |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKkTgeEDeBAuaSeIk2cRIfDwjtdlm1tF0h0Ur7FnyFIoVk6e5S5Qfwp_h1jHO1KwpvfUzsOE5mxjOTfJ4Podeah7EFOftUZJEfy0T5nCfE14aHUig4rvlTDqZ05yj-OEtmG-h3txfGwSq7NbFeqE2p3TfyAaERA-WiPB5kLSzi03jyfv7DdwxS7k9rR6fRqMierU4hfVu82x2DrN8QMvlwuL3jtwwDvoa0cOmT0ERKUqUjKqSMDHdUPkIpwQIjVAzhjuFMRybIlIgZCUzMlaEmCS0z4PhpBONeQVdZFAkHJ2Szs2QvgtyvqWQEjcFg4Ta0hiIJ1_xfTRNwUWz7N0Tz-qqYy-pU5vk5_ze5jW61gSseNpp2B23Y4i66ea6c4T30a4i3HdlHA6_zR-AgDR4W5XeZV3hslzXqq8COfi3HECxjB73NYanFo9JUMLSVeNrA0he4xjLAeMXP1jjg5vslnPp8DBmDfwgeBR84mHCFXYERaG0vvY-OLkUID9BmURb2EcLScqNjYiCMJDE3sQxCCbm_JkHGMm2Zh952Lz_VbQ10R8WRp5ALOTmlvZw89LLvOm8Kf1zUaeQk2HdwtbrrE-XJ17Q1_ZQqzkgmdZhBsCchICYhPGggbEYoo0p4aKuTf9ouIIv0TN099KJvBtN3_3NkYctV3QfSXSIY8dDDRl36mUBc7VC28MRsTZHWprreUnw7rsuLc-E4AhIPvepV7t9v4PH_J_8cXQMrTfd3p3tP0A3ito44_B7ZQpvLk5V9CgHdUj2rLQejL5dtqn8AI9RhFg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6h9AAceD8MBS2PAxfX9trexwklhapCNEKikcrJ7Mu0qmtHjVMU7vxvZu2N1UCRkDjGO97sxrM73zjffoPQa82TzMJzDqko0zCTuQo5z0moDU-kUPC5q59yMKX7s-zDUX7k65wuPK0SUvGTbpN2p7BCiGBxREiURwmggWhuyrcX_lWS08ZyStsu_dmiOYDxEdqaTT-Nv3RnivzNvZ5QCsl9tHDHSl03G1GoE-u_CmH-SZS8vqzncvVdVtWlKLR3G31dj78nn5zuLFu1o3_8Ju34HxO8g255hIrHvUvdRddsfQ_dvKRbeB_9HONdV9Wj59GFE4iEBo_r5kxWK_zOth29q8auzlqFARVjx7GtYE_Fk8asoGsr8bTnny9wR1qA_uoLvwrgyz82cOnzMaQG4SGEDnzg-MAr7JREoNXf-gDN9t4f7u6Hvp5DqCEJb0OSmFRJqnRKhZSp4a5wklBKsNgIlQG4NJzp1MSlEhkjscm4MtTkiWUGYBZNH6JR3dT2McLScqMzYgAvkoybTMaJhCRfk7hkpbYsQG_Wz7fQXuzc1dyoCkh6nCsUgysE6OVgOu8VPq4ymjgnGQycKHd3oTn_Vvg1XlDFGSmlTkpAdRKQL0lgorGwJaGMKhGg7bWLFX6nWBSEpgw2TcqzAL0YmmGNuz9uZG2bZWcDeS0RjAToUe-Rw0gAQDs6LcyYbfjqxlA3W-qT405HnAtXDCAP0KvBq__-Czz5J6un6AZx50McSY9so1F7vrTPALW16rlfmb8AwR09Ow |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Correlation-Based+Anomaly+Detection+Model+for+Wireless+Body+Area+Networks+Using+Convolutional+Long+Short-Term+Memory+Neural+Network&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Albatul+Albattah&rft.au=Murad+A.+Rassam&rft.date=2022-03-02&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=5&rft.spage=1951&rft_id=info:doi/10.3390%2Fs22051951&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6b872fac1f584a5082169a09ef2676b9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |