A Correlation-Based Anomaly Detection Model for Wireless Body Area Networks Using Convolutional Long Short-Term Memory Neural Network

As the Internet of Healthcare Things (IoHT) concept emerges today, Wireless Body Area Networks (WBAN) constitute one of the most prominent technologies for improving healthcare services. WBANs are made up of tiny devices that can effectively enhance patient quality of life by collecting and monitori...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 5; p. 1951
Main Authors Albattah, Albatul, Rassam, Murad A.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 02.03.2022
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s22051951

Cover

Abstract As the Internet of Healthcare Things (IoHT) concept emerges today, Wireless Body Area Networks (WBAN) constitute one of the most prominent technologies for improving healthcare services. WBANs are made up of tiny devices that can effectively enhance patient quality of life by collecting and monitoring physiological data and sending it to healthcare givers to assess the criticality of a patient and act accordingly. The collected data must be reliable and correct, and represent the real context to facilitate right and prompt decisions by healthcare personnel. Anomaly detection becomes a field of interest to ensure the reliability of collected data by detecting malicious data patterns that result due to various reasons such as sensor faults, error readings and possible malicious activities. Various anomaly detection solutions have been proposed for WBAN. However, existing detection approaches, which are mostly based on statistical and machine learning techniques, become ineffective in dealing with big data streams and novel context anomalous patterns in WBAN. Therefore, this paper proposed a model that employs the correlations that exist in the different physiological data attributes with the ability of the hybrid Convolutional Long Short-Term Memory (ConvLSTM) techniques to detect both simple point anomalies as well as contextual anomalies in the big data stream of WBAN. Experimental evaluations revealed that an average of 98% of F1-measure and 99% accuracy were reported by the proposed model on different subjects of the datasets compared to 64% achieved by both CNN and LSTM separately.
AbstractList As the Internet of Healthcare Things (IoHT) concept emerges today, Wireless Body Area Networks (WBAN) constitute one of the most prominent technologies for improving healthcare services. WBANs are made up of tiny devices that can effectively enhance patient quality of life by collecting and monitoring physiological data and sending it to healthcare givers to assess the criticality of a patient and act accordingly. The collected data must be reliable and correct, and represent the real context to facilitate right and prompt decisions by healthcare personnel. Anomaly detection becomes a field of interest to ensure the reliability of collected data by detecting malicious data patterns that result due to various reasons such as sensor faults, error readings and possible malicious activities. Various anomaly detection solutions have been proposed for WBAN. However, existing detection approaches, which are mostly based on statistical and machine learning techniques, become ineffective in dealing with big data streams and novel context anomalous patterns in WBAN. Therefore, this paper proposed a model that employs the correlations that exist in the different physiological data attributes with the ability of the hybrid Convolutional Long Short-Term Memory (ConvLSTM) techniques to detect both simple point anomalies as well as contextual anomalies in the big data stream of WBAN. Experimental evaluations revealed that an average of 98% of F1-measure and 99% accuracy were reported by the proposed model on different subjects of the datasets compared to 64% achieved by both CNN and LSTM separately.
As the Internet of Healthcare Things (IoHT) concept emerges today, Wireless Body Area Networks (WBAN) constitute one of the most prominent technologies for improving healthcare services. WBANs are made up of tiny devices that can effectively enhance patient quality of life by collecting and monitoring physiological data and sending it to healthcare givers to assess the criticality of a patient and act accordingly. The collected data must be reliable and correct, and represent the real context to facilitate right and prompt decisions by healthcare personnel. Anomaly detection becomes a field of interest to ensure the reliability of collected data by detecting malicious data patterns that result due to various reasons such as sensor faults, error readings and possible malicious activities. Various anomaly detection solutions have been proposed for WBAN. However, existing detection approaches, which are mostly based on statistical and machine learning techniques, become ineffective in dealing with big data streams and novel context anomalous patterns in WBAN. Therefore, this paper proposed a model that employs the correlations that exist in the different physiological data attributes with the ability of the hybrid Convolutional Long Short-Term Memory (ConvLSTM) techniques to detect both simple point anomalies as well as contextual anomalies in the big data stream of WBAN. Experimental evaluations revealed that an average of 98% of F1-measure and 99% accuracy were reported by the proposed model on different subjects of the datasets compared to 64% achieved by both CNN and LSTM separately.As the Internet of Healthcare Things (IoHT) concept emerges today, Wireless Body Area Networks (WBAN) constitute one of the most prominent technologies for improving healthcare services. WBANs are made up of tiny devices that can effectively enhance patient quality of life by collecting and monitoring physiological data and sending it to healthcare givers to assess the criticality of a patient and act accordingly. The collected data must be reliable and correct, and represent the real context to facilitate right and prompt decisions by healthcare personnel. Anomaly detection becomes a field of interest to ensure the reliability of collected data by detecting malicious data patterns that result due to various reasons such as sensor faults, error readings and possible malicious activities. Various anomaly detection solutions have been proposed for WBAN. However, existing detection approaches, which are mostly based on statistical and machine learning techniques, become ineffective in dealing with big data streams and novel context anomalous patterns in WBAN. Therefore, this paper proposed a model that employs the correlations that exist in the different physiological data attributes with the ability of the hybrid Convolutional Long Short-Term Memory (ConvLSTM) techniques to detect both simple point anomalies as well as contextual anomalies in the big data stream of WBAN. Experimental evaluations revealed that an average of 98% of F1-measure and 99% accuracy were reported by the proposed model on different subjects of the datasets compared to 64% achieved by both CNN and LSTM separately.
Author Rassam, Murad A.
Albattah, Albatul
AuthorAffiliation 2 Faculty of Engineering and Information Technology, Taiz University, Taiz 6803, Yemen
1 Department of Information Technology, College of Computer, Qassim University, Buraidah 52571, Saudi Arabia; 411207333@qu.edu.sa
AuthorAffiliation_xml – name: 1 Department of Information Technology, College of Computer, Qassim University, Buraidah 52571, Saudi Arabia; 411207333@qu.edu.sa
– name: 2 Faculty of Engineering and Information Technology, Taiz University, Taiz 6803, Yemen
Author_xml – sequence: 1
  givenname: Albatul
  orcidid: 0000-0002-4044-9457
  surname: Albattah
  fullname: Albattah, Albatul
– sequence: 2
  givenname: Murad A.
  orcidid: 0000-0003-3558-6737
  surname: Rassam
  fullname: Rassam, Murad A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35271097$$D View this record in MEDLINE/PubMed
BookMark eNp9kttu1DAQhiNURA9wwQsgS9wAUqgPSWzfVNoup0pbuKAVl5ZjT7ZZnHixk1b7ALw33gOrtkJc2Zr5_n9mNHOcHfS-hyx7SfB7xiQ-jZTiksiSPMmOSEGLXKTAwb3_YXYc4wJjyhgTz7JDVlJOsORH2e8JmvoQwOmh9X1-riNYNOl9p90KfYABzDqOLr0Fhxof0I82wRAjOvd2hSYBNPoKw50PPyO6jm0_T379rXfjWqcdmvkU-n7jw5BfQejQJXQ-rJJmDCm7kz7PnjbaRXixe0-y608fr6Zf8tm3zxfTySw3RSWHnBLLal3VhlVSa2aFMLaQdS05trIucFFawQ2zuKllwSm2hahtZUsC3HLKK3aSXWx9rdcLtQxtp8NKed2qTcCHudJhaI0DVdWC00Yb0pSi0CUWlKSiWEJDK17VMnm923qN_VKv7rRze0OC1Xovar-XBJ9t4eVYd2AN9EMa_0EHDzN9e6Pm_lYJSVLtMhm82RkE_2uEOKiujQac0z34MSpaMcEJlZwm9PUjdOHHkHaxoTgXvBJFol7d72jfyt_TSMDbLWCCjzFA89_xTh-xph02F5WGad0_FH8AZ6nYMw
CitedBy_id crossref_primary_10_1016_j_iot_2024_101420
crossref_primary_10_3390_iot5040039
crossref_primary_10_3390_technologies11040101
crossref_primary_10_3390_app13116807
crossref_primary_10_3390_technologies12120258
crossref_primary_10_1016_j_csbr_2025_100031
crossref_primary_10_1002_cpe_8075
crossref_primary_10_1016_j_artmed_2024_102779
crossref_primary_10_56294_hl2024_180
crossref_primary_10_2174_0118722121255695231008171935
crossref_primary_10_1007_s10586_024_04461_z
Cites_doi 10.1016/j.procs.2015.10.026
10.1109/SNAMS.2019.8931716
10.1007/s12652-020-02219-0
10.1109/IranianCEE.2019.8786588
10.1145/3394486.3406704
10.1016/j.future.2015.01.001
10.1109/TNSM.2018.2842195
10.1016/j.chaos.2020.110227
10.1504/IJSNET.2019.097806
10.1007/s12559-019-09636-0
10.1049/iet-wss.2019.0134
10.1016/j.comnet.2019.04.031
10.1007/s40012-018-0192-1
10.1007/s00146-020-00985-1
10.1109/ACCESS.2018.2886457
10.1007/978-981-10-7641-1_8
10.1109/IBSSC47189.2019.8973004
10.1109/JIOT.2018.2844296
10.1016/j.comnet.2019.106870
10.1002/dac.3352
10.3390/s150408764
10.1007/s11276-019-02197-y
10.1016/j.envsoft.2019.104502
10.1109/JSEN.2020.3045135
10.1109/ACCESS.2019.2921912
10.1186/s12864-019-6413-7
10.1109/IWCMC.2018.8450283
10.1109/JSAC.2020.3020602
10.1142/S0217984918502834
10.1080/19361610.2020.1815491
10.1007/978-3-319-93034-3_46
10.1016/j.nahs.2014.10.001
10.1109/ACCESS.2017.2714258
10.1109/IranianCEE.2017.7985142
10.1109/ACCESS.2020.3011060
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s22051951
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

MEDLINE
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_6b872fac1f584a5082169a09ef2676b9
10.3390/s22051951
PMC8915085
35271097
10_3390_s22051951
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c469t-21d3ba6bc369aa3d88cd49bb970d9b4045d87c3d0fb94720d48bd6d51e7d72763
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:51:49 EDT 2025
Sun Oct 26 04:11:18 EDT 2025
Tue Sep 30 16:48:32 EDT 2025
Thu Sep 04 17:13:22 EDT 2025
Tue Oct 07 07:21:16 EDT 2025
Mon Jul 21 05:46:01 EDT 2025
Thu Apr 24 23:08:04 EDT 2025
Thu Oct 16 04:37:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords spatiotemporal correlation
deep learning
anomaly detection
wireless body area networks
convolutional neural networks
long short-term memory
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-21d3ba6bc369aa3d88cd49bb970d9b4045d87c3d0fb94720d48bd6d51e7d72763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3558-6737
0000-0002-4044-9457
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22051951
PMID 35271097
PQID 2637787684
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_6b872fac1f584a5082169a09ef2676b9
unpaywall_primary_10_3390_s22051951
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8915085
proquest_miscellaneous_2638712972
proquest_journals_2637787684
pubmed_primary_35271097
crossref_primary_10_3390_s22051951
crossref_citationtrail_10_3390_s22051951
PublicationCentury 2000
PublicationDate 20220302
PublicationDateYYYYMMDD 2022-03-02
PublicationDate_xml – month: 3
  year: 2022
  text: 20220302
  day: 2
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Sachnev (ref_31) 2019; 11
Elijah (ref_1) 2018; 5
Fahim (ref_5) 2019; 7
ref_14
Munir (ref_33) 2018; 7
ref_13
ref_35
ref_12
Singh (ref_41) 2020; 21
Pachauri (ref_10) 2015; 70
Alghofaili (ref_32) 2020; 15
Sun (ref_37) 2020; 8
ref_19
ref_17
Saraswathi (ref_7) 2021; 27
Salem (ref_8) 2018; 15
ref_38
Kumar (ref_23) 2021; 12
Zhang (ref_4) 2015; 16
Arfaoui (ref_30) 2019; 159
Arfaoui (ref_16) 2019; 163
Nair (ref_15) 2018; 6
Ahmed (ref_39) 2016; 55
ref_24
Haque (ref_3) 2015; 15
Shastri (ref_34) 2020; 140
ref_42
Salem (ref_21) 2020; 39
ref_40
Khan (ref_11) 2017; 5
Faizal (ref_26) 2010; 4
Xiao (ref_36) 2019; 120
ref_2
Keeley (ref_22) 2021; 36
ref_28
ref_27
Saneja (ref_29) 2017; 30
Sun (ref_18) 2019; 29
Bhojannawar (ref_25) 2013; 2
Boudargham (ref_20) 2020; 10
Saneja (ref_9) 2018; 32
ref_6
References_xml – volume: 70
  start-page: 325
  year: 2015
  ident: ref_10
  article-title: Anomaly detection in medical wireless sensor networks using machine learning algorithms
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.10.026
– ident: ref_28
– ident: ref_2
  doi: 10.1109/SNAMS.2019.8931716
– volume: 12
  start-page: 3515
  year: 2021
  ident: ref_23
  article-title: Fuzzy unordered rule induction algorithm based classification for reliable communication using wearable computing devices in healthcare
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-02219-0
– ident: ref_17
  doi: 10.1109/IranianCEE.2019.8786588
– ident: ref_27
  doi: 10.1145/3394486.3406704
– volume: 55
  start-page: 278
  year: 2016
  ident: ref_39
  article-title: A survey of anomaly detection techniques in financial domain
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2015.01.001
– volume: 15
  start-page: 1018
  year: 2018
  ident: ref_8
  article-title: Event detection in wireless body area networks using Kalman filter and power divergence
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2018.2842195
– ident: ref_24
– volume: 140
  start-page: 110227
  year: 2020
  ident: ref_34
  article-title: Time series forecasting of Covid-19 using deep learning models: India-USA comparative case study
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110227
– volume: 29
  start-page: 101
  year: 2019
  ident: ref_18
  article-title: An extensible framework for ECG anomaly detection in wireless body sensor monitoring systems
  publication-title: Int. J. Sens. Netw.
  doi: 10.1504/IJSNET.2019.097806
– volume: 4
  start-page: 53
  year: 2010
  ident: ref_26
  article-title: Statistical Approach for Validating Static Threshold in Fast Attack Detection
  publication-title: J. Adv. Manuf. Technol.
– volume: 11
  start-page: 545
  year: 2019
  ident: ref_31
  article-title: Multi-region risk-sensitive cognitive ensembler for accurate detection of attention-Deficit/Hyperactivity disorder
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-019-09636-0
– volume: 10
  start-page: 47
  year: 2020
  ident: ref_20
  article-title: Toward fast and accurate emergency cases detection in BSNs
  publication-title: IET Wirel. Sens. Syst.
  doi: 10.1049/iet-wss.2019.0134
– volume: 2
  start-page: 3852
  year: 2013
  ident: ref_25
  article-title: Anomaly detection techniques for wireless sensor networks-a survey
  publication-title: Int. J. Adv. Res. Comput. Commun. Eng.
– volume: 159
  start-page: 23
  year: 2019
  ident: ref_30
  article-title: Context-aware anonymous authentication protocols in the internet of things dedicated to e-health applications
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2019.04.031
– ident: ref_40
– volume: 6
  start-page: 203
  year: 2018
  ident: ref_15
  article-title: Mitigating false alarms using accumulator rule and dynamic sliding window in wireless body area
  publication-title: CSI Trans. ICT
  doi: 10.1007/s40012-018-0192-1
– volume: 36
  start-page: 149
  year: 2021
  ident: ref_22
  article-title: Healthcare and anomaly detection: Using machine learning to predict anomalies in heart rate data
  publication-title: AI Soc.
  doi: 10.1007/s00146-020-00985-1
– volume: 7
  start-page: 1991
  year: 2018
  ident: ref_33
  article-title: DeepAnT: A deep learning approach for unsupervised anomaly detection in time series
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2886457
– ident: ref_14
  doi: 10.1007/978-981-10-7641-1_8
– ident: ref_19
  doi: 10.1109/IBSSC47189.2019.8973004
– volume: 5
  start-page: 3758
  year: 2018
  ident: ref_1
  article-title: An overview of Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2844296
– ident: ref_35
– volume: 163
  start-page: 106870
  year: 2019
  ident: ref_16
  article-title: Game-based adaptive anomaly detection in wireless body area networks
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2019.106870
– volume: 30
  start-page: e3352
  year: 2017
  ident: ref_29
  article-title: An efficient approach for outlier detection in big sensor data of health care
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.3352
– volume: 15
  start-page: 8764
  year: 2015
  ident: ref_3
  article-title: Sensor anomaly detection in wireless sensor networks for healthcare
  publication-title: Sensors
  doi: 10.3390/s150408764
– volume: 27
  start-page: 925
  year: 2021
  ident: ref_7
  article-title: False alarm detection using dynamic threshold in medical wireless sensor networks
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-019-02197-y
– volume: 120
  start-page: 104502
  year: 2019
  ident: ref_36
  article-title: A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2019.104502
– volume: 21
  start-page: 8575
  year: 2020
  ident: ref_41
  article-title: Deep ConvLSTM with self-attention for human activity decoding using wearable sensors
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3045135
– volume: 7
  start-page: 81664
  year: 2019
  ident: ref_5
  article-title: Anomaly detection, analysis and prediction techniques in iot environment: A systematic literature review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921912
– ident: ref_38
  doi: 10.1186/s12864-019-6413-7
– ident: ref_12
– ident: ref_13
  doi: 10.1109/IWCMC.2018.8450283
– volume: 39
  start-page: 526
  year: 2020
  ident: ref_21
  article-title: Markov models for anomaly detection in wireless body area networks for secure health monitoring
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2020.3020602
– volume: 32
  start-page: 1850283
  year: 2018
  ident: ref_9
  article-title: An integrated framework for anomaly detection in big data of medical wireless sensors
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984918502834
– volume: 15
  start-page: 498
  year: 2020
  ident: ref_32
  article-title: A Financial Fraud Detection Model Based on LSTM Deep Learning Technique
  publication-title: J. Appl. Secur. Res.
  doi: 10.1080/19361610.2020.1815491
– ident: ref_42
  doi: 10.1007/978-3-319-93034-3_46
– volume: 16
  start-page: 104
  year: 2015
  ident: ref_4
  article-title: Mittag-Leffler stability of fractional-order Hopfield neural networks
  publication-title: Nonlinear Anal. Hybrid Syst.
  doi: 10.1016/j.nahs.2014.10.001
– volume: 5
  start-page: 13531
  year: 2017
  ident: ref_11
  article-title: A continuous change detection mechanism to identify anomalies in ECG signals for WBAN-based healthcare environments
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2714258
– ident: ref_6
  doi: 10.1109/IranianCEE.2017.7985142
– volume: 8
  start-page: 134422
  year: 2020
  ident: ref_37
  article-title: Short-term wind power forecasting based on VMD decomposition, ConvLSTM networks and error analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011060
SSID ssj0023338
Score 2.455146
Snippet As the Internet of Healthcare Things (IoHT) concept emerges today, Wireless Body Area Networks (WBAN) constitute one of the most prominent technologies for...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1951
SubjectTerms Accuracy
Algorithms
anomaly detection
Big Data
Computer Communication Networks
convolutional neural networks
Data compression
Deep learning
False alarms
Humans
Internet of Things
long short-term memory
Neural Networks, Computer
Physiology
Quality of Life
Reproducibility of Results
Sensors
spatiotemporal correlation
wireless body area networks
Wireless Technology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL4UDojwDLXKhBy5W40f8OHYLVVXRXmil3iK_oiKFbMXugvYH8L87drLRrlrEhWNib-KdGdvfKJ-_QejAayoi-JlI03AibOWI1hUjPmhqjYPrXD_l_EKeXomz6-p6rdRX4oT18sC94Q6l04o11tMGtkoLcIJRaWxpYsOkki4f3Su1WSVTQ6rFIfPqdYQ4JPWHs3SclJqKbuw-WaT_IWR5nyC5vehu7fK3bdu13efkGXo6wEZ81A93Bz2K3XP0ZE1M8AX6c4SPU6mNntxGJrA9BQzZ_Q_bLvHnOM-cqw6n4mctBqiKE_G1hYUOT6ZhCY-OFl_0pPAZzkwCeF73awhNePnXKdz6dgN4nVzCeo7PE0l3iZO8B7QOP32Jrk6-XB6fkqHIAvGQGc8Jo4E7K53nYFbLg07VjIxzRpXBOAGIL2jleSgbZ4RiZRDaBRkqGlUA7CP5K7TVTbv4BmEbdfCCBQBxTOggbEktZN6elY1qfFQF-rQyfu0HBfJUCKOtIRNJfqpHPxXow9j1tpfdeKjTJHlw7JCUsvMNiJ96iJ_6X_FToN2V_-th-s5qJrmClUxqUaD9sRkmXvqaYrs4XeQ-kGwyo1iBXvfhMo4EUG3iuMI_VhuBtDHUzZbu-00W99YmKfRXBfo4htzfLfD2f1jgHXrM0pmORKxju2hr_nMR9wBpzd37PKnuAOuqJ5E
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9gAcEG8CBZnHgYvVxEn8OCDULa0qRFcIWqm3yK9QpJAs3V3Q_gD-NzN50RWFY2InsTNj-5vk8zeEvHIqyQLYmQldpiwzuWVK5Zw5rxKjLRy3-VOOZ-LoNHt_lp9tkdmwFwZplcOc2E7UvnH4jXyXi1SCcwmVvZ1_Z5g1Cv-uDik0TJ9awb9pJcaukW2OylgTsj09mH38NIZgKURknb5QCsH-7gK3mSY6TzZWpVa8_yrE-Tdx8vqqnpv1T1NVl1alw9vkVg8n6V5n_ztkK9R3yc1LIoP3yK89uo8pODrSG5vCsuUpRP3fTLWm78Ky5WLVFJOiVRQgLEVCbAUTIJ02fg23DobOOrL4grYMA7hf_aN3WXj4hwZOfT4HHM9OYJ6nx0jeXVOU_YDS_tL75PTw4GT_iPXJF5iDiHnJeOJTa4R1qdDGpF5hliNtrZax1zYDJOiVdKmPS6szyWOfKeuFz5MgPWAikT4gk7qpwyNCTVDeZdwDuOOZ8pmJEwMRueNxKUsXZEReDy-_cL0yOSbIqAqIUNBOxWiniLwYq847OY6rKk3RgmMFVNBuTzQXX4p-QBbCKslL45ISIJgBmMoT6GisQ8mFFFZHZGewf9EP60Xxxwkj8nwshgGJf1lMHZpVWweCUK4lj8jDzl3GlgDaRe4r9FhuONJGUzdL6q_nrei30qjcn0fk5ehy_34Dj__f-CfkBsddHEil4ztksrxYhaeArZb2WT9gfgOxvCY-
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6h9AAceD8MBS2PAxfX9trexwklhapCNEKikcrJ7Mu0qmtHjVMU7vxvZu2N1UCRkDjGO97sxrM73zjffoPQa82TzMJzDqko0zCTuQo5z0moDU-kUPC5q59yMKX7s-zDUX7k65wuPK0SUvGTbpN2p7BCiGBxREiURwmggWhuyrcX_lWS08ZyStsu_dmiOYDxEdqaTT-Nv3RnivzNvZ5QCsl9tHDHSl03G1GoE-u_CmH-SZS8vqzncvVdVtWlKLR3G31dj78nn5zuLFu1o3_8Ju34HxO8g255hIrHvUvdRddsfQ_dvKRbeB_9HONdV9Wj59GFE4iEBo_r5kxWK_zOth29q8auzlqFARVjx7GtYE_Fk8asoGsr8bTnny9wR1qA_uoLvwrgyz82cOnzMaQG4SGEDnzg-MAr7JREoNXf-gDN9t4f7u6Hvp5DqCEJb0OSmFRJqnRKhZSp4a5wklBKsNgIlQG4NJzp1MSlEhkjscm4MtTkiWUGYBZNH6JR3dT2McLScqMzYgAvkoybTMaJhCRfk7hkpbYsQG_Wz7fQXuzc1dyoCkh6nCsUgysE6OVgOu8VPq4ymjgnGQycKHd3oTn_Vvg1XlDFGSmlTkpAdRKQL0lgorGwJaGMKhGg7bWLFX6nWBSEpgw2TcqzAL0YmmGNuz9uZG2bZWcDeS0RjAToUe-Rw0gAQDs6LcyYbfjqxlA3W-qT405HnAtXDCAP0KvBq__-Czz5J6un6AZx50McSY9so1F7vrTPALW16rlfmb8AwR09Ow
  priority: 102
  providerName: Unpaywall
Title A Correlation-Based Anomaly Detection Model for Wireless Body Area Networks Using Convolutional Long Short-Term Memory Neural Network
URI https://www.ncbi.nlm.nih.gov/pubmed/35271097
https://www.proquest.com/docview/2637787684
https://www.proquest.com/docview/2638712972
https://pubmed.ncbi.nlm.nih.gov/PMC8915085
https://www.mdpi.com/1424-8220/22/5/1951/pdf?version=1646214561
https://doaj.org/article/6b872fac1f584a5082169a09ef2676b9
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaW3QNwQLwJLJV5HLgEEsfx44BQu2xZIVqtYCuVU-RXWKSQLH0A-QH8b8ZJGm1FuXGJVHvymhnb39eMZxB6bkRMHdg5ZDJPQqpSHQqRktBYESup4XdTP2UyZScz-n6ezvfQpsZmp8DlTmrn60nNFsXLX9_rNzDgX3vGCZT91dJvFo2l30h9AAuU9BUcJrT_mEASoGFtUqFt8a2lqMnYvwtm_h0teXVdXqj6pyqKS0vR-Ca60WFIPGyNfgvtufI2un4ps-Ad9HuIj3zdjTbSLRzBWmUxUP1vqqjxW7dqArBK7CuhFRhwK_ZRsAXMenhU2Rou7RSethHiS9yEFcD1yh-dn8LNP1TQ9Okc9BaeweSOJz5it8Y-1wf0dqfeRbPx8dnRSdhVXAgN0ORVSGKbaMW0SZhUKrHClzaSWkseWakpwD8ruElslGtJOYksFdoym8aOWwBCLLmH9suqdA8QVk5YQ4kFREeosFRFsQIabkiU89w4HqAXG-VnpktH7qtiFBnQEm-nrLdTgJ72ohdtDo5dQiNvwV7Ap81uGqrFl6wbhRnTgpNcmTgH3KUAm5IYXjSSLieMMy0DdLixf7ZxxYywhMO0xgQN0JO-G0ah_7SiSletGxlgnkRyEqD7rbv0TwIQ1we8whvzLUfaetTtnvLreZPpW0ifrj8N0LPe5f6tgYf_QwOP0DXiN3j4KDtyiPZXi7V7DLBrpQfoCp9zOIrxuwE6GB1PTz8Omr8wBs1wg7bZ9HT4-Q-q3TPD
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLbGOAwOiG8CA8yXxCVaYjuxfUCo3Zg61vZCJ-2W-SsMKSRlbZn6A_g7_EZeJ2m2isFtx8au6-T9bh6_D0JvjYiZAzmHqcxpyFSiQyESEhorYiU1fK75U0bjdHDEPh8nxxvo9-osjIdVrnxi7ahtZfx_5DskpRyUKxXs4_RH6Fmj_NvVFYVGoxaHbnkOJdvsw8EeyPcdIfufJruDsGUVCA2UgvOQxJZqlWpDU6kUtcLT90itJY-s1AxSHCu4oTbKtWScRJYJbVObxI5bCPYphXVvoJuMgi8B--HHFwUehXqv6V5EqYx2Zv4QayyTeC3m1dQAV-Wzf8MytxblVC3PVVFcinn7d9GdNlnFvUa77qENV95Hty-1MHyAfvXwrif4aCB1YR-CosW9svquiiXec_Ma6VViT7lWYEiQsYfbFuBecb-yS1jaKTxuoOgzXOMXYL3yZ2sQ8OPDCi59OYUqIZxAFMEjDw1eYt9UBEbbrz5ER9cihEdos6xK9wRh5YQ1jFhIHQkTlqkoVlDvGxLlPDeOB-j96uFnpu177uk3igzqHy-nrJNTgF53U6dNs4-rJvW9BLsJvj93faE6-5q15p6lWnCSKxPnkOApSIJJDDcaSZeTlKdaBmh7Jf-sdRqz7ELFA_SqGwZz9-9wVOmqRT0HSlwiOQnQ40Zdup1ALu2RtXDHfE2R1ra6PlJ-O61bigvpeQGSAL3pVO7fT-Dp_zf_Em0NJqNhNjwYHz5Dt4g_L-JBe2Qbbc7PFu45ZHFz_aI2HYxOrttW_wDaNlzT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKkTgeEDeBAuaSeIk2cRIfDwjtdlm1tF0h0Ur7FnyFIoVk6e5S5Qfwp_h1jHO1KwpvfUzsOE5mxjOTfJ4Podeah7EFOftUZJEfy0T5nCfE14aHUig4rvlTDqZ05yj-OEtmG-h3txfGwSq7NbFeqE2p3TfyAaERA-WiPB5kLSzi03jyfv7DdwxS7k9rR6fRqMierU4hfVu82x2DrN8QMvlwuL3jtwwDvoa0cOmT0ERKUqUjKqSMDHdUPkIpwQIjVAzhjuFMRybIlIgZCUzMlaEmCS0z4PhpBONeQVdZFAkHJ2Szs2QvgtyvqWQEjcFg4Ta0hiIJ1_xfTRNwUWz7N0Tz-qqYy-pU5vk5_ze5jW61gSseNpp2B23Y4i66ea6c4T30a4i3HdlHA6_zR-AgDR4W5XeZV3hslzXqq8COfi3HECxjB73NYanFo9JUMLSVeNrA0he4xjLAeMXP1jjg5vslnPp8DBmDfwgeBR84mHCFXYERaG0vvY-OLkUID9BmURb2EcLScqNjYiCMJDE3sQxCCbm_JkHGMm2Zh952Lz_VbQ10R8WRp5ALOTmlvZw89LLvOm8Kf1zUaeQk2HdwtbrrE-XJ17Q1_ZQqzkgmdZhBsCchICYhPGggbEYoo0p4aKuTf9ouIIv0TN099KJvBtN3_3NkYctV3QfSXSIY8dDDRl36mUBc7VC28MRsTZHWprreUnw7rsuLc-E4AhIPvepV7t9v4PH_J_8cXQMrTfd3p3tP0A3ito44_B7ZQpvLk5V9CgHdUj2rLQejL5dtqn8AI9RhFg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6h9AAceD8MBS2PAxfX9trexwklhapCNEKikcrJ7Mu0qmtHjVMU7vxvZu2N1UCRkDjGO97sxrM73zjffoPQa82TzMJzDqko0zCTuQo5z0moDU-kUPC5q59yMKX7s-zDUX7k65wuPK0SUvGTbpN2p7BCiGBxREiURwmggWhuyrcX_lWS08ZyStsu_dmiOYDxEdqaTT-Nv3RnivzNvZ5QCsl9tHDHSl03G1GoE-u_CmH-SZS8vqzncvVdVtWlKLR3G31dj78nn5zuLFu1o3_8Ju34HxO8g255hIrHvUvdRddsfQ_dvKRbeB_9HONdV9Wj59GFE4iEBo_r5kxWK_zOth29q8auzlqFARVjx7GtYE_Fk8asoGsr8bTnny9wR1qA_uoLvwrgyz82cOnzMaQG4SGEDnzg-MAr7JREoNXf-gDN9t4f7u6Hvp5DqCEJb0OSmFRJqnRKhZSp4a5wklBKsNgIlQG4NJzp1MSlEhkjscm4MtTkiWUGYBZNH6JR3dT2McLScqMzYgAvkoybTMaJhCRfk7hkpbYsQG_Wz7fQXuzc1dyoCkh6nCsUgysE6OVgOu8VPq4ymjgnGQycKHd3oTn_Vvg1XlDFGSmlTkpAdRKQL0lgorGwJaGMKhGg7bWLFX6nWBSEpgw2TcqzAL0YmmGNuz9uZG2bZWcDeS0RjAToUe-Rw0gAQDs6LcyYbfjqxlA3W-qT405HnAtXDCAP0KvBq__-Czz5J6un6AZx50McSY9so1F7vrTPALW16rlfmb8AwR09Ow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Correlation-Based+Anomaly+Detection+Model+for+Wireless+Body+Area+Networks+Using+Convolutional+Long+Short-Term+Memory+Neural+Network&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Albatul+Albattah&rft.au=Murad+A.+Rassam&rft.date=2022-03-02&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=5&rft.spage=1951&rft_id=info:doi/10.3390%2Fs22051951&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6b872fac1f584a5082169a09ef2676b9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon